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Introduction. In the classical potential theory, O. Frostman [2] in-
vestigated the boundary behavior of the Dirichlet solution Hf for continuous
boundary data/ at an irregular boundary point x of a bounded domain U of R".
And it was revealed that the cluster set of Hf at x is a segment with a possible
exception. In other words, the cluster set of harmonic measures at x has two
extreme points —the Dirac measure Sx and the balayaged measure βζu. A
generalization of this result was given by Constantinescu-Cornea [1] in an
axiomatic setting in a more comprehensive context. Recently, J. Lukes-J.
Maly [6] considered this problem in a relatively compact open subset of a har-
monic space. The present paper is a contribution to this problem under a
resolutive compactification.

Let X be a ^-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification. Let U be
an open set of X. The closure U of U in X* is a resolutive compactification
of £7. Suppose that QU=(0\U) Π^X"Φ0. For a sequence \bk} converging
to x^QU and satisfying 8ξu->εξu, the harmonic measure of U at bk converges
to a measure λ*. If x is irergular for C7, \x enjoyes remarkable properties stated
in Theorem 7, which has a counterpart with the results of Lukes-Mary [6]
and Hyvϋnen [3], and is connected with a version of maximal sequences con-
sidered by Smyrnόlis [7]. In view of the work of Lukes-Maly, we can decide
the structure of the cluster set 37^ of harmonic measures and reveal that the
type of 3Zf is a local property. We can also conclude the same result for the
cluster set of the normalized Dirichlet solutions.

1. Preliminaries

Let X be a ίP-harmonic space with countable base in the sense of Con-
stantinescu-Cornea [1] and X* be a resolutive compactification of X. We
assume that there exists a function SQ which is bounded superharmonic on X
and inf *0>0. We write Δ=X*\X.
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For an open subset U of X, we set ΔC7=3C7U (Δ Π U), where QU=(0\U)
Γ\X and U is the closure of U in X*.

For a numerical function/on 9C7 (resp. ΔE7, resp. Δ) we define

I hyperharmonic on U, lower bounded,
v (a) z; > 0 outside a compact subset of -XT,

limg; >/on9C7
(resp.

£*„, v . Γ ί , λ hyperharmonic on C7, lower bounded, }
H?(a) = inf\ v(ά)\ ^ *ττ/ v / I hm z> >/on ΔC7 J ,

resp.
o / \ . Γ ί / x hyperharmonic on Jί, lower bounded, 1
Rf(ά)= mf v(a) JF ' k7 I lim^ > /on Δ J ) ,

and H? x= -ff ££ (resp. H?=-HfLf)y resp. #,= -#<_,)).
When Ru

f-
x=H*}'x and harmonic we write it ̂ '̂  Similarly we define

and ίί̂ .
In the following, we denote by | A, the restriction on A.

Proposition 1. The closure 0 of U in X* is a resolutive compactification.

Forf^C(AU), let/* be a finite continuous extension of f onto X* and let u=
Hf*\±. Then we have

(1.1) Hu

f = Hu

fL
x

u+u .

The proposition is proved quite in the same way as in [5], Prop. 1.
In the sequel, we denote by λβ the harmonic measure of 0 at #, i.e., λβ(/)

=Hf (a) for every/eC(Δt/), and stands 6? for the balayaged measure of
the Dirac measure 6X on A [1].

Corollary 2. x e 3 U is regular for U if and only if £ζu= 8X.

Proof. If g is continuous on 3 U and has a compact support, then g can
be extended continuously to be 0 on Δ, thus H%—H% X. This proves that
if x is regular for U then we have £ζu(g)=g(x) f°r all continuous functions
g on ΘU with compact support, since εζu(g)=limk 8^(g)=limk H¥'x(bk)=limk

Hg(bk)=g(x) for some {bk} converging to x, i.e., β£u=εx. The converse is
also true, since £ζU—ζχ means that {£ζU} converges to Gx for every {ak} tending
to x and the following Corollary 3 deduces the result.

Corollary 3. Let x e3ί7 and {ak} be a sequence of points of U tending to
x. If \βζϋ} converges for μ, then {\ak} converges vaguely.

Proof. Using the same notation as in Proposition 1,
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and lim, \ak(f)=limkH£(ak)=limk Hu

fL
x

u(ak)+u(x). By [1] Cor. 7.2.6, lim,
HUf^u(ak)=V\mk εζk

u(f—u)=μ(f—u)y since |/*— u\ <p for a potential^) on X.

Corollary 4. The regularity of x^dU is a local property, that is, x is regu-
lar for U if and only if it is regular for Uf] V for every neighborhood V of x.

Proof. The regularity of x for U is equivalent to εζu=εx and the latter
is equivalent to the fact that X\U is not thin at x. This is also equivalent
to the fact that X\(U Γl V) is not thin at x since X\V is thin at x.

2. The definition of λ,

Lemma 5. Let x^QU9 f^C (ΔC7), /* be a continuous extension of f on
X*jιnd let u=Hf*\±. Then u(x)—εζu(u) depends only onf.

Proof. Consider the sequence {bk} such that bk-+x and SξU-^BCU. By
Corollary 3, the sequence {\bk} of harmonic measures with respect to 0 con-
verges and lim, \h(f)=limk H?(bk)=limk Hu

fL
x

u(bk)+u(x)=εCU (/_„)+„(*).

If we denote this limit by λ, then ^x(u)-£ζ^(u)=\(f)-εζu(f)y and the last
expression shows that εx(u)—εζu(u) depends only on/ and independent of/*.

We can see also that if £ζu-+£x then λΛA->£ x.

We shall denote by \x the vague limit of {λίjfe} corresponding to the se-
quence {bk} satisfying ££u-*£ζu, and call {bk} to be maximal at x in 0. Thus
using the above notation we have

(2.1) \tf)=εςU(f)+εjM-εCU(u) for every /eC(ΔC7).

If U is a relatively compact open set of X, then λ, is just εξu. We can
see \x3=£ζu in general. In fact, we have

Proposition 6. // X\ U is compact, then \x \ d U=εξU9

Proof. For / e C(Δ U) with /= 0 on 0 Π Δ
)=lim, \bk(f)=limk

3. The properties of λ*

We denote by Γ(t7) the harmonic boundary of C7, i.e.,

Γ(E/)==USupp.λ.

We define, for xZΞdU
3lu

x = {λ; 3 K} C f/, ak-*x, λβΛ->λvaguely}.

Theorem 7. Let x^dU be irregular for 0. Then we have:
(1) λ,Φ£, and m?d{t εx+(l-t)\x;
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(2) λx(ί)=limjc H^ for every s continuous on U and superharmonic on U,
(3) if x φ Γ( U) then mu

x = {\x} , thus for every f e C(A U) Hυ

f is extendable
continuously at x to the value λ,(/).

(4) for / eC(Δί7), non-negative and /=0 in a neighborhood of x we have

(5) 8X

(6) /έtf #eΓ(t7) andf(=C(ΔU) such that /(*)Φλ,(/), Jfon owίy om? o/
following cases occurs:

(i)
(ii)

Proof. To prove (1), we note that the convergence of {λβi} is equivalent
to the convergence of {£ζU}. Suppose that there exists {ak} auch thst ak-*x
and λβt-»λ, then we may find ίe[0, 1] so that ££ -̂̂ £.,+(1— *)£<p. For
/eC(ΔC7) we have λ(/)=lim, λαί(/)=lim, H?(β4)=lim» ^ί(fl4)+ιι(*)=lim4

_
(2): let {iΛ} be maximal at # in t/ and fix a function ί.

lim, Hu

s < lim, H? (bk) = \x (s) < s (x).

Then there exists λ^32f so that λ(ί)=limΛ /if, for there is a sequence {ak}
satisfying ak->x and lim^λβ^^^lim^ H%, and therefore there is a subsequence
of {λβjfc} converging to λ vaguely. We can not conclude λΛ(ί)>limJC H% since,
by (1), \=t εx+(ί—t)\x for some ίe [0, 1].

(3): suppose that there is a function f^C(AU) such that lim^ JH
r/<ίίrnJC

ίί/. Then as in the proof (2) there exist λ', λ"<=32? satisfying

Km, Hu

f=\'(f\ \'=t' ε
^L) E5, Hu

f=\"(f), χ"=t"

Hence, (ί/x— ί') [/(^)— λ,(/)]>0. This is impossible, since the support
of \x is contained in Γ(C7) and x<£T(U).

(4) : let / e C(Δ C7), / > 0, /= 0 on a neighborhood of # and let {iΛ} be max-

imal at x in U. As above, we have \^32χ such that λ(/) =11111, -H"/ and \=t£x

+(l-t)\x for ίe[0, 1]. We claim that ί-0; in fact, lίm, H?'=\(f)=tf(x)
+(l-t)\x(f)=(l-t) λβ(/)=(l-ί) lim, H?(bk)<limk Hu

f(bk}<^x Hϋ

f, which
implies that ί— 0.

(5), (6): if x^T(U) then by (2), 7lu

x = {\x} and λ,Φίx thus B&3E,
i.e., βx^3Ίχ implies that #eΓ(Z7). To prove the converse suppose that x
eΓ(C7). Then, by (1), we have \x^^ λ,φ£,. Letting /e£7 (ΔtT) with

/(#)φλ,(/), by virtue of the definition of the harmonic boundary Γ(C7) and
the fact that for a continuous extension/* of / on U there is a potential q on U

such that I #/—/*! <?, we obtain
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l\mxH
u

f <f(x)<KάxH
u

f.

However, the only possible cases are (i) limΛ Hf=f(x) or (ii) ίίmx Hf=f(x)

for if Km, #/</(#) <Iim, Hu

f then as in the proof of (3), there are *', *"e [0, 1]
so that

i.e., (l-O [/(*)-λ,(/)]>0 and (1-f) [/(*)- λ,(/)]<0, which is absurd. We
shall consider the case (i). We may find also λ', λ"e32? such that

λ' (/) = Um, Hϋ

f, λ' == t' €x+ (1-f) λ,, 0 < /' < 1,

λ" (/) = Ea, #7, λ'W £, + (1-ί") λ,, 0 < f" < 1.

The equality t'f(x)+(l-t') \x(f)=f(χ) means that t'=l and Sx=\'<=mu

x.
On the other hand, the inequality f(x)<t"f(x)+(\—t")\x(f) means that ί"<l
and XX(/)>/(Λ?). This implies t"=Q, since if ί/7>0 then we are led to the
contradiction that λ"(/) = Πmx H

u

f = t"f(x) + (1 - t")\x(f)<\x(f) < ITS, ̂ 7.

Similarly in the case (ii), we have €x^3lu
x and λjc(/)=ίimjc H f .

REMARKS. In the Theorem 7, (1) was proved by O. Frostman [2] in the
classical potential theory. The fundamental contribution to the behavior of
normalized solution Hυ

f

 x in the axiomatic potential theory is due to Constanti-
nescu-Cornea [1], and when U is relatively compact open set the precise investi-
gation was given by Lukes-Maly [6],

(3) has a counterpart in a result of J. Hyvϋnen [3] (Cor. 1.6).

(4) is considered to be a refined variant of a theorem of Smyrnelis [7] (Cor.
2) and the maximal sequence {bk} corresponds to "une suite maximal".

It is plausible that \x is the vague limit of {£ζu»}, where Un=UΓ\Xn with
a compact exhaustion {X „} of X.

4. The structure of 31%

In [6] Lukes-Maly proved that in the case where U is a relatively com-
pact open set 3lu

x has only four types: (1) 3??={£j, (2) 3lu

x = {εCU},

(3) 7lu

x = {8X, εCU}, (4) 7E={tef+(\-t)eξU 9 0<t<l}. The situation is

quite the same in our consideration. That is, in the same argument as in [6],
we can prove

Theorem 8. Let x^QU. 3Ί* has the following four types:

(1) Jl*={6ά,i.e.,x is regular for C7,
(2) 37f — {λ*}, i.e., x is semi-regular for U,
(3) 3Vχ = {£x, \x} , i.e., x is weak-irregular,
(4) 3%={tεx+(l-t)\x'Q<t<l}.

The type of 32X is a local property, i.e., the above types are unaltered if we con-
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sίder U Π V in stead of U, where V is a neighborhood of x. Therefore when X
is elliptic no boundary point x^QU is weak-irregular.

To prove the theorem we need some lemmas.

Lemma 9. In a resolutίve compactification, let x be a point of the harmonic
boundary Γ. Tf f is bounded, resolutive and continuous in a neighborhood of xy

then we have

ljmxHf<f(x)<]mιxHf.

Proof. Suppose that \f\<M. Let Vί9 V2 be neighborhoods of x such
that PΊdV2, and /is continuous on FgΠΔ. And let φl9 φ2 be continuous on
Δ such that

f

[ MonA\V2

 aΠ ψ2 (-MonΔ\F 2.

And finally htf1=maκ(f9 φλ) and/2=min(/, φ2). Then

ίim, Hf < Km, Hfl <f, (x) =f(x) =/2 (x) < Gm, Hfί < ϊίE, Hf.

Lemma 10. Λ?eΓ (U) if and only if x^T (UΠ V) for every neighborhood
Vofx.

Proof. Suppose that x^T (U{\V) for some V. Then by [6] Cor. 19,
there is a sequence {ak} tending to x and lim* H$nV(ak)=φ(x) for every resolu-
tive and bounded function φ which is continuous at x. Since Hf=H$nv for
every f^C (ΔtT), where φ—f on QUf] V and φ=Hf on 9FΠ U, we conclude
that λβA-»£j and

Next, suppose that x&T(UΓ\V) then x is irregular for UΓ\V, and, by

Corollary 4, x is irregular for U. On the other hand, every bounded harmonic
function on UΓ\V is extended continuously at x, [3]. Cor. 1.6. Therefore
every bounded harmonic function on C7, in particular Hf, is extended con-
tinuously at x, which implies that x&Γ (U).

Proof of Theorem 8. Suppose that #eΓ(£7) and x is irregular, then
\X^F£X and {£,, λ,} c37^. If the case (4) does not occur, then, in view of Theo-
rem 7 (1), there exist ί<Ξ(0, 1) and f&C (ΔtT) such that t6x+(l—t)\x&32?
and /(#)Φλ*(/) We may assume that /(#)>λ*(/). Then there is a neighbor-
hood V of x such that u=H?*a on 17 Π V, where a=tf(x)+(l— t)\x(f). De-
noting by
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we have F.-Φ0 (ι=l, 2) and F,U V2=UΓ\ V.
Let

/ o

The functions 9^ are bounded, resolutive and u=H%f on Î ;.
Since

BE, ff£ = BE if? (α) <: a </(*) = <P2 (*)

we have x&Γ(V2) by Lemma 9. Then there exists lim H%%(a) ([3], Cor.
a+x

1.6), which means that lim λβ=X*.

The fact that x^QV^QVz and x is irregular for F2 implies that X\V2

is thin at x and V2 is not thin at #; Further X\Vl is not thin at x, for V2dX
\Vι, which means that x is regular for Vλ. Thus there exists lim H$f(a)

([6], Cor. 19) and we can conclude that lim \a=£x.a+x

1

The remaining part of the theorem is proved by the above consideration
and Lemma 10, since regularity is a local property.

Finally, we shall remark on the cluster set <5M& of balayaged measures
€ζV at x.

If /is continuous on dU and has a compact carrier then /is extended con-
tinuously on ΔC7 to be 0 on Δ Π U, then we have

τfu τju.xtlf = tlf

and this shows

Theorem 11. Let x &dU. We have
(1) JK? = {εg} if x is regular for Uy

(2) J«^= {εζϋ} if x is semi-regular,
(3) c3ί?= {£„ £^̂ } ^/ Λ? ώ weak-irregular,

(4) otherwise, JK?= {
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