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1. Introduction

Let 7Γ be a translation plane of order q2 satisfying the following conditions:

(1.1) π has GF(q) in its kernel.

(1.2) 7Γ admits a linear autotopism group of order q. (Here a linear
autotopism group is a subgroup of the linear translation complement of π
which fixes at least two points on the line /,*> at infinity.)

Several classes of translation planes with these properties have been con-
structed in [1], [2] and [7]. Any of these planes can be coordinatized by a
quasifield having a central kernel of order q and satisfy the following condition:

(1.2)' π admits a linear autotopism group having an orbit of length
<f—q on the line at infinity.

The purpose of this paper is to investigate the translation planes with
the properties (1.1) and (1.2), especially with (1.1) and (1.2)' in the latter half
of the paper.

In §2 we consider the quasifields corresponding to these planes. Let
K be a field. Let h(x) be a mapping from K into K and r(y) and s(y) mappings
from K*=K— {0} into K. Set f(x, y)= — y~\x?—r(y)x—s(y)) and g(x, y)
= —x+r(y). Assume that r(y), s(y) and h(x) satisfy the following conditions.

(1.3) /(#, yι)*f(x, y2) whenever x(=K andy l 9

(1.4) K=f(x, K*) U h(x) (disjoint union) for any

(1.5) Λ(0)=Λ(1)=0.

Let Φκ be the set of such triples (r, s, h) and put Φκ—{(r, s, h)\(r, s,
h(χ)=0 for any x^K}. An element (r, s, 0) of Φ^ is often written (r, s) for
brevity's sake.

A quasifield Q(r,s,ti((rι s> h)^Φκ), which is a two dimensional left vector
space over K with a basis {1, λ}, is defined by a multiplication
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(1.6) (2+t\)o(X+y\) = Γ

U

ixx+flx, y)+(xy+tg(χ, y))\ if

\zx+th(x)+tx\ if y = 0 ,

for any x, j, # and £ in jRΓ.

Such quasifields have been investigated by S.D. Cohen and M.J. Ganley
[1] particularly in the case that K is a prime field and also by the author [3]
in the case that h(x)=Q for any x^K.

The quasifields Qgy g=(r> s, ti) are characterized by the following theorem
when I K \ < oo .

Theorem 2.4. Let π be a translation plane of order q2 having GF(q) in
its kernel. Then π is coordinatized by a quasifield Qg for some g=(ry s, h) e ΦGF(q)
if and only if π admits a linear autotopism group of order q.

In the known examples as stated above, any of these planes can be coordi-
natized by a quasifield Qβ with gGΦκ (See [1]). In §3 we prove a theorem
which is a generalization of Theorem 5.4 of [1].

Theorem 3.11. Let π be a translation plane of order q2 having GF(q)
in its kernel. If π admits a linear autotopism group having an orbit of length
<f—q on the line at infinity, then π is coordinated by a quasifield Qg for some
£— (r, s)€ΞΦκ, where r(y)=ayn and s(y)=by2n for suitable a, b€=K and an integer
n, 0<n<q-l.

In §5 we determine the linear translation complement of the planes stated
in Theorem 3.11 when n& {e(q-l)\e=0, 1/2, 1/3, 2/3, 1/4, 3/4}

2. The quasifields Qgy

Let K be a field. Let r and s be mappings from K* into K and let h be
a mapping from K into itself. Set f(x, y)=— y~\x?— r(y)x— s(y)) and g(x, y)
= — x-{-r(y). Assume (r, s, h)ξΞΦκ. Then/(#, y) and h(x) satisfy the condi-
tions (1.3)-(1.5). In this section first we show that Qg9 g=(r, s, h) defined by
(1.6) is actually a quasifield and secondly characterize the quasifield Qg in terms
of collineation groups.

Proposition 2.1. Qg is a quasifield for any g^Φκ, which has K in its ker-
nel.

Proof. The proof is similar to that of Theorem 1 of [3]. Set Q=Qg.
By a definition of Q,

a(ξ+η) = aξ+aη, (aξ)η = βfo), (£+,)£ = ξζ+rf ,

= lξ = ξ and |0 = 0, for any ξ, η, ξζΞQ and ( ' }

Let a,b,c,deK such that (a, δ)Φ(0, 0) and (c, </)Φ(0, 0). Set S={x+
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y\&Q*=Q-{Q}\(a+b\) (x+y\)=c+d\, x, ytΞK}. We show that

|5 |=1. (2.2)

Set Sι={x+y'\\Xy y^K, JΦO, ax-\-bf(x, y)=c and ay-}-bg(x, y)= d} and

y ax+bh(x)=c, bx=d}. Then, by the multiplication (1.6), S=

Suppose ό=0. Then, as 0ΦO, clearly S=S1\JS2={a-1c+ίΓld\}. Sup-
pose όΦO. Then, by a similar argument as in Lemma 2.2 of [3], S2= {χjry^> I
f(b~ld, y)=(bc-ad)/b2, x=(ay+br(y)-d)/b} and S2={b'ld} if h(b-ld)=(bc-
ad)/b2 and S2= φ if h(b"ld)^(bc—ad)lV. By the hypotheses (1.3) and (1.4) we
have I Sl U S2 \ = 1 . Thus (2.2) holds.

Let α, δ, c, d(=K such that (α, 6)Φ(0, 0) and (c, έ/)Φ(0, 0) and set Γ=
ρ* I #, j e X", (Λ?+yλ) (α+δλ)=^+ Jλ} . We show that

| 2 Ί = 1 . (2.3)

Suppose iΦO. Then T={x+y\^Q*\x,y^K, xa+yf(a, b)=c, xb+yg(a, b)
=d} by (1.6). By (1.5), A(0)=0 and so (1.3) and (1.4) yield /(O, y)=y-ls(y)
ΦO for any y^K*. In particular qg(a, b)—bf(a, b)=—s(b)3=Q. This, together
with (c, rf)Φ(0, 0) implies that | T\ =1. Suppose i=0. Then ΛΦO and hence
T= {cΓ\c-a-ldh(ά))+a-ld\} .

We now prove the proposition. By (2.1)-(2.3), Q is a weak quasifield
having K in its kernel. Since dim^Q<co, Q is a quasifield having K in its

kernel by Theorem 7.3 of [4].

Lemma 2.2. Let Q=Qg> g=(r, s, h)^Φκ and let x^K. Then the fol-
lowing three conditions are equivalent.

(i) %)=0.
(ii) xξ=*ξx for some ξ^Q—K.

(iii) xξ=ξx for any

Proof. If h(x)=0, then (z+t\)x= zx-\-tx\=x(z-{-t\). Hence (i) implies
(iii). Clearly (iii) implies (ii). Suppose xζ=ξx for some ξ^Q—K and set
ξ—a-}-b\9 where a, b&K and έΦO. Then xa+xb\=ax-\-gh(x)+bx\. Hence
h(x)—0 and so (ii) implies (i).

In the rest of the paper we assume that K is a finite field. Let g=(ry s, h)

<ΞΦK. Set M(x, 0)=f * } and M(x,y) = ( * / Y where x,yt=K,
\h(x)xj \f(χ>y)g(χ>y)J

jΦO, f(x, y)=—y \x2—r(y)x—s(y)) and g(x9 y)=— x+r(y). We define Σ^ to
be the set of all matrices M(x, y), x,y^K. Then the following holds.

Lemma 2.3. (i) Σg is a spread set corresponding to Qg for g=(r, s, h)
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(ii) Let M(x, y) e Σ,. // y Φ 0, f^it r(y) = tr(M(x, y)) βfirf *(y) = -det(M
(x>y)) (Here "tr" or "det" denotes the trace or the determinant of the matrix, res-
pectively.)

Proof. The spread set corresponding to Q=Qg is the set of all ^-linear
mappings Mm(m^Q) such that xMm=xm for x^Q. Set m=a+b\ and \m

=f'(a> fy+g'(a> b)\, where a, b,f(a, b) and^'(α, b) are elements of K. Then,

as lm=a+b\ Σ— {[ } \ a y b^K} is the spread set corresponding
to ρ. \f (a> b) g'(a> b)J

If i=0, \m=\a=h(a)+a\ by (1.6). Hence f(a, ϋ)=h(a) and g'(a, 0)

=Λ. If ftΦO, then \m=f(a, b)+g(a, b)\ by (1.6). Hence /A(α, δ)=/(α, i)

and g'(ay b)=g(a, b). Thus Σ— Σ^ and (i) holds. By a direct computation we
have (ii).

Let g^Φκ and πg a translation plane coordinatized by Qg. Set π=πg.
Then r can be regarded as a 4-dimensional left vector space over K. Set

L(a,b)=i(v,vM(a,b))\v(ΞKxK} and L(oo)={(0, 0, v)\v(=KxK}. Then
~Cg={L(a, b)\a, b^K} U {L(c>o)} is a spread of π, the set of lines of π passing

through the origin. Xg is often identified with the set of points on /«,. The

linear translation complement of π is denoted by LC(π). Since π is 4-

dimensional over K, any element of LC(π) is represented by a 4x4 matrix

over K. Let <r=\n n) be a nonsingular 4x4 matrix over K, where A, B,

O,DeM2(K)=={(?fy\a,b,c,d<=K}. Then the following criterion is well

known: σ is an element of LC(π) if and only if the following conditions are
satisfied.

(2.4.1) If C is nonsingular, then C'IDeΣ,. (In this case L(oo)σ=
L(u, v\ where C~1D=M(u) v).)

(2.4.2) If C is singular, then C is a zero matrix. (In this case Z/(oo)σ

=L(oo).)

(2.4.3) If A+M(x, y)C is nonsingular, then (A+M(x, ^C)'1 (B+M(x, y)
(In this case L(x, y)σ=L(u, υ), where

(2.4.4) If A+M(x, y)C is singular, then A+M(x, y)C is a zero matrix.

(In this case L(x, y)σ=L(<χ>).)

Let ^̂ ^ be a power of a prime p and set K=GF(q). The translation
plane coordinatized by the quasifields Qg (g=(r, s, h)^Φκ) are characterized
as follows.

Theorem 2.4. Let π be a translation plane of order q2 having K (—GF(q))

in its kernel. Then π is coordinatized by a quasifield Qg for some g=(r> s, A)e

Φ^ if and only if π admits a linear autotopism group of order q.
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Proof. Let g=(r, s, h)^Φκ and let π be a translation plane coordinatized

by Qg. Let X={Af(*,;y)|*, yeί:} or X={L(x, y)\x, y(=K}\J {L(°°)} be
the spread set or the spread of π as defined above. Let t^K and set <r=

S> where ^G J). Sine. ™0,*=(1(?)(̂ )(; »)_

M *)' L(*' ty<r=L(x> 0) for any #eK Similarly χ-lM(x9y)X=M(x+yt,y)

for 3>ΦO. Hence L(x, y)<r=L(xJ

Γyt, y) for any x, y^K, JΦO and clearly L(oo)cr

=L(oo). By (2.4.1) and (2.4.2), σ is a collineation of π which fixes a subset

{L(x90)\x^K} U {L(oo)} of /oo pointwise. Therefore the set P of such col-

lineations forms a subgroup of the linear translation complement of π. Clearly
\P\=q and P fixes L(oo) and L(0, 0). Thus π admits a linear autotopism
group of order q.

Conversely, assume q \N\, where N=LC(π)A>B and A, SeL, A3=B.

Let P be a Sylow ̂ -subgroup of ΛΓ. Then | P \ > q. Since | L - {A, B} \ = q2— 1
^0 (mod p), P fixes another point C on 7^, CΦ^4, 5. We coordinatize TT

with ^={(0, 0, ̂ )|?;eJS:χ^}, B={(v, 0, 0)|^e^x^:} and O={(t;, v)

KxK} (cf. Lemma 2.1 of [6]). Then P<G, where G=<(Q χ

(2, 9)}. Hence \P\=q and P is a Sylow ^-subgroup of G. As ^4, B and C

are G-invariant, we may assume P— {ί^ y j | ir=(yl i ), ί^^C} by a Sylow's

theorem. Let ^={N(xyy)=(^a^ .^ Λ\x,y^K} be a spread set such

that L'(x, y)={(v, vN(x, y))\v^KxK} is a line through the origin O for any

Le, (J 0)eP, where r=((

! »). Then F-g »)y=(j ||).ϊ, where

j2r=α(Λ?, 0), u=b(x, 0) and ^'— (w— Λ?)ί+ ̂  By a property of the spread set,

%=%' and therefore x=u=b(x, 0). Setting h(x)=a(x, 0), ί ,f x jeΣ for any

Λ?e^. Since Σ contains a zero matrix and a unit matrix, A(0)— A(l)=0.

Similarly Y^f® ^V^^f ^ΛeΣ for any t<=K and ve^:*, where *=α(0, )̂,

^=6(0, j), ^r=— fy+tu+z and w'=— ίy+w. Hence JV(jc, j) and

are P-conjugate, so that tr(N(x,y))=ΐr(N(x', y)) and det(j/V(Λ?,y))
for any x.x'^K and jyeK*. Set r(y)=tr(N(x, y)) and ί(y)=— det(N(x, y))y

j'ΦO. Then Λ?+i(ΛJ, y)=r(3;) and j#(#, j)— Λ?i(A;, j;)=r,y(j). Therefore a(x, y)

= —y~l(x2—r(y)x—s(y)) and έ( ,̂ y)= — x+rfy). Set /(Λ;, y) = a(x, y) and

^(Λ:, j)=δ(^ y) for xej£ and jye^*. Let x^K and jy, ^e^*, jφs. Then

det(N(x, y)—N(x, ar))Φθ and det(N(x, Q)—N(x, y))Φθ as Σ is a spread set.
Hence /(Λ?,JV)Φ/(Λ:, <sr) and /z(#)Φ/(#, 3;). Thus the triple (r, ί, A) satisfies the

conditions (1.3)-(1.5) and so (r, s, h)^Φκ and r̂ is a coordinatized by Q(r>Sth)
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REMARK 2.5. Let π be a translation plane of order (f having GF(q) in
its kernel. By a similar argument as in the proof of the theorem above, the
following holds: Let G be a linear autotopism group of π. Then a Sylow
^-subgroup of G is of order at most q and fixes a Bear subplane pointwise.

As we have stated in §1, many classes of the planes are known which
satisfy the assumption of Theorem 2.4 and any of these satisfies h=0.

(2.5.1) The Hall planes of order (f ([2]): K=GF(q), q=p", p a prime,
r(y)=c, s(y)=d, where c, d^K and x?—cx—d is irreducible over K.

(2.5.2) The planes constructed by Narayana Rao and Satyanarayana

([7]): K=GF(S^}, r(y)=3y~\ s(y)=-3y-2.
(2.3.5) The classes of planes constructed by S.D. Cohen and M.J. Ganley

([!]): (i) K=GF(pn\ p an odd prime, r(y)=Q, s(y)=ky1'pm

y k^K\ 0<m<n.
(If m=0, then (2.5.1) is obtained.)

(ii) K=GF(q\ q=-ί (mod 6), r(y}=Zy~\ s(y)=-3y-*. (If q=5*»+\

then (2.5.2) is obtained)
(iii) K=GF(q\ 9=±3 (mod 10), r(y)=5y-\ s(y)=-Sy-*.

Here we show that the case (ii) holds for q=22n+1.

Lemma 2.6. Let K=GF(q), <?Ξ — 1 (mod 3) and set r(y)=3y~1, s(y)
=—3y~2, h(x)=0for x<=K, y(=K*. Then (r,

Proof. As q= -I (mod ̂
-{-(a/3)3). Hence f(a,y)φO for a^K andj eX* and f(a,y) is a bijection from
K* onto K9. Thus (r,

3. Some sufficient conditions for h=0

In this section we prove a theorem which gives a sufficient condition under
which h(x)=0 for any x in the field. Throughout this section q is a power
of a prime p.

Proposition 3.1. Let π be a translation plane of order <f having K=GF(q)
in its kernel and let G be a linear autotopism group of π which fixes at least three

points on loo. If q\ \ G \ and q< \ G/o° | , then π is coordίnatized by a quasifield Qg

for some g^Φκ. (Here Gl°° denotes the restriction of G on /«>.)

Proof. Let A, B and C be distinct fixed points of G on /«. We coordi-
natize π with A= {(0, 0, v) \ v <=Kx K} , B= {(v, Q,0)\v£ΞKxK} and C= {(u, v)

As we have seen in the proof of Theorem 2.4, we may assume

γ)\Y=(l i), t^K}<G<{(X°r)\XζΞGL(2,q}} andaspread

set of π is Σg={M(xyy) \x9 y^K} for some g=(r, s, h)^Φκ. We argue that
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Suppose P is not a normal subgroup of G. Then, by a Dickson's theorem

(cf. Chapter II of [5]), G contains #={(Q JWeSL(2, q)}. Applying

(2.4.3), X~lM(x, 0)J£<ΞΣ^ for any M(x, 0)<ΞΣ^ and J\ΓeSL(2, q). Since

(θ ^H%) 2) (θ u->) = U(x) 2) we have *2%)=%) for each «e=X».

Hence A(#)=0, x<=ΞK, if |^| >3. If \K\=2, then A(#)=0 by the hypothesis
(1.5). Assume \K\ —3. Then r and s can be written in the form r(y)=a-\-by
and s(y)=c-\-dy for some #, #, £ and rf in K. By the hypothesis (1.4), h(x)

= —(-(x?-(a+b)x-(c+d))-((x?-(a-b)x-(c-d))=bx+d. Hence b=d=0
by the hypothesis (1.5).

Suppose P is a normal subgroup of G. Then G<{(Q χ)\x==(h )̂'

α, c& K*, b^K}. Let J î be the group of (O, /oo)-homologies of π, where O

denotes the origin of π. By assumption, GΦP^. Let σ^G — PKi and

set σ-^Q 2), where Z)=(j J) and Λ, ceA:1, δe^. By (2.4.3), σ^M ,̂ 0)<τ

= ( _^, x°)e2^. Hence h(x) = ac~lh(x) for any Λ?e^. If ac~l=\, then
\UC ϊl\JXJ >Λ J

D=( _ι, H WeP^, contrary to the choice of σ. Thus ac~l3=l, so that A(ΛJ)

-0 for all x(ΞK.

Lemma 3.2. Let π be a translation plane of order cf having K=GF(q)
in its kernel and let G be a linear autotopism group of π. If q \ G | , then a Sylow
p-subgroup of G is of order q and fixes a Baer subplane of π poίntwise.

Proof. The lemma follows immediately from Remark 2.5.

In the remainder of this section we assume the following.

HYPOTHESIS 3.3 (i) π is a translation plane coordinatized by a quasi-
field Og, where g=(r, s, K)^ΦK and &ΦO.

(ii) π admits a linear autotopism group G<(Z/C(τr))i(o,0),L(~) such that
G contains a group of (O, /oo)-homologies of order q—- 1 and has an orbit of length
(f— q on /oo.

(iii) A Sylow ^-subgroup P of G fixes Z,(l,

Lemma 3.4. Let T be the set of fixed points of P on L, and put T'=Y—
{L(0, 0),L(oo)>. Then

(i) |Γ|=?+1.
(ii) |G |— q(q— I)2 and P is a normal subgroup of G. Moreover GΓ/ and

(2/oo-r are

Proof. By Lemma 3.2, \P\=q and the fixed structure of P is a Baer sub-
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plane of π. Therefore (i) holds.
Let CeΓ" and assume (Gc)

/ooφP/oβ. Then, as we have seen in the proof
of Proposition 3.1, h(x)=0 for any x^K. Hence (Gc)

loa=PIv3 and so GC=PK1.
Here ^Γ3 is the group of (O, /oo)-homologies of order q—1. Since g2— q \ G/Kλ \ ,
q(q-l)2\\G\. Hence q-l<\G: Gc\. Moreover |G: GC|<?-1, for other-
wise |G: Gc\=q2— q, contrary to Lemma 3.2. From this |G: Gc \=q—l. In

particular |G| =q(q— I)2 and Γ" and L—T are G-orbits. Hence PK1=GΓ^9

the pointwise stabilizer of Γ' in G. Therefore P is a normal subgroup of G.

REMARK: By Hypothesis 3.3, P={(Q γ)\γ=(l ?)> *e^> and as

is normal in G, G<{(^ 2)'^=(ft *)' ̂ C »)' *' ^ W>

Lemma 3.5.

by v^ K} . Then the following hold.

(i) G=K1Wy where Kλ is the group of (O, l^-homologies of π.

(ii) K'=

Let

(iv) w—uc.

( v) h(ux)=c~1uh(x)-\-c~1(v—bu)xfor any

(vi ) r (αίy ) = ur(y) +(v— bu)y and s(cuy) = u2s(y) for

Proof. Let g be a mapping from G into K* such that #((%)) =#π, where
(Xfj)^G. As |̂ ι |— ?— 1, it follows from the remark above that g is a homo-
morphism and g(G)=K*. Hence \G/W\=q-l. Clearly PΓn^ι=l Thus
(i) holds.

Since L(x, 0) eΓ/ for X*^K* and eH7> A'lM(x9

Se« ^_(J ») and B=(» »). Then ̂

ί=c~1(t>— δw)Λ;+c (̂Λ;). Hence w=cu and A(M^)=C 'iiA^+c '(ϋ— bu)x. Thus

we have (iv) and (v). In particular L(l, 0)G=L(1, Q)W={L(u, 0)|(^ ̂

G, £=/" J)} . By Lemma 3.4 (ii), we have (ii).

Similarly L(0, y) (^ ^JeL-Γ for y(ΞK* and (̂  ^eG. Hence

l.-T. Set ^= ° and 5= . Then
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B=(vy u<:y\ where t1=c"l(—bvy+uy-ls(y)+vr(y)) and t2=— buy+ur(y).
V h τ2 J

Hence L(0ty)(^ r>]=L(vy, ucy). Therefore r(tuy)=vy+t2=ur(y)+(v— bu)y

and s(ucy)==tlucy—t2vy=u2s(y) by Lemma 2.3. Thus we have (vi). Moreover,

by Lemma 3.4 (ii), L-T=L(09l)G=L(09l)W={L(v9uc)\(^ °)^w> Λ =

Lemma 3.6. Let a, b^K* and c^K with ^*=<α)>. Let g(x) be a map-
ping from K* into K satisfying g(ax)=bg(x)+cx for any x^K* . Then we have

(i) If £ΦO, then a^=b and g(x)=kxm-\-(cla—b)x, where k&K and m is an
integer such that am=b, 0<m<q—l, mήpl.

(ii) // c=0, then g(x)=kxm, where k&K and m is an integer such that am

=b, 0<m<q-l.

Proof. Any mapping from K* into K is uniquely represented in the form

for suitable ̂ 's in K, 0<n<q—l. Set g(x)=Σ pnx
n . Then ^pna

nxn

«=0 »=0

+cx for all x^K*. Hence pn(an—b)=0 if nφl and p1(a—b)=c.
=

Since K*=ζa}, there is a unique integer m satisfying 0<m<.q — 1 and b=am.
Suppose £ΦO. Then αΦέ, pι=c/(a—b) and pn— 0 for each wφl, m.

Thus (i) holds. Suppose c=0. Then^>n=0 for each n=£m. Thus (ii) holds.

Lemma 3.7. (i) h(x)=axm—ax> r(y)=iyd—ay and s(y)=jy2d for some
a, j^K* and ί^K and integers ra, d, where 0<w, d<q— 1, mΦ 1, JΦ 1.

(ii) Let („ Q^tΞW, where A=(l °] and (u ° ). Then c=ul-mand(2-
\\J -D J \Ό C j \ϋ UC /

m, q— 1) = 1 . Moreover ιu(2~m)d=iu, tf^m)d=u2 andj φ 0.

Proof. By Lemmas 3.5 and 3.6, h(x)=axm-}-a'x, r(y)=iyd+ly and s(y)
=jye' for suitable a, #', i,j, l£ϊK and integers m, d, e', where 0<m, d, e'<q — 1,

nfΦl, JΦ1. Moreover, (cu)d=u and (cu)e/=tf if K*=<<cuy. Hence (cu)2d'e/

= 1 and so 2d=e' (mod q— 1). From this s(jO= Jy2d By the hypotheses (1.4)
and (1.5), h(l)=a+a'=0, ί(y)=f=0. Therefore A(Λ?)= «w— ΛΛ? and ΦO. We
have #ΦO, for otherwise h(x)=Q, x&K, a contradiction.

Using Lemma 3.5 (v) (vi),

aumxm—aux = c'lu(axm—ax)+c'l(v—bu)x , (3.1)

i(cu)dyd+lcuy = iuyd+luy+(v—bu)y (3.2)

and ./(αO V = ^27>2rf (3 3)

for any x,
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From (3.1), c = ul-m and v-bu = ua(l-c) . (3.4)

Since cu=u2~m, (2—m, q— 1)=1 by Lemma 3.5 (iii), (iv). Substituting (3.4)
into (3.2) and (3.3) we have i(u^^d-u)=0y if-m(um~l-l) (α+/)=0 and j(if<*-*><
-u2)=0. As i i fΦl and j £0, α+/=0 and if <*-*)'— if = 0. Thus the lemma

holds.

Lemma 3.8. Set g(x)=—xm~2+ixm~1+jxm. Then g(x) is an injection from

K* into K and a

Proof. By the hypotheses (1.3) and (1.4), a mapping/, (3;)=— y~\v2— r(y)

v — s(y)) — h(v) is an injection from K* into itself for a fixed v£ΞK. Let v=ί.
It follows from Lemma 3.7 (i) that f1(y)=~ y~\l — ίyd— jy2d}— a. Set f2(t)

=fι(t2~m) Then, by Lemma 3.7 (ii), f2(ί) is injective and moreover it(2~m^d—it,
j2(2-«o«/=ί2β Hence f2(ή=—tm-2+ιtm-1+jtm—a and f2(t) is an injection from K*

into itself. Thus the lemma holds.

Lemma 3.9. (i)

(ii) ίφO andj=-i2/4 ίf2Jfq andi=0 if2\q.

Proof. Assume m=Q. ΎheΏ.g(x) =—(l/x)2+i(l/x)+j and 2\q by Lemma

3.7 (ii). If q>2, then g(x)=g(xl(ix—l)) and #ΦΛ?/(ώ?— 1) for x^K~{09 1/i}.
Hence ^—2 and therefore Λ(^)=0 for x^K={0, 1}, a contradiction. Thus

HiΦO.
If the quadratic polynomial jV+ώ?— 1 is irreducible over K, then 0<ξg(K*).

This implies α=0 by Lemma 3.8, contrary to Lemma 3.7 (i). Hence jof-\-ix
— l=j(x—b) (x—bf) for some i, b'<=K*. Then g(b)=g(br). By Lemma 3.8,
6=i'. Therefore we have (ii).

Lemma 3.10. There exists no (r, sy h)<ξΦκ satisfying Hypothesis 3.3.

Proof. By Lemmas 3.8 and 3.9, g(x) = — (l/4)^"2(ώ— 2)2 or g(x)= xm~2

(bx-\-l)2, b2=j according as 2/fq or 2\q, respectively. Set K*—(cy.
Assume 2Jfq and set xl=2c2(cm-2-l)/i(cm-l) and x2=2(cm-2-l)/i(cm-l).

Then g(xι)= g(%2) Moreover ,̂ x2^K* and x1=$=x2 as (w— 2, y— 1)=1 and
wφO. Hence ^(Λ?) is not injective, contrary to Lemma 3.8.

Assume 2\q and set #1=^(c*-2+l)/%~4-l) and ^2-(cw-2+l)/%w+l).

Then ^(^)— ̂ ( 2̂) and ,̂ x2^K*, x^x2 as (m—2, q—ί)=l and mΦO. This
is also a contradiction.

We now prove the following theorem.

Theorem 3.11. Let π be a translation plane of order q2 having K—GF(q)
in its kernel. If π admits a linear autotopism group G having an orbit of length

(f—q on /oo, then π is coordinated by a quasίfield Qg for some g=(r,
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where r(y)=ayn, s(y)=by2n for suitable a, b^K and an integer n, 0<n<q—l.

Proof. Let A and B be distinct fixed points of G on /«, and C a fixed point
of a Sylow ^-subgroup P of G such that CeL— {A, B}. Set A={(0, 0, v)\
vtΞKxK}, B={(v,Q,Q)\vζΞKχK} and C={(v, v)\v^KχK}. Then π
is coordinatized by Qg for some g—(r> s, h)^Φκ by Theorem 2.4. Assume
λ(#)Φθ for an x^K. Then ?r satisfies Hypothesis 3.3. Applying Lemma
3.10, we obtain a contradiction. Therefore h(x)=0 for any x^K. The theo-

rem follows from Theorem 2 of [3].

4. Some properties of (r,

Let K=GF(q), where q is a power of a prime ^>. Let g=(r, s)^Φκ. As

we have defined in §2, 2S,= {(* U)l*e*> U {(/(*y) ,(^))l^ Ĵ > J^0>>

where f(x, y)=—y~\x2—r(y)x—s(y)) and ^(Λ;, y)=— x+r(y). Set Σ=Σ^. In
this section we list several lemmas which will be required in the sequel.

Lemma 4.1. Let P, M (ΞM2(K), det(P)Φθ and set P-1MP=(^ Q. As-

sume 3/φO. Then P~1MP<Ξ:Ί< if and only if r(y) = tr(P~1MP) and s(y)=

Proof. See Lemma 3.1 of [3].

Lemma 4.2. Let P, Q<ΞM2(K), \K\>3. If P+xQtΞZ for any x<EΞK,
then either (i) Q is a zero matrix and PeΣ or (ii) P and Q are scalar matrices.

Proof. See Lemma 3.3 of [3].

Lemma 4.3. (i) s(y) =t= 0 for y e K*.
(ii) // 2 1 q, then r(y) Φ 0 for y e jfiC*.

Proof. Since (ry s)^ΦKt f(xy y)=—y~1(x2—r(y)x—s(y))^=0 for all x^K
and 3/e.K*. Hence (i) holds.

Assume 2|<? and r(j )— 0 for some y&K*. Then f(x, y)=—y~\x—w)2,
where w is a unique element of K such that w2=s(y). Thus/(&;, y)=Q, a con-
tradiction.

Let 7tg and £8 be as defined in §2. Set Δg={L(x, Q)\x<=K} U {£(00)}

and &,=.£,— Δ,.

Lemma 4.4. Assume that either r or s is not a constant function. Let

σ<=LC(πg). Then σ fixes L(oo) ifandonly if σ is oftheform(^

*, where r(a~1djy)=jr(y)^Γ2ί and s(a~1djy)=j2s(y)—ijr(y)—i2

for all y^K*. Under the condition, L(x, y)σ=L(u, v), where u—i
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and v==a"1djy.

Proof. Using (1.3) and Lemma 4.3, we can easily verify that
1)} and ΦG/r(3) — {(0, 2), (1, 1), (2, 1)}. Therefore r and s are constant func-
tions for any (r, s)^Φκ when \K\ <3. Hence \K\ >3.

Let σ^(I/C(^))Z(oo). Since σ fixes L(°°), σ can be written in the form

for some A' C<ΞΞGL(2> ί) and B^M2(K). Then, by (2.4.2) and (2.4.3),

)̂ if and only if A-\B+MC)=A-1B+A~1MC^ for all

Applying Lemma 4.2, A~1B=i and A~lC=j for some i,j^K,j=£Q. Hence,
for any x, y£ΞKy there exist uy vζ=K such that

Λ'1(i+jM(x9 y))A = M(uy v) . (4.1)

In particular L(x, (f)σ=L(i-\-jx, 0).

Assume JΦO. Then ϋΦO by (4.1). Set -4=(^ j), Λ, *, ,̂ rfeK By

and g'=g(u, v). From this, we have

b(ί+jx)+d(jy) = av+bg' , (4.2)

b(jf)+d(i+jg) = cv+dg' (4.3)

and a(i -{~jx)+c}y = au+bf . (4.4)

(4.2) and (4.3) yield (ad-bc)v=F(x,y)9 where F(xy y) = (b2jy-1)^+(2bdj
-b*jy-

lr(y))x+(d2jy-bdjr(y}-Vjy-h(y^ . (4.5)

By Lemma 4.1, r(0) — 2i+jr(y) (4.6)

and j(ϋ) = -ί-tXyJ+^Cv) . (4.7)

Set ψy={veK*\r(v)=2i+jr(y)} for je^K*. Assume ft=f=0. Then, by (4.5),
|Ψ^|>(^+l)/2 when ^)>2 and lΨ^l^ί/2 when p=2. Hence Ψ^ΠΨ.Φφ,
j, ̂ e^*. This implies ψJ,=Jίl forjye^*. Thus r(y) is a constant function.
Similarly, using (4.7), it can be shown that s(x) is also a constant function. But
this contradicts the assumption. Therefore b=0. In particular adΦO and
so by (4.2) and (4.4),

u — i-\-jx-\-a~lcjy, v = a~ldjy (4.8)

and L(x, y)σ=L(u, v) when yΦO.

Conversely, assume <Γ=(Q l /\ ), A=(a , J, i, c&K,j, ay d^K* and assume

(4.6H4.8). Then
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), tr(A-\i+jM(x, y))A)=2£+jr(y)=r(v) and det(A'\i+jM(x9y))A)
=i2+ijr(y)—j2s(y)=—s(v) as tr(M(x, y)) = r(y) and det (M(x, y)) = —s(y).
Applying Lemma 4.1, A~l(i+jM(x, y))A=M(ιι, v)^Σ. Thus

5. The linear translation complement of πgy

In this section we continue the notations of the previous section. Let
Uκ denote the set of the planes πg (g^Φκ) with a linear autotopism group
acting transitively on Ωg. Let πg^Πκ, g=(r, s, h)^Φκ. Then, by Theorem
3.11, h=Q, r(y)=kyn and s(y)=ly2n for some k, l^K and an integer n, Q<n
<q—l. Set π=πg, 2=2^, Δ= Δ^ and Ω=Ωg.

Lemma 5.1. Let rQ(y)=iym and s0(y)=jy2m, where i,j^K and m is an
integer, 0<m<q—l.

(i) Assume 2/fq. Then (r0, ^0) eΦ^ if and only if

(a) P+4j$K2and
(b) i\tm-t)2+4j(ί-t) (t2m-t)$K2for all t<ΞK-{0, 1}.

(ii) // (r0, J0)
 e φκ, then i2+4j Φ 0.

Proof. Assume 2/fq. By Lemma 3.2 (ii) of [3], (r0, ̂ 0)eΦ^ if and only

if (1) (i2+4j)y2m$K2 and (2) ;2(*/"-j;*m)2+4(*-;y) j(xy2m-yo?m)<£K2 for
any x, y£ΞK*, x*y. Set t=y/x. Then ίΦO, 1 and (ί2(tm-t)2+4j(l-t) (t2m

—t))^m+2^K2. Thus (i) holds and (ii) follows immediately from (i) and Lem-
ma 4.3 (ii).

Lemma 5.2. Set G=LC(π) and H—GL(oo ))L(Qt$. If either r or s is not a
constant function y then

Proof. Let σ<ΞGL(oo). By Lemma 4.4, σ=(n ^) and A=(* °j] for

\L/ ]Ά/ \C aj

suitable i, c^K and/, a, d^K* and we have

k(a-ldjy)n =jkyn+2i (5.1)

l(a~ldjy)?n = J2ly2n-ijkyn-i2 for any ye K* . (5.2)

As 0<n<q— 1, the equation (5.1) yields

kj(a-ndnjn~l-l) = 0, 2i = 0 (5.3)

By (5.2), (l(a-ltf}2n-j2l}y

2n+ijkyn+i2=Q for any y£ΞK*. There exists ri, 0<n'
<q — 1, such that y2n=yn for y£ΞK*. Hence

(I(a-1dj)2n-j2l)yί/+ijkyn+i2 = 0 for any y<=K* . (5.4)

Assume z'ΦO. Then p=2 by (5.3). In particular \K*\ is odd and there-
fore n' = 2n^0 (mod ^—1). Hence z2— 0 by (5.4), a contradiction. Thus
i=0 and so
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Lemma 5.3. Set N={a(^ c»^)l^ = (J <α-«)> a, c^K\ b^K} and

ThenH=Nifk*OandH=<τ>Nifk=Q.

Proof. If r and s are constant functions, π is a Hall plane. Hence we
may assume that either r or s is not a constant function. Let σG/f. Applying

Lemmas 4.4 and 5.2, σ=(0 .̂ ),̂ ί-^ J) for some Λ, d, JZΞK* and ce^,

where r(a~ldjy)=jr(y) and s(a~ldjy)=j2s(y) for all jye^#. Hence σ^H if and

only Ίίk(ά~ldjy)n=jkyn and I(a~ldjy}2n=j2ly2n for all j e^*. These are equiva-
lent to

h((a-ldff-j) = 0 (5.5)

and l((a~ldj}2n-j2) = 0, respectively. (5.6)

It follows from (5.6) and Lemma 4.3 (i) that /ΦO and therefore j=±(cι~1dj)n.
Assume j=(a~ldj)n and set a~ldj=cl. Then /— £jW and d=ac1

1~n. Hence

σ=fl(^ PfW=fί ,.1-Λ where ό^φ. Therefore σeΛ^.
\L/ LI s±/ \O1 C± /

Assume j^=(a~1dj)n. Then &=0 by (5.5) and so it is not difficult to verify

that τ<=H. Set σ'=τσ. Then σ'= (^ . °Δ \ A, = (a* J Y where j\=-j,
\U J\™-\' \c\ a\/

aΛ=ay Cj=c and dl=~d. Hence j\—(a1~
1d1j\)n as j——(a~ldj)n. By a similar

argument as in the previous paragraph, we have σ'^N. Therefore σe<τ>ΛΓ.
Thus we have the lemma.

Lemma 5.4. Let Kλ be a subgroup of the multiplicative group K* of index
(n, q — 1) and set K2=ζ — 1, K^. Assume either r or s is not a constant function.
Then y for each

L(w, 0)H = {L(x, 0) I x^Kfΰ} if k Φ 0 and

L(w, 0)H = {£(*, 0) \x(ΞK2w} if k = 0 .

Proof. Applying Lemmas 4.4, 5.2, and (5.3), L(w, 0)H= {L(wc\ 0) | c<=K*}
if JfeΦO and L(w, Q)H={L(±wc\ Q)\cϊΞK*} if fe=0. Since {c*\c^K*l is a
subgroup of K* of index (w, ^— 1), the lemma holds.

Lemma 5.5. Assume there exists an element σ^G which exchanges L(oo)
for L(0, 0). Then one of the following occurs.

(i) Both r and s are constant functions.

(ii) 2n(n-ί) = 0 (mod ?-l)

= — (wl)n~l for some w, a, dEΐK* and

(iii) 4«(»-l)=0 (mod ?-l), *=0, ^=
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—(wl)2n~2for some w, a, d^. K* and c^K.

Proof. As we have seen in the proof of Lemma 4.4, if \K\ <3, then (i)
holds. Therefore we may assume \K\>3. Since σ exchanges L(oo) for L(0,

0), there are A, B<ΞGL(2, K) such that σ=(% Q\ Moreover, by (2.4.3),

B-1M~1A^^ for any M<EΞΣ, Λfφ(|[ J). Applying Lemma 4.2, B~lA=w~l

for some zc<=K*. Hence B=wA so σ=( °Λ £} and aΓl^Λf-^eΣ for

Set Λf=M(*. 1) and M(u, v)=w~1A-1M-1A, ί>ΦO. Then M=fa l\

vfheref=—(x?—kx—l) andg=—x+k. Hence M(u, z))==ro"1(

, t=-*Λ(ad-bc).—c a ) \— / x J \c dj ^ ' ' \ * * / \c rfy' v y

Hence we have ϋ=(l/ί) (-b2x?+(kb2-2bd)x+kbd-d2+b2l). By Lemma 4.1,

Assume &ΦO. Set ϋ=p(*) and Ψ-{p(^)|^e^}. Then
when p>2 and | Ψ | >^/2 when ρ=2. Hence {—k/wl} = {r(y) | y=p(x), x
= {kvn\v^Ψ}. Since 0<w<g— 1, either w^O or k = Q. Assume

Then Λ=0. But ί(v)=-&/(Λf(tt, v))=-det(w-lM'1)=-ϊo'2ldet(M)==ϊo''2Γ1.
Hence {zί;-2/"1} — {ί(y)|y=p(Λ?), Λ:e^}-{fo2«|?;eψ}. From this, 2n=g— 1
and (i) holds.

Assume 4=0 and deny (i). Then, for x^K and je jRC*, w~lA"lM(x,y)~lA=

where v=(d/alw)y1 2n. By Lemma 4.1, r(z;)=α; ^(M^,^)"1)— r(y)l(—
=(-k/lw)y~n and ί(ϋ)= -eϋ-2det(M(^, y)-1)=(l/«^ί(y))= (l//^2)j-2w. Hence
k((dlalw)yl-2n)n=(-kllw)y-n and I((dlalw)yl-2n)2n=(\llw2)y-2n for all yeΞX:*.
Thus, for any y^K*, we have

k((l/lw)y2n(«-v+(d/alw)n) = 0 and

(\llw2)y*n(n-v-l(dlalw}2n = 0 .

If AΦO, then 2n(n-l) = 0 (mod gr-1) and lllw+(dlalw)n=0. If A=0, then
4^(n— 1) = 0 (mod ?-l) and l/lw2-l(dlalw)2n=G. Therefore (ii) or (iii) holds.
Thus we have the lemma.

Lemma 5.6. Assume either r or s is not a constant function. Then L(oo)

Proof. Suppose false and let σ be an element of G such that L(0, 0)σ

=L(0, 0) and L(o°)σ=L(h, 0) for some AeJ£*. Then <r=(J ^) for some
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, K) and so ̂ =_ιA-ι A-fl-ι Hence> bY (2 4 3)> ί̂ "1-

-lB-1^ for any MeΣ such that det^-'-MA-^-^ΦO. Set
M=M(x, 0), #ΦA. Then (xh^Kl-xh-^AB^ξΞ?, for any #eί:, #ΦA. This
implies tAB^d, for any ίeJSΓ, fΦ — 1. By (2.4.1), —AB-l=(-h~lA-lyl

A-^β-'eΣ. Thus tAB'1^^ for any ίeK Applying Lemma 4.2, AB~l=g~l

for some ^e^* so σ=(£[ J^) and A~\E+gM)-lghMA^ for any MΦ

-r1*-
Set M(u, v)=A-\E+gM(x,y))-lghM(x,y)A and Assume jΦO. Then

z φO. Hence ίr(M(w, v^ght.Kl+gt^+ght^l+gt,) and det(M(ιι, v))=(gktj
(1+Λ)) (ght2/(l+gt2)\ where ίl+ί2=ίr(M(Λr, j)) and *A=det(M(*, j)). By
Lemma 2.3 (ii), kvn=(ghkyn-2g2hfy2»)l(l+gkyn-g2ly2n) and -Iv2n=-^h2ly2n/
(l+gky'-gtly2*). Therefore ^l(-ΐ)=k2v2nl(-lv2^=(k-2glyn)2l(~l) (l+gky«
-g*ly2n\ so we have (#+4/) (gfy*—k)gy*=Q for je^*. By Lemma 5.1 (ii),
&2-|-4/φO. Thus w=0 and gl—k—0. Then r and ί are constant functions,
contrary to the hypothesis.

Lemma 5.7. Assume |JE"|>3 and let σ eG. Then L(0, 0)<r=L(oo) if
and only if L(oo)σ=L(Oy 0).

Proof. Assume L(0, 0)σ=L(oo). Then σ= for some A, B<=GL

(2,K) and C<=M2(K). By (2.4.3), (MB)"l(A+MC)G^ for any

MΦ(Q Q). Set M=M(«, 0), ̂ e^*. Then BrlAχ-l+B-lC*=& for all ̂

Λ:ΦO. On the other hand β^CeΣ by (2.4.1). Therefore B^C+
for all x^K. Applying Lemma 4.2, B~lC=ί and B~lA=j for some i

Hence ^ = and B'1 (iE+jM~l)B^^ for any MeΣ,

°Ίo>
Set M(u, v)=B~l(iE+jM(x9 y)~l)B and assume ^ ΦO. Clearly z ΦO.

Moreover tr(M(uy v))^2i+jtr(M(x,y))ldet(M(x,y))=2i—kj/lyn and det(M(w, »))
=i2+ijtr(M(x, y))ldet(M(x, j))+//det (M(̂ , y)) - i2- ijk/lyn-j2/ly2". On the
other hand kvn=2i-kjllyn and -Iv2n=i2-ky/lyn-j2/ly2". Hence #/(-/)=
(kvn)2l(-lv2»)=(2ilyn-kj)2l(-l) (j2+ijkya-ι2ly2*) so we have /(A2+47) (ilyn-kj)
y"=Q for any jyeίC*. By Lemma 5.1 (ii), ^+4/Φθ and by Lemma 4.3 (i),
/ΦO. Therefore z—0, whence L(oo)σ^L(0, 0).

Conversely, assume L(°o)σ=L(Q, 0). Then σ"!eG and L(0, 0)σ~1=L(oo).
By the result as above, we have L(oo)OΓ-

1=L(0, 0), which implies L(0, 0)σ =L(°o).
Thus the lemma holds.

Lemma 5.8. // | K | >3, ί̂ w G is not transitive on Δ U Ω.
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Proof. Suppose false. If r and s are constant functions, then π is a
Hall plane so the Lemma follows from Theorem 13.10 of [6], Therefore we
may assume that either r or s is not a constant function. Applying Lemma

5.2, Gz(oo)=#and |G: flΊ = |ΔUΩ|=ίM-l.

Let Pbe a Sylow ̂ -subgroup of H. By LemmaS.3, P={(Q ^)\A=Q J)»

ί^K} and so P fixes Δ pointwise and is semiregular on Ω. By a Witt's theo-
rem, NG(P) is transitive on Δ. In particular, q+l divides | NG(P) : Nff(P) \ .
By Lemma 5.3, P is a normal subgroup of H and so Nff(P)—H. Hence q-\-l
divides |G: H\= q2+l, while (g+1, q2+l)=(q+ly 2)<2. This is a contra-
diction. Thus the lemma holds.

Lemma 5.9. Let a, b, c, d, e^K such that (a, b, c, d, #)Φ(0, 0, 0, 0, 0).

If ay4nJrby3nJrcy2nJrdyn+e=Q for all y^K*9 then one of the following occurs.
(i) n=0 and a+b+c+d+e= 0.

(ϋ) n=(q-l)l2 and a+c+e=b+d=0.
(iii) fl=(?-l)/3 or 2(j— 1)/3 and a+d=b+e=c=0.
(iv) n=(q-l)/4 or 3(j— 1)/4 and a+e=b=c=d=0.

Proof. There exist u, v and w with 0<«, ϋ, w<q~ 1 such that y*n=yu,
y3n=yv and y2n=yw for any y^K*. If w, ϋ, w, w and 0 are all distinct, then
the equation ayu-\-byv+cyw+dyn-\-e= 0 has at most q~2 solutions for y, con-
trary to the assumption. Hence in~ι'n (mod q — 1) for some integers i, i',
O^ί^ί'^4. From this, jn=0 (mod q — 1) for some integer y, l<j<4.

Assume n=Q (mod q — 1). Then n=0 as 0</ί<^ — 2 and so we have (i).
Assume 2n = Q (mod q— 1). Then n=(q—l)/2 as 0<2n<2q— 4 and so

the equation is equivalent to (bJrd)yn-}-a-{-cJ\-e~ 0. Thus we have (ii) in this
case.

Similarly we have (iii) or (iv) according as 3/z=0 (mod 2—1) or 2w^0,
4n=0 (mod q— 1), respectively.

Lemma 5.10. Assume \K\>5. Let £1' be the G-orbit on I ̂  which con-
tains Ω. // Ω' contains L(oo), then \Ω,'\*q2— 1 or n&{e(q—l)\e=Q, 1/2,
1/3,2/3,1/4,3/4}.

Proof. By Lemmas 4.4 and 5.3, H is transitive on Ω. Assume |O'|
= (f—\ and set {£(0,0), L(4, 0)} =ΔUΩ-ίV, where α, έe^, βφ*. By
Lemma 5.6, αΦO and δφO and by Lemma 5.2, GL(^=H. Let P be a Sylow
^-subgroup of H. Using a Witt's theorem, NG(P) is transitive on Ω'flΔ.
Let R be the stabilizer of L(a, 0) and L(b, 0) in Λ7"G(P) and Ψ the JR-orbit on L
which contains L(°o). As R is a normal subgroup of NG(P) of index at most
2, |Ψ|=(?— 1)/2 or 2—1. Let L(z, 0)eψ. There is an element σ^Λ such

that L(oo)σ^L(^, 0). Then σ= A, B<=M2(K), C^GL(2,K) by
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(2.4.1) and (2.4.2). Since (A+tO)-\B+t*C)=tE for f e {a, b} , a2C+a(A-zO)

-B=0 and b2C+b(A-sC)-B=Q. Hence A=(»-a-b)C and B=-abC

where

c — z—a—b and J = — αi . (5.7)

Set M(n, v)=L(xy y)σ. Then M(w, v)=C'\cE+M(x9 y))-\dE+zM(x,y))
C. Assume jyφO. Then z ΦO. Applying Lemma 4.1, r(v)=(d-\-zt1)l(c-i-t1)

+(d+zt2)l(c+ΐ2) and -*(«0=((<*+**ι)/('+fι)) ((^+^2)/(^+ί2)), where tλ+t2

= tr(M(x, y))=r(y) and t1t2=det(M(x9 y)) = —s(y). Hence >tew=(2α/+(££+</)
r-2*ί)/(c2+<τ-,y) and -Iv2n=(d2+dzr-z2s)l(c2+cr-s)y where r= Λy" and

s=ly2n. (5.8)

From this, tf(c*+cr—s) (d2+d2r-z2s)+l(2cd+(cz+d)r-2ss)2=Q. Substituting

(5.7) and (5.8) into this equation gives (#+4J) (zΨy4n+(ab+a+b— Z2)zkly3n+
(a+l)-2)ab(k2-2l)2y2n+ (a+ b—z) (z2-az-bz-ab)abkyn+ (a+b-z)2aΨ) = 0

for any y £ΞK*. (5.9)

By Lemma 5.1 (ii), Λ2+4/Φθ. Since \K\>5, |Ψ-{L(oo)} | >2. Hence

#2/2φO for some ar such that L(#, 0)eΨ. Applying Lemma 5.9 to (5.9), we
have the lemma.

Lemma 5.11. Assume n${e(q—l)\e=Q, 1/2, 1/3, 2/3, 1/4, 3/4} and
\K\>S. Γfe//L(oo)GUL(0, 0)GcΔ.

Proof. Let Ω' be the G-orbit on /<„ which contains Ω. It suffices to

show Ω' Π {̂ (°°)ι (̂0, 0)} = φ. Suppose false.
First we argue that L(oo)eΩ'. Assume L(oo)<$Ω' and L(0, 0)eΩ'.

Then, by Lemma 5.6, L(oo)GL(0)0)={L(oo)}. Therefore G^fo.o)— GrL(oo) by

Lemma 5.2 so |L(oo)G| = |L(0, 0)G| = |Ω'| ><f-q. This forces L(oo)eΩ',
a contradiction. Thus L( oo ) ̂  Ω ' .

Set Δ'-ΔUΩ-Ω'. By Lemmas 5.4, 5.8 and 5.10, |Δ r | >3. Let W be
the pointwise stabilizer of Δ' in G. Clearly IF is a normal subgroup of G.

Let σ£ΞW and set σ = ί , ̂ , 5, C, D^M2(K). Then

— i£ for all *eΛ={f|L(ί, 0)eΔ'}. Hence ί2C+ί(^-D)-jδ-O for all

Assume σφff. Then CΦ(Q J). Since |Λ| - |Δ'| >3, there exist x

and y in Λ such that xφy and (^+j)£ΦC-1(Z)— ̂ 4). As above x2C+x(A— D)

-B=O and /C+y(^4-Z))-JΪ=O. Hence (x2-y2)C+(x-y) (A~D) = 0
so (^+j;)£'=Cf"1(ί)— A), contrary to the choice of x and y. Thus σ^H and
so Wc:H. Using Lemma 5.3, a Sylow ^-subgroup of H is normal in W and

therefore normal in G. This implies that Δ is G-invariant and Ω'=Ω, a con-
tradiction. Thus we have the lemma.
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Lemma 5.12. Assume n&{e(q-l)\e=Q, 1/2, 1/3, 2/3, 1/4, 3/4} and
\K\>5. Then L(oo)Gc{L(0, 0), L(oo)}.

Proof. Suppose false. Then <7φ/ϊ. By Lemmas 5.2 and 5.11, L(°°}σ

=L(w, 0) for some σeG and wtΞK*. Set σ=(^ J^Λ By (2.4.2), C is non-

singular. By Lemma 5.7, L(0, O)σφL(oo) and so, by (2.4.4), A is nonsingular.

Applying Lemma 5.11, L(0, 0)<r=L(z, 0) and L(oo)σ~
l=L(—j, 0) for some

itΞK and ye*?. Hence A~1B=iE by (2.4.3) and ̂ -jC=^Q J) by (2.4.4).

Therefore we have <r=(j

Let #e^ and y^K* and set L(w, ^)=L(#, y)σ. Then ΐ ΦO and M(w, v)

=C'1(jE+M(x9 y)Yl(ijE+τoM(x, y))C. Hence, by Lemma 4.1,

r(v) = (ίj+wt^KJ+t^+iίj+wt^KJ+t,) (5.10)

and -s(v) = ((ij+wtJKJ+tJ) ((ij+wt2)/(j+t2)) . (5.11)

Here tl+t2=tr(M(x, y))=r(y) and ^2=det(M(^, y)) = — s(y). Substituting
these into (5.10) and (5.11) gives kvn=(2ij2+(wj+ij)r—2ws)l(j2+jr—s) and
— fa2n= (i2j2-{-wίjr— W2s)/(j2jrjr— s), where r—kyn and s=ly2n. Hence k\j2jr
jr-s) (i2j2+wijr-w2s)+l(2ίj2+(wj+ij)r-2ws)2=0. From this, (k2+4l) (w2l2y4n—
(Jw2+mj)kly3n+wij2(k2-21)y2n+(wij3^^^ for any y<=K*. (5.12)

By Lemma 5.1 (ii), Λ2+4/φO and by Lemma 2.4, /φO. Applying Lemma 5.9
to (5.12), we have nt={e(q—l)\e=Q, 1/2, 1/3, 2/3, 1/4, 3/4}, contrary to the
assumption. Thus we have the lemma.

Proposition 5.13. Assume either r or s is not a constant function.

(i) // (j-l)/(fi, g-l)Ξ=l (mod 2) and A=0, then Δ-{L(oo), L(0, 0)} is
divided into (ny q—l)/2 H-orbits of the same length.

(ii) // (g- !)/(*, ?-l)Ξθ (mod 2) or ^ΦO, ώβn Δ-{L(oo), L(0, 0)} ύ
divided into (n, q—l) H-orbits of the same length.

(iii) Assume \ K \ >5 and n& {e(q- 1) \ β=0, 1/2, 1/3, 2/3, 1/4, 3/4} . Then
{L(oo), L(0, 0)}, Δ and Ω #re G-invariant.

Proof. Let Kλ and J 2̂ be as defined in Lemma 5.4. We note that —
if and only if p>2 and I-KJ =1 (mod 2).

Assume (q—l)j(n, q— 1) = 1 (mod 2) and &— 0. By Lemma 4.3 (ii), p>2.
Since \K1\=(q-l)/(n,q-l) = l(mod2), -l^K, so \K2\=2\K1\=2(q-ί)/

(n, q—l). Applying Lemma 5.4, we have (i).
Assume (q—l)l(ny q—l) = 0 (mod 2) or &ΦO. Applying Lemma 5.4, we

have (ii).

Assume | K \ >5 and n& {e(q— 1) | e=Q, 1/2, 1/3, 2/3, 1/4, 3/4} . By Lemmas
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5.2 and 5.12, either (a) G—H or (b) H is a normal subgroup of G of index
2 and {£(00), L(0, 0)} is G-invariant. In particular a Sylow ^-subgroup of H

is normal in G. Hence Δ is G-invariant. Thus we have (iii).

c(=K* b^K} and

if 2n(n—1) = 0 (mod q—1)

if 2n(n—1)^0 (mod q—1) .
\^ —* /

Then we have

Theorem 5.14. Assume \K\>5 and n& {e(q-1)|*=0, 1/2, 1/3, 2/3, 1/4,
3/4}. ThenG=<τ,

Proof. By Lemma 5.3, H= <τ>ΛΓ. Assume 2ra(rc—1) = 0 (mod 9—!).
By Lemmas 5.5, 5.7 and 5.12, G=ζμ)>H and so (?=<y, μ)>Λf. Assume 2n(n— 1)
ΞO (mod 9-1). By Lemmas 5.5, 5.7 and 5.12, G=H=<μ>H=<τ, μ>N.

REMARK 5.15. (i) It follows from Proposition 5.13 and Theorem 5.14
that Aut(τr^) has no fixed point on /«> for any πg^Πκ, \K\>5. Therefore
πg is not a semifield plane for any πg^Tlκ, \ K \ >5.

(ii) There exists a translation plane πg (g^Φκ) which is not isomorphic
to any plane in Π .̂ For example, let K=GF(7), r(y)=4y5+6y4 and s(y)

=6/+3y+6y3+4y2+3. Theng=(r, s)(=Φκ (See Remark 3.6 of [3]). It can

be shown that Aut(»,)=<«, β, H\ where #={(Q A)\A = (jί 2) a> b^K>

*ΦO}, a=(° g), JB=(J J) and 0=(^)' ^=(θ -°l)' Moreover Aut(^)

has 4 orbits of lengths 7, 7, 8 and 28 on I*,. Thus r^ is not isomorphic to

any plane in ΐlκ by Theorem 5.14.
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