Oyama, T.
Osaka J. Math.
22 (1985), 35-54

## ON QUASIFIELDS

Dedicated to Professor Kentaro Murata on his 60th birthday

Tuyosi OYAMA

(Received August 22, 1983)

## 1. Introduction

A finite translation plane $\Pi$ is represented in a vector space $V(2 n, q)$ of dimension $2 n$ over a finite field $G F(q)$, and determined by a spread $\pi=\{V(0)$, $V(\infty)\} \cup\{V(\sigma) \mid \sigma \in \Sigma\}$ of $V(2 n, q)$, where $\Sigma$ is a subset of the general linear transformation group i $G L(V(n, q))$. Furthermore $\Pi$ is coordinatized by a quasifield of order $q^{n}$.

In this paper we take a $G F(q)$-vector space in $V\left(2 n, q^{n}\right)$ and a subset $\Sigma^{*}$ of $G L\left(n, q^{n}\right)$, and construct a quasifield. This quasifield consists of all elements of $G F\left(q^{n}\right)$, and has two binary operations such that the addition is the usual field addition but the multiplication is defined by the elements of $\Sigma^{*}$.

## 2. Preliminaries

Let $q$ be a prime power. For $x \in G F\left(q^{n}\right)$ put $x=x^{(0)}, x=x^{(1)}=x^{q}$ and $x^{(i)}=x^{q^{i}}, i=2,3, \cdots, n-1$. Then the mapping $x \rightarrow x^{(i)}$ is the automorphism of $G F\left(q^{n}\right)$ fixing the subfield $G F(q)$ elementwise.

For a matrix $\alpha=\left(a_{i j}\right) \in G L\left(n, q^{n}\right)$ put $\bar{\alpha}=\left(\overline{a_{i j}}\right)$. Let

$$
\omega=\left(\begin{array}{ccccc}
0 & \cdots & \cdots & 0 & 1 \\
1 & 0 & \cdots & \cdots & 0 \\
0 & \ddots & \ddots & & \\
\vdots & \ddots & \ddots & & \\
0 & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

be an $n \times n$ permutation matrix. Set $\mathfrak{A}=\left\{\alpha \in G L\left(n, q^{n}\right) \mid \bar{\alpha}=\alpha \omega\right\}$.
Lemma 2.1. $\mathfrak{Y}=G L(n, q) \alpha_{0}$ for any $\alpha_{0} \in \mathfrak{Q}$. Furthermore let $\alpha$ be an $n \times n$ matrix over $G F\left(q^{n}\right)$. Then $\alpha \in \mathfrak{A}$ if and only if

$$
\alpha=\left(\begin{array}{cccc}
a_{0} & a_{0}^{(1)} & \cdots & a_{0}^{(n-1)} \\
a_{1} & a_{1}^{(1)} & \cdots & a_{1}^{(n-1)} \\
\vdots & \vdots & & \vdots \\
a_{n-1}^{(1)} & a_{n-1}^{(1)} & \cdots & a_{n-1}^{(n-1)}
\end{array}\right)
$$

and $a_{0}, a_{1}, \cdots, a_{n-1}$ are linearly independent over the field $G F(q)$.
Proof. For any element $\delta$ of $G L(n, q), \overline{\delta \alpha_{0}}=\delta \bar{\alpha}_{0}=\delta \alpha_{0} \omega$. Hence $\delta \alpha_{0} \in \mathfrak{Y}$. Conversely for any element $\alpha$ of $\mathfrak{N}, \overline{\alpha \alpha_{0}^{-1}}=\alpha \omega \omega^{-1} \alpha_{0}^{-1}=\alpha \alpha_{0}^{-1} \in G L(n, q)$ and so $\alpha \in G L(n, q) \alpha_{0}$. Thus $\mathfrak{V}=G L(n, q) \alpha_{0}$.

Let $\alpha=\left(a_{i j}\right)$ be any element of $\mathfrak{N}$. Since $\bar{\alpha}=\alpha \omega, \overline{a_{i 1}}=a_{i 2}, \overline{a_{i 2}}=a_{i 3}, \cdots, \overline{a_{i n-1}}$ $=a_{i n}, i=1,2, \cdots, n$. Hence $a_{i j}=a_{i 1}^{(j-1)}, i=1,2, \cdots, n, j=2,3, \cdots, n$. Furthermore since $\alpha$ is a non-singular matrix, $a_{11}, a_{21}, \cdots, a_{n 1}$ are linearly independent over $G F(q)$.

The converse is clear.
Lemma 2.2. If $\alpha \in \mathfrak{N}$, then

$$
\alpha^{-1}=\left(\begin{array}{cccc}
a_{0} & a_{1} & \cdots & a_{n-1} \\
a_{0}^{(1)} & a_{1}^{(1)} & \cdots & a_{n-1}^{(1)} \\
\vdots & \vdots & \\
a_{0}^{(n-1)} & a_{1}^{(n-1)} & \cdots & \vdots \\
a_{n-1}^{(n-1)}
\end{array}\right) \in G L\left(n, q^{n}\right) .
$$

Proof. Since $\alpha \in \mathfrak{A}, \bar{\alpha}=\alpha \omega$. Hence $\overline{\alpha^{-1}}=\omega^{-1} \alpha^{-1}$. Then the proof is similar to the proof of Lemma 2.1.

Lemma 2.3. Let $\alpha \in \mathfrak{A}$. Then $G L(n, q)^{\alpha}=\left\{\gamma \in G L\left(n, q^{n}\right) \mid \bar{\gamma}=\gamma^{\omega}\right\}$.
Proof. For any $\delta \in G L(n, q) \bar{\delta}^{\bar{\omega}}=\delta^{\bar{\omega}}=\left(\delta^{\alpha}\right)^{\omega}$. Conversely let $\gamma \in G L\left(n, q^{n}\right)$ with $\bar{\gamma}=\gamma^{\omega}$. Then $\overline{\gamma^{\alpha-1}}=\bar{\gamma}^{\overline{\alpha-1}}=\gamma^{\omega \omega-1} \alpha^{\omega-1}=\gamma^{\alpha-1}$. Thus $\gamma^{\alpha-1} \in G L(n, q)$ and so $G L(n, q)^{\alpha}=\left\{\gamma \in G L\left(n, q^{n}\right) \mid \bar{\gamma}=\gamma^{\omega}\right\}$.

Since $\alpha$ is any element of $\mathfrak{Q}$, we denote $G L(n, q)^{\omega}$ by $G L(n, q)^{*}$.
Lemma 2.4. Let $\gamma$ be an $n \times n$ matrix over $G F\left(q^{n}\right)$. Then $\bar{\gamma}=\gamma^{\infty}$ if and only if

$$
\gamma=\left(\begin{array}{llll}
a_{0} & a_{n-1}^{(1)} & \cdots & a_{1}^{(n-1)} \\
a_{1} & a_{0}^{(1)} & \cdots & a_{2}^{(n-1)} \\
\vdots & \vdots & \ddots & \ddots \\
a_{n-1} & a_{n-2}^{(1)} & \cdots & a_{0}^{(n-1)}
\end{array}\right) .
$$

Proof. Let $\gamma=\left(a_{i j}\right)$ with $\bar{\gamma}=\gamma^{\omega}$. Then

$$
\left(\begin{array}{c}
\overline{a_{11}} \overline{a_{12}} \cdots \overline{a_{1 n}} \\
\overline{a_{21}} \overline{a_{22}} \cdots \overline{a_{2 n}} \\
\cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \\
\overline{a_{n 1}} \overline{a_{n 2}} \cdots \overline{a_{n n}}
\end{array}\right)=\left(\begin{array}{c}
a_{22} a_{23} \cdots a_{21} \\
a_{23} a_{33} \cdots \cdots \\
\cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \\
a_{12} a_{13} \cdots \cdots \\
\cdots
\end{array}\right) .
$$

Thus $a_{i j}=\overline{a_{i-1 j-1}}, i, j=1,2, \cdots, n$ modulo $n$. Hence $a_{i 1}^{(j)}=a_{i+j 1+j}, i, j=1$, $2, \cdots, n$ modulo $n$, and so $\gamma$ has the required form.

The converse is clear.
From Lemma 2.3 and Lemma 2.4 we have

## Lemma 2.5.

Let $V(2 n, q)$ be a vector space of dimension $2 n$ over $G F(q)$, and $\pi$ be a nontrivial partition of $V(2 n, q)$. If $V(2 n, q)=V \oplus W$ for all $V, W \in \pi$ with $V \neq W$, then $\pi$ is called a spread of $V(2 n, q)$. Then the component of $\pi$ is a $n$-dimensional $G F(q)$-subspace of $V(2 n, q)$ [1].

Let $\pi$ be a spread of $V(2 n, q)$, then we can construct a translation plane $\pi(V(2 n, q))$ of order $q^{n}$ as follows [1]:
a) The points of $\pi(V(2 n, q))$ are the vectors in $V(2 n, q)$.
b) The lines are all cosets of all the components of $\pi$.
c) Incidence is inclusion.

Conversely any translation plane is isomorphic to some $\pi(V(2 n, q))$.
We may assume that $V(2 n, q)=V(n, q) \oplus V(n, q)$ is the outer sum of two copies of $V(n, q)$. Set $V(\infty)=\{(0, v) \mid v \in V(n, q)\}, V(0)=\{(v, 0) \mid v \in V(n, q)\}$ and $V(\sigma)=\left\{\left(v, v^{\sigma}\right) \mid v \in V(n, q)\right\}$ for $\sigma \in G L(V(n, q))$. Then the followings hold ([6], Theorem 2.2, Theorem 2.3):
(I) Let $\pi$ be a spread of $V(2 n, q)$ containing $V(0), V(\infty)$. Then we have:
a) If $V \in \pi$ and if $V \neq V(0), V(\infty)$, then there is exactly one $\sigma \in$ $G L(V(n, q))$ such that $V=V(\sigma)$. Set $\Sigma=\{\sigma \mid \sigma \in G L(V(n, q)), V(\sigma) \in \pi\} \cup\{0\}$.
b) If $u, v \in V(n, q)$, then there is exactly one $\sigma$ in $\Sigma$ such that $u^{\sigma}=v$.
c) If $\sigma, \rho \in \Sigma$ and if $\sigma \neq \rho$, then $\sigma-\rho \in G L(V(n, q))$.
(II) Conversely if a union $\Sigma$ of a subset of $G L(V(n, q))$ and $\{0\}$ satisfies b) and c) of (I), then $\pi=\{V(\infty)\} \cup\{V(\sigma) \mid \sigma \in \Sigma\}$ is a spread of $V(2 n, q)$.

## 3. Construction of quasifields

Let $Q$ be a set with two binary operations + and $\circ$. We call $Q(+, \circ)$ a quasifield, if the following conditions are satisfied:

1) $Q(+)$ is an abelian group.
2) If $a, b, c \in Q$, then $(a+b) \circ c=a \circ c+b \circ c$.
3) $a \circ 0=0$ for all $a \in Q$.
4) For $a, b \in Q$ with $a \neq 0$, there exists exactly one $x \in Q$ such that $a \circ x=b$.
5) For $a, b, c \in Q$ with $a \neq b$ there exists exactly one $x \in Q$ such that $x \circ a-x \circ b=c$.
6) There exists an element $1 \in Q \backslash\{0\}$ such that $1 \circ a=a \circ 1=a$ for all $a \in Q$ (see [6] p. 22).

It is well known that an affine plane is a translation plane if and only if it is coordinatized by a quasifield (see [4], Theorem 6.1). Using this result, we give a new description of a quasifield.

After fixing a suitable basis in $V(n, q)$, we denote a vector $v$ of $V(n, q)$ by the form $\left(x_{0}, x_{1}, \cdots, x_{n-1}\right), x_{i} \in G F(q)$. Let $\alpha$ be a fixed element of $\mathfrak{U}$ in the section 2. Then

$$
\alpha=\left(\begin{array}{ccccc}
a_{0} & a_{0}^{(1)} & \cdots & a_{0}^{(n-1)} \\
a_{1} & a_{1}^{(1)} & \cdots & a_{1}^{(n-1)} \\
\cdots \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots \cdots & \cdots & \cdots & \cdots & \cdots \\
a_{n-1} & a_{n-1}^{(1)} & \cdots & a_{n-1}^{(n-1)}
\end{array}\right) .
$$

Hence $v \alpha=\left(x, x^{(1)}, \cdots, x^{(n-1)}\right) \in V\left(n, q^{n}\right), x=\sum_{i=0}^{n-1} x_{i} a_{i}$.
Conversely, let $v^{*}$ be a vector of $V\left(n, q^{n}\right)$ of the form $\left(x, x^{(1)}, \cdots, x^{(n-1)}\right)$, $x \in G F\left(q^{n}\right)$. Since $a_{0}, a_{1}, \cdots, a_{n-1}$ are linearly independent over $G F(q), x$ is uniquely represented by $a_{0}, a_{1}, \cdots, a_{n-1}$ such that $x=\sum_{i=0}^{n-1} x_{i} a_{i}, x_{i} \in G F(q)$. Hence $v^{* \omega^{-1}}=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right) \in V(n, q)$. Thus $V(n, q)^{\omega}=\left\{\left(x, x^{(1)}, \cdots, x^{(n-1)}\right) \mid x \in G F\left(q^{n}\right)\right\}$, and $V(n, q)^{\infty}$ is a $G F(q)$-vector space isomorphic to $V(n, q)$.

Set $V(2 n, q)^{\infty}=\{(u \alpha, v \alpha) \mid u, v \in V(n, q)\}$. Then similarly $V(2 n, q)^{\infty}$ is a $G F(q)$-vector space isomorphic to $V(2 n, q)$.

Denote a vector $\left(x, x^{(1)}, \cdots, x^{(n-1)}\right)$ of $V(n, q)^{a}$ by $((x))$. Then any vector of $V(2 n, q)^{\infty}$ is denoted by $(((x))$, $((y)))$. The additive group of $G F\left(q^{n}\right)$ is isomorphic to $V(n, q)^{\infty}$ under a mapping $x \rightarrow((x))$. In this mapping the inverse image of $v^{*} \in V(n, q)^{\infty}$ is denoted by $\hat{v}^{*}$.

Let $M$ be any element of $G L(n, q)$. Since by Lemma 2.5

$$
M^{\infty}=\left(\begin{array}{cccc}
x_{0} & x_{n-1}^{(1)} & \cdots & x_{1}^{(n-1)} \\
x_{1} & x_{0}^{(1)} & \cdots & x_{2}^{(n-1)} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
x_{n-1} & x_{n-2}^{(1)} & \cdots & x_{0}^{(n-1)}
\end{array}\right)
$$

$M^{\omega}$ is uniquely determined by the first column $\left[\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n-1}\end{array}\right]$. Hence we denote $M^{\omega}$. $\quad\left[\begin{array}{l}x_{0}\end{array}\right]$ by $\left[\begin{array}{c}x_{0} \\ x_{1} \\ \vdots \\ x_{n-1}\end{array}\right]$.

Let $\pi=\{V(\infty)\} \cup\{V(M) \mid M \in \Sigma\}$ be a spread of $V(2 n, q)$, where $\Sigma$ is a union of a subset of $G L(n, q)$ and $\{0\}$. Set $\pi^{\alpha}=\left\{V^{*}(\infty)\right\} \cup\left\{V^{*}\left(M^{\alpha}\right) \mid M \in \Sigma\right\}$, where $V^{*}(\infty)=\left\{(((0)), \quad((x))) \mid((x)) \in V(n, q)^{\alpha}\right\}$ and $V^{*}\left(M^{\alpha}\right)=\left\{\left(((x)),((x)) M^{\omega}\right) \mid\right.$ $\left.((x)) \in V(n, q)^{\alpha}\right\}$.

Then since $(v \alpha) M^{\alpha}=(v M) \alpha, \pi^{\infty}$ is a spread of $V(2 n, q)^{\infty}$. Hence $\pi^{\infty}$ determines a translation plane, which is denoted by $\Pi^{*}$. From now on we may assume that a spread $\pi^{\infty}$ contains $\left.V^{*}(1)=\{((x)),((x))) \mid((x)) \in V(n, q)^{\alpha}\right\} \quad$ ([6], Lemma 2.1).

For any two vectors $((x)) \neq((0)),((y))$ of $V(n, q)^{\infty}$, there is a unique matrix $M^{\infty} \in \Sigma^{\infty}$ such that $((x)) M^{v}=((y))$. Set $((x))=((1))=(1,1, \cdots, 1)$. Then any element $y$ of $G F\left(q^{n}\right)$ uniquely determines $M^{\omega}=\left[\begin{array}{c}y_{1} \\ y_{0} \\ \vdots \\ y_{n-1}\end{array}\right] \in \Sigma^{\infty}$ such that $\langle(1)) M^{\omega}=((y))$. This implies $y=\sum_{i=0}^{n-1} y_{i}$. Conversely $M^{\infty}=\left[\begin{array}{c}y_{0} \\ y_{1} \\ \vdots \\ y_{n-1}\end{array}\right] \in \Sigma^{\infty}$ uniquely determines $y \in F G\left(q^{n}\right)$ such that $((1)) M^{\alpha}=((y))$ with $y=\sum_{i=0}^{n-1} y_{i}$. Hence we denote $M^{\alpha}=$ $\left[\begin{array}{l}y_{0} \\ y_{1} \\ \vdots \\ y_{n-1}\end{array}\right] \in \Sigma^{\infty}$ by $[y]$, where $y=\sum_{i=0}^{n-1} y_{i}$. Then a mapping $G F\left(q^{n}\right) \rightarrow \Sigma^{\infty}$ is a bijection under $y \rightarrow[y]$. Hence $\Sigma^{\omega}=\left\{[x] \mid x \in G F\left(q^{n}\right)\right\}$. In this mapping the inverse image of $M^{*} \in \Sigma^{\omega}$ is denoted by $\hat{M}^{*}$.

Let $\Pi^{*}$ be a translation plane with a spread $\pi^{\infty}$ defined in $V(2 n, q)^{\infty}$. If a point of $\Pi^{*}$ is represented by $(((x)),((y)))$ as a vector of $V(2 n, q)^{\infty}$, then we give a coordinate $(x, y), x, y \in G F\left(q^{n}\right)$, for this point. Then the set $Q$ consisting of all elements of $G F\left(q^{n}\right)$ coordınates the plane $\Pi$, and $Q$ is a quasifield with the following two binary operations + and $\circ$ :
(1) The addition + is the usual field addition.
(2) The multiplication $\circ$ is given by $x \circ y=((x))[y]$, and if $[y]=\left[\begin{array}{c}y_{0} \\ y_{1} \\ \vdots \\ y_{n-1}\end{array}\right]$,
$x \circ y=\sum_{i=1}^{n-1} x^{(i)} y_{i}$. then $x \circ y=\sum_{i=0}^{n-1} x^{(i)} y_{i}$.

Using this coordinate, we can write the lines of $\Pi^{*}$ as follows:

$$
\begin{aligned}
& V^{*}(m)+k=\left\{(x, x \circ m+k) \mid x \in G F\left(q^{n}\right)\right\} \cup\{(m)\}, \\
& V^{*}(\infty)+k=\left\{(k, y) \mid y \in G F\left(q^{n}\right)\right\} \cup\{(\infty)\}, \\
& l_{\infty}=\left\{(m) \mid m \in G F\left(q^{n}\right)\right\} \cup\{(\infty)\}
\end{aligned}
$$

Assume that $\Sigma^{*}$ consists of $q^{n-1}$ matrices of $G L(n, q)^{\infty}$ and 0 . We call $\Sigma^{*}$ a spread set of degree $n$ over $G F\left(q^{n}\right)$ if $\Sigma^{*}$ has the following properties:
a) For $m=\left[\begin{array}{c}y_{0} \\ y_{1} \\ \vdots \\ y_{n-1}\end{array}\right] \in \Sigma^{*}$, put $\beta(m)=\sum_{i=0}^{n-1} x_{i} . \quad$ Then $\left\{\beta(m) \mid m \in \Sigma^{*}\right\}=G F\left(q^{n}\right)$. Hence we may set $m=[\beta(m)]$.
b) If $m_{1}, m_{2} \in \Sigma^{*}$ and if $m_{2} \neq m_{2}$, then $m_{1}-m_{2} \in G L(n, q)^{a}$.

Clearly for any vector $((x)) \neq((0)) \in V(n, q)^{\infty},\left\{((x)) m \mid m \in \Sigma^{*}\right\}=V(n, q)^{\infty}$. Set

$$
\begin{aligned}
& \left.V^{*}(\infty)=\{((0)),((x))) \mid((x)) \in V(n, q)^{\infty}\right\}, \\
& V^{*}(m)=\left\{(((x)),((x)) m) \mid((x)) \in V(n, q)^{\infty} .\right.
\end{aligned}
$$

Then $\left\{V^{*}(\infty)\right\} \cup\left\{V^{*}(m) \mid m \in \Sigma^{*}\right\}$ is a spread of $V(2 n, q)^{\infty}$, and so defines a translation plane $\Pi^{*}$.

Conversely let $Q$ be any finite quasifield with binary two operations + and $\circ$. The kernel of $Q$ is the set $K(Q)$ consisting of all elements $k \in Q$ such that $(k \circ a) \circ b=k \circ(a \circ b)$ and $k \circ(a+b)=k \circ a+k \circ b$ for all $a, b \in Q$. Then $K(Q)$ is a finite field, and $Q$ is a $K(Q)$-vector space. Let $K(Q)$ be of order $q$ and let $Q$ be of dimension $n$ over $K(Q)$. Then $M$. Hall has proved the following ([3]):

Let $V(2 n, q)=Q \oplus Q$, the outer direct sum of two copies of the $K(Q)$ vector space $Q$. If $V(m)=\{(x, x \circ m) \mid x \in Q\}$ and $V(\infty)=\{(0, x) \mid x \in Q\}$, then $\pi=\{V(m) \mid m \in Q \cup\{\infty\}\}$ is a spread of $V(2 n, q)$. Furthermore the spread set is $\Sigma=\{(x \rightarrow x \circ m) \mid m \in Q\}$.

Hence the translation plane defined by $\pi$ is coordinatized by $Q$. Thus we have

Theorem 1. Let $\Sigma^{*}=\left\{[x] \mid x \in G F\left(q^{n}\right)\right\}$ be a spread set of degree $n$ over $G F\left(q^{n}\right)$. Then we have a quasifield $Q$ with two binary operations + and $\circ$ satisfying the followings:
(1) $Q=G F\left(q^{n}\right)$ as a set.
(2) The addition + is the usual field addition of $G F\left(q^{n}\right)$.
(3) The multiplication $\circ$ is given by $x \circ y=\left((\widehat{x)})[y]\right.$, where $((x))=\left(x, x^{(1)}, \cdots\right.$, $\left.x^{(n-1)}\right) \in V\left(n, q^{n}\right)$ and $[y] \in \Sigma^{*}$.

Furthermore any finite quasifield is isomorphic to some quasifield constructed by the above method.

A quasifield $Q$ with a spread set $\Sigma^{*}$ of degree $n$ over $G F\left(q^{n}\right)$ is denoted by $Q\left(n, q^{n}, \Sigma^{*}\right)$. Since $((k))=(k, k, \cdots, k)$ for $k \in G F(q)$ in $Q\left(n, q^{n}, \Sigma^{*}\right), k \circ x=$ $((\widehat{k})[x]=k x$ for any $x \in Q$. Hence $(k \circ a) \circ b=((k \widehat{a b)}[\dot{b}]=k((\widehat{a)})[b]=k \circ(a \circ b)$ and $k \circ(a+b)=k(a+b)=k a+k b=k \circ a+k \circ b$. Thus $G F(q)$ is contained in the kernel $K(Q)$ of $Q\left(n, q^{n}, \Sigma^{*}\right)$.

## 4. Examples

A quasifield is determined by the spread set. In this section we show some spread sets of the known quasifields. To construct spread sets we need a condition for two spread sets to define isomorphic quasifields or translation planes.

First using the spread set, we prove the following Maduram's Theorem. From now on $G L(n, q)^{\infty}$ is denoted by $G^{*}$.

Theorem A (D.M. Maduram [7]). Let $Q_{1}=Q\left(n, q^{n}, \Sigma_{1}^{*}\right)$ and $Q_{2}=Q\left(n, q^{n}\right.$, $\left.\Sigma_{\sigma}^{*}\right)$. Then $Q_{1}$ and $Q_{2}$ are isomorphic if and only if there is $N$ in $G^{*}$ and $\theta$ in Aut $G F\left(q^{n}\right)$ such that $\Sigma_{2}^{*}=N^{-1} \Sigma_{1}^{* \theta} N$ and $((1)) N=((1))$.

Furthermore let $f$ be the isomorphism from $Q_{1}$ to $Q_{2}$, then $f(x)=\left(\left(x^{0}\right)\right) N$ and $[f(x)]=N^{-1}[x]^{\theta} N$ for $x \in Q_{1}$.

Proof. Let $f$ be an isomorphism from $Q_{1}$ to $Q_{2}$. Then $f$ fixes $G F(q)$ as a set and so $f$ induces an automorphism of $G F(q)$. Hence there is $\theta$ in Aut $G F\left(q^{n}\right)$ such that $f(k)=k^{\theta}$ for any element $k$ of $G F(q)$. Then for $a \in Q_{1}$

$$
f(k a)=f(k \circ a)=f(k) \circ f(a)=k^{\theta} f(a) .
$$

Let $\bar{f}$ be a mapping of $V(n, q)^{\infty}$ onto itself defined by $\left.\bar{f}((x))\right)=\langle(f(x)))$ for $((x)) \in V(n, q)^{a}$. Then

$$
\begin{aligned}
\bar{f}(((x))+((y))) & =\bar{f}(((x+y)))=((f(x+y)))=((f(x)+f(y))) \\
& =((f(x)))+((f(y)))=\bar{f}(((x)))+\bar{f}(((y)))
\end{aligned}
$$

and for $k \in G F(q)$

$$
\bar{f}((k x)))=((f(k x)))=\left(\left(k^{\theta} f(x)\right)\right)=k^{\theta}((f(x)))=k^{\theta} f(((x))) .
$$

Thus $\bar{f}$ is a non-singular semi-linear transformation of $V(n, q)^{d}$.
Next let $\phi$ be a mapping of $V(n, q)$ onto itself defined by $\phi(v)=\bar{f}(v \alpha) \alpha^{-1}$. Then clearly $\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right)$ and $\phi(k v)=k^{\theta} \phi(v)$. Thus $\phi$ is also a non-singular semi-linear transformation of $V(n, q)$. Hence there is $N_{1}$ in $G L(n, q)$ such that

$$
\phi\left(\left(x_{1}, \cdots, x_{n}\right)\right)=\left(x_{1}, \cdots, x_{n}\right)^{\theta} N_{1}
$$

for $\left(x_{1}, \cdots, x_{n}\right) \in V(n, q)$. On the other hand set $\left(x_{1}, \cdots, x_{n}\right) \alpha=((x))$. Then

$$
\phi\left(\left(x, \cdots, x_{n}\right)\right)=\bar{f}(((x))) \alpha^{-1} .
$$

Hence

$$
\bar{f}(((x)))=\left(x_{1}, \cdots, x_{n}\right)^{\theta} N_{1} \alpha
$$

By Lemma $2.1 \alpha^{\theta}=N_{2} \alpha, N_{2} \in G L(n, q)$. Hence

$$
\left(\left(x^{\theta}\right)\right)=\left(x_{2}, \cdots, x_{n}\right)^{\theta} \alpha^{\theta} \alpha=\left(x_{2}, \cdots, x_{n}\right)^{\theta} N_{2} \alpha
$$

and so

$$
\left(x_{1}, \cdots, x_{n}\right)^{\theta}=\left(\left(x^{\theta}\right)\right) \alpha^{-1} N_{2}^{-1}
$$

Thus

$$
\bar{f}(((x)))=\left(\left(x^{\theta}\right)\right) \alpha^{-1} N_{2}^{-1} N_{1} \alpha
$$

Set $N=\alpha^{-1} N_{2}^{-1} N_{1} \alpha \in G^{*}$. Then

$$
\bar{f}(((x)))=\left(\left(\left(x^{\theta}\right)\right) N\right.
$$

Since $\bar{f}((x)))=((f(x)))$,

$$
((1))=((f(1)))=f(((1)))=((1)) N \quad \text { and } \quad f(x)=\left(\left(x^{0}\right)\right) N .
$$

Then since $f(x \circ y)=f(x) \circ f(y)=((f(x)))[f(y)]=\left(\left(x^{\theta}\right)\right) \widehat{N}[f(y)]$ and $f(x \circ y)=((x \circ y)) \widehat{\Theta}$ $\left.=\left(\left(x^{\theta}\right)\right) \widehat{[y]}\right]^{\theta} N,\left(\left(x^{\theta}\right)\right) N[f(y)]=\left(\left(x^{\theta}\right)\right)[y]^{\theta} N$ for any $((x)) \in V(n, q)^{a}$.

Thus $N[f(y)]=[y]^{\theta} N$ and so $[f(y)]=N^{-1}[y]^{\theta} N$ for any $y \in Q_{1}$. Hence we have $\Sigma_{2}^{*}=N^{-1} \Sigma_{1}^{* \theta} N$.

Conversely let $f$ be a mapping from $Q_{1}$ to $Q_{2}$ defined by $f(x)=\left(\left(x^{\theta}\right)\right) \widehat{N}$. Then

$$
f(x+y)=\left(\left((x+y)^{\theta}\right)\right) \widehat{N}=\left(\left(\left(x^{\theta}\right)\right) \widehat{N}+\left(\left(y^{\theta}\right)\right) N=f(x)+f(y)\right.
$$

and

$$
f(x \circ y)=\left(((x \circ y))^{\theta} N=\left(\left(x^{\theta}\right)\right) \widehat{[y]^{\theta}} N=\left(\left(\left(x^{\theta}\right)\right) \widehat{N N^{-1}}[y]^{\theta} N\right.\right.
$$

Since $\Sigma_{2}^{*}=N^{-1} \Sigma_{1}^{* \theta} N$,

$$
f(x \circ y)=f(x) \circ N^{-1} \widehat{[y]^{\theta}} N
$$

Furthermore

$$
((1)) N^{-1}[y]^{\theta} N=((1))[y]^{\theta} N=\left(\left(y^{\theta}\right)\right) N
$$

On the other hand

$$
((1))\left[\left(\left(y^{\theta}\right)\right) N\right]=\left(\left(y^{\theta}\right)\right) N
$$

Hence

$$
N^{-1}[y]^{\theta} N=\left[\left(\left(y^{\theta}\right)\right) N\right]
$$

and so

$$
f(x \circ y)=f(x) \circ\left(\left(y^{\theta}\right)\right) N=f(x) \circ f(y) .
$$

Thus $f$ is an isomorphism from $Q_{1}$ to $Q_{2}$.

Let $\pi_{1}$ and $\pi_{2}$ be two spreads in $V(2 n, q)$ both containing $V(\infty)$. Let $\Pi_{1}$ and $\Pi_{2}$ be translation planes defined by $\pi_{1}$ and $\pi_{2}$. Then $\Pi_{1}$ and $\Pi_{2}$ are isomorphic if and only if there is a non-singular semi-linear transformation in $V(2 n, q)$ taking $\pi_{1}$ onto $\pi_{2}([5], \mathrm{p} .82)$.

Let $M(n, q)$ be the set of all $n \times n$ matrices over $G F(q)$. Then all elements of $M(n, q)^{\infty}$ have the forms as in Lemma 2.4. Using elements of $M(n, q)^{\infty}$ and Aut $G F\left(q^{n}\right)$, we describe Sherk's Theorem with the following extended form.

Theorem B (F.A. Sherk [8]). Let $\Pi_{1}$ and $\Pi_{2}$ be translation planes coordinatized by quasifields $Q_{1}=Q\left(n, q^{n}, \Sigma_{1}^{*}\right)$ and $Q_{2}=Q\left(n, q^{n}, \Sigma_{2}^{*}\right)$. Then $\Pi_{1}$ and $\Pi_{2}$ are isomorphic if and only if there exist $A, B, C$ and $D$ in $M(n, q)^{\infty}$ and $\theta$ in Aut $G F\left(q^{n}\right)$ with the following properties:
a) $\operatorname{det}\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \neq 0$.
b) Either
i) $B=0, A \in G^{*}$ and $\Sigma_{2}^{*}=\left\{A^{-1}\left(C+[m]^{\theta} D\right) \mid[m] \in \Sigma_{1}^{*}\right\}$.
ii) $B \in G^{*}, B^{-1} D \in \Sigma_{2}^{*}$. Also, there is $\left[m_{0}\right] \in \Sigma_{1}^{*}$ such that $A+\left[m_{0}\right]^{\theta} B=0$. For any $[m] \in \Sigma_{1}^{*} \backslash\left\{\left[m_{0}\right]\right\}, A+[m]^{\theta} B \in G^{*}$ and $\left(A+[m]^{\theta} B\right)^{-1}\left(C+[m]^{\theta} D\right) \in \Sigma_{2}^{*}$.

From now on we denote the operations of $G F\left(q^{n}\right)$ by + and $\cdot$, and the operations of a quasifield by + and $\circ$.
(I) Finite fields
A quasifield $Q\left(n, q^{n}, \Sigma^{*}\right)$ with $\Sigma^{*}=\left\{\left.[a]=\left[\begin{array}{c}a \\ 0 \\ \vdots \\ \left.q^{n}\right) \text {. }\end{array}\right] \right\rvert\, a \in G F\left(q^{n}\right)\right\}$ is isomorphic to
(II) Finite generalized Andre quasifields

Let $Q=Q\left(n, q^{n}, \Sigma^{*}\right)$ be a quasifield. If the mapping $x \rightarrow(x \circ a) a^{-1}$ is an automorphism of $G F\left(q^{n}\right)$, then $Q$ is called a generalized Andre quasifield.

Since $k \circ a=k a$ for $k \in G F(q)$, the automorphism $x \rightarrow(x \circ a) a^{-1}$ fixes $G F(q)$ elementwise. Hence $(x \circ a) a^{-1}=x^{q^{\rho}(a)}, \rho(a) \in\{0,1, \cdots, n-1\}$. This yields $x \circ a=x^{q^{\rho(a)}} a=x^{(\rho(a))} a$. Let $[a]=\left[\begin{array}{c}a_{0} \\ a_{1} \\ \vdots \\ a_{n-1}\end{array}\right]$. Then

$$
x \circ a=((x))[a]=\sum_{i=1}^{n-1} x^{(i)} a_{i}=x^{(\rho(a))} a .
$$

Hence

$$
a_{0} x+a_{1} x^{(1)}+\cdots+\left(a_{\rho(a)}-a\right) x^{(\rho(a))}+\cdots+a_{n-1} x^{(n-1)}=0
$$

for all $x \in G F\left(q^{n}\right)$. Therefore $a_{i}=0$ if $i \neq \rho(a)$ and $a_{\rho(a)}=a$. A matrix $\left[\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right]$ with
exactly one nonzero entry $a_{i}=a$ is denoted by $[a(i)]$. Then the spread set is $\Sigma^{*}=\left\{[a]=[a(\rho(a)+1)] \mid a \in G F\left(q^{n}\right) \backslash\{0\}\right\} \cup\{0\}$.

For instance, spread sets of generalized Andre quasifields $Q\left(2, q^{2}, \Sigma^{*}\right)$ and $Q\left(3, q^{3}, \Sigma^{*}\right)$ are as follows. For $x \in G F\left(q^{2}\right)$ or $G F\left(q^{3}\right)$ set $N(x)=x^{1+q}$ or $N(x)=x^{1+q+q^{2}}$ respectively.
(1) $Q\left(2, q^{2}, \Sigma^{*}\right)$
$\Sigma^{*}=\Sigma_{1}^{*} \cup \Sigma_{2}^{*} \cup\{0\}$, where $\Sigma_{1}^{*}=\left\{[a]=\left[\begin{array}{l}a \\ 0\end{array}\right], \quad a \neq 0\right\} \quad$ and $\Sigma_{2}^{*}=\left\{[a]=\left[\begin{array}{l}0 \\ a\end{array}\right]\right.$, $a \neq 0\}$. Moreover $N\left(a_{1}\right) \neq N\left(a_{2}\right)$ for $\left[a_{1}\right] \in \Sigma_{1}^{*}$ and $\left[a_{2}\right] \in \Sigma_{2}^{*}$ since $\operatorname{det}\left(\left[a_{1}\right]-\left[a_{2}\right]\right)=$ $N\left(a_{1}\right)-N\left(a_{2}\right) \neq 0$.
(2) $Q\left(3, q^{3}, \Sigma^{*}\right)$
$\Sigma^{*}=\Sigma_{1}^{*} \cup \Sigma_{2}^{*} \cup \Sigma_{3}^{*} \cup\{0\}$, where $\Sigma_{1}^{*}=\left\{[a]=\left[\begin{array}{l}a \\ 0 \\ 0\end{array}\right], a \neq 0\right\}, \quad \Sigma_{2}^{*}=\left\{[a]=\left[\begin{array}{l}0 \\ a \\ 0\end{array}\right]\right.$, $a \neq 0\}$ and $\Sigma_{3}^{*}=\left\{[a]=\left[\begin{array}{l}0 \\ 0 \\ a\end{array}\right], a \neq 0\right\}$. Moreover if $[a] \in \Sigma_{i}^{*},[b] \in \Sigma_{j}^{*}$ and $i \neq j$, then $N(a) \neq N(b)$ since $\operatorname{det}([a]-[b])=N(a)-N(b) \neq 0$.

## (III) Finite Dickson nearfields

We call a quasifield $Q$ a nearfield, if the multiplication of $Q$ is associative, i.e. $Q \backslash\{0\}$ is the multiplicative group. Let $Q$ be a nearfield with a spread set $\Sigma^{*}$. Then for any $x \in Q, x \circ(a \circ b)=(x \circ a) \circ b$. Then $((x))[a \circ b]=((x))[a][b]$. Thus we have $[a \circ b]=[a][b]$ and so $[a][b] \in \Sigma^{*}$.

If a generalized Andre quasifield $Q$ is a nearfield, then $Q$ is called a Dickson nearfield. In a Dickson nearfield $Q\left(n, q^{n}, \Sigma^{*}\right)$, let $\rho$ be the mapping defined in (II), i.e. $x \circ a=x^{q^{q^{p}(a)}} a$.

Lemma 4.1. Let $Q=Q\left(n, q^{n}, \Sigma^{*}\right)$ be a Dickson nearfield. Then $K=$ $\{a \in Q \mid a \circ x=a x$ for all $x \in Q\}$ is the subfield $G F\left(q^{m}\right)$ of $G F\left(q^{n}\right)$ with $n=m r$.

Furthermore we have a Dickson nearfield $Q^{\prime}=Q\left(r,\left(q^{m}\right)^{r}, \Sigma^{* \prime}\right)$ as follows;
If $[a]=[a][a(\rho(a)+1)]$ in $\Sigma^{*}$, then $[a]=\left[a\left(\frac{\rho(a)}{m}+1\right)\right]$ in $\Sigma^{* \prime}$. Hence $Q^{\prime}$ is identified with $Q$.

Proof. Let $a, b \in K$. Then for any $x \in Q,(a+b) \circ x=a \circ x+b \circ x=a x+b x$ $=(a+b) x$ and $(a \circ b) \circ x=a \circ(b \circ x)=a(b x)=(a b) x=(a \circ b) x$. Thus $a+b \in K$ and $a \circ b=a b \in K$ and so $K$ is a subfield of $G F\left(q^{n}\right)$, say $K=G F\left(q^{m}\right)$. Then $n=m r$. Let $x \in K$ and $a \in Q \backslash\{0\}$. Then $x a=x \circ a=x^{q^{p(a)}} a$. Hence $x=x^{q^{q(a)}}$ and so $\rho(a) \equiv 0(\bmod m)$. Thus $x \circ a=x^{q^{\rho(a)}} a=x^{\left(q^{m}\right)^{\frac{\rho(a)}{m}}} a$. Hence if we take a $r \times r$ matrix $[a]^{\prime}=a\left[\left(\frac{\rho(a)}{m}+1\right)\right]$, and set $\Sigma^{* \prime}=\left\{[a]^{\prime} \mid a \in G F\left(q^{n}\right) \backslash\{0\}\right\} \cup\{0\}$, then we can identify $Q\left(r,\left(q^{m}\right)^{r}, \Sigma^{*}\right)$ with $Q\left(n, q^{n}, \Sigma^{*}\right)$.

Now we describe a theorem of E. Ellers and H. Karzl [2] using a spread set.

Theorem C (E. Eller and H. Karzel). Let $Q\left(n, q^{n}, \Sigma^{*}\right)$ be a finite Dickson nearfield such that $G F(q)=\{k \in Q \mid k \circ x=k x$ for all $x \in Q\}$. Then the following hold:

1) Every prime divisor of $n$ divides $q-1$.
2) If $n \equiv 0$ (moo 4), then $q \neq 3$ ( $\operatorname{moo} 4$ ).

Furthermore the spread set $\Sigma^{*}$ is as follows:
Let $\omega$ be a generator of the multiplicative group $\left(G F\left(q^{n}\right), \cdot\right)$ and set $U=\left\langle\omega^{n}\right\rangle$. Then there is a positive integer $t$ with $(n, t)=1$,

$$
\left(G F\left(q^{n}\right), \cdot\right)=\bigcup_{i=0}^{n-1} \omega^{t}\left(q^{i}-1\right)(q-1)^{-1} U
$$

If $a \in \omega^{t\left(q^{i}-1\right)(q-1)^{-1}} U$, then $[a]=[a(i+1)]$.
Conversely by a theorem of H. Lüneburg ([6], Theorem 6.4) we can construct a Dickson nearfield as follows;

Assume that $n$ and $q$ satisfy the conditions 1) and 2) of Theorem C. Let $\omega$ be a generator of the multiplicative group $G F\left(q^{n}\right)$ and $(n, t)=1$. Then $\Sigma^{*}=\bigcup_{i=0}^{n-1}\left\{[a(i+1)] \mid a \in \omega^{t\left(a^{i}-1\right)(q-1)^{-1}} U\right\} \cup\{0\}$, where $U=\left\langle\omega^{n}\right\rangle$.
(IV) Quasifields of order 9
M. Hall has proved that there exist up to isomorphism exactly five quasifields of order 9 ([3]). We prove this theorem using a spread set.

Theorem 2. There exist up to isomorphism exactly five quasifields with the following spread sets.

$$
\begin{aligned}
& \Sigma_{1}^{*}=\left\{\left.[a]=\left[\begin{array}{l}
a \\
0
\end{array}\right] \right\rvert\, a \in G F(9)\right\} \\
& \Sigma_{2}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega+1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
\pm \omega \pm 1
\end{array}\right]\right\} \\
& \Sigma_{3}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\pm \omega \pm 1
\end{array}\right]\right\} \\
& \Sigma_{4}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
\pm \omega \pm 1
\end{array}\right]\right\} \\
& \Sigma_{3}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\omega \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm(\omega-1) \\
0
\end{array}\right],\left[\begin{array}{c}
\omega-1 \\
\pm 1
\end{array}\right],\left[\begin{array}{c}
\omega-1 \\
\pm \omega
\end{array}\right]\right\}
\end{aligned}
$$

where $\omega$ is the root of $f(x)=x^{2}+1$ in $G F(9)$.
Proof. $Q\left(1,9, \Sigma^{*}\right)$ is isomorphic to $G F(9)$.
Next we construct $Q\left(2,9, \Sigma^{*}\right)$. Take an irreducible polynomial $f(x)=$ $x^{2}+1$ over $G F(3)$, and let $\omega$ and $-\omega$ be the roots of $f(x)$ in $G F(9)$. Set $N(x)=x^{1+3}=x^{4}$ for $x \in G F(9)$. Then $N( \pm 1)=N( \pm \omega)=1, N( \pm \omega \pm 1)=-1$ and $\operatorname{det}\left[\begin{array}{l}a \\ b\end{array}\right]=N(a)-N(b)$.

Lemma 4.2. $\Sigma^{*}$ has the following properties:

1) Let $\left[\begin{array}{l}a \\ b\end{array}\right] \in \Sigma^{*}, a, b \neq 0$ and $\left[\begin{array}{l}c \\ 0\end{array}\right] \in \Sigma^{*}$. Then $a=c$ or $N(a-c)=N(a)$. If $\left[\begin{array}{l}0 \\ d\end{array}\right] \in \Sigma^{*}$, then $b=d$ or $N(b-d)=N(b)$.
2) If $\left[\begin{array}{l}a \\ b\end{array}\right] \in \Sigma^{*}$ and $a, b \neq 0$, then $a= \pm 1$ or $\pm \omega-1$.
3) If $\left[\begin{array}{l}0 \\ b\end{array}\right] \in \Sigma^{*} \backslash\{0\}$, then $b= \pm \omega \pm 1$.

Proof. 1) Since $\operatorname{det}\left(\left[\begin{array}{l}a \\ b\end{array}\right]-\left[\begin{array}{l}c \\ 0\end{array}\right]\right) \neq 0, N(a-c) \neq N(b)$. Hence $a=c$ or $N(a-c)=N(a) . \quad$ Similarly if $\left[\begin{array}{l}0 \\ d\end{array}\right] \in \Sigma^{*}$, then $b=d$ or $N(b-d)=N(b)$.
2) Since $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in \Sigma^{*}, a=1$ or $N(a-1)=N(a)$ by 1$)$. Hence $a= \pm 1$ or $\pm \omega-1$.
3) Since $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in \Sigma^{*}$ and $\operatorname{det}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]-\left[\begin{array}{l}0 \\ b\end{array}\right]\right) \neq 0, b= \pm \omega \pm 1$.

We use this lemma frequently in the following proofs. By Lemma 4.2, $[-1],[\omega+1]$ and $[\omega]$ have one of the following forms:

$$
\begin{aligned}
& {[-1]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
\omega-1 \\
-\omega
\end{array}\right] \text { or }\left[\begin{array}{c}
-\omega-1 \\
\omega
\end{array}\right],} \\
& {[\omega+1]=\left[\begin{array}{c}
\omega+1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\omega+1
\end{array}\right],\left[\begin{array}{c}
-1 \\
\omega-1
\end{array}\right] \text { or }\left[\begin{array}{c}
\omega-1 \\
-1
\end{array}\right],} \\
& {[\omega]=\left[\begin{array}{c}
\omega \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
\omega-1
\end{array}\right],\left[\begin{array}{c}
-1 \\
\omega+1
\end{array}\right] \text { or }\left[\begin{array}{c}
\omega-1 \\
1
\end{array}\right],}
\end{aligned}
$$

Case 1. $\quad[-1]=\left[\begin{array}{r}-1 \\ 0\end{array}\right]$.
If $\left[\begin{array}{l}a \\ b\end{array}\right] \in \Sigma^{*}$ and $a, b \neq 0$, then $a= \pm 1 \operatorname{since} \operatorname{det}\left(\left[\begin{array}{l}a \\ b\end{array}\right]-\left[\begin{array}{r}-1 \\ 0\end{array}\right]\right) \neq 0$. Thus

$$
\begin{aligned}
& {[\omega+1]=\left[\begin{array}{c}
\omega+1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\omega+1
\end{array}\right] \text { or }\left[\begin{array}{r}
-1 \\
\omega-1
\end{array}\right]} \\
& {[\omega]=\left[\begin{array}{c}
\omega \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
\omega-1
\end{array}\right] \text { or }\left[\begin{array}{c}
-1 \\
\omega+1
\end{array}\right]}
\end{aligned}
$$

(1.1) Suppose $[\omega+1]=\left[\begin{array}{c}\omega+1 \\ 0\end{array}\right]$. Then $\left[\begin{array}{l}0 \\ b\end{array}\right] \notin \Sigma^{*} \backslash\{0\}$. Furthermore if $\left[\begin{array}{l}a \\ b\end{array}\right] \in \Sigma^{*}$ and $a, b \neq 0$, then $a=1$. Thus $\Sigma^{*} \cong\left\{\left[\begin{array}{l}a \\ 0\end{array}\right], \left.\left[\begin{array}{c}1 \\ \pm \omega \pm 1\end{array}\right] \right\rvert\, a \in G F(9)\right\}$.
(1.1.1) Suppose $[\omega]=\left[\begin{array}{l}\omega \\ 0\end{array}\right]$. Then $\left[\begin{array}{c}1 \\ \pm \omega \pm 1\end{array}\right] \notin \Sigma^{*}$. Thus we have the following spread set $\Sigma_{1}^{*}$ :

$$
\Sigma_{1}^{*}=\left\{\left.[a]=\left[\begin{array}{l}
a \\
0
\end{array}\right] \right\rvert\, a \in-G F(9)\right\}
$$

Then $Q\left(2,9, \Sigma_{1}^{*}\right)$ is isomorphic to $G F(9)$.
(1.1.2) Suppose $[\omega]=\left[\begin{array}{c}1 \\ \omega-1\end{array}\right]$. If $\left[\begin{array}{c}a \\ 0\end{array}\right] \in \Sigma^{*} \backslash\{0\}$, then $a= \pm 1$ or $\pm \omega+1$. Hence we have the following spread set $\Sigma_{2}^{*}$.

$$
\Sigma_{2}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega+1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
\pm \omega \pm 1
\end{array}\right]\right\}
$$

Since $\left\{\left[\begin{array}{c} \pm \omega+1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ \pm \omega \pm 1\end{array}\right]\right\}$ is a conjugate class in $G^{*}$, by Theorem A $Q\left(2,9, \Sigma_{2}^{*}\right)$ is not isomorphic to any $Q\left(2,9, \Sigma^{*}\right)$ with $\Sigma^{*} \neq \Sigma_{2}^{*}$.
(1.2) Suppose $[\omega+1]=\left[\begin{array}{c}0 \\ \omega+1\end{array}\right]$. Then $\Sigma^{*} \subseteq\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{c} \pm 1 \\ 0\end{array}\right],\left[\begin{array}{c} \pm \omega \\ 0\end{array}\right]\right.$, $\left.\left[\begin{array}{c}0 \\ \pm \omega \pm 1\end{array}\right],\left[\begin{array}{c} \pm 1 \\ \pm(\omega+1)\end{array}\right]\right\}$.
(1.2.1) Suppose $[\omega]=\left[\begin{array}{l}\omega \\ 0\end{array}\right]$. Then $\left[\begin{array}{c} \pm 1 \\ \pm(\omega+1)\end{array}\right] \notin \Sigma^{*}$. Hence we have the following spread set $\Sigma_{3}^{*}$ :

$$
\Sigma_{3}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\pm \omega \pm 1
\end{array}\right]\right\}
$$

Then $Q\left(2,9, \Sigma_{3}^{*}\right)$ is a Dickson nearfield.
(1.2.2) Suppose $[\omega]=\left[\begin{array}{r}-1 \\ \omega+1\end{array}\right]$. Then

$$
\Sigma^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
\pm(\omega+1)
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
\pm(\omega+1)
\end{array}\right]\right\}
$$

Take $\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right] \in G^{*}$. Then since $\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]^{-1}\left[\begin{array}{c}1 \\ \omega+1\end{array}\right]\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]=\left[\begin{array}{c}\omega+1 \\ 0\end{array}\right]$, $\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]^{-1}\left[\begin{array}{c}0 \\ \omega+1\end{array}\right]\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]=\left[\begin{array}{l}\omega \\ 0\end{array}\right]$ and $((1))\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]=((1))$, the quasifield with this spread set is isomorphic to $G F(9)$ by Theorem A.
(1.3) Suppose $[\omega+1]=\left[\begin{array}{r}-1 \\ \omega-1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{c} \pm 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ \pm \omega \pm 1\end{array}\right]\right.$, $\left.\left[\begin{array}{c}1 \\ \pm(\omega-1)\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ \pm(\omega-1)\end{array}\right]\right\}$.
(1.3.1) Suppose $[\omega]=\left[\begin{array}{c}1 \\ \omega-1\end{array}\right]$. Take $\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right] \in G^{*}$. Then $\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right]^{-1}$ $\left[\begin{array}{c}1 \\ \omega-1\end{array}\right]\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right]=\left[\begin{array}{c}\omega+1 \\ 0\end{array}\right]$ and $((1))\left[\begin{array}{r}\omega+1 \\ -\omega\end{array}\right]=((1))$. Hence this case is included in the case (1.1).
(1.3.2) Suppore $[\omega]=\left[\begin{array}{c}-1 \\ \omega+1\end{array}\right] . \quad$ Then $\left[\begin{array}{c}1 \\ \pm(\omega-1)\end{array}\right]$ and $\left[\begin{array}{c}1 \\ \pm(\omega-1)\end{array}\right] \notin \Sigma^{*}$.

Hence we have the following spread set $\Sigma_{4}^{*}$.

$$
\Sigma_{4}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm 1 \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm \omega-1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
\pm \omega \pm 1
\end{array}\right]\right\}
$$

Similarly to the case (1.1.2), $\left\{\left[\begin{array}{c} \pm \omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ \pm \omega+1\end{array}\right]\right\}$ is a conjugate class in $G^{*}$ and so $Q\left(2,9, \Sigma_{4}^{*}\right)$ is not isomorphic to any $Q\left(2,9, \Sigma^{*}\right)$ with $\Sigma^{*} \neq \Sigma_{4}^{*}$.

Case 2. $[-1]=\left[\begin{array}{l}\omega-1 \\ -\omega\end{array}\right]$.
Then $\Sigma^{*} \subseteq\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-\omega \\ 0\end{array}\right],\left[\begin{array}{c} \pm(\omega-1) \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega \pm 1\end{array}\right],\left[\begin{array}{c}1 \\ -\omega \pm 1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega \pm 1\end{array}\right],\left[\begin{array}{c}\omega-1 \\ \pm 1\end{array}\right]\right.$, $\left.\left[\begin{array}{c}\omega-1 \\ \pm \omega\end{array}\right],\left[\begin{array}{c}-\omega-1 \\ \pm 1\end{array}\right],\left[\begin{array}{c}-\omega-1 \\ -\omega\end{array}\right]\right\}$. Then

$$
\begin{aligned}
& {[\omega+1]=\left[\begin{array}{l}
\omega-1 \\
-1
\end{array}\right] \text { or }\left[\begin{array}{r}
-1 \\
\omega-1
\end{array}\right]} \\
& {[\omega]=\left[\begin{array}{c}
\omega-1 \\
1
\end{array}\right] \text { or }\left[\begin{array}{r}
-1 \\
\omega+1
\end{array}\right]}
\end{aligned}
$$

(2.1) Suppose $[\omega+1]=\left[\begin{array}{r}\omega-1 \\ -1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{r}-\omega \\ 0\end{array}\right]\right.$, $\left.\left[\begin{array}{c} \pm(\omega-1) \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega-1\end{array}\right],\left[\begin{array}{c}1 \\ -\omega-1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega+1\end{array}\right],\left[\begin{array}{c}\omega-1 \\ \pm 1\end{array}\right],\left[\begin{array}{c}\omega-1 \\ \pm \omega\end{array}\right],\left[\begin{array}{c}-\omega-1 \\ -1\end{array}\right],\left[\begin{array}{c}-\omega-1 \\ -\omega\end{array}\right]\right\}$.
(2.1.1) Suppose $[\omega]=\left[\begin{array}{c}\omega-1 \\ 1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-\omega \\ 0\end{array}\right],\left[\begin{array}{c} \pm(\omega-1) \\ 0\end{array}\right]\right.$, $\left.\left[\begin{array}{c}\omega-1 \\ \pm 1\end{array}\right],\left[\begin{array}{c}\omega-1 \\ \pm \omega\end{array}\right],\left[\begin{array}{c}-\omega-1 \\ -\omega\end{array}\right]\right\} . \quad$ Since $\operatorname{det}\left(\left[\begin{array}{c}-\omega-1 \\ -\omega\end{array}\right]-\left[\begin{array}{c}-\omega \\ 0\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{c}-\omega-1 \\ -\omega\end{array}\right]-\right.$ $\left.\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right]\right)=0$, we have the following spread set $\Sigma_{5}^{*}$.

$$
\Sigma_{3}^{*}=\left\{\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\omega \\
0
\end{array}\right],\left[\begin{array}{c} 
\pm(\omega-1) \\
0
\end{array}\right],\left[\begin{array}{c}
\omega-1 \\
\pm 1
\end{array}\right],\left[\begin{array}{c}
\omega-1 \\
\pm \omega
\end{array}\right]\right\}
$$

Since $\left[\begin{array}{r}-1 \\ 0\end{array}\right] \notin \Sigma_{5}^{*}$, the quasifield with $\Sigma_{5}^{*}$ is not isomorphic to any quasifield with $\Sigma_{i}^{*}, i=1,2,3,4$.
(2.1.2) Suppose $[\omega]=\left[\begin{array}{r}-1 \\ \omega+1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega-1\end{array}\right]\right.$, $\left.\left[\begin{array}{c}1 \\ -\omega-1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega+1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\} . \quad$ Since $\operatorname{det}\left(\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right]-\left[\begin{array}{c}0 \\ -\omega-1\end{array}\right]\right)=$ $\operatorname{det}\left(\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ -\omega-1\end{array}\right]\right)=0, \Sigma^{*}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega-1\end{array}\right],\left[\begin{array}{c}1 \\ -\omega-1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega+1\end{array}\right]\right.$, $\left.\left[\begin{array}{c} \pm \omega-1 \\ -1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\}$. Then $\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]^{-1} \Sigma *\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]=\Sigma_{5}^{*}$ and ((1)) $\left[\begin{array}{c}-\omega+1 \\ \omega\end{array}\right]$ $=((1))$. Hence the quasifield with this spread set is isomorphic to the quasifield with $\Sigma_{5}^{*}$ by Theorem A.
(2.2) Suppose $[\omega+1]=\left[\begin{array}{r}-1 \\ \omega-1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega+1\end{array}\right]\right.$,
$\left.\left[\begin{array}{c}1 \\ -\omega+1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega \pm 1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ 1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\}$.
(2.2.1) Suppose $[\omega]=\left[\begin{array}{c}\omega-1 \\ 1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega+1\end{array}\right]\right.$, $\left.\left[\begin{array}{c}1 \\ -\omega+1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega-1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ 1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\} . \quad$ Since $\operatorname{det}\left(\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right]-\left[\begin{array}{c}1 \\ -\omega+1\end{array}\right]\right)=$ $\operatorname{det}\left(\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right]-\left[\begin{array}{c}-\omega-1 \\ 1\end{array}\right]\right)=0, \Sigma^{*}=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -\omega+1\end{array}\right],\left[\begin{array}{c}1 \\ -\omega+1\end{array}\right],\left[\begin{array}{c}-1 \\ \omega-1\end{array}\right]\right.$, $\left.\left[\begin{array}{c} \pm \omega-1 \\ 1\end{array}\right],\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\}$. Then $\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right]^{-1} \Sigma^{*}\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right]=\Sigma_{5}^{*}$ and $((1))\left[\begin{array}{c}\omega+1 \\ -\omega\end{array}\right]=((1))$. Hence the quasifield with this spread set is isomorphic to the quasifield with $\Sigma_{5}^{*}$ by Theorem A.
(2.2.2) Suppose $[\omega]=\left[\begin{array}{c}-1 \\ \omega+1\end{array}\right]$. Then $\Sigma^{*} \cong\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}\omega-1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ \omega \pm 1\end{array}\right]\right.$, $\left.\left[\begin{array}{c} \pm \omega-1 \\ -\omega\end{array}\right]\right\}$, which consists of seven matrices. Hence this case does not occur.

Case 3. $[-1]=\left[\begin{array}{c}-\omega-1 \\ \omega\end{array}\right]$.
Since $\left[\begin{array}{l}0 \\ 1\end{array}\right]^{-1}\left[\begin{array}{c}-\omega-1 \\ \omega\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}\omega-1 \\ -\omega\end{array}\right]$ and $((1))\left[\begin{array}{l}0 \\ 1\end{array}\right]=((1))$, this case is reduced to the case 2.
M. Hall has proved that there exist up to isomorphism exactly two translation planes of order 9 [3].

We prove this theorem using the spread sets $\Sigma_{1}^{*}, i=1,2,3,4,5$. Since $\Sigma_{3}^{*}=\left\{\left.[a]+\left[\begin{array}{r}-1 \\ 0\end{array}\right] \right\rvert\,[a] \in \Sigma_{2}^{*}\right\}=\left\{\left.[a]+\left[\begin{array}{l}1 \\ 0\end{array}\right] \right\rvert\,[a] \in \Sigma_{4}^{*}\right\}=\left\{\left.\left[\begin{array}{l}0 \\ 1\end{array}\right][a]+\left[\begin{array}{c}0 \\ -\omega+1\end{array}\right] \right\rvert\,[a] \in\right.$ $\left.\Sigma_{5}^{*}\right\}$, the translation plane coordinatized by the quasifield with $\sum_{i}^{*}, i=2,4$ or 5 is isomorphic to the translation plane coordinatized by the Dickson nearfield $Q\left(2,9, \Sigma_{3}^{*}\right)$ by Theorem B.
(V) Hall quasifields

Let $Q=Q\left(2, q^{2}, \Sigma^{*}\right)$ be a quasifield. If $Q$ satisfies the following conditions, then $Q$ is called a Hall quasifield [3]:

1) Let $f(x)=x^{2}-r x-s$ be an irreducible polynomial over $G F(q)$. Every element $\xi$ of $Q$ not in $G F(q)$ satisfies the quadratic equation $f(\xi)=0$.
2) Every element of $G F(q)$ commutes with all elements of $Q$.

Now we determine the spread set $\Sigma^{*}$ of a Hall quasifield $Q\left(2, q^{2}, \Sigma^{*}\right)$.
Theorem 3. Let $\omega$ be the element of $G F\left(q^{2}\right)$ such that $f(\omega)=\omega^{2}-r \omega-s=0$.
Case 1. Assume that $q$ is a power of 2. Then $\Sigma^{*}$ consists of the following matrices:

$$
[k]=\left[\begin{array}{l}
k \\
0
\end{array}\right] \quad \text { for } k \in G F(q)
$$

$$
\begin{aligned}
& {[a \omega+b]=\left[\begin{array}{r}
\omega+\tau(a, b) \\
(a+1) \omega+b+\tau(a, b)
\end{array}\right] \quad \text { for } a \neq 0, \text { where }} \\
& \tau(a, b)=r^{-1}\left(a s+b r+a^{-1} f(b)\right) .
\end{aligned}
$$

The multiplication in $Q\left(2, q^{2}, \Sigma^{*}\right)$ is as follows:

$$
(a \omega+b) \circ(c \omega+d)=\left\{\begin{array}{l}
a d \omega+b d \quad \text { if } c=0 \\
(b c-a d+a r) \omega+b d-a c^{-1} f(d) \quad \text { if } c \neq 0 .
\end{array}\right.
$$

Case 2. Assume that $q$ is a power of an odd prime. Set $\lambda=\omega-\bar{\omega}$. Then $\Sigma^{*}$ consists of the following matrices:

$$
\begin{aligned}
& {[k]=\left[\begin{array}{c}
k \\
0
\end{array}\right] \quad \text { for } k \in G(q),} \\
& {[a \lambda+b]=\left[\begin{array}{l}
\left(\frac{1}{2} a-\tau(a, b)\right) \lambda+\frac{1}{2} r \\
\left(\frac{1}{2} a+\tau(a, b)\right) \lambda-\frac{1}{2} r+b
\end{array}\right] \quad \text { for } a \neq 0, \text { where }} \\
& \tau(a, b)=\left(2 a\left(r^{2}+4 s\right)\right)^{-1} f(b)
\end{aligned}
$$

The multiplication in $Q\left(2, q^{2}, \Sigma^{*}\right)$ is as follows:

$$
(a \lambda+b) \circ(c \lambda+d)=\left\{\begin{array}{l}
a d \lambda+b d \quad \text { if } c=0 \\
(b c-a d+a r) \lambda+b d-a c^{-1} f(d) \quad \text { if } c \neq 0
\end{array}\right.
$$

Proof. Case 1. $q$ is a power of 2 .
Since $f(\omega)=\omega^{2}+r \omega+s=0, \omega^{2}=r \omega+s, \omega+\bar{\omega}=r$ and $\omega \bar{\omega}=s$. Set $G F\left(q^{2}\right)=$ $\{a \omega+b \mid a, b \in G F(q)\}$. Let $[k]=\left[\begin{array}{l}a \omega+k^{\prime} \\ a \omega+k^{\prime}+k\end{array}\right]$ for $k \in G F(q)$. Since $k \circ \omega=\omega \circ k$ by the assumption 2), we have

$$
\begin{aligned}
k \circ \omega & =k \omega, \\
\omega \circ k & =(\omega, \bar{\omega})\left[\begin{array}{l}
a \omega+k^{\prime} \\
a \omega+k^{\prime}+k
\end{array}\right]=a \omega^{2}+k^{\prime} \omega+a \omega \bar{\omega}+\left(k+k^{\prime}\right) \bar{\omega} \\
& =a(r \omega+s)+k^{\prime} \omega+a s+\left(k+k^{\prime}\right)(r+\omega) \\
& =\left(a r+k^{\prime}+k+k^{\prime}\right) \omega+a s+a s+\left(k+k^{\prime}\right) r=(a r+k) \omega+\left(k+k^{\prime}\right) r .
\end{aligned}
$$

Hence $a=0$ and $k=k^{\prime}$. Thus $[k]=\left[\begin{array}{l}k \\ 0\end{array}\right]$.
Let $[a \omega+b]=\left[\begin{array}{c}a^{\prime} \omega+b^{\prime} \\ \left(a+a^{\prime}\right) \omega+b^{\prime}+b\end{array}\right], a \neq 0$. Then

$$
\begin{aligned}
& (a \omega+b) \circ(a \omega+b)=(a \omega+b, a \bar{\omega}+b)\left[\begin{array}{c}
a^{\prime} \omega+b^{\prime} \\
\left(a+a^{\prime}\right) \omega+b+b^{\prime}
\end{array}\right] \\
& \quad=a a^{\prime} \omega^{2}+a b^{\prime} \omega+a^{\prime} b \omega+b b^{\prime}+a\left(a+a^{\prime}\right) \omega \bar{\omega}+a\left(b+b^{\prime}\right) \bar{\omega}+b\left(a+a^{\prime}\right) \omega+b\left(b+b^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & a a^{\prime}(r \omega+s)+a b^{\prime} \omega+a^{\prime} b \omega+b b^{\prime}+a\left(a+a^{\prime}\right) s+a\left(b+b^{\prime}\right)(\omega+r)+b\left(a+a^{\prime}\right) \omega \\
& +b\left(b+b^{\prime}\right) \\
= & a a^{\prime} r \omega+a^{2} s+a\left(b+b^{\prime}\right) r+b^{2} .
\end{aligned}
$$

Then since $f(a \omega+b)=0$ in $Q$,

$$
\begin{aligned}
& a a^{\prime} r \omega+a^{2} s+a\left(b+b^{\prime}\right) r+b^{2}+a r \omega+b r+s \\
& \quad=\left(a a^{\prime} r+a r\right) \omega+a^{2} s+a\left(b+b^{\prime}\right) r+f(b)=0 .
\end{aligned}
$$

Hence $a^{\prime}+1=0$ and so $a^{\prime}=1$. Furthermore $b^{\prime}=r^{-1}\left(a s+b r+a^{-1} f(b)\right)$. Thus

$$
[a \omega+b]=\left[\begin{array}{c}
\omega+r^{-1}\left(a s+b r+a^{-1} f(b)\right) \\
(a+1) \omega+b+r^{-1}\left(a s+b r+a^{-1} f(b)\right)
\end{array}\right]
$$

By computation, $\operatorname{det}[a \omega+b]=s \neq 0, \operatorname{det}([a \omega+b]-[k])=f(k) \neq 0$ and $\operatorname{det}([a \omega+b]$ $\left.-\left[a^{\prime} \omega+b^{\prime}\right]\right)=\left(a a^{\prime}\right)^{-1}\left(\left(a b^{\prime}+a^{\prime} b\right)+\left(a+a^{\prime}\right) \omega\right)\left(\left(a b^{\prime}+a^{\prime} b\right)+\left(a+a^{\prime}\right) \bar{\omega}\right) \neq 0$, where $a$, $a^{\prime} \neq 0$. Thus we have a spread set.

Furthermore we have

$$
\begin{aligned}
(a \omega+b) \circ(c \omega+d) & =((a \omega+b))\left[\begin{array}{c}
\omega+\tau(c, d) \\
(c+1) \omega+\tau(c, d)+d
\end{array}\right] \\
& =(b c+a d+a r) \omega+b d+a c^{-1} f(d), \quad \text { for } c \neq 0 .
\end{aligned}
$$

Case 2. $q$ is a power of an odd prime.
Let $\lambda=\omega-\bar{\omega}$. Then $\bar{\lambda}=-\lambda$ and $\lambda^{2}=r^{2}+4 s$. Set $G F\left(q^{2}\right)=\{a \lambda+b \mid a, b \in$ $G F(q)\}$. Similarly to the case $1,[k]=\left[\begin{array}{l}k \\ 0\end{array}\right]$ for $k \in G F(q)$.

Let $[a \lambda+b]=\left[\begin{array}{c}a^{\prime} \lambda+b^{\prime} \\ \left(a-a^{\prime}\right) \lambda+b-b^{\prime}\end{array}\right], a \neq 0$. Then

$$
\begin{aligned}
& (a \lambda+b) \circ(a \lambda+b)=\left((a \lambda+b) \widehat{[ } \begin{array}{c}
a^{\prime} \lambda+b^{\prime} \\
\left(a-a^{\prime}\right) \lambda+b-b^{\prime}
\end{array}\right] \\
& \quad=a a^{\prime} \lambda^{2}+a b^{\prime} \lambda+a^{\prime} b \lambda+b b^{\prime}-a\left(a-a^{\prime}\right) \lambda^{2}-a\left(b-b^{\prime}\right) \lambda+b\left(a-a^{\prime}\right) \lambda+b\left(b-b^{\prime}\right) \\
& \quad=2 a b^{\prime} \lambda+\left(2 a a^{\prime}-a^{2}\right)\left(r^{2}+4 s\right)+b^{2}
\end{aligned}
$$

Then since $f(a \lambda+b)=0$ in $Q$,

$$
2 a b^{\prime} \lambda+a\left(2 a^{\prime}-a\right)\left(r^{2}+4 s\right)+b^{2}-r(a \lambda+b)-s=0
$$

Hence $2 a b^{\prime}-a r=0$ so $b^{\prime}=\frac{1}{2} r$. Furthermore $a\left(2 a^{\prime}-a\right)\left(r^{2}+4 s\right)+f(b)=0$ so $a^{\prime}=-\left(2 a\left(r^{2}+4 s\right)\right)^{-1} f(b)+\frac{1}{2} a$. Set $\tau(a, b)=\left(2 a\left(r^{2}+4 s\right)\right)^{-1} f(b)$. Then we have

$$
[a \lambda+b]=\left[\begin{array}{l}
\left(\frac{1}{2} a-\tau(a, b)\right) \lambda+\frac{1}{2} r \\
\left(\frac{1}{2} a+\tau(a, b)\right) \lambda+b-\frac{1}{2} r
\end{array}\right]
$$

By computation, $\operatorname{det}[a \lambda+b]=-s \neq 0, \operatorname{det}([a \lambda+b]-[k])=f(k) \neq 0$ and $\operatorname{det}([a \lambda+b]$ $\left.-\left[a^{\prime} \lambda+b^{\prime}\right]\right)=\left(2^{-1}\left(a-a^{\prime}\right) \lambda+a b^{\prime}-a^{\prime} b-2^{-1} r\left(a-a^{\prime}\right)\right)\left(-2^{-1}\left(a-a^{\prime}\right) \lambda+a b^{\prime}-a^{\prime} b-\right.$ $\left.2^{-1} r\left(a-a^{\prime}\right)\right) \neq 0$, where $a, a^{\prime} \neq 0$.

Furthermore we have

$$
(a \lambda+b) \circ(c \lambda+d)=(b c-a d+r a) \lambda+b d-a c^{-1} f(d) \quad \text { for } c \neq 0 .
$$

Moreover since $\lambda=2 \omega-r$, we have also

$$
(a \omega+b) \circ(c \omega+d)=(b c-a d+r a) \omega+b d-a c^{-1} f(d) \quad \text { for } c \neq 0 .
$$

(VI) Walker quasifields

A quasifield $Q=Q\left(2, q^{2}, \Sigma^{*}\right)$ with $q \equiv-1(\bmod 6)$ is called a Walker quasifield, if $Q$ has the following multiplication:

$$
(a \omega+b) \circ(c \omega+d)=\left(a\left(d-c^{2}\right)+b c\right) \omega-\frac{1}{3} a c^{3}+b o
$$

where $G F\left(q^{2}\right)=\{a \omega+b \mid a, b \in G F(q)\}$ (see [4], p. 72).
Now we determine the spread set $\Sigma^{*}$ of a Walker quasifield. Since $q \equiv-1(\bmod 6), f(x)=x^{2}+3$ is an irreducible polynomial over $G F(q)$. Hence let $\omega$ and $-\omega$ be elements of $G F\left(q^{2}\right)$ such that $f(\omega)=f(-\omega)=\omega^{2}+3=0$.

Set $[a \omega+b]=\left[\begin{array}{c}a^{\prime} \omega+b^{\prime} \\ \left(a-a^{\prime}\right) \omega+b-b^{\prime}\end{array}\right]$. Then

$$
\begin{aligned}
\omega \circ(a \omega+b) & =(\omega,-\omega)\left[\begin{array}{c}
a^{\prime} \omega+b^{\prime} \\
\left(a-a^{\prime}\right) \omega+b-b^{\prime}
\end{array}\right] \\
& =a^{\prime} \omega^{2}+b^{\prime} \omega-\left(a-a^{\prime}\right) \omega^{2}-\left(b-b^{\prime}\right) \omega \\
& =\left(2 b^{\prime}-b\right) \omega+3\left(a-2 a^{\prime}\right) .
\end{aligned}
$$

On the other hand by the definition of the multiplication,

$$
\omega \circ(a \omega+b)=\left(b-a^{2}\right) \omega-\frac{1}{3} a^{3} .
$$

Hence $2 b^{\prime}-b=b-a^{2}$ so $b^{\prime}=b-\frac{1}{2} a^{2}$, and $3\left(a-2 a^{\prime}\right)=-\frac{1}{3} a^{3}$ so $a^{\prime}=\frac{1}{2} a+\frac{1}{18} a^{3}$. Then we have

$$
[a \omega+b]=\left[\begin{array}{l}
\left(\frac{1}{2} a+\frac{1}{18} a^{3}\right) \omega+b-\frac{1}{2} a^{2} \\
\left(\frac{1}{2} a-\frac{1}{18} a^{3}\right) \omega+\frac{1}{2} a^{2}
\end{array}\right]
$$

Furthermore by computation, we can show that $\{[a \omega+b] \mid a, b \in G F(q)\}$ satisfies the condition of a spread set.
(VII) Laneburg quasifields

A quasifield $Q=Q\left(2,\left(2^{2 s+1}\right)^{2}, \Sigma^{* *}\right)$ with $2 s+1>1$ is called a Luneburg quasifield, if $Q$ has the following multiplication:

$$
(a \omega+b) \circ(c \omega+d)=\left(a\left(c^{\sigma}+d d^{\sigma}\right)+b o\right) \omega+a c+b d
$$

where $\sigma$ is the automorphism of $G F\left(2^{2 s+1}\right)$ such that $x^{\sigma}=x^{2 s+1}$ for all $x \in G F\left(2^{2 s+1}\right)$ and $G F\left(\left(2^{2 s+1}\right)^{2}\right)=\left\{a \omega+b \mid a, b \in G F\left(2^{2 s+1}\right)\right\}$.

Now we determine the spread set $\Sigma^{*}$ of a Lüenburg quasifield. Since $G F\left(2^{2 s+1}\right)$ is a field extension of odd dimension of $G F(2), f(x)=x^{2}+x+1$ is an irreducible polynomial over $G F\left(2^{2 s+1}\right)$. Hence let $\omega$ and $\bar{\omega}$ be elements of $G F\left(\left(2^{2 s+1}\right)^{2}\right)$ such that $f(\omega)=f(\bar{\omega})=0$. Then $\omega+\bar{\omega}=1, \omega \bar{\omega}=1$ and $\omega^{2}=\omega+1$.

Set $[a \omega+b]=\left[\begin{array}{c}a^{\prime} \omega+b^{\prime} \\ \left(a+a^{\prime}\right) \omega+b+b^{\prime}\end{array}\right]$. Then

$$
\begin{aligned}
\omega \circ(a \omega+b) & =(\omega, \widehat{\omega}) \widehat{\left[\begin{array}{c}
a^{\prime} \omega+b \\
\left(a+a^{\prime}\right) \omega+b+b^{\prime}
\end{array}\right]} \\
& =a^{\prime} \omega^{2}+b^{\prime} \omega+\left(a+a^{\prime}\right) \omega \bar{\omega}+\left(b+b^{\prime}\right) \bar{\omega} \\
& =\left(a^{\prime}+b\right) \omega+a+b+b^{\prime}
\end{aligned}
$$

On the other hand by the definition of the multiplication,

$$
\omega^{\circ}(a \omega+b)=\left(a^{\sigma}+b b^{\sigma}\right) \omega+a .
$$

Hence $a^{\prime}=a^{\sigma}+b+b b^{\sigma}$ and $b^{\prime}=b$. Thus we have

$$
[a \omega+b]=\left|\begin{array}{l}
\left(a^{\sigma}+b+b b^{\sigma}\right) \omega+b \\
\left(a+a^{\sigma}+b+b b^{\sigma}\right) \omega
\end{array}\right| .
$$

Furthermore by computation, we can show that $\left\{[a \omega+b] \mid a, b \in G F\left(2^{2 s+}\right)\right\}$ satisfies the condition of a spread set.

Appendix. M. Matsumoto has showed the following:
A quasifield $Q=Q\left(2, q^{2}, \Sigma^{*}\right)$ is a Hall quasifield if and only if $\Sigma^{*}$ consists of $\left\{\left.\left[\begin{array}{ll}k & 0\end{array}\right] \right\rvert\, k \in G F(q)\right\}$ and a conjugate class of $G^{*}$ containing $\left[\begin{array}{c}\omega \\ 0\end{array}\right]$, where $\omega$ is a element of $G F\left(q^{2}\right) \backslash G F(q)$.

## References

[1] J. André: Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe, Math. Z. 60 (1954), 156-186.
[2] E. Ellers and H. Karzel: Endliche Inzidenzgruppen, Abh. Math. Sem. Hamburg 27 (1964), 250-264.
[3] M. Hall: Projective palnes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
[4] M. Kallaher: Affine planes with transitive collineation groups, North-Holland, 1982.
[5] H. Lüneburg: Die Suzukigruppen und ihre Geometrien, Lecture Notes in Math. 10, Springer, 1965.
[6] H. Lüneburg: Translation planes, Springer, 1980.
[7] D.M. Maduram: Matrix representation of translation planes, Geom. Dedicata 4 (1975), 485-497.
[8] F. Sherk: Indicator sets in an affine space of any dimension, Canad. J. Math. 31 (1979), 211-224.

Department of Mathematics Osaka Kyoiku University Tennoji, Osaka 543 Japan

