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Introduction. In the classical potential theory, O. Frostman [2] in-
vestigated the boundary behavior of the Dirichlet solution Hf for continuous
boundary data f at an irregular boundary point x of a bounded domain U of R".
And it was revealed that the cluster set of Hf at x is a segment with a possible
exception. In other words, the cluster set of harmonic measures at x has two
extreme points —the Dirac measure &, and the balayaged measure €CU. A
generalization of this result was given by Constantinescu-Cornea [1] in an
axiomatic setting in a more comprehensive context. Recently, J. Lukes-J.
Maly [6] considered this problem in a relatively compact open subset of a har-
monic space. The present paper is a contribution to this problem under a
resolutive compactification.

Let X be a P-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification. Let U be
an open set of X. The closure U of U in X* is a resolutive compactification
of U. Suppose that 8U=(U\U)NX=+@. For a sequence {b} converging
to x€8U and satisfying fU—~¢€CU, the harmonic measure of U at b, converges
to a measure \,. If x is irergular for U, A, enjoyes remarkable properties stated
in Theorem 7, which has a counterpart with the results of Lukes-Maly [6]
and Hyvonen [3], and is connected with a version of maximal sequences con-
sidered by Smyrnélis [7]. In view of the work of Lukes-Maly, we can decide
the structure of the cluster set J1¢ of harmonic measures and reveal that the
type of J1¥ is a local property. We can also conclude the same result for the
cluster set of the normalized Dirichlet solutions.

1. Preliminaries

Let X be a %P-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification of X. We
assume that there exists a function s, which is bounded superharmonic on X
and inf s.>0. We write A=X*\X,
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For an open subset U of X, we set AU=8U U (AN T), where a3U=(U\U)
N X and U is the closure of U in X*.
For a numerical function f on U (resp. AU, resp. A) we define
hyperharmonic on U, lower bounded,
HY* (@) = inf { v (a) ; v > 0 outside a compact subset of X, }
lim v > fon dU
(resp.
. hyperharmonic on U, lower bounded,
H},(a)sz{v(a);l_igvzfonAU },

resp.
. r
Hf (a) = inf { v(a); ﬁ—g); garfn;cl)lnzz on X, lower bounded, }) ,
and H}*=—H{J (resp. Hf =—H{,, resp. H;=—H(_p).
When AY*=HY-* and harmonic we write it H7'*. Similarly we define HY
and H .
In the following, we denote by - | 4, the restriction on A.

Proposition 1. The closure U of U in X* is a resolutive compactification.
For feC(AU), let f* be a finite continuous extension of f onto X* and let u=
Hx\s. Then we have

(1.1)  HY=HY%%+u.

The proposition is proved quite in the same way as in [5], Prop. 1.

In the sequel, we denote by A, the harmonic measure of U at a, i.e., A,(f)
=HY (a) for every feC(AU), and stands & for the balayaged measure of
the Dirac measure &, on 4 [1].

Corollary 2. x€3U is regular for U if and only if ECU=¢,.

Proof. If g is continuous on dU and has a compact support, then g can
be extended continuously to be 0 on A, thus Hf=H.*. 'This proves that
if x is regular for U then we have &(U(g)=g(x) for all continuous functions
g on U with compact support, since E£U(g)=lim, €§U(g)=lim, H{*(b,)=lim,
HY(b,)=g(x) for some {b,} converging to x, i.e., E£U=¢,. The converse is
also true, since £¢U=¢, means that {§U} converges to &, for every {4} tending
to x and the following Corollary 3 deduces the result.

Corollary 3. Let x €0U and {a,} be a sequence of points of U tending to
x. 1If {eﬁU} converges for p, then {\,} converges vaguely.

Proof. Using the same notation as in Proposition 1,

HY=HY:Xtu
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and lim, ,,(f)=limHY(a,)=lim, HYX(a)+u(x). By [1] Cor. 7.2.6, lim,
H7:Y(ay)=lim, €CU(f—u)=p(f—u), since | f*—u| <p for a potential p on X.

Corollary 4. The regularity of x€9U is a local property, that is, x is regu-
lar for U if and only if it is regular for UV for every neighborhood V of x.

Proof. The regularity of x for U is equivalent to E£U=¢, and the latter
is equivalent to the fact that X\U is not thin at x. This is also equivalent
to the fact that X\(U N V) is not thin at x since X\V is thin at x.

2. The definition of A,

Lemma 5. Let x€9U, feC (AU), f* be a continuous extension of f on
X* and let u=H . Then u(x)—ESU(u) depends only on f.

Proof. Consider the sequence {} such that ,—>x and &£U—>€&CU. By
Corollary 3, the sequence {A;} of harmonic measures with respect to U con-
verges and lim, A, (f)=lim, H7(b,)=lim, H75(b,)+u(x)=8CU (f—u)-+u(x).
If we denote this limit by A, then &, (#)—&CU(u)=n(f)—&CU(f), and the last
expression shows that &,(#)—&CU(x) depends only on f and independent of f*.

We can see also that if Ef; U—¢, then A,,—&,.

We shall denote by A, the vague limit of {A,} corresponding to the se-
quence {b;} satisfying E,U—€CU, and call {5} to be maximal at x in U. Thus
using the above notation we have

(21) N(f)=ECU (f)+,u)—ECU (u) for every f EC(AD).
If U is a relatively compact open set of X, then A, is just E&£U. We can
see A, +ECU in general. In fact, we have

Proposition 6. If X\U is compact, then \,|0U=ECU.
Proof. For feC(AU) with f=00on UNA
A(f)=lim, N, (f)=lim, H7(b,)=lim, HF*(b)=lim, ELU(f)=€LU(f).

3. The properties of A,

We denote by I'(U) the harmonic boundary of U, i.e.,
T(U)=USupp - A,

We define, for x€dU

J7={; 3 {a} < U, a4—>x, A, —>rvaguely}.

Theorem 7. Let xdU be irregular for U. Then we have:
1) A%, and TN {t &,+(1—t)\,; 0<2<L1},
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(2) A (s)=lim, HY for every s continuous on U and superharmonic on U,

(3) if x €T(U) then T1Z= {\,}, thus for every f € C(AU) HY is extendable
continuously at x to the value £, (f).

(4) for f €C(AU), non-negative and f=0 in a neighborhood of x we have
7\'.t(f )=l—n—n, H }] 4

(5) &, if and only if xT(U),

(6) let x&T(U) and f €C(AU) such that f(x)=N,(f), then only one of the
following cases occurs:

() lim, Hf=f(x)<M\(f)=Ilm, HY,

(i) lim, Hf =)(f)<f(x)=Iim, H}.

Proof. To prove (1), we note that the convergence of {,} is equivalent
to the convergence of {89; U}. Suppose that there exists {a;} auch thst a,—x
and A,,—), then we may find t€[0, 1] so that E£U—z6,+(1—2)&CU.  For
feC(AU) we have M(f)=lim, A, (f)=lim, H}(a;)=Ilim, H?%(a,)+u(x)=lim,
SCU(f—)+u(x) =t &,(f—1)+(1—1) ECUF—u)+u(x)=t E,(F)+H(1—1) [6,(w)—
£CUu)+6CU =) +1—O0u(F).

(2): let {b;} be maximal at x in U and fix a function s.

lim, HY < lim, HY (b)) = X, (s) < s ().

Then there exists A& J17 so that A\(s)=lim, HY, for there is a sequence {a,}
satisfying @,—x and limy\,,(s)=Ilim, HY, and therefore there is a subsequence
of {A,} converging to A vaguely. We can not conclude A,(s)>lim, HY since,
by (1), A=t &,4(1—1t), for some € [0, 1].

(3): suppose that there is a function f&C(AU) such that lim, HY<Iim,
HY. Then as in the proof (2) there exist A, A’ €J1Y satisfying

2.2) lim, H7=\'(f), M=t' &,+(1—-t')n, 0<t'<1
7 Iimy, HY=\"(f), M'=t"e,+(1—t") 1, 0<#’<1.

Hence, (#”—t") [f(x)—X(f)]>0. This is impossible, since the support
of A, is contained in T'(U) and x&T'(U).

4): let feC(AU), f>0, f=0 on a neighborhood of x and let {6,} be max-
imal at x in U. As above, we have A € J17 such that \(f)=Iim, HY and a=1¢,
+(1—£), for [0, 1]. We claim that t=0; in fact, im, Hf=x\(f)=2f(x)
A=) =(1—1) N(f)=(1—2) lim, HY(b,)<lim, HY(b,) <fim, HY, which
implies that ¢=0.

(5), (6): if x&T(U) then by (2), NY={\,} and A,=*E, thus &,&TN7,
ie., §&J17 implies that xT'(U). To prove the converse suppose that x
€T(U). Then, by (1), we have A, €Jl] A, =*&,. Letting f&C (AU) with
f(%)==r.(f), by virtue of the definition of the harmonic boundary T(U) and
the fact that for a continuous extension f* of f on U there is a potential ¢ on U
such that |H7 —f*| <gq, we obtain
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lim, HY < f(x) < Tim, HY.

===z

However, the only possible cases are (i) lim, HY=f(x) or (ii) im, HY=f(x);
for if lim, HY < f(x)<<lim, HY then as in the proof of (3), there are ¢/, ¢’ [0, 1]
so that

@) +(1—2) M) <f@)<t"f(£)+H(1—) A1),
ie., (1—t") [f(x)—n(f)]>0 and (1—2#”) [f(x)—N.(f)]<O, which is absurd. We
shall consider the case (i). We may find also A’, A’ € J1Y such that

A (f) =lm, Hf, M =t" &+ (1-t)r, 0< ' < ],
N (f) = lim, HY, N'=t" &, + (1—t")r,, 0 < " < 1.

The equality ¢'f(x)+(1—2') A,(f)=f(») means that #'=1 and &,=A'&J17.
On the other hand, the inequality f(x)<<z"f(x)+4(1—¢")A,(f) means that #’<1
and A,(f)>f(x). This implies #/=0, since if #/>0 then we are led to the
contradiction that \”(f)=Iim, HY = #f(x)+ (1 — ")\ (f)<\,(f) < [im, HY.
Similarly in the case (ii), we have §,€J1Y and A, (f)=lim, HY.

ReMARks. In the Theorem 7, (1) was proved by O. Frostman [2] in the
classical potential theory. The fundamental contribution to the behavior of
normalized solution H?'* in the axiomatic potential theory is due to Constanti-
nescu—Cornea [1], and when U is relatively compact open set the precise investi-
gation was given by Lukes—Maly [6].

(3) has a counterpart in a result of J. Hyvonen [3] (Cor. 1.6).

(4) is considered to be a refined variant of a theorem of Smyrnélis [7] (Cor.
2) and the maximal sequence {b,} corresponds to ‘‘une suite maximal”.

It is plausible that A, is the vague limit of {€CUa}, where U,=UN X, with
a compact exhaustion {X,} of X.

4. The structure of JI¥

In [6] Luke$-Maly proved that in the case where U is a relatively com-
pact open set JIJ has only four types: (1) J¥V={e}, (2) T¥={eCl},
3) TNi={e, &V}, 4 T!={te,+(1—1)&CU; 0<t<1}. The situation is
quite the same in our consideration. That is, in the same argument as in [6],
we can prove

Theorem 8. Let x0U. Ji7 has the following four types:
(1) J¥={e}, ie., x is regular for U,
(2) TNV={r,}, i.e., x is semi-regular for U,
(3) TV={e,, £}, i.e., x is weak-irregular,
4 T={e, (11—, 0<e<1}.
The type of J17 is a local property, i.e., the above types are unaltered if we con-
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sider UNV in stead of U, where V is a neighborhood of x. Therefore when X
is elliptic no boundary point x=9U is weak-irregular.

To prove the theorem we need some lemmas.

Lemma 9. In a resolutive compactification, let x be a point of the harmonic
boundary T'. If f is bounded, resolutive and conmtinuous in a meighborhood of x,
then we have

lim, H, < f(x) < Iim, H,.

Proof. Suppose that |f| <M. Let V,, V, be neighborhoods of x such
that V,CV,, and f is continuous on ¥,NA. And let @,, @, be continuous on
A such that

. { fon P, fon P,
P = M on A\V, —M on A\V,.

And finally let f=max(f, ¢,) and f,=min(f, ;). Then

li_ﬂ_l, Hf < mz Hfl Sfl("‘:) =f(x) =f2(x) < thx Hfz < ITII—I‘ Hf’

and @,= {

Lemma 10. x&T (U) if and only if x&T (UNV) for every neighborhood
V of x.

Proof. Suppose that x&T" (UNV) for some V. Then by [6] Cor. 19,
there is a sequence {a,} tending to x and lim, H{ ""(a,)=e(x) for every resolu-
tive and bounded function @ which is continuous at x. Since HY=HJ"" for
every f€C (AU), where o=f on dUNV and p=HY? on 3V N U, we conclude
that A,,—¢&, and x€T(U).

Next, suppose that x¢cT/(UN V) then x is irregular for UNV, and, by

Corollary 4, x is irregular for U. On the other hand, every bounded harmonic
function on UNV is extended continuously at », [3]. Cor. 1.6. Therefore
every bounded harmonic function on U, in particular HY, is extended con-
tinuously at x, which implies that xe: T (U).

Proof of Theorem 8. Suppose that xT'(U) and x is irregular, then
£ EE, and {6, N\, } C©TIY. If the case (4) does not occur, then, in view of Theo-
rem 7 (1), there exist (0, 1) and f&C (AU) such that &, +(1—#)A, & T
and f(x)#=x1,(f). We may assume that f(x)>x,(f). Then there is a neighbor-
hood ¥V of x such that u=H7 +a on UNV, where a=tf(x)+(1—2)A,(f). De-
noting by

Vi={a€UNV;u(a) >a},
V,= {acUNV; u(a) <a},
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we have V%0 ((=1, 2) and V,UV,=UNV.
Let

o, — {f ondUNV; (=12

u ondV,NU.

The functions @, are bounded, resolutive and u=H}; on V,.
Since

fim, HY; = I HY (a) < o < f (%) = 2 (%)
ayx

sev,

we have x¢T'(V,) by Lemma 9. Then there exists lim Hgz(a) ([3], Cor.
wer,
1.6), which means that lim A,=2,.
ecv,

The fact that x€8V, N0V, and x is irregular for V, implies that X\V,
is thin at x and V, is not thin at x; Further X\V, is not thin at x, for V,CcX
\V}, which means that x is regular for V,. Thus there exists lim HjXa)

ays
"EV’l
([6], Cor. 19) and we can conclude that lim A,=E¢,.
ayx
“EVI

The remaining part of the theorem is proved by the above consideration
and Lemma 10, since regularity is a local property.

Finally, we shall remark on the cluster set M7 of balayaged measures
ECU at x.

If f is continuous on 9U and has a compact carrier then f is extended con-
tinuously on AU to be 0 on AN U, then we have

HY = H}*
and this shows

Theorem 11. Let x €0U. We have

(1) MY={&,} if x is regular for U,

(2) MU= {cCU} if x is semi-regular,

(3) Mi={e,, ECU} if x is weak-irregular,

(4) otherwise, MY = {t&,+(1—2)eCU; 0<t<1}.
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