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1. Introduction

Let M be a compact, connected, oriented Riemannian 4-manifold. Let
P be a smooth principal G-bundle over M. For simplicity we assume that
the Lie group G=SU(n), n^2. An St/^-connection A on P is called self-
dual (anti-self-dual) if curvature form F(A)=dA—A/\A satisfies *F(A)=±
F(A). Each self-dual (anti-self-dual) connection is characterized as a connec-

tion minimizing the Yang-Mills functional I | F \ 2dv and then gives a solution
JM

to the Yang-Mills equation. That the second Chern class c2(Qc)<Q(>0) for the
adjoint bundle g of P is a topological restriction to P in order to admit a self-
dual (anti-self-dual) connection. The moduli space <3A, of self-dual (anti-self-
dual) connections, namely, the orbit space of self-dual (anti-self-dual) connec-
tions with respect to the group Q of gauge transformations has a structure of
smooth manifold ([3], [7]).

A Kahler surface M with a Kahler metric g, which is certainly a Riemannian
4-manifold, carries the canonical orientation induced from the complex structure.
Relative to this orientation a connection A is anti-self-dual if and only if its
curvature is a 2-form of type (1,1) which is primitive (that is, orthogonal to the
Kahler form ω). Therefore, by the integrability condition ([3]) each anti-self-
dual connection induces a holomorphic structure on the complex adjoint bundle
Qc. Since gauge-equivalent anti-self-dual connections give holomorphic struc-
tures which are isomorphic with respect to automorphisms of gc, we have the
canonical mapping from <3M, to the moduli spcae of holomorphic structures on Qc.
Furthermore an anti-self-dual *Si7(w)-connection A naturally defines an Einstein-
Hermitian structure on the associated holomorphic vector bundle E=Px Su(n)Cn.
We have also the fact that E is ω-semi-stable in the sense of Mumford and
Takemoto ([9]). If A is moreover irreducible, then E is ω-stable. On the other
hand, over a nonsingular projective surface the moduli space of holomorphic,
rank two vector bundles of fixed Chern classes is a quasi-projective variety ([12]).
From these reasons together with an easy observation that the moduli space <3M
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has even dimension (Proposition 2.4), it is natural that <3tt may possibly be a

complex manifold ([!]). The aim of this paper is to show that <3tt is indeed a

complex manifold with singularities by using notion of holomorphic (0,l)-connec-
tions.

The singularities of <3ά are described as gauge-equivalent classes [A] of JM

either with non-zero 0-th cohomology H° or with non-zero second cohomology

H2 for a certain complex associated to the connection A. Denote by JC the

subset of Jtt {[A] e JK HQΦ 0}. Then we obtain the following

Theorem 1. Let M be a compact Kάhler surface with a Kάhler metric of

positive total scalar curvature or with trivial canonical line bundle KM. Let P be
a smooth principal SU(ri)-bundle with second Chern class c2(Qc)>0. If JH\JC is

non-empty, then it is a complex manifold of dimension c2(Qc)—(n2—V)pa(M), where
pa(M) is arithmetic genus of M.

We denote by H the space H\M\ O(QC®KM)) relative to the holomorphic

structure on Q° induced from an anti-self-dual connection A. Theorem 1 is
a direct consequence of the following theorem.

Theorem 2. Let M be a compote Kάhler surface, P a smooth principal

SU(ri)-bundle with c2(flc)>0. // (JH\JC)0= {[A](Ξ JK\JC; JEΓ=0} is non-empty,
then it is a complex manifold of dimension c2(Q°)—(n2—l)pa(M).

These theorems are obtained as follows. We first show in §2 that each [A]

e(^5K\JC)o has a neighborhood in the first cohomology H1 defining a local

coordinate of <3H. But such coordinate neighborhoods are not necessarily each
other related holomorphically. Therefore we should verify by an indirect method

that (<3M\JC)0 is in fact a complex manifold. For this purpose we define in § 3 a

holomorphic (0,l)-connection on the complexification Pc of P. A holomorphic

(0,l)-connection is a system of local §l(n; C)-valued (0,l)-forms satisfying a tran-

sition condition whose curvature form vanishes. In a manner analoguous to the

case of anti-self-dual St/(w)-connections we can define complex gauge transfor-

mations, moduli space of holomorphic (0,l)-connections and an elliptic complex
which is a gauge field version of the Dolbeault complex. We obtain at §4 a

canonical mapping / from <3H to the moduli space of holomorphic (0,l)-connec-

tions which is injective and open over (JM\JC)0 and then use the Atiyah-Singer
index theorem and Kuranishi's integrating method together with the moment

map due to Donaldson ([6]) to verify that the open subspcae /((<_5K\JC)0) in the
moduli is definitely a complex manifold of dimension c2(Q)—(n2—l)pa(M) (Pro-
position 5.1).

Holomorphic (0,1)-connections over a complex manifold are inseparably

related to holomorphic structures on Qc. Then the moduli space of holomorphic
connections reflects aspects and properties of the moduli of holomorphic struc-
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tures on Qc. See Ch. 2 of [13] and [2] as references for theory of holomorphic
structures on a vector bundle over a compact complex manifold.

An announcement of this article is appeared in [8]. With respect to basical

references we refer to [3] and [7],

2. Moduli space of anti-self-dual connections

Let M be a compact Kahler surface with a Kahler metric g. We denote
by Λ* and Λ(/>'9) the vector bundles of real &-forms and of complex (/>^)-forms
on My respectively. For a real vector bundle E and a complex vector bundle

F we denote by Ω?(E) and Ω(P'9\F) the space of all smooth &-forms with values

in E and the space of all smooth (p,q)-forms with values in F. Let P be a smooth

principal bundle over M with gauge group SU(n). We denote by G and g
the associated bundles PxAdSU(ri) and PχAd%n(n\ respectively. We call g the

adjoint bundle of P.
Let {W<ά be an open covering of M consisting of local trivializing neigh-

borhoods of P.

DEFINITION 2.1. A system A={A<Λ} of local smooth §u(rc)-valued 1 -forms

AΛ defined over WΛ is called an Si7(ft)-comιection on P, if A satisfies the cocycle

condition;

on WΛ Π Wβy where g=gΛβ is a transiton transition function of P over WΛ Π Wβ.
The set Jl of all 5t/(w)-connections on P has an affine structure. That is,

Jl is given by {A-\-a\ a^Ω,\Q)} for a fixed S£/(w)-connection A. We call
*S?7(n)-connection A irreducible when the covariant derivative dA\ Ω°(g)~>Ω1(g),
'ψ i-frέ/'ψ +l ψ', A] has trivial kernel. An 5C7(n)-connection is called reducible if it

is not irreducible.

The complex surface M has the canonical orientation induced from the

complex structure. The Hodge star operator * gives an endomorphism of Λ2

with property #o#=iJ. We denote by Λ+ and Λi the eigenspaces of +1 and

— 1, respectively. The projection from Λ2 onto Λ+ is denoted by p+. Over
Kahler surface M we have the following ([7]). A real 2-form a belongs to Λ+
if and only if (l,l)-ρart of a is proportional to the Kahler form ω, and a real 2-

form β is in Λi if and only if β is of type (1,1) and orthogonal to ω. A 2-form
in Λ+(or in Λi) is called self-dual (or anti-self-dual).

DEFINITION 2.2. An 5ί7(^)-connection A is called anti-self-dual if the

curvature form F(A)=dA—A/\A which belongs to Ω2(g) satisfies *F(A)=
—F(A), namely p+F(A)=0.

The group £=T(My G) of all smooth gauge transformations of P acts on <JL
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, A^JL. Let Z be the center of SU(ri). Each

element of Z defines a gauge transformation which commutes with all g's of 3.

It is easily seen that the center Z(3) of 3 coincides with Z. The center Z=Z(3)
acts trivially on JL. Let A be an irreducible connection on P. Then the iso-
tropy subgroup TA= {g^S\g(A)= A} is just Z. This fact is observed by the
following. The endomorphism bundle End(l?) of the associated vector bundle

E=Pχ pC
n, which is written as End(E)=PxAdQl(n;C), decomposes into End(l?)

= 1Θ0®\/— 1 9 as an SU(n) -vector bundle, where 1 is a one-dimensional
trivial bundle. The bundle G=PxAd SU(ri) is considered as a subbundle of

End(E) with fibers consisting of SU(ri). Then a gauge transformation £ is in Γ^
if and only ifg(A)—A=(dg+[g,A]) g~l=dAg g~1=Q, that is, g is a parallel sec-
tion of End(J£). By the irreducibility of A g must be a constant multiple of

identity transformation 1E, hence g^Z since g takes values in SU(n). As a con-

sequence the quotient group Q=Q\Z acts effectively on Jl and freely on the
subset of irreducible connections.

Denote by J3 the quotient space Jl\Q and by π the projection of Jl onto &.

The equivalence class π(A) is denoted by [A]. Since F(g(A))=g'F(A)'g"1

y £<Ξ

S, g(A) is anti-self-dual for every anti-self-dual connection A. The subset <3H

in 3$ given by {anti-self-dual connections on P}/3 is called the moduli space of
anti-self-dual connections on P.

In order to introduce a local coordinate neighborhood for each [A] of <3M, we

define suitable topologies on 3$. On the spaces Ω,P(Q) the inner product < , >Λf

is defined by <φ,̂ >M - ( <φ, ψ>(*>fe, <φ, ψ χ*)<fe - Γr{φ(*)Λ*^)}, p^
J M

0. By using a partition of unity we also define the Sobolev's norm | | k on ΩP(Q)

for a positive integer k. In the completion L|(Ω/>(g)) of Ω^(g) relative to | | k
the subspace ΩP(Q) of all smooth sections is dense. Note that norms | 1 0 and

I ' IM— <(*>*/>M1/2 are equivalent. Now we complete the space Jl and the group
3. Namely, let JL be the space {A0+a; aGLl(Ωl(Q))} for a fixed smooth con-

nection A0 and ̂ the subset {^eL^ι(Γ(M; End (J^)); g takes values in SU(ri)}.

Then ώ*, and hence ̂  acts on JL and we get the quotient topology on the space

£B=JLI<2. In the following we assume that k is sufficiently large relative to the

dimension of the base space M in order to apply Sobolev's imbedding theorem.

For a connection A a subset UA of Jl{A+a; a^Ll(Ωl(Q)),d$(X=Q} is said

to be a slice at A. Here d\\ Ω1(g)->Ω°(g) is the formal adjoint of dA relative

to the inner product <C , )>Λf

Proposition 2.1. Let A be an irreducible connection. Then there is a
positive 8 such that UA^^={AJ

Γa\ \<x\k<ε, d$a=Q} dJL is homeomorphίc to its

image π(UAtί) through the restriction of π to UA>1Ϊ and π(UAtζ) gives a neighborhood

of [A] in Ά.
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Proof. This proposition is shown in the proof of Theorem 6 in [5]. Then
we give here a sketch of the proof. We define a mapping S] UA^χβ/Z-*<Jl,
S(A+a,g)=g(A-{-ά). Then S is smooth relative to the Lf-topologies and its
derivative at a=Q and g=the identity is given by

(a, φ)^

which is an isomorphism since Ker dA=0 and Ω^g)— Im dA@ Ker d\ . Then S
gives a local diίfeomorphism. Thus for a sufficiently small £ there is a neigh-
borhood Q of A in <̂ ? which is written as S(UA>ΐX W), where IF is a neigh-

borhood in 3. Namely, each A1 in Q has a unique form A1=g(A+β)J β^UAttJ

g^W. By the aid of the semi-continuity of dim Ker dA we can assume here
that each connection of Q is irreducible. The proof is completed if we use the
argument given at p. 448, 449 of [3],

Let JC be the subset of Ά given by {[A\^<B\ A is reducible}. Since F(A
+a)=F(A)+dAa—a/\a, a slice neighborhood ^U^] of [A]^JM\JC in JK can
be given by an ^-neighborhood of a slice

; \a\k<ε, d$a = Q, d\a = a$a} , (2.2)

where d$=p+°dA and #; Ω1(a)xΩ1(g)->Ω+(g)=Γ(Λί;Λ2

+®g) is defined by α#/3

To analyze more exactly the structure of neighborhoods of the moduli
space <_5K we need notion of an elliptic complex and also the integrating method
due to Kuranishi ([11]).

For any anti-self-dual *SfC7(/z)-connection A the following sequence presents
an elliptic complex ([3, p. 444], [7, Proposition 2.4])

0 -»Ω°(g) -*• Ω*(g) -* Ω+(g) —> 0. (2.3)

If the connection A is irreducible, then 0-th cohomology group HA vanishes.
With respect to the second cohomology group HA we have the following two
propositions.

Proposition 2.2. Let A be an anti-self-dual connection. Then for each Φ=

I If = (1/2) {I V^Φ?'° I i+1 t̂ Φ° 21U + I dA& I ir

+(1/4)ί Scal(^){|Φ2'0|2+|Φ°'2|2}^. (2.4)
v M

Here V^ denotes the covariant derivative with respect to A together with the
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Levi-Civita connection of the metric £ and Scal(^) is the scalar curvature of g.

Notice that since each Φ in Ωl(8) takes values in §n(ri)y Φ satisfies the reality

condition, that is, Φ°eΩ°(g) and Φ°'2=— '(Φ )̂.

Proposition 2.3. If an SU(ri)-connection A is anti-self-dual, then the second
cohomology H2

A is R-isomorphic to HA @H, Where H denotse the space of global
holomorphίc sections H°(M; 0(QC®KM)} with respect to the holomorphic structure

Qc on canonically induced from the A.

Proof of Proposition 2.2. It suffices to show the following Bochner-

Weitzenbΰck formula with respect to a general connection A\

+(1/4)
J M

+4J

-2\

for ΦeΩ2

+(g) and F+(A)=p+F(A)=F2 °+F° 2+F°®ω.
Since

(2.5)

° 1

) ω>®ω (2.6)

and we have

and

^*(Φ°®ω) = V=ΐ (8ΛΦ0-^Φ°) , (2.8)

we obtain the following

(2.9)

and

. (2.10)

Since dAdAΦ
ΰ=[Φ°, F(A}}, (2.10) reduces to

+(1/2) (D^Φ0)®c,, . (2.11)
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Here we denote by ΠΛ the rough Laplacian — "Σg'^^f Hence the inner pro-

duct <<M*(Φ°®ω), Φ>M is given by

°, Φ% . (2.12)

On the other hand we have by an argument similar to [7, Lemma 3.3]

QAQ*Φ™ = (i/2)ΠκΦ
2 °+(l/4) Scalte) Φ2 °

-(1/2) [Φ2 °, 2̂ =1 F°] . (2.13)

By using the Ricci formula we obtain further

\Φ^,F^\ . (2.14)

Therefore (2.5) is derived from these formulas.

Proof of Proposition 2.3. Since the curvature form F(A) is of type (1,1),

the connection A induces a holomorphic structure on the complex adjoint bundle

Qc. Namely a smooth section Φ of Qc satisfies dAΦ=0 if and only if Φ is holo-

morphic relative to the holomorphic structure. Then the space {ΦeΩ0'2(gc');

9^9*Φ=0} is isomorphic with the second cohomology IP(M\ O(QC)) from

Theorem 4.1, ch. 3 in [10].
Moreover it is isomorphic with the space H by the aid of Serre's duality

theorem and the self-duality of Qc as a vector bundle. In the course of the proof

of Proposition 2.2 we can also verify that

\dίΦ°'2\2M= (1/2)| V^Φ0 2|lH-(l/4)( Scal(£)|Φ° 2|2<fo (2.15)
JM

for Φ°'2<ΞΩ°'2(flc). Thus we have

|<C*Φ|ίr= \diΦ2'°\M+\dί^2\M+\dAΦ°\2M (2.16)

from which the proposition follows easily.

REMARK 2.1. If the canonical line bundle KM is trivial, then H is C-iso-
morphic to (HA)C. On the other hand, if the metric g is of positive total scalar

curvature, i.e., \ ScalG?) dv>0, then H vanishes.
JM

By applying the Atiyah-Singer index theorem to complex (2.4), we have
([7])hQ-h1+h2=-2c2(Qc)+2dιmSU(n)^pa(M)J where pa(M) denotes the arith-

metic genus of M and hi=dimR HΆ, /= 0,1,2. If both HQ and H2 vanish, then

-fiΓ1 has even dimension.

Proposition 2.4. The first cohomology group HA is R-isomorphic to the com-
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plex vector space Jίl={a^^Ω(0'l\Qc)y 5xα<p 1)=0, 3$aM=Q}.

Proof. Each g-valued 1-form a splits into

a = a

Qc) with '(α(1 0)) = -a^ .

We define a mapping h; Ω1(g)-» Ω(0'1)(ac) by assigning «(0>1) to a. We show that
h\H* gives an isomorphism of H1 to M1. By an argument given in [7] we see that

=0 if and only if

Wtfv - 0 (2.17)

and that dAoc=0 if and only if

Hence, if a is in H1, then 3A a<0-^ = 0 and 9f α'0-1' = - Σlgμ^μa^= 0. Since f(α(1 0))
= — α(0>1), the inverse implication is easily derived.

REMARK 2.2. Proposition 2.4 is also established for a connection which is
not necessarily anti-self-dual.

Now we define for each [A] in the moduli space JM\JC a mapping Φ=Φ^;
Ω'fe)-*^) by Φ(ά)=a-dϊ*(GΛ(a$a)) ([2], [4]). Here GA is the Green
operator of the Laplace operator ί/5°^l*. Relative to the norms | \k we have

(2.19)

(2.20)

and

(2.21)

for α, /SeL^Ω^β)), ΨeL|(Ω+(g)), where ̂  is a constant depending only on the
manifold Af(Ch. 4 of [10], [11]). Therefore the mapping Φ^; L2

k(Ωl(&))-+Ll(Ωl

(g)) is difϊerentiable. Suppose that H2

A=Q. Then we have on Ω+(fl) rfJorf3*oG^
=id. Hence a slice neighborhood C7^>8, identified with ^Uu] of [̂ 4] is mapped
by the Φ into H\. Since the derivative of Φ at a=0 is identity, it has an inverse
on a sufficiently small neighborhood U^—{β^Hl

A\ \β\M<£}
Notice that by using a prior estimates of elliptic differential operators each

β in Ll(Ω\Q)) satisfying (dAd$+dA*dl)β=Q is a smooth section and norms
I β I k and | β \ M are equivalent.

As a consequence of these propositions we obtain
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Proposition 2.5. Let M be a compact Kΰhler surface with a Kάhler metric
g and P a principal SU(ri)-bundle with c2(Qc)>0. Suppose that either the
canonical line bundle KM is trivial or the metric is with positive total scalar curva-
ture. Then, if the moduli space JM\JC of irreducible anti-self-dual connections on
P is not empty, it is a smooth manifold of dimension 2 c2(Qc)— 2(n2— \} pa(M).

REMARK 2.3. On the subset CB\JC={[A]&$; A is irreducible} we define
a metric function σ (see for the precise discussion p. 448 in [3]); σ([-4], [A])—
ir\fg^£\A — g(A1) \M. Since σ is continuous relative to the Lf -topology, -®V/C is
a Hausdorίf space. Therefore the moduli space JM\JC, a closed subset of &\JC,
is also Hausdorff with respect to the relative topology.

3. (0,l)-connections and moduli space of holomorphic (0,1 ̂ connec-
tions

We denote by Pc a smooth principal SL(n C)-bundle given by extending
the transition functions of the bundle P to SL(n\ C). The complexification Qc

of g clearly coincides with PcχAd§l(n; C). Now we define on Pc a (0,1)-
connection and a holomorphic (0,l)-connection as follows.

DEFINITION 3.1. Let {W<»} be the open covering of M consisting of local
trivializing neighborhoods of P. A system A— {AΛ}, where each AΛ is a smooth
%l(n\ C)-valued (0,l)-form defined over WΛ9 is called a (0,l)-connection on Pc,
when it satisfies the cocycle condition

Aβ = dg g-'+g A^ g-1 (3.1)

on WΛ Π Wβ, where g—gΛp is the transition function of P.

The set oί(0fl) of all (0,l)-connections on P€ has a structure of affine space.
The group of complex gauge transformations SC=T(M\ PcXAdSL(n\ C)) acts
on c^(0'1} in the form

Vg Γl+g A g-l

9 (3.2)

, A<EΞjμ°'V. We denote by &<w the quotient space Jl

REMARK 3.1. By its definition, each (0,l)-connection is not a connection by
itself. But we have a mapping h\JL-+ ̂ (M) A M» A^, where ^4((U) is the (0,1)-
component of A. Then h is one-to-one and onto, because for every (0, ̂ -connec-
tion A={A<Λ} on Pc a system A={A«} given by AΛ=AΛ—

l(A^ satisfies (2.1)
from (3.1) and it takes values in §n(ri)y and hence it gives an 5C/(/z)-connection

on P and h(A)=A.
A (0,l)-connection A is called irreducible, if dA\ Ω°(ac)~>Ω(0>1)(gc'); ψh^θψ

+ [Ψ, A] has trivial kernel. We call a (0,l)-connection reducible when it is not
irreducible.
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For each A^Jl^ the curvature form F(A)=dA—A/\A is defined. The

curvature form F(A) belongs to Ω(0'2)(gc').

DEFINITION 3.2. A (0,l)-connection A is called holomorphic if F(A)=0.

REMARK 3.2. Since the curvature form of a (0,l)-connection A coincides

with the (0,2)-component of the curvature form of the SU(n) -connection A

induced from A, there exists for each holomorphic (0,l)-connection A a holo-

morphic structure J=JA on 9C relative to which A gives a hermitian holomorphic

connection on Qc in the usual sense ([4]). Namely, there exist smooth mapp-

ings ha; WΛ-*SL(n;C) with properties that (i) hΛβ=hcύ gaβ hβ1:> WaftWβ-*

SL(n C) is holomorphic for each a and β and (ii) AΛ is transformed into a

(l,0)-form h^A^dh^h-t+h^ Ao h-1 by hΛ.

Proposition 3.1. Let A be a holomorphic connection. Then the following

sequence gives an elliptic complex

0 -̂  Ω°(gc) - ΩP Vfa0) - Ω(0'2>(gc) -> 0 (3.3)

Proof. Since dAQAΨ=[Ψ, F(A)] for -ψ>eΩ°(gc'), the above sequence gives

a complex. It is easily verified that the symbol sequence of the above is exact.

On the spaces Ω(0 Λ(gc) we define inner products < , >M by <Φ, Ψ>M=

I 7>(ΦΛ*f(Ψ)), p=Q,l,2. Notice that these products are not gc-invariant.
J M

We set the subspaces Jίp=Ker Δp of Ω(O P>(QC) by the aid of the complex

Laplacians Δ*, ^=0,1,2 associated to the above complex. Then by using the

Atiyah-Singer index theorem we have the index of the complex (3.3) as

h«-hl+h2 = ch(Qc){ch(A°c)-ch(A^)+ch(A.^)} x
(3.4)

where hp=άλmcM
p. By a simple computation the index equals to — c2(Qc)+

(rf-\).pa(M).

Since the group Sc leaves the set of holomorphic (0,1) -connections in-

variant, we obtain its quotient space JMhy called the moduli space of holomorphic

(0,l)-connections.

The center of SL(n\ C) which coincides with the center of SU(n) gives

complex gauge transformations commuting with each g of Qc . In the same way

as the case of SU(n) the center Z(3C) of Qc is just the center Z and it acts

trivially on Jl^\ Since Qc is a subset of Γ(M; End J£)=Γ(M; 1)0Γ(M gc)

the isotropy subgroup Γ$ of each irreducible (0,l)-connection A reduces to Z.

Thus the quotient group QC=QC\Z acts effectively on ^?((U) and its action is

free on the subset {A e <^?(M) A is irreducible} . Besides the inner product < , >M
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we define on Ω(0 />)(gc) the Sobolev's norms | \k and let JL(0fl) be {AQ+a;

£*(Ω(0fl)(flc))} for a fixed smooth (0,l)-connection AQ. In L|+1-topology 3C and

hence Qc acts smoothly on JL^\ The quotient space &w=JP lηβc gets the
canonical quotient topology by the projection π\ <JL(Q'1 -> jS(0fl). We denote by
^(o.D^^co.i). ̂  is reducible}, the subset of ̂ (0-1).

Like an *Sί7(w)-connection we call a subset F^ of JL^l^{A+a\ αeLl(Ω((U)

(9C)), 92^=0} a slice at A.

Lemma 3.2. Z/0/ A be an irreducible (0 ̂ -connection on Pc. Then there
exists for a sufficiently small 6>0 a slice neighborhood VA,s={A+a^VA; \a\k<6}
whose image π'(VAtt) gives a neighborhood of [A] in

Proof. Define a mapping
Then in a manner similar to the case of /St7(7z)-connections, T is smooth relative

to the Lf-topologies and its derivative at a=0 and £— identity is written by

DT; Ker

Since Ker θ^=0 and ΩP l> (&c) = Im 9^0Ker θjf Γ is a local diίfeomorphism.
Therefore by using the argument which was used at the proof of Proposition 2.1
we obtain the lemma.

Proposition 3.3. Each irreducible [A\^JMh has a neighborhood °l^iAj which
is given by the image of VAΛ = {A+a\ aen((U)(gc), \a\k<£, d:

Aa=Q, dAa=
a/\a}.

Proof. Since F(A-{-a)=F(A)J

ΓdAa—a/\ay this is a direct consequence of
the above lemma.

Let Ψ=ΨA be a mapping from L*(Ω((U)(9C)) to itself defined by Ψ(α)=
Λ— (9*) (GA(a/\a)). Here GA denotes the Green operator of Δi. Assume now
that the second cohomology group M2 vanishes. Then we see that QAa=Q and
dAa—a/\a if and only if Ψ(a)^M1. Thus the slice neighborhood VA^ is
mapped through Ψ into Ml. Because over L*(Ω((U(gc)) the derivative DΨ at
a= 0 is identity, Ψ\vA,s has an inverse over a small £ -neighborhood V8 of c^1. We
remark that Ψ~V g is holomorphic as a mapping from an open subset of a Banach
space to a Banach space, since Ψ is quadratic over the completed Banach space

(βc)) ([11]).

4. Canonical imbedding of <3K\ JC into <

Let -4 be an 5?7(w)-connection on the bundle P. Then the (0, ̂ -compo-
nent A(0>1} of ^4 certainly defines a (0,l)-connection on the complexified bundle
Pc and the curvature F(A(P Ϊ>) is given by the (0,2) -component of F(A). If A
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is anti-self-dual, then F(A) is of type (1,1), and hence ^4(0>1) is holomorphic.
Because SaSc, to each [A] of <3H we can assign [A(0>1)] of <3tth. We denote
this assignment by/.

Proposition 4.1. // an anti-self-dual connection A is irreducible, then A(QiV>

is also irreducible.

Proof. Since A is anti-self-dual we have the formula ^Σg^F^(A)=0 ([7,

Proposition 2.2]). Then we obtain for a nonzero i/r of Ω°(flc) satisfying dAψ>= 0
that

] fψ)=|8^|I. (4.1)

We integrate this over M to get dAψ=Q, that is, dAψ—Q. The sections φ and
φ' of the adjoint bundle g given by φ^ijr— 'ψ* and φ'^fl/Λ/111!) (ψ+'ψ4), Γe"
spectively, are parallel with respect to dA.

From this proposition we havef(3H\JC)c:<3Mh\JC(0>v.
Now we show the following

Proposition 4.2. The mapping f restricted to JM\JC is injective.

Proof. It suffices to verify that if there is for irreducible anti-self-dual
connections A and Alg^Sc satisfying (^41)

(0 1)=^(-4(0 1)), then g must lie in 3.
By the way SL(n\ C) has the following decomposition; SL(n; C)=HQ(ri)

SU(ri), where H$(ri) means the set of all positive definite Hermitian matrices with
determinant 1. This decomposition is invariant under the adjoint representation

of SU(n), namely, if X^SL(n\C) splits n&<>X=Xh*Xn,X*^SU(n\Xh<=Hi(n\
then Γ ̂  γ-l=(Y Xh Y"1) (F-JΓ1- F"1), Y(ΞSU(n) gives the decomposition
of Y X F"1. Therefore the complex gauge transformation g splits into g=gι*

g\ / e ff, ft e Γ(M; Pχsu(n}Hϊ(n}). Then we have (Λ)(0 1} =ft(βT(^1})).
Moreover ^"(^4<0 1))=(^^4)(0 1) and^M(-4) is anti-self-dual since/ is unitary.

Because the exponential map exp; H0(n)->Hί (n)\X\- >exp X is a diίfeomor-
phism, here H0(n) is the set of all Hermitian matrices of trace zero, we can lift
exp to a bundle map exp; PxSU(n)HQ(ri)-*PχSU(n)Ho(ri). From the fact HQ(ri)=
\/ — 1 §u(n) we induce a canonical mapping from g to Pχsϋ(n)HQ(ΐi) by φί— »exp
\/—\ φ. Then there is a ι/reΩ°(g) such that ̂ ^exp \/ — 1 τ|r. A one-parameter

subgroup ^— exp(ί\/— 1 -ψ ), ίeΛ, of Qc yields a one-parameter family of (0,1)-
connections {̂ 4^ by ^4ί=^((^40)

(0'1)), where Ao=g*(A). Further the family {At}

defines a family of connections {At} of P by At=At— \At). The curvature
Ft of At is certainly of type (1,1).

Now we apply the method of moment map developed at [6, p. 11]. Define
for {At} a function m\ R-+R by
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«(ί)= #2(ί)Λω, (4.2)
J M

where R2(t) is a 2-form of type (1,1) over M modulo Im 3+Im 3 satisfying

= -TrFtAFt-(-TrF0AFQ) . (4.3)

Then we have the following facts (Proposition 8 of [6]). Since A0 is anti-self-
dual, d/dt\t==0m(t)=0 and

d2ldfm(t) = l^ψ IΪ^O. (4.4)

Because m(i) is critical at also ί=l. d2ldfm(t)=Q identically, hence dAtty=Q.
Using the irreducibility of A0 we have ψ— 0 and hence £!= identity, that is,

We define open subsets (JH\JC)0 and (<5Hh\J(P l>)0 of <3M\ JC and
respectively, by (JM\JC)0= {[A]e 3tt\JC; HA=0} and (<3Hh\JC«>'»)0= {[A']<=
Jfίh\JC(0>v ^/=0}. Since from Proposition 2.3 M2

A(Q,ι^HA for the (0,1)-
component ^4(M) of an anti-self-dual connection A we have f((<3tt\JC)0)c:(<3Mh\
JC^)0.

Proposition 4.3. f\(άU\jQ0

m

9 (^\JC)0-+(t3Mh\JC(0'1))o is an open mapping.

Proof. Let ^Uc^] be a neighborhood of [A] e (^5H\JC)09 identified with a
slice neighborhood UAtΐ={A+a'y \a\k<βy d$a— 0, dAa=a$a}. We notice
that if a is such a one-form its (0,l)-component α(0>1), denoted by h(ά) in §2,
satisfies dA^a(0'ι:>=a(0tl) /\a(0tl) but does not necessarily satisfy (8j/)α(0'1)=0 for

A'=AW e JI^ Let q ,̂] be a neighborhood of [̂ '] in (c3f<Λc^(0il))o> written
in the form of the image of a slice neighborhood Γ<4/pf/= f4/+γ(0 1) | γ(0>1) | k<& ',

Assertion. J/ ^^ choose a sufficiently small 6, then for any A-\-a in UAt9

there is a unique g=ga in 3C close to the identity so that g(A'-^h(ά)) belongs to

VA>.<.

This assertion is shown as follows. Since g(Ar-±-h(<x))=(dA'g) g~1Jrg h((x)
g~l+A', the (0,l)-form γ' defined by A'+γ'=g(A'+h(a)) is represented by 7'

— (9 )̂ ίp~1+<? (̂̂ ) ^p~1 The (0,l)-connection A'-\-<γ' is indeed holomorphic
and satisfies fiA'7

f— 7'Λ7'=0. Then γ' lies in F^/tβ/ if and only if for 3A=dA'

r'+ί AίαJ r1} = 0

If we set ^==exρ ψ , ψeΩ°(gc), then we reduce (4.5) to

(α))-0, (4.6)

here /2(^, A(cί)) is the remainder term of order not less than two. We operate
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the Green operator GA' of Δϋ/ to (4.6) to deduce

0. (4.7)

We remark that since α = αα 0)+α(0>1) = Σ(αμ^+α/ϊώ'Γ) satisfies έ/Jα=0 and

K, «v] (4.8)

and hence the | |Λ-norm of Ή*h(ά) is estimated by \a\k.
By using the arguments of Section 3 in Ch. 4 of [10] and also of [3], [11] we

obtain for a sufficiently small | a \ k a unique smooth solution i/r— ψ(α) to (4.7) in
a neighborhood of OeΩ0(gc). We see easily that ψ depends smoothly on a and
gJ(A'+h(d))&VA>j forgΛ=exp ψ (α).

We remark that -\/r(0)— 0 and from an implicit function theorem we have
(dψ(ά)lda) I a=Q=Q and hence (dgΛ\dd) \ Λ_0 =id.

From the above assertion the mapping /; UAt9-*VA'^' defined by A-\-a\-^
gu(A' +h(ά)) is smooth. We show now that the composition of the following
mappings

is of maximal rank at β=0 in HA Since (dΦA/dβ)\β==Q is the identity mapping
of HA and also (dΨA'/dβ')\β'=Q gives the identity mapping of MA' and further
(df/da) \(ύ=t(rγ)=\mι{gtΊ(A'+h(tj)— A')}/t=hM for each γe/fi, the derivative

of the mapping at β = 0 coincides from Porposition 2.4 with h\Hl

A-^Ml

A^
Because h is Λ-isomorphic, it gives a local diίfeomorphism at a=0 and then
/; UA^-^VA'^ is open. Since /is a lift

/ is also open from the fact that π\ UA^-^^I^ is a homeomorphism and πf \

REMARK 4.1. (1) The image f((<3tt\JC)0) is an open subspace in J
identified with (<_5K\JQ0. (2) Although (JHh\JC(0tl))0 may not necessarily be
Hausdorff, f((<3tt\ JC)0) is surely a Hausdorίf space because (<3tt\JC)0 is Hausdorff
from Remark 2.3. (3) Since the mapping /; UAt^-VA^^ provided in the above
proof is locally diίfeomorphic, we can choose sufficiently small £', if necessary,
so that π\γA,^ gives a homeomorphism of VA'y onto a neighborhood °^\:A^ of
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5. Complex structure of the moduli space

The aim of this section is to pove the following.

Proposition 5.1. The moduli space f((^H\JC)Q) is a complex manifold of
dimension c2(Qc)~(n2—l)pa(M)y if it is not empty.

Proof. By Propositions 4.2 and 4.3 and also from (3) of Remark 4.1 we can
assume that for each [A]^f((JM\JC)0) and for a sufficiently small VA=VA)ΐ that

the mapping ΨA; VA-^V^={β^Ml

A\ |/?|M<£} defines a coordinate system for

Fix points [A] and [A1} in/((c5H\JQ0)
 wίth τt'(VA) Π ιe'(VA)*φ. We define

subsets BdVA and 5'cPV by B={A+a<EΞVA\ π'(A+a}<=π'(VA')} and B'=
{A'+a'<=VA>\ π'(A'+a')ζΞπ'(VA)}, respectively. Then for each A+a in B

there is a g in 3C with g(A+ct)&Br. Since the isotrpoy subgroup Γϊ is finite,
we can choose such a g=g<A uniquely in <?cfor A+a.

Let {/?!, •••, βm} and {β{, •••, β'm} be orthonormal bases of M\ and M\',
respectively, where m is the dimension of J^1, which is by assumption indepen-
dent of A. Because Ψl1; Vt-*VA is holomorphic, for /3(ί)=Σv-ι ίv/3ve Γt, /=

ft, , /„) e Cw( I / 1 = \/Σv|ίv|2<f) α(0 = ΨϊX/SίO) is holomorphic in ί . There-
fore, if we can show that gt—gaω is holomorphic in £, then the composition of
the mappings

is also holomorphic in ί, since Ψ^/(αt') is the harmonic part of a', Σv"ι<(α', /?ί>3ί

βί.

We now verify the following assertion.

Assertion. The complex gauge transformations gt depend holomorphically on
t.

It suffices for this prupose to prove that for any fixed A+a(tQ)^B gt is
holomrophic with respect to A-\-a(ί) close to A+a(t0). We set 7(z)=a(tQ-\-z)
~a(t0) andhz=g(to+z)-(gto)~1. Then γ(0)=0 and h0=id. If we define a'0 and
σ(«) in Ω^(βc) respectively by ̂ 4/+αS=ft0(^+α(ί0)) and σ(«)=ftβ 7(*) (gίβ)-

1

f

then for *=/0+* gt(A+a(i))=(hz gtQ) (A+a(tQ)+Ύ(t)) is written by

. (5.1)

Since Az is close to id in Sc, there exists a unique -ψ»(£)eΩ°(gc) with -ψ>(0)=0
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and hM=exp -ψ (#). Then (5.1) reduces to

gt(A+a(t)) = 3A,^+A"+σ(*)+R(ψ, σ(*)) (5.2)

for A"=A'-\-a'Q, where the remainder term R(ψ, <r) is given by

9 σ) = (8^//exp ψ) exρ(— ψ)— S^/ ψ +exp ψ» σ exp(— -ψ )— σ . (5.3)

Notice that the remainder term indeed including dA»ψ and σ as linear terms can
be represented more exactly by

, σ) - (1/2) O, gΛ//ψ] + |>, σ]+Λ1(ψ, g^/ψO+^Oψ , σ) , (5.4)

where 7?! and Λ2 are written as matrix-power series of order not less than 3 with

respect to Λ/Γ and σ.

Since SJ/α£=0, we see that (3J/) (gt(A+a(t))-A')=0, namely

— yϊ' belongs to the slice, if and only if from (5.2)

, σ) = 0 . (5.5)

Because Gκ//oΔ^//=id on Ω°(gc), the above reduces to

, σ) = 0 , (5,6)

here 32//ι/r is the (l,0)-component of ^//-v/r with respect to the St/^-connection

A" induced canonically from A" . Then by using the way quite similar to one to
solve (4.7) we have a solution ^= |̂r(^) to (5.6) depending smoothly on #. We

operate on (5.6) βz relative to the parameter z to obtain

5>+Gr

x//<[92//(5», αί]>+Gκ//(5J//)3^(ψ, σ) = 0 (5.7)

since dz σ(z)= 0 and θz commutes with G^// and with dz". The term dzR(ψ, σ)
is obviously linear with respect to 82-\Jr. Define a linear operator L=LΛo by

L(θ)=θ+G^//<[92//θ, αί]>, θeZ,f+2(Ω°(gc)). Then L satisfies

(l-c|^U)|ΘU+2^|L(θ)U+2^(l+^|α$U)|ΘU+2 (5.8)

for a constant c>0, independent of a0. For each αo in a sufficiently small slice
VA, LO}O gives a bounded linear operator from (5.8). On the other hand by the

remark on R(ψ, σ) the norm | dzR(ty, σ) \ k+1 is estimated by

l^ί^σjl^qig^m^^ (5.9)

for some constant cl9 where T^s) and T2(s) are power series of s with convergence
radius oo.

Since | σ(^) | k+l is sufficiently small for small | # | , we can let | ψ*(z) \ k+2 be
also sufficiently small from (5.5). Thus by the aid of the lower estimate of

L \dzψ
t\k+2^c2\dzΨ\k+ι^C2\dzΨt\k+2> where c2<\ for sufficiently small |*|,
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therefore (5.7) admits only a trivial solution fizty=Q, that is, ψ>=-ψ<(z) and con-

sequently ^^exp^*))* £/0, t=tQ+z9 is holomorphic.

Proposition 5.1 follows from this assertion since dimc JH1=c2(Qc)— (rf— 1)

The proof of Theorem 2 is now completed if we pull back to (<3ί\JC)0 the

complex structure of /((JK\ JQ0) through the /. Theorem 1 is a direct conse-
quence of Theorem 2 from Remark 2.1 because H2

A^HQ

A®H vanishes for

every irreducible anti-self-dual connection A over a Kahler surface M which

either admits a Kahler metric of positive total scalar curvature or is endowed

with trivial canonical line bundle.
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