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In a paper of M. Harada [3], a right Artinian serial (resp. coserial) ring
is characterized as a right QF-2 (resp. QF-2%) ring satisfying that the class of
all finite direct sums of hollow (resp. uniform) modules is closed under sub-
modules (resp. factor modules). In his another paper [1], a new class of right
Artinian rings satisfying the above condition and that any hollow module is
quasi-projective is determined as a generalization of right serial rings. The
main purpose of this paper is to give a generalization of right coserial rings in
dual manner.

In this paper, R denotes a right Artinian ring with identity element and
every module is a unitary right R-module, unless otherwise stated. For a
module M, we denote its socle and injective hull as Soc(M) and E(M), respec-
tively, and put Sy(M)=0 and S,(M)/S,-(M)=Soc(M|S,-,M)), inductively.
We denote a direct sum of k-copies of M as M®,

Let U and V be uniform modules of finite length with Soc(U)=<Soc(V),
and set S=Soc(U) and E=E(U), then we may assume that V" is a submodule
of E. We shall write A for Endg(S). We can obtain the mapping ¢ from
Endi(E) to A by the restriction to S. Since E is injective, @ is an epimor-
phism. While we shall denote the image of the restriction mapping from
Homg(U, V') to A as A(U, V') and A(U) instead of A(U, U). It is known that
A(U) is a subdivision ring of A, so we shall denote the left dimension of A over
A(U) as dim U, if it is finite.

A right coserial ring R satisfies the following conditions:

d-I: Every factor module of any direct sum of uniform modules of

finite length is also a direct sum of uniform modules.

d-II: Every uniform module is quasi-injective.

Our purpose is to determine rings which satisfy the above both condi-
tions, that is, we shall give the following theorem:

Theorem 1 [cf. 1: Theorem 2). For a right Artinian ring R, the following
statements are equivalent:

(1) R satisfies the conditions d-1 and d-I1.

(2) R satisfies the condition d-1 for direct sum of three uniform modules,
and the condition d-II.
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(3) For every indecomposable injective module E with S=Soc(E), there
are two uniserial modules A and B such that E|S=A|S@B/S, and no
factor of composition series of A|S is isomorphic to amy one of B|S.

The conditions d-I and d-II are inherited by the factor ring, namely:

Lemma 2 [cf. 1: Lemma 1]. Let P be an ideal of R. If R satisfies the
condition d-1 (or d-II), then so does R|P.

Proof. I.et M and N be R/P-modules. M is R-uniform if and only if
M is R/P-uniform, since any R-submodule of M is R/P-module. And if M
is R-quasi-injective, then M is also R/P-quasi-injective, since Homg(N, M)
=Homygs(N, M).

Regarding the condition d-I, we will consider the following conditions for
a direct sum D of uniform modules of finite length:
d-(¥):  Every factor module, with respect to any simple submodule, of
D is also a direct sum of uniform modules.
d-(*x): Every simple submodule of D is contained in a non-trivial direct
summand of D.
The conditions d-I and d-(*) are equivalent from next lemma:

Lemma 3. A ring R satisfies the condition d-1 if and only if every direct
sum of uniform modules of finite length satisfies d-(%).

Proof. To see the last of proof of Theorem 5 in [4].

Lemma 4 [4: Lemma 1]. Let {U;}}%1 be a set of uniform modules of finite
length. If D'=3Yi_,DU; satisfies d-(xx), then D=33t:1P U; satisfies d-(x%).

Theorem 5 [cf. 2: Theorem 2]. Let {U}}.: be a set of uniform modules
such that Soc(U;)=Soc(U,) and |U,| = |U,|=---=<|U,|. Then D=33;_..®U;
satisfies d-(xx) if and only if for any sequence ,, &, -+, 8, of n—1 elements in A,
there are an integer t with 2=<t=<n, and y,€ A(U,, U,) for 2<i=t such that 3}}.,
¥y:8,€AU, U,) and 3,%0.

Proof. Let z;: D—U,; and o;: U;—D be the projection and the injection,
respectively. Put S=Soc(U,) and E=E(U,), then we can assume that all U;
are submodules of E. Assume that D satisfies d-(xx). Let §=15 and §,,
83 -+, 8, be elements in A, and S*={317., §;(s)|s=.S} a simple submodule of
D. 'Then there is a direct decomposition D=D,P D, such that D,DS* and D,
is uniform. Let p: D—D, be the projection. Since 1,,=p|p, =171 po; 7;|p,
and Endg(D,) is a local ring, there is an integer j such that po; z;| p, is a unit in
Endg(D,), hence =z;|p, and po; are isomorphisms. Let 2;EEndg(E) be an
extension of z; po;EHomg(U;, U,) and Z;=¢(z;), for 1=i=<n. Then there
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is an integer ¢ such that Z,#0 but 2,=0 for any k with 2>¢, and ¢ is not less
than j, for ;0. Put y,=g,, if t=j, otherwise y;==27'2;. Then we get that
P(¥)=3:.€AU, U;)and 331, §; 8;=0, since 331, 2; §,(s)=; p(307-1 8(5))=0
for any s€S. Now we can get from 2Z,=0 that y,=0 for any k with k>¢.
Therefore we get that 2., J; 8;=— 3, €A(U,, U,). Conversely, let S* be a
simple submodule of D, 8,=1 and §; elements in Endg(R) such that S*={317.,
oi(s)|s€ S}, where §;=@(8;). By our assumption, there are an integer ¢ and
y:.€A(U;, U,) such that 3., ¥, 5,€A(U,, U,) and 7,%0. Let y;€Endg(E)
such that y,(U;)C U, and J,=@(y;) for 2<i=<t, and @(y,)=—223(.> ¥; 5;. Let
D'={u—0(u)|ueX;+, DU} CD, where 0: X3;+,PU;— U, is a homomorphism
given by setting 6(X;+ x;)=2iz1y7' ¥i(x;). Then D=D'@U, and D'DS*,
since for any s*=331.; §,(s) ES¥, set u=3);1, 8,(s), then O(u)=2!Z1 y7* y: 8:(5)
=y7(—; 8,(s))=—38,(s), therefore s*=u—+-§,(s)=u—0(u)D’.

We can get all theorems and corollaries in Section 2 of [4] as a corollary
of Theorem 5. Among there, the next corollaries are principal.

Corollary 6 [4: Corollary 1 of Theorem 3]. Let U be a uniform module
of finite length. Then D=U%**V satisfies d-(xx) if and only if dim U<k.

Corollary 7 [4: Theorem 4 and its Corollary 2]. Let {U;}%., be a set
of uniform modules of finite length with Soc(U;)=Soc(U,) and k;=dim Uj; for
all i. Then D=1, U satisfies d-(x+) if and only if there is a monomor-
phism from some U, to another U,.

Proof. We may assume that |U,|<|U,|<---=<|U,|. We can take a set
of linearly independent elements {5;;}%, in A over A(U;). Applying Theorem
for the set {3}, , there is a non-zero element ¥;,,€A(U;, U;) for some 7 and

t with <<¢, which induces a monomorphism frem U; to U,. Conversely if U;
is a submodule of U, then U, U¥? satisfies d-(xx), since A(U;)CA(U;, U,).

Let U be a quasi-injective uniform module, then it is clear that dim U=1.
Therefore assuming the condition d-II, Corollary above is gotten more simple.
We shall use only such a case.

Lemma 8 [4: Lemma 3]. Let {U}i] be a set of uniform modules with
| U;| =n for all i. If D=3Y1}1PU; satisfies d-(%), then D does d-(xx).

Proposition 9. When any indecomposable injective module E has S,(E)=E,
Theorem 1 holds.

Proof. (2) implies (3): Let E be an indecomposable injective module
with S=Soc(E). Since the condition d-(*) holds for any direct sum of three
submodules of E, which are of length two, by Lemma 8, there are at most two
such submodules by Corollary 7 and the condition d-II. If |E|<2, E must
be uniserial, hence the conclusion is clear. If |E|=3, we can write E/S=U/S
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@V/S where U and V are only submodules of length two. Further if U/S is
isomorphic to V/S via f, then a submodule W with W|S= {u+f(n)|ac U|S} C
E|S is equal to either U or V. Therefore it must be U/S2V/S.

(3) implies (1): The condition d-II holds clearly. Let E be an indecomposa-
ble injective module with S=Soc(E) and {U;}?., a set of submodules of E.
We shall show that D=317_;@U; satisfies d-(*). Since this is satisfied clearly
when E is uniserial, we may assume that E/S=U[S@V|S where U and V
are of length two. If some Uj is either injective or simple, then D satisfies
d-(x*x) by Corollary 7, hence the conclusion is true by induction on #. Further
if n=3, D satisfies d-(¥x), since some U; is equal to another U;. Therefore it
is enough to show the implication in a case of D=U®V. Let S*={s+7(s)|
s&S} be a simple submodule of D where f=¢(f) with some monomorphism
fE€Endg(E). If (U)CV, D satisfies d-(xx), since DP)> {u+f(u)|uc U} DS*.
Otherwise, E=f(U)+V, and we can define an epimorphism +r: D—E, given
by setting Yr(u+v)=f(u)—v. Then Ker 4p=S* and D/S*=E.

In order to prove that (2) implies (3) of Theorem 1, it is enough to show
the following lemmata 10, 11 and 12. Hence we shall assume that the state-
ment (2) in Theorem 2 holds, in these lemmata.

Lemma 10. Let U be a uniform module of finite length with S=Soc(U).
Then there are two submodules B and C of U such that U|S=B/SPC/S, Sy(B)
and S,(C) are uniserial and Sy(B)[S2S,(C)/S, if U%S.

Proof. Put E=E(U) and E'==Sy(E), then it is known that E'=1.(J?
and E’ is R/J?*-injective, where J denotes the Jacobson radical of R and 1.(J?)
the left annihilator of J2 on E, that is, 1z(J?)={e<E|eJ?=0}. Hence there
are two submodules B’ and C’ such that E'/S=B’'/|S®C’[S, |B'|, |C'|=2
and B'[S2C’[S, by Proposition 9. Now there are submodules {V;}}.; such
that U/S=X11..DV;/S and V;/S are uniform, by the condition d-I. But n=2
and Sy(V1)/S2S,(V,)/S, since B'|SPBC’|S=S,(E)[S=Soc(E/S)B) Soc(U/S)=
211D 80c(Vi/S)=231-1BSy(V3)/S.

Lemma 11. Let U be a module of finite length. If S,(U) is uniserial, then
U is also uniserial.

Proof. Assume that U is not uniserial. Then there is an integer m(=2)
such that S,(U) is uniserial but S,,(U) is not uniserial. Since U[S,.,(U)
is uniform, there are two submodules B and C of U such that U/S,(U)=B/S,
U)BC|Su(U), Sp(B) and S,(C) are uniserial and S,,41(B)/Su(U)XSp+
(©)/Su(U). Put A,=S,,(B)/Su-o(B) and A4,=S,,1(C)[Su-(C), then A, are
uniserial modules of length three such that S,(4,)=.S,(4,) (=4, say) and 4,/4A2¢
A,JA. Put S=Soc(4) and D=A,PA4,, and let S*={s+s|s&S} be a simple
submodule of D. Then there are uniform modules {U;}}.; such that D/S*
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=>11.1@U;, by the condition d-II. Let »;;: A;—~U; be composition map-
pings of the injection A;—D, the natural epimorphism »: D—D|S* and the
projection D/S*—U,. For Ker vD {s+0|s&S}, if no »,; is a monomorphism,
we can assume that some v,; is a monomorphism, and that some v, is also a
monomorphism. If j&k&, we get that |D|>|D/S*| = |U,QU,| = |4,D4,|=
|D|, which is a contradiction. Hence we may assume that j=Fk (=1, say).
Since A4; are quasi-injective, U,=vy(4,)+vy(4,)=A4,+A,=8p:(U)/Su-2(U),
hence taking length, D/S*=U,@ U, and U, is simple. And |Ker v,,| =|4;|—
|U,| =2, so Ker (v,+v,)DAPA. But set A*=Ker (v;+v,), then |A*|=2
and A¥*CAPA. Hence S*=Ker v=Ker (v;,+v,) N Ker (v,4v,)=A4%, which

is a contradiction.

Let E be an indecomposable injective module with S=Soc(E). Then E'is
of finite length, since Sy(E)=1z(J*) and J"=0 for any k and scme n. Hence
there are two uniserial submodules 4 and B such that E/S=A4/S@C/S and
Sy(A)/S2xS,(B)/S, if E+S, from above lemmata. We show the remainder of
(3) in Theorem 1.

Lemma 12. Let E, S, A and B be as above, and set A;=S;(A) and B;=
S;(B). Then A;,|A,XB;..|B; for any pair i, j.

Proof. We proceed by induction on 7z+j. The case of i=j=1 is done.
Assume that 74j>2 and that A4;,,/A4; is isomorphic to B;,,/B; via f. Then
A;44/4; is not isomorphic to any factor of composition series of A4;/S@B;/S,
by induction hypothesis. Put K=A4;4-B;, Co=A;.,+B; and C,=A4;+B;,,,
and let C; be a submodule of E such that C\/K={c+5' fyr4(C)|cECo/K}
where Y, Co/K—A4;.1/4; and rp: Co/K—Bj,,/B; are the natural isomor-
phisms. Then C; is a hollow module with a maximal submodule K. Put
D=C,®C, and let S*={s+s|s=S} be a simple submodule of D. Then there
are uniform modules {U,}%., such that D/S*=3}i_.,U,. Let v,: C,—U,
be composition mapping of the injection C,—D, the natural epimorphism »:
D—D|S* and the projection D/S*—U,. Then we can assume that v,; and v,
are monomorphisms and U,=C,+C,=4,;,,+ B4, as in proof of Lemma 11.
If »,=0, where v, =31}, v, : C;—>X_.B U, then v, is an epimorphism and | Ker
v,| =|Cy| — | 22D U;| =2, which implies that Ker »,=A4, or B,. Hence in
case of Ker v,=4,, we get that Ker v=Ker (v;;+v,) N Ker (v;4,) D {v1 vy(ay)
—a,|a,e4,}, and similarly in case of Ker »,=B,, which are contradictions.
Hence there is an integer £ (=2) such that »,,#0, and it holds that »,,(C,)/,,(K)
=(C\/K=A4,,/A;, which means that 4,,,/4; is isomorphic to some factor of
composition series of U,, and to some one of 4;/S@B,/S, by comparing the
factors of composition series. Therefore we get a contradiction.

In order to show that (3) implies (1) of Theorem 1, we shall prepare one
Lemma.
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Lemma 13. Let E be an indecomposable injective module with S=Soc(E).
Assume that A and B are uniserial modules such that E|S=A|S®B|S, and set
A;=SyA) and B;=S/(B). Let Uy=A,+B;; 1<iy<i,<--<iy, ji>j,>>
Ja>1, then D=233;.,®D U, satisfies d-(*).

Proof. Let S*={33}_1f; fi-1--fi(s)|sES} be a simple submodule of D,
where f,EEndg(E) are isomorphisms and fi=1;. Set V,=A4,,, @B;, for any
k with 1<sksn—1 and D'=(4; /S)D(ZiziDV:)B(B;,/S). Then we can
define an epimorphism +r: D—D’ setting by Yo(Xha1(ay+8;))=(a,+S)+>z1
(ferr(@+-bs)—(@p41+bs1))+(b,4-S).  Since if Y(Xh-1(a+8,))=0 for a,€4;,
and b,EBj,, then o,€S, b,€S and f;,,(a3+b)=a1+bpy for any k, hence
fin(@) =t =bp—fin(by) €4,;,,,NB;,=S, and @, and b,ES, inductively.
Therefore 33i.1(a,+b,)€S*. Now for any 3.1 fi fi-1--fi(s) ES*, it holds that
V(i 1(fe fe-1e+fi(5)+0))=0. Therefore Ker y»=S*, and D/S*=D".

Proof (of (3) implies (1) of Theorem 1). The condition d-II holds clearly.
Let {U,}i-1 be a set of uniform modules of finite length, we shall show that
D=3>%.,6U, satisfies d-(*). However if there is a monomorphism from
some U; to another U;, then D satisfies d-(**) by Corollary 7, hence D satisfies
d-(*) by induction on #. So we can assume that there is no U; containing
another U;, namely that {U,}}.: is as in Lemma 13. Therefore D satisfies
d-(*).
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