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HARMONIC MAPS FROM S TO HP2
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In this paper, we describe all harmonic maps from the Riemann 2-sphere

to HP2

y the quaternion 2-projective space. In example 1.3, all isotropic

harmonic maps from S2 to HPn are given. A particular class of nonisotropic

harmonic maps from S2 to HPn are classified by Theorem 1.4. With theorem

1.5, the description of harmonic maps from *S2 to HP2 becomes complete.

Harmonic maps from S2 to Sn and S2 to CPn are classified by Calabi. E

[1] and Eells-Wood [2] respectively. Our description of harmonic maps from

*S2 to HP2 is not as elegant as those of Calabi and Eells-Wood. Still it gives

hope for classifying harmonic maps from S2 to compact symmetric spaces.

We state our main results in §1. §2 contains some preliminaries. In

§3, the proof of theorem 1.4 is given. Theorem 1.5 is proved in §4. Here

we use some of the ideas from [6].

I am grateful to M.V. Nori for suggesting the problem and also for many

useful discussions.

1. Main results

Hn denotes the quaternionic space of dimension n over H, the quaternions.

We have the quaternion metric < , )> on Hn defined ζυ> ^ ) = Σ ^ ^ where v=

(fiu •"> an)y w=(bi> "y K)^H* F ° r a^H, a denotes the conjugation of a in

H. Write

O, w> = H(v, w)+A(v, w)j (1.1)

where H(v, zo), A(v, w)(ΞC=R+Ri. Define T: Hn-+C2n by T{xx+yλj, ••-,
χn+ynj)

=(%i>yi> " χn>yn)' Γ is a C-linear isomorphism of Hn with C2n. Al-

ways, we identify C2n and Hn through this isomorphism. Then H defined in

(1.1) is the standard Hermitian metric on C2n and A defined in (1.1) is a non-

degenerate alternating C-bilinear form on C2n. Let J denote left multiplica-

tion by j mHn. Then H(v,Jw)=A(v, w) and A(vyjw)——H(v,w) for v,

For a subspace W of C2n, put

- ix£ΞC2n: H{xyy) = 0 for ύlyEΞW} and

= {xtΞC2n: A(x,y) = 0 for ally
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Cn stands for the trivial bundle S2 X Cn with the standard connection 9 and
standard Hermitian metric on each fibre. For a smooth (=C°°) subbundle E
of Cn, E^ denotes the bundle with (EJ~)X=(EX)

Λ-, where Ex denotes the fibre of
E at ^ e S 2 , and in case n is even, EA denotes the bundle with (EA)X=(EX)A.

By a chart (Z7, Z) of S2, we mean a nonempty open set U of 5 2 equipped
with a holomorphic coordinate Z: U-+C. For a smooth complex vector bundle
E over S2, C(E) (resp. £(£")) denotes the space of all smooth sections of E

u

over U (resp. *S2). A pair (E> F) of holomorphic subbundles of Cn is called

a d'-pair of Cw if £ c F and -^~{C{E))<zC(F) for all charts (17, Z) of S2.

For a subbundle £ of CM, let Z)E denote the induced connection on
E. Then, we have operators

DE

Z (resp. Dξ)ι C{E)-+C{E)

defined by Dξ(s)=p(-^-) (resp. Dξ s=p{^L)) for *eC(E). Here, />: C * = £
dZ dZ u

ΦE^-^E is the orthogonal projection. Also, we have operators

Af(Tesp.A§):C(E)-+C(E^)
u u

defined by Aξ(s)=q(-^-) (resp. ^ | ί = ? ( - ^ i ) ) for s<=C(E). Here, ^: C"=£"

J--^£'"L is the orthogonal projection. 4̂f and ̂ 4| are tensors (i.e. Az(fs)
=fAE

z(s) for all s^C(E) and for any function/: Ϊ7->C).
u

For integers &, n with 0<^<w, Gk(Cn) denotes the Grassmannian of &-
dimensional subspaces of Cn. There is a one-to-one correspondence between
maps from S2 to Gk(Cn) and subbundles of Cn of rank k. We often denote
the map and the corresponding subbundle by the same letter.

A subbundle E of Cn is said to be full in Cw if it is not contained in a proper
trivial subbundle of Qn. First, we give some examples of harmonic maps from
S2 to HP*-\n>2).

EXAMPLE 1.2. Let S c Γ c Γ ί be a sequence of holomorphic subbundles
of C2n such that (i) (5, T) and (Γ, Γ ί ) are θ'-pairs of C2n and (ii) (rank S)+l
-rank T<n-l. Put φ(*0 = S^n Γ x θ / ( S ^ n Γx), f o r ^ ^ 5 2 . Then φ: S2

->HPn~ι is a harmonic map.

EXAMPLE 1.3. Let F be a holomorphic subbundle of C2Λ of rank n~\
such that (F, F^) is a 9r-pair of C2w. Put φ(Λr)=F^Π(Fi )jC. Then φ: S2

->HPn~~ι is a harmonic map which is isotropic. All isotropic harmonic maps
from S2 to HPn~ι can be described in this way [3].

M.V. Nori conjectured that (1.2) and (1.3) give all harmonic maps from
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S2 to HP"'1. This is found to be false when n=3. See example 4.15 and

remark 4.17.

Now we state our main results.

Theorem 1.4. Let φ: ^-^.fiΓP""1 (n>2) be a harmonic map such that

(i) φ is not an ίsotropic map and (ii) rank[dφ]=ί. Then there exists a holo-

morphic line subbundle F of C2" such that (F, FA) is a d'-pair of C2n and φ is

given by

φ(x) = FX+JFX

for x^S2.

Theorem 1.5. Let φ: S2-> HP2 be a harmonic map such that (i) φ is

not an isotropic map (ii) rank[dφ]=2. Then there exist

(a) a unique holomorphic map h: S2->CP5 with the property that Jh2=h3

(b) a line bundle Rcz^Qh^h^^H satisfying, for all charts ([/, Z)

ofS\

(1) -^{C{R))dC(R-ϊ) (2) DH

z{C{R))c:C{R).
dZ u u u ud u

such that φ is given by

φ(x) =

forxeΞS2.

REMARKS. (1) For the definitions of [dφ] and rank[3φ] , see §2C.

(2) Isotropic maps are defined in §2D.

(3) For a holomorphic map h: S2->CPn, there are harmonic maps hk

ys

associated to it. See §2E.

2. Preliminaries

A. Harmonic maps. Let M", iV be two compact smooth (=C°°) Riemannian

manifolds. A smooth map φ: M-+N is harmonic if its tension field

τ(φ) = Trace Ddφ

vanishes identically. Here D is the connection on the bundle T*M®φ~ι(TN)

induced from the Riemannian connections on TM and TN.

Now let dimM—2, M orientable and iV a complex manifold with a Her-

mitian metric. Since vanishing of τ(φ) depends only on the conformal class

of the metric on M, we can talk of harmonic maps whose domain is a Riemann

surface. Let (dφ)c: TM®C-+ TN® C be the C-linear extension of the differ-

ential dφ: TM-> TN. {dφ)c gives, in particular (see [2] for the notation below)

dφ: TM-* TN and dφ: T"M-> TN (2.1)
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where T'M is the holomorphic tangent bundle of M and T"M is its conjugate

in TM®C. Let ([/, Z) be a chart of M. Then

) and d"φ = φφ)(^)eC(φ-χT'N)) (2.2)

Taking iV to be Kahler, φ is harmonic if and only if

ΰi9'φ = 0 (2.3)

where D is the connection on φ~ι(T'N) induced from the Hermitian connection

on T'N. See [2].

B. Consider Gk(Cn) with the standard Kahler metric [4]. Then T'Gk(Cn)

gets a unique Hermitian connection. Let v be the tautological &-ρlane bundle

over Gk(Cn). Equip v and v^ with metrices and connections induced from

Gk(Cn)xCn. There is a canonical linear transformation

defined by, for X^TψGk(Cn) and for a section s of v defined in a neighbour-

hood of W,

v(X)(s)=p(Dxs).

Here D stands for the standard connection on Gk(Cn)xCn and £: Gk(Cn)xC n

=z'θ&'~L->z>J~ is the orthogonal projection, η is a connection-preserving iso-

metric isomorphism ([2]).

Let φ: M^>Gk(Cn) be a smooth map from a Riemann surface M. Give

φ~ι(TrGk(Cn)) and φ~1(Hom(z', î "1")) pull-back metrics and pull-back connec-

tions. φ~ι(η)\ φ~1(TI/GΛ(CM))-^φ~1(Hom(^, î -1")) is a connection-preserving

isometric isomorphism. Let V denote the connection in either of the two

bundles. Let (U, Z) be a chart of M and s^C(φ~1(v)). Through the iso-

morphism φ" 1 ^) ,

(d'φ)(s) = Az(s) (2.4)

and

= D-zoAz(s)-AzoD-z(s)

Here ^4Z, Z)z are defined with respect to the decomposition MxCn—φ 1(v)

©φ"1^"1"). See §1. From (2.3), φ is harmonic if and only if

[D-z, Az] (s) = 0 (2.5)

for all charts (U, Z) of M and for all s^C{φ~\v)).



HARMONIC MAPS FROM S2 TO HP2 259

Let E be a subbundle of MxC\ Over a chart ([/, Z) of M let s<=C(E)

or £(£""). Then u

u

X (,) = (Dz+Az) (s), JL (s) = (Dz+Az) (s).

Here DZy DZy Az> Az are defined with respect to the decomposition EφE^ of

MxCn. The identity Γ 4 r , — 1 = 0 implies
L QZ QZ J

{[D-z, DZ]+[A-Z> Az]) (s) = 0 (2.6)

and

([Dz,Az]+[AZ9Dz])(s) = 0. (2.7)

Taking E=φ'\v)9 where φ: M-> Gk(Ctt) is a smooth map, (2.5) and (2.7)

imply that φ is harmonic if and only if

[Dzy Az] (s) = 0 (2.8)

for all charts (t/, Z) of M and for all ίGΞCXa"1^)).

C. φ: M->Gk{Cn) is a harmonic map from a Riemann surface. It is well

known that, if E is a C°° complex vector bundle over a Riemann surface, a com-

plex connection D on E induces a unique holomorphic structure on E whose

d operator is the (0, 1) part of D (See [5]). With respect to the connection

described in §2B, φ" 1 ^), φ~ι{vΔ~) get unique holomorphic structures. Then

a section s^C(φ~ι{v)) or C(φ~1(v~L)) is holomorphic if and only if Dzs=0,

(U, Z) being a chart of M. Since φ is harmonic, (2.5) implies that Aφ

z~\v):

Φ"1^)\u->Φ"1(vJ')\ϋ ί s holomorphic. Define [dφ]: TfM®φ~\v) -> φ"1^"1")

by [ 9 0 ] ( - ^ r ® i ) = ( 8 » M for ^ C ί φ - V ) ) . (C/, Z) being any chart of M.
9Z u

By (2.4), [9φ] is holomorphic. Hence, we have

(2.9) If dim ([dφ] (T'M®φ~\v))x)=r for all points of a nonempty openset

of M, then it is so at all but a discrete set of points of M.

DEFINITION 2.10. Define rank [dφ]=r if (2.9) holds.

D. Isotropic maps. Let φ: M->Gk(Cn) be a smooth map from a Riemann

surface. Define

(Φ(θ) (*) = span{Z>^4zs(#): 0<m<r, s<Ξ£(φ-»)} and

^))} for

([/, Z) being a chart of M around x. Let (φ^)) (x)= U (φfr)) (Λ?) and (Φ&) (Λ?)
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DEFINITION 2.11. We say that a smooth map φ: M->Gk(Cn) is (strongly)

isotropίc if (φ(oo)) (x) is orthogonal to (φ(">) (x) for each x€ΞM.

Suppose φ:M-^HPn~ι is a smooth map. Let i: HPn~ι-> G2(C2n) be the

inclusion and denote i°φ by φ itself. For any s^C(φ~1(v))i (Js)=J —^r,
u 9Z 3Z

(£/, Z) being a chart of M. Then ( Φ M ) (#)=/(<£&)(*). Hence, we have

REMARK 2.12. φ: M->HPn~1 is an isotropic map if and only if (φ'oo)) (#)

is an isotropic space, i.e., A(v, w)=0 for all v, w^(φ{oo)) (x).

E. Harmonic maps from CP1 to CP\ Let A: CP1-^CPn be a full holomor-

phic map (i.e. image h is not contained in a proper projective subspace of CPn).

Let (£/, Z) be a chart of CP1 and A be a lift of h to C* + 1 -0. Let

0<r<A}, &=0, 1, ••-, n. ^ is independent of the

co-ordinate Z and the lift chosen and dim. Ek=k-\-\ except possibly at a dis-

crete set of points. Ek gives rise to a unique complex vector bundle denoted

again by Ek. Write

hk{Z) = Ek(Z)Π(EUZ))-1-, k = 0, 1, ..., n

(Put E^=0).

Then for each Λ==0, 1, •••, n, hk: CP1->CPn is harmonic. This construction

works for any Riemann surface in place of CP1.

Conversely, if φ: CP1-^CPn is a full harmonic map, then there exists

a unique full holomorphic map h: CP1-^CPn and an integer k, 0<ft<w, such

that φ=hk. See [2] for details.

3. Let φ: S2^HPn~1 be a map and i\ HPn-ι-+G2(C2n) be the inclusion.

Throughout §3 and §4, E(φ) stands for the bundle (iΌφ)~1(^) (where v is the

tautological 2-plane bundle over G2(C2n)) and DZ9 Dz, AZy Az are defined with

respect to the decomposition E(φ)+E(φ)Λ- of C2n (See §1). Further ([/, Z)

stands for an arbitrary chart of S2.

We start with a lemma.

Lemma 3.1. Let φ: S2->HPn~ι be a harmonic map. Then for any chart

(£7, Z) of S2 and x^Uy Az(E(φ)x) is an isotropic space.

Proof. With respect to the holomorphic structures on E(φ) and E(φ)Λ~

given in §2 C, Az: E(φ)\u-^E{φ)Λ'\u is holomorphic. Let s, t<=C(E(φ)) be two

linearly independent holomorphic sections. For x^U, putting

β(x) = A(Azs(x), A2t(x))
P V J A(s(x), t(x))
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β^C(K2). K always stands for the canonical line bundle of S2. Since Az

is holomorphic and s, t are holomorphic sections, A(Azs(x), Azt(x)) and A(s(x),
t{x)) are holomorphic functions on U. Hence β is a holomorphic section of
K2 over U. Also β is independent of the linearly independent holomorphic
sections s, t^C(E(φ)). Further, it is easily seen that β is a global holomorphic

section of K2. Since K2 has no nonzero holomorphic section, β = 0. The
lemma now follows.

Corollary 3.2. AE

Z^°AE

Z™ = 0 over any chart ([/, Z) of S2.

Proof. For s, t£ΞC(E(φ)) and xGΞ [/,
u

^ k ( x ) , *(*)) = -A{Azs{x), Azt(x)) = 0 .

Since A is a nondegenerate alternating form on E(φ)χy A2

zs(x)=0.

Proposition 3.3. Let φ: S2-^HPn~ι be a harmonic map with rank [dφ]
= 1. Then AE

z^oAE

z^= 0 over any chart ([/, Z) of S2.

Proof. Let t^.C(E(φ)) be a section which is nowhere zero on U and

Azt=0. Consider

A(Azs(x), t(x)) = -A(s(x), Azt(x)) = 0 .

Since A is nondegenerate on E(φ)x and dimension E(φ)x=2, the proposition
now follows.

There is an isometry /: Gk(Cn)->Gn_k(C") given by f(W)=WΛ-. If φ:
S?->Gk(Cn) is a harmonic map, then φ-L=foφ is also harmonic.

Let φ: S2->HPn-1 be a harmonic map with rank [9φ] = l. Then [9φ]:
TfS2®E(φ)->E(φ)Λ- and [θφ"1-]: T'S2®E{φ)Λ-->E(φ) are holomorphic maps
(See §2C). Since Rank [3φ] — 1 , the kernel of [3φ] gives a unique line sub-
bundle ker[3φ] of T'S2®E{φ) which will correspond to a line subbundle L
of E(φ). Similarly, let W be the subbundle of E(φ)~L corresponding to ker
[3Φ"1"]- Let Im[dφ] (resp. Imfθφ"1"]) denote the unique bundle obtained from
the image of [dφ] (resp. [3Φ"1"]). L, Imftφ^] (resp. W, Im[9φ]) are holo-
morphic subbundles of E(φ) (resp. E(φ)J~). Also by Corollary (3.2), Im[θφ]
dW and by proposition (3.3) I m p φ ^ J ^ L . Then, rank W=2n—3.

Let V: E(φ) -> ?ψ and μ: ^

be the canonical maps. Define f)z: C(E(φ)) -> C(—^h by f)z=ηoDz and define
u u L

: C{E{φ)Λ~) -* C(EW) for ft=l,2, •••. Let i: L->E(φ) and;: Im[8φ]
u u Jί̂
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-> E(φ)Λ- be the inclusion maps. t)z°i gives a linear map D: L -» ^Φ'®K
Li

and ΐ>ιoj gives a linear map D1: Im[9φ] -> ^ ®K since Im[9φ] C W.

Proposition 3.4. D is a holomorphic map.

Proof. For s(ΞC(L), [DZ, DZ]S=[AZ, AZ]S by (2.6). So, DzDzs=DzDzs

+ [AZ, Az]s. [AZi Az]s=AzAzsy and by proposition (3.3), AZAZs<=C(L).

Hence, if s is a holomorphic section of L (i.e. Dzs=0), then Us is a holomorphic

section of ^'®K. This proves that ί) is a holomorphic map.

We want to show that ί)=0. For each integer &>0, define
iDr

zAzs(x): 0<r<&, *<=£(£((/>))}. Put φί~ix)= U
u *>o

Proposition 3.5. // £>Φ 0,

Proof. By induction on k.
By Corollary (3.2), φ[Q){x)(zWx. Assume by induction that φ[k){x)c:Wx. Then
Dk

z

+1oj gives a linear map

Dk+1: Imldφ] -> E^®Kk+1.

Now, for s^C(E(φ))Dz(Dz

+1Azs)=DzDz(DzAzs)+[AZ)A^ By

induction assumption, [AZf Az]Dk

zAzs=:Az(AzDzAzs)<=C(W). Using the in-
duction repeatedly, we get

Dz(Dk

z

+1A2s) = Dk

z

+1DzAzs+t(s) (3.6)

where t(s)^C(W). From (3.6) we see that Dk+1 is a holomorphic map.

w u u τ'c2<>£(Φ) TS^Efφ) AWe have isomorphisms To® KΨJ > v y / and
IF canonical k e r ^ ^ ]

]
L. Denote the composite of these two maps by [dφ^] itself.

[dφ^]: T'S2®E(φ^ -> L .

Then we have

ό ^i^^^K. (3.7)
W

Also, denote the composite of r S » ® ^ * > . W S > g ( » ) a n d

L canonical ker[3φ] ker[3φ]
[3φ]

> Im[9φ] by [3φ] itself and form the composite

® K . (3.8)
W
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All bundles involved in (3-7), (3.8) are holomorphic line bundles and the linear
maps between vthem are holomorphic. Let a and b be the first chern classes

0{ _\ΨJ_ a n c [ \Ψ) respectively. It is well known that, over a compact Rie-
W L

mann surface, a holomorphic line bundle with negative first chern class does
not admit any nonzero holomorphic section. Using this, since jOo[9φJ-]Φ0,
we have 2+α<ό—2. This implies that 2+b>a+(—2)(k+ί) for k>0. Hence
Dk+1o[dφ]=0. So Dk+1=0 giving φ('*+1)(#)c Wx. We conclude that φ'(βo)(x)c:Wx

if^ΦO.

Proposition 3.9. //DΦO, φ is an isotropίc map.

Proof. By (2.12), we have to show that φ[oo)(x) is a isotropic space. Let
s^C(E(φ)) be arbitrary. For any nonnegative integer p, we show that Pk,m{x)

u
=A(Dk

zAzs(x), DzAzs(x))=0 for all k> m s.t. 0<&, tn*ζk+m*ζp, by induction
on p.

For p=0, we are through by lemma 3.1. Assume that Pkttn(x)=0 for
k, m s.t. k+mtζp. Then for A, m s.t. k-\-m=p+l, using the induction assump-
tion repeatedly,

PhtM(x) = -Pk-hm+1(x) = - = (-l)*P0.β + 4(*)

But POi»+*(^) = ""A(s(x)y Az(DψmAzs{x))) which is zero by proposition (3.5).
Hence Pk,m{χ)—® f°r k-\-m=pJ

rl. The proof is now complete.

If φ is assumed to be nonisotropic, we conclude that ί)=0.

Proof of theorem 1.4. For s^C(L), Azs=0 by definition of L, and 0=0
u. a

implies that Dzs^C(L). Then C(L) is closed i.e. L is an antiholomorphic
u u QZ

subbundle of C2n. Since L is a holomorphic subbundle of E(φ), C{L) is
Dz-closed which implies that ΛΓ {C(L))(ZC(L±). Put JL=F. Then F is

dZ u u

a holomorphic line subbundle of C2 M and (ί1, F ί ) is a 8'-pair of C2 M. Also,
E(φ)=FφJF. This completes the proof of theorem 1.4.

In the following, we prove that the map φ given by example 1.2 is har-
monic.

Put Hx = S, H2 = S-Tl Γ, H3=T^i)Ti.

Then E(φ)=H2®JH2 and E(φ)Λ-=H1®H3®JH1. It is clear that

D-zCμiz)<zC{Hz), DzC{H2)dC{H2\ AzC{H2)aC{Hz).

Hence [Dz, Az]C(H2)czC^Hz) (3.10)

Also,
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DzC(H2)(zC(H2), DzCiHJcCiHJ, AzC(H2)czC(H2).
U U U U U U

Hence,

(3.11)

From (3.10), (3.11), (2.7), we get [Dz, Az]=0=[Dz, AZΛ on C(H2). We con-
U

elude that [Dz, Az]=0 on C(E(φ)). Thus φ is harmonic.

We end this section with the following two remarks.

REMARK 3.12. Let W be a maximal isotropic subspace of C2n (w>2) and
T be a holomorphic line subbundle oί S2xW which is nontrivial (i.e. T is not
a constant line bundle). Then (Γ, Ti) is a 3'-pair of C2n. Then, φ given
by φ(x)=TxξBJ Tx is a harmonic map with rank[3φ] — 1 . But φ is an iso-
tropic map.

Proof. φ(/oo)(̂ ) C W. Hence φ is isotropic.

REMARK 3.13. Let T be a holomorphic line subbundle of C4 such that
T is full in C4 and (Γ, Γ^) is a 9'-pair of C4. As in example 1.2, let φ be the
harmonic map given by φ(x)=Tx(BJ Tx. Then, rank[8φ] = l and φ is not
isotropic.

Proof. We prove that φ is not an isotropic map. Let h: S2->CP3 be
the holomorphic map defined by h(x)=Tx. By proposition 4.18, J h1=h2.
By (4.13), JhQ=h3. Hence φloo)(x)=E(φ)f. So, φ(^)(x) is not an isotropic
space.

4. Let φ: S2-^HP2 be a harmonic map such that φ is not isotropic
and rank[3φ]=2. Then Im[3φ] (See §3) is a holomorphic subbundle of
E(φ)Λ~ and is of rank two. There is a holomorphic map

Proposition 4.1. Dimension D1(Im[dφ])=l everywhere except possibly at

a discrete set of points of S2,

Proof. If D1 = 0, then Dz (C(Im [3φ])) c C(Im[3φ]). Then (φfa) (x) c
u u

Imfβφ]* for all x^S2. By lemma 3.1 and remark (2.12), φ is an isotropic
map which is a contradiction. Hence Z^ΦO. Now it is enouth to prove that

, k = 0, 1}

is a proper subspace of E(φ)f.
Let $!, S2£ΞC(E(Φ)) be two linearly independent sections. Put v1=Azsly
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v2=Azs2, vz=DzAzs1 and v4=DzAzs2. Put

Then,

[ 0 P(x)~]

tp(χ) * J

by lemma 3.1. Define β by

R( v _ determinant P(*Q , , ™ 6

for xEiU. Using lemma 3.1, one can verify that β is independent of the linearly
independent pair of sections of E(φ) over U. Again, using lemma 3.1, β is
independent of the chart ([/, Z) chosen. Hence β is a global section of K6.
We prove that β is a holomorphic section.

Choose sl9 s2<=C(E(φ)) such that Dzs1=0=Dzs2. By (2.6),

DzDzAzSi = DzDzAzSi+[AZi

Then by (2.5) and lemma 3.1, D z A ^ z * ; = A ^ b Λ ^ , . Now,

%-A(Azsh DzAzSj) = A(DzAzsh DzAzSj)+A(Azsif DzDzAzSj)
dz

= A(0, DzAzSj)+A(Azsi: AzAzAzSj)

= 0.

Each entry being holomorphic, det. P(x) is a holomorphic function on U. Since
sly s2 are holomorphic sections, A(s1(x)i s2(x)) is a holomorphic function on U.
Thus β is a holomorphic section of K6. Then β—0 and hence determinant
P(x)=0. It follows that [A(Vi(x)> Vj(x))] is a singular matrix. This implies
that φ(i)(x) is a proper subspace of E(φ)f. This completes the proof.

The kernel of D1 gives a unique line bundle i? of Im[8φ]. We have, then

(4.2) R is a holomorphic line subbundle of Im[9ώ]. So, DzC(R)dC(R).
u u

(4.3) By Corollary 3.2 and definition of R, -^- C(R)dC(Im[dφ]). Put M=
dZ U

Define α: S2-^G2(C6) by a(x)=(lm[dφ])s.

Proposition 4.4. a: 52-> G2(C6) z> α harmonic map.

Proof. Over a chart (£/, Z) of S2, ^4^ always denotes either AψW* or
(See §1). Similarly we have the operators A$, Dz and Ό'Ύ. a is
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harmonic if and only if [DZy A'z]=0 on C(lm[dφ])

Since Im[3φ] is a holomorphic subbundle of έ(φ)"1",

for all s£ΞC(Im[dφ])y A^s = Azs. (4.5)

By Corollary 3.2,

for all stΞC(E(φ)), Dzs = Dzs . (4.6)

AzJs=JAzsy and Azs=0 for any s<=C(Im[dφ) (Corollary 3.2). So

for seC(Im[dφ])9 AzJs = 0 . (4.7)

By lemma 3.1, Im[3φ] and/ Im[8φ] are mutually orthogonal. Hence

(Imidφ])^ = E(φ)®J Im[8φ] . (4.8)

For $eC(Im[8φ]), ΌzA'zs=ΌzAzs by 4.5, 4.6. Since φ^ is harmonic, by 2.8,

DzAzs=AzDzs. By 4.8, and 4.7 and 4.5, AzDzs=A/

2Dzs. Thus [J%, A^]s
=0. This completes the proof.

Recall, M=Λ J-nim[8φ].

Proposition 4.9. M: S2^>CP5 is a harmonic map.

Proof. Over a chart (t/,Z) of S\ let ,4'/ denote either A% or ί̂f"1" (See
§1). Similarly define A!{, Ό'z', D'z'.

By (2.5), M is a harmonic map if and only if [D^, A'z]s=0 for any s^C(M).
u

Let the operators Az, Af

z, DZ) Ώ'z be as in proposition (4.4). By (4.2),
DzC(M)dC(M). Hence for st=C(M),

υ u u

A'z's = A'zs. (4.10)

By (4.3),
A'zs=0 for s<=C(R). (4.11)

Now, for iei(7kr), by (4.10), Dz'A/z's=D'z'{A'zs). By (4.3), Z ^ ' ( ^ ) = Z ) ^ ' z s ) .

By (2.8) and proposition (4.4), Z)Ji4ίί=i4iZ)^. Using (4.10), A/

z(D^s)=A/

z

/D/^s.
So, [Zψ, i4^>=0 as needed.

REMARK 4.10. M is not a holomorphic map. For, let Λ G S 2 and (U, Z)
be a chart with xGi7. Since rank [3φ]=2, Az\ E(φ)f->E(φ)x is surjective
except possibly at a finite number of points of S2. Since Azs=0 for ίG
C(/Im[9φ]), the remark follows. Recall the map a: 52->G2(C6) defined by

a(x)=Ίm[dφ]s. Define da: T'S2-> T'G2(C6) by da=po{dά)c where^: ΓG2(C6)
®0->T'G2(C6) is the projection. 9<2 gives a map [da]: T'S2®ϊm[dφ]->
(Im [9Φ])"1- (See §2C). By Proposition (4.1), rank [8α]=l. The image of [8α]
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gives a unique line subbundle N of (Impφ])"1-. By (4.8) and Corollary (3.2),

NcJIm[dφ].

Proposition 4.11. JM=N.

Proof. Ry M are mutually orthogonal and Im[9φ]=jR®M. It is enough
to show that JR and N are mutually orthogonal. Over a chart (U, Z) of S2,

[da](—®s)=A'zs for jeC(Im[9φ]). Then for t*=C(R)9 H(A'zs(x)9 Jt(x))
dZ u u

= -H(s(x)yA'zJt(x)). Az(Jt(x))=JA'z(t(x)) = 0by(4.11). Hence H(Azs(x),
Jt(x))=0. This implies that JR and N are mutually orthogonal.

For an odd positive integer n, consider Cn+1 with H, A, J as in § 1.

Proposition 4.12. Let h: S2^CPn be a holomorphίc map such that for
some integer k, 0<&<w, Jhk=hk+Ϊ. Then h is a full holomorphic map if and
only if 2k+l=n.

Proof. If k=0 or k+l=n, then Jhk=hk+1 implies that hk is a holomorphic
map and hk+1 is an antiholomorphic map. Then, hkξ&hk+ι is an antiholomorphic
bundle and being /-stable (i.e. J(hk(Bhk+1)=hk(Bhk+1), it is a holomorphic sub-
bundle of Cn+1. Thus hk(Bhk+1 is a trivial bundle of rank two. Then h is full
if and only if n=\=2kJ

rl.
Now assume that \<k-\-l<n. For x^S2 and a chart (t/, Z) around x>

define

span IQ- (x): s^CfhΔ and

For /Φw, dimension of h't{x) is equal to two except possibly at a finite number
of points of S2

y hence gives a unique bundle h[. We have hfi=hi®hi+1. Sim-
ilarly, for z'ΦO, hY=hi@hi-ι. Now for /=&+l, h'k+i=hk+ι(Bhk+2 and since AA+1

=/**> H+i—Jh". So, we get hk+1®hk+2=Jhk®Jhk_x. Since the bundles A,
are mutually orthogonal, we get Jhk-ι=hk+2. Continuing this procedure, for
ί such that

If k—i=0y then by 4.13, JhQ=h2k+1. Since /zo=Λ is a holomorphic map, A2Λ+1

is an antiholomorphic map. Then C(ho(B * Θ ^ + i ) i s stable under and —=-.
υ QZ QZ

Thus Ao0 φΛ2ife+1 is a trivial subbundle of Cn + 1. Hence we conclude that h
is a full map if and only if n=2k+l.

By proposition 4.9, M: S2->CP5 is a harmonic map. By a result of Eells-
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Wood (§2E), there exists a holomorphic map h: S2-+OP5 such that M=hk

for some integer k, 0<&<5. Since M is not an antiholomorphic map 0<&<5.
DzC(M)dC(M) by (4.2) and then by Corollary 3.2 N=hk+1. Then by

u u

proposition 4.11, Jhk=hk+1. By proposition 4.12, 0<A<2 and by remark
4.10, &Φ0. Thus, k=l or k=2 i.e. M=-hx or M=h2. In the following pro-
position we prove that M=h2.

Proposition 4.14. M=h2.

Proof. Suppose on the contrary that M=hλ. Using proposition 4.12
and 4.13, we see that /z0θ^iθΛ2θ/z3 is a/-stable trivial subbundle of C6. Put
W= (AbθAiθAaθAsΓ. Rank W= 2. We have, Rcz(h1®h2φh3)

Λ'=H. Then,
H=ho®W.

By (4.3), DH

zC{R)czC{R). Hence Rdh0ΘT where T is a trivial line sub-
u u

bundle of W. Let X G S 2 and let (£/, Z) be a chart arround Λ\ Put

Sx = span < ) (
u

Dimension Sx— 1 except possibly at a finite number of points of S. Hence
we get a line subbundle S of E(φ). Since ho(BT is holomorphic and R<zh0

θ 7\ we get /*oθ Γ - Λ Θ 5 . Now,

^L and ho®hx@T =
dZ

It follows that A~z C(hx)(zC(S). Thus A~z C(hx®R)c:C{S). This contradicts

the assumption that rank[3φ]=2. We conclude that M=h2.

Proof of theorem 1.5. Let H e a holomorphic map from S2 to CP5 such
that M=h2. Then by proposition 4.12, h is a full holomorphic map and hence
M is a full harmonic map from S2 to CP5, Thus the map Λ is unique (§2E).

Put ff=(A20ήseA4)-L. Using (4.2) Λ c i ί and -Lc(Λ)cC(i2j-). By (4.3),
dZ u ui

DH

zC(R)<zC{R). Finally, φ(x) = (R®JRΘh2®h3)f. The proof of theorem

1.5 is now complete.

EXAMPLE 4.15. Let h:S2->CP5 be a holomorphic map such that Jhk = hk+1

for some 0<&<2. Define

2)"1' otherwise.

Let Λ c i ί be a line bundle such that DξC(R)cC(R) and - L C(R)cC(Ri)
u, u 9 ^ ^ ^

for all charts (t/, Z) of 5 2 . Define φ: S2-+HP2 by φ(x)=(RΘJRΘhk@hk+1)t
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for x€ΞS2. Then φ is a harmonic map.

We briefly sketch a proof of this. One can check that Az(C(R®hk))=0

and Dz(C(R®hk)(zC(R®hk). Then [Dz, Az] = 0 on C(R®hk). Using (2.7),
u u u

[Dz, Az]=0 on C(JR®hk+1). By (2.5), φ"1" is harmonic. So, φ is a harmonic
map.

REMARKS 4.16. (1) In example 4.15, if Jhk=hk+ι for k=0, 1, then rank
[9φ]<l. If Jh2=h3 and R—hlf then φ is not an isotropic map, but rank
[8φ]=l.

(2) In example 4.15, consider the case when Jh2=h3. Then, Rczh^h^H
if and only if rank [9φ]=l.

REMARK 4.17. Consider example 1.2 with τz=3. There are nonisotropic
harmonic maps φ with rank [9φ]=2 (e.g. Take S to be a full holomorphic line
subbundle of C6.) For any such map φ, R (Recall that R is given by the ker-
nel of D1, proposition (4.11)) is an antiholomorphic subbundle of C6. In fact,
R=JS.

In example 4.15, consider the case when Jh2—h3 and i?=t=A5,
Such a harmonic map φ is nonisotropic and rank [9φ]=2. Im [9φ]=i?φ/z2

and i?=ker t)1 is not an antiholomorphic line bundle. So examples 1.2, 1.3
do not cover all the harmonic maps from S2 to HPn~ι»

Following proposition describes holomorphic maps h: S2-+CP5 having
the property that Jhk~hk+ι for some 0<&<2. Let FdC6 be the holomorphic
linebundle corresponding to h (i.e. Fx=h(x) for x^S2). Let F(r) be the r-th
associated bundle of F (See [3] for the notation F(r)).

Proposition 4.18. (a) /A0=A1 if and only if F is full in S2X Wo where
Wo is a J-invariant subspace of C6 of dimension 2.
(b) Jhλ=h2 if and only if (Fy Fi) is a d'-pair of C6 and F is full in S2 X W, where
W is a J-invariant subspace of C6 of dimension 4.
(c) Jh2=hz if and only if F is full in C6 and (Fω, (Fω)i) is a d'-pair of C6.

Proof. We prove (c).
=>. Suppose Jh2=h3. By proposition 4.12, F is full in C6. By (4.13), (F(2))x

is an isotropic space for any xG5 2 . But, F(2)^(F(2))A ^(F(1)y (F(1))A) is a 9'-pair
of C6.

<==. Let Si^CMtλ for 0<z'<3. Since (F(2))x is an isotropic space, A(—^- (x),
u a ί \ ®Z

si(x)) = —A(s2(x)J

 όsλx>)=Q for 0 < / < 1. This implies that h3(Z(Fω)ϊ.
dZ

Hence (Fω)i=F(3). F o r O < i < l ,
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A{Js2{x\ sax)) = H(s2(x), Si(x)) = 0 .

This implies that Jh2a(Fω)i=:F(3). Also for 0 < i < 2 ,

H(st(x)9 Js2(x)) = A(Si{x)9 s2(x)) = 0

since (F(2))x is an isotropic space. We conclude that

The proof for (b) is similar to that of (c). (a) is obvious.
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