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The purpose of this paper is to compute KO*(SO(n)) for n=—1, 0, 1
mod 8 and K*(SO(n)) as algebras, where SO(n) is the rotation group of degree
n.

The ring K*(SO(n)) has been already determined in [6], [8], [10] and
[15]. The calculations in these papers are based on the theorem of Hodgkin
in [9] for the K-group of the spinor group Spin(n). Here using also this theo-
rem and the Thom isomorphism theorem we shall show that there exists a
short exact sequence in the equivariant K-theory associated with Z, involving
the injection K*(SO(n))— K*(P*')QK*(Spin(n)) as in [8] where P’ is the
real projective l-space, and making use of this exact sequence we shall give a
proof of the result on K*(SO(n)).

Using the theorem of Hodgkin, Seymour has proved in [14] a theorem
on the additive structure of KO*(Spin(n)). From his result we have a similar
short exact sequence in the equivariant KO-theory as in the complex case.
So we shall next determine the algebra structure of KO*(SO(#n)) for n as above
by arguments parallel to K*(SO(n)). Then we shall use the result of Crabb
in [4] on the squares of elements in KO~}(X).

Throughout this paper an A4-module generated by x is denoted by A-x
where 4 is a ring.

1. Preliminaries

a) By G we denote the multiplicative group {—1, 1} throughout this
paper. Let R?? be the euclidean space R?*? with a G-action such that —1
reverses the first p coordinates and fixes the last g. Let S?¢ and B?? be the
unit sphere and unit ball in R?? and 37?=B??/S?¢ with the collapsed S??
as base point. Thus —1 acts on S*° as antipodal involution and P*!'=S*°/G.
We consider that G acts on Spin(m) as the subgroup {—1, 1} of Spin(m) and
Spin(m)/G=S0(m) (see [11]). We denote the natural projections S*°— P*-!
and Spin(m)— SO(m) by the same letter 7.

For any x=(x,, --+, x,) of R* we write x=x,e,+ --+ ¢, as a vector where
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e, *+, ¢, are the unit vectors of R*. Then for k<m we have an equivariant
embedding z: S*°— Spin(m) defined by i(x)=uxe, viewing e; as an element of
R” canonically. This yields via z’s the well-known embedding ¢: P*'—
SO(m) given by er(x)=(8;;—2x;x;) ((—1) X I;-,) X I,,_; where §;; is the Kronecker
index and 7; is the unit matrix of degree 7. So these embeddings give a com-
mutative diagram

Sko 4 Spin(m)
(1.1) 2 \n
Pt — SO(m)

for k<m ([8], (1.12)). Since  is an equivariant map, the assignment
(%, 8) > (x(x), i(x)g) for (x, §)=S*x Spin(m)

yields a homeomorphism

(12) S95 ; Spin(m) — P*' % Spin(m)

for k<m ([8], (1.14)). Here let G act diagonally on the product of G-spaces.

For a compact Lie group L, let ;,=K; or KO, the equivariant complex
or real K-functor associated with L. If L is a trivial group then we omit the
suffix L as usual. Assume that p=0 mod 2 or 8 according as s;=K or KO,
then there exists a Thom isomorphism

by Bo(X) = Re(Z* A X)

for a compact based G-space X ([3], [13] and [12]).

As is well known, if X is a compact free G-space then ky(X)=h(X|G).
So we identify hy(X) with A(X/G) through this isomorphism in the following.
Then for any compact G-space X

ho(X X Spin(m)) = k(X X ¢ Spin(m))

since G acts on X X Spin(m) freely.
Apply k¢ to a cofiber sequence

S#*+49% Spin(m) — B?*4°x Spin(m) — Z#*%° A Spin(m).,

where X, =X U {+}, the disjoint sum of X and a point +, then the above
identification, the homeomorphism of (1.2) and the Thom isomorphism give
rise to an exact sequence

(1.3) v < REH(Z99 A Spin(m).) 2 K(P?+1' x Spin(m))
z F(SO(m)) L R (240 ASpin(m),) < -+
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for p+g<m and p as above, provided with the formula

8(I(x)y) = (—1)'x3(y)
for x K(SO(m)), y €W (P?*4~' X Spin(m)).

b) We take here a vector bundle to be complex or real according as we
confine ourself to the complex or real K-theory. Let GL(m, F) be the general
linear group of degree m over F where F=R or C. We view a representation
of a compact Lie group L as a continuous homomorphism L— GL(d, F).

Let A3, (resp. Az,) be the even (resp. odd) half-spin representation of
degree 2*7! of Spin(2n) and A,,,, the spin representation of degree 2" of Spin
(2n+1). According to [11], §13, 12.4 A§,, As, Ag,-1 and Ag,,, are real, and
the other simple spin representations are not real. Besides by [11], §13, Pro-
position 9.1 we have

(1.4) Af(—1) = Az(—1) = —Ip-1 and Agyy(—1) = —Ipn .

Put V=R"® or R"Q®C. Let &, denote the line bundle Spin(m)x; V—
SO(m) and &,=E£,—1 as an element of A(SO(m)) where 1 denotes the trivial
line bundle. Clearly (£,)’=1. By (1.4) we see that 2*7'¢;, and 2"¢},,, are
isomorphic to the product bundles. Hence we have

(1.5) En=—2£,, 2", =0 and 2,,,=0.
Because of (1.4) we can define base point preserving maps
82ns &yt SO(2n)— GL(2"*7%, F) and &,,,,: SO(2n+1)— GL(2", F)

by 8,7(8) = Azi(8) ' A2(8), Erwm () =A%4(g)* for gESpin(2n) and &,z (g)=
Ayuii(g)? for geSpin(2n-1) respectively. (Here the unit element is specified as
base point of a Lie group.)

Let p,, be the standard faithful real representation of degree m of SO(m).
Then p,z, denoted also by p,, is a real representation of degree m of Spin(m).

Let us denote by B(ct) the element of %#7(X) represented by a base point
preserving map a: X— GL(/, F) in a canonical way for a compact based space
X. Then we have the following elements of #~}(Spin(m)) or z~}(SO(m))

B(X"Pm) (1 <l<m)1 B(A;n); B(A;n), B(AZn-}-l)’ 3(82»1)) 18(£2n) and IB(EZiH'l)

where Ao denotes the 7-th exterior power of a representation o.
As for the squares of elements of %27(X), we have #*=0 for x& K-(X),
which is well known, and by the result on p. 67 of [4]

(1.6) =g for xeKOY(X)

where A%x denotes the 2nd exterior power of x and 75, the generator of KO~*(+)
=Z, If o is a real representation of degree ! of a compact Lie group L, then
applying (1.6) to B(s) we have the relation
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(1.7) B(o) = n(B(Z)+1B(s)) in KO¥L).

¢) We consider generators of K (Z*°) and I?O;(Z“"’) over R(G) and
RO(G) respectively. Here let R(G) (resp. RO(G)) denote the complex (resp.
real) representation ring of G.

Put L=R“®C. Let E, be the quotient of the disjoint sum B¥°x C?"™
U B?0x 2*"'L by the equivalence relation which identifies (x, v) with (x, A3,Z
(x)v) for x€8?°, v&C¥" " where i is as in a) for m—=k=2n. Identifying the
corresponding quotient of B*°U B™° with 32 we see easily that E, is a
G-vector bundle over 3*°. Moreover when we regard the center of the
latter ball B*° as the base point of =*°, we see that 7j =[E,]—2*[L]€K;
(=*°). Here we consider L as the product bundle with fibre L and [F] denotes
the isomorphism class of a G-vector bundle F. Similarly by using Az, for
A3, we can define a G-vector bundle E_ over Z*° and 7,=[E_]—2""'[L]
EKG(EZ;;,O).

Lemma 1.8. 7} and 7, are generators of Ky(Z*°) as an R(G)-module
and v} =—Lt;,.

Proof. Let 7 denote the inclusion Spin(2n)CSpin(2z+1). Because
1*(Agp11)=A3DAz, A7t X Az is extended on B as a non-equivariant map.
This shows that y«(E,@PE_) is isomorphic to a product bundle where let
denote the forgetful functor. Therefore yr(7;)=—r(77).

Let 3: Spin(2n)/Spin(2n—1)— GL(2""*, C) be a map defined by 8&([g])
=A%(g)A%(g)"" for g=Spin(2n) where [g] denotes the equivalence class of g.
Then K-*(Spin(2n)/Spin(2n—1))=Z-B3(5) (e.g. see [7]). Let A,; be the Thom
class of [13] such that an_,(nL)=2""(1—L), so that K (Z**)=R(G)*\,;.

Obviously the composition of z: S*~'=r(S*°) — Spin(2n) and the na-
tural projection p: Spin(2n) — Spin(2r)/Spin(2n—1) factors as follows: S~

—7—t>P2”‘1 4 Spin(2n)/Spin(2n—1). By the commutativity of (1.1) and the in-
spection of the identifications Spin(2#)/Spin(2n—1)=S0(2n)/SO(2n—1)=8%*"1
we see that gz is of degree 4-2. This shows that (p2)*(B(8))=+2v(\,.)
and so ¢*(3(3)) is a generator of K~}(P*~')=Z. By definition t*(B8(Az,))=y(T3),
*(B(Am)=v(77) and p*(B(8))=PB(A%)—B(Az). Hence we have (77)=
—Y(T7) =Y (Nr)-

Put 77=(a+bL)A,;. Since *(r})=i*(\,;)=2""'(1—L) where 7 is the
inclusion Z"°C 3% we have a—b=1. And since J(75)==4(r,.) we have
a+b=+1 so that a=1, b=0 or a=0, b=—1, which implies that 7;=>x,; or
—L\,;. The similar fact holds for 7, also. Therefore using Jr(7;)=—yYr(77)
again we get 7, =—L7;. q.e.d.

Let put H=R"°. Using A§, and Aj, viewed as real representations, by the
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parallel construction as 7; and 7, we get elements w; and w, of KO (=*9),
which satisfy the relations *(w; )=i*(w, )=2""'(1—H) where 7 is the inclusion
390380 Since the complexification of w; (resp. w;) is 7i, (resp. 7i) we
obtain

Lemma 1.9. w; and w, are generators of ’K‘éa(z“-") as an RO(G)-module
and w; =—Hew; .

In the sections 3 and 4 we assume that the Thom isomorphism in a) is
given by multiplication by 73/, or w}/s.

2. h*(Pm) and h*(Spin(n))

We consider the K-groups which we need in the following sections.
Let v,,_,=c*£,, where ¢ is as in a) for k=m and let v,,_,=/3(8) where &
is a map P*~1— GL(2"", F) defined by 8m(x)=A3,(dx))Az(x(x))" for x&S™°,

If n=0 mod 4, then we may view v,, , as an element of IEB“(P’"“), because
A%, and Aj, are real. In the case when F=C, as noted in the proof of Lemma
1.8, v,,.,=¢*(B(8)) which is a generator of K~}(P*").

Proposition 2.1. [2]. 1) K(P* Y)=2Zu-1-9,,_1, K (P )=Z vs,
with relations ¥, 1= —2Y,_1, Von1=Y2s-1V2s-1=0.

2) RP")=Zypepy R (P#)=0
with relations v5,=—2%,,.

We next recall that as a Zg-graded algebra

KO*(+) = Z[’?b 774]/(27]1) 77:;) M7 7)2_4‘)
where »,€ KO (+). Then by [1], [5] and [16] we have

Proposition 2.2. 1) IZE”(PS"")=ZZ4"-1' Ven-1>
.Eé"l(Ps"_l) = Z Vg 1 DZy*mYsn-1»
KO Py = Z,+ pigy s Zy nens D Za* nVsnor »
%'3(P8"—1) = Zy* mbsgn-1DZy nivgu1
KO™(P""") = Zyn-1+9,Yap-1 »
KO S(P*Y) = Z 9wy, 1 »
KO-%(P* 1) = KO (P*") = 0

with relations

2 _ 2
Von-1=—2Yss-1, Van-12gn-1 = 0, Ygn_1ttgs-1 = V-1 =0,

Vgn-1Mgn-1 = 0) Il'gn—-l = 0’ 77?#'8;1——1 = 24”~2’74'¥8n—1 sy Malgn-1 — 0.
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2) KO(P"?) = Zpm-s+Yones,

I?é_l(PB”_z) = Zy*mVen-2

1?6—2(Psn—2) = Zy* prsn-2BZy* 0V s0-2
%_3(P8"—2) = Zy*NMan-2

%-4(1)8:;—2) = Zypn-1*0Vgn-2 »

1?6—5(P8n—2) - I%'G(Ps”'z) - E6—7(Psn-2) —0

with relations

Vin-2 = —2Ysu-2, Van-sttgn-o = 0, p3, =0,
Pilsn-2 = 2" "0V an-2) Nubbgn-z = 0.

3) KO(P") = Zym- vy,

%_I(PB") = Zy*mYsn »

I?é_z(Psn) = Zy95sD 23 71Y5n »
-Eé—s(PS”) = Zy*MPsn »

1?6 THP) = Zpn o0V

I’<\6—5(P8n) — %-G(P&t) — I’{‘O'J(Psn) =0

with relations
(yzzln = _278':) VenPgn = O: 17:» = 0» ﬂfﬁsn = 24”_177478;1 y  NaPen = 0.

Proof. We refer the reader to the table in [5] for the additive structure
of KO*(P'). The generators of the 0- and (—4)-terms are given in [1] and
[5]. To determine the generators of the other terms it suffices to consider for
1) the exact sequence of (B*° S®) in the equivariant KO-theory and for 2)
(resp. 3)) the exact sequence of (P*~!, P®-%) (resp. (P®*, P**™")) in the KO-
theory. But we omit all details.

We want here to determine the ring structure of KO*(P') for / as above.
The relation 7, ,;=—2%,,,; for i=—2, —1, 0 follows from (1.5) and the rela-
tion »2,_;=0 does from the definition of v,,_, because it comes from KO
( San-l).

1) Leti: S'=P'— P*! be the inclusion. Then ¢*(7g,_,)=m= and i*(vg,_,)
=0 by definition. If v, v, ;30 then vy, ws,-1=7,7s,-, since it is a torsion
element of Ea'l(Ps”“‘). Apply i* to this equality then we have =0 which
is a contradiction. Hence we get Vg, ,v5,—,=0.

Since Psn—l /PSn—3: SSn—ZV S8n—1’ k?)*(P&n—l /PSn-—3)=I’<\6*( SSn—Z) @ KO*( SSn—l).
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When we consider the exact sequence of (P® !, P®~3) in the KO-theory, we

see that g, , and vg,_, come from KO%(S*%) and KO™'(S* ') respectively.
From this it follows readily that g, g, 1= ey 1="ss-1/8s-1=0.

Because of E6‘4(P8""3)=Z24n -2+, Yan—3 DY [5] we have nipg,—1=2"""nYsn1

similarly. The last relation is obvious because KO~(P%1)=0.
2) Immediate from the relations of 1).
3) We see by using the exact sequence of (P*, P**~') in the KO-theory

and 1) that the restriction KO *(P*)—>KO~%P*"') is injective and by the defini-
tion of pg, it sends Vg,P, tO 7,Yg,-1Vss—1. From this and the relation ¥g,—1Vgs-1
=0 it follows that 7,5, =0.

Let 7z: P — P®/P#-! be the natural projection. Then we see that g,
belongs to Im z*. But P®/P% -2 is a suspension of a space, so we have 93,=0.

We consider the following exact sequence of Atiyah [2], (3.4)

—~ X ~ _ ~
. —>KO_3(P8”) — K0—4(Psn) _C) K—4(P8n) — Ko—Z(Pan) > e

where X is multiplication by %, and c¢ is the complexification homomorphism.

Since %'3(P3”)=Zz-nlﬁgn, '156—4(P8")=zzw,,;ys”, K4(P¥)=Zun+ u*,, by Pro-
position 2.1 and ¢(5,Ys,)=2u*Ys,, then we obtain nips,=2'""'y,v,, where p&

K~?(+) is the Bott class. The last relation is also clear because KF"(P“”)
=0. q.e.d.

By [9], [14] and (1.7) we have the following propositions.
Proposition 2.3 [9]. As rings

K*(Spin(2n)) = A(B(N'poa)s *+*5 BN *pas), B(AZ), B(Az4))
K*(Spin(Zn—l)) = A(B()"lpzn—l)’ **ty ﬁ(xn_zpmt—-l)’ B(Azn—l)) .

Proposition 2.4 [14]. As KO*(+)-modules

KO*(Spln(Sn)) = AKO*(+)(18(7\'1P811)) B ﬁ()\;‘”—ng,,), B(Ag-»)) B(As-n)) )
KO*(Spln(8n—1)) = AKO"‘(+)(18(7\'1p8n—1)! B ﬁ(7\'4”_2psn—l)1 B(ASn—l)) ’
KO*(Spin(8n+1)) = Agor)(BA'Psas1)s *+*s B pgur1)s B(Agn11))

in which there hold the relations
BeY = mBNNe)+(T)BNE)
for m=8n, 8n—1, 8n+1 and 1<i<(m—3)2—(1+(—1)")/4,
B(A,) = mB(\A,)
for m=8n—1, 8n+1 and
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B(A&) = mB(N'AL), B(A&) = mB(\As) -

Since £*(Spin(n)), observed above, is free over #*(-), there exists a canon-
ical isomorphism

F¥(X)® v ¥(Spin(n)) == h*(X x Spin(n))

for a finite CW-complex X, under whose isomorphism A*(X)® ) A*(Spin(n))
is identified with A*(X X Spin(n)) in the following.

3. K*(SO(n))

Take h;=Kg, p=0 and ¢=m in (1.3), then we have the following exact
sequence

(3.1) -+ < K¥E=™°ASpin(m).) E— K¥(Pm' X Spin(m)) i

K*(SO(m)) 4 K¥(=m°A\Spin(m).) < - .
First we discuss K*(SO(2n)). Let j be the inclusion °ASpin(2n),C
39 A\ Spin(2n),. Then by definition j*(75 A1)=2""'(1—L) and hence J(74 A1)
=21, for J in (3.1) when m=2n, which implies by (1.5) that J is zero.
Therefore by (3.1) we obtain

Lemma 3.2.
) I
0 < K*(SO(2n)) — K*(P*)@K*(Spin(2n)) < K*(SO(2n)) < 0

is exact where §= 3,5, and 8(I(x)—)=(—1)'x8(—) for x€ K*(SO(2n)).

Lemma 3.3. i) I(&,) = 7,11,

i) I(B(\'pw)) = 1QB(N'pr) (1<k<2m),

i) I(B(8z)) = 1Q(B(A%)—B(Az)) — 211,

V) I(8(E) = VorrF2)DB(AL)— s @1 .

Proof. i) Obvious.

ii) It follows from definition that I(B(\*p,,)) is represented by a map
f: P-1xSpin(2n) — GL(<2k">, C) given by f(r(x), £) =N ps(i(x)) " Nppu(g) for
x€ 8™ g=Spin(2n). Therefore we see that I(B(A\p,,))=1Q B\ p2n) —B((Np20)
¢)®1. But AMp,, comes from representations of SO(2n+-1), hence B((Mpz)e)
is contained in the image of the restriction K~(P*)— K (P?*'). This shows
that B((A\*p,.)¢)=0, because of K~}(P*)=0.

iii) Observe that 1(8(8,,)) is represented by a map f: P?*~!'X Spin(2n)
— GL(2", C) given by f(n(x), £)=Az:(g) *Azu(i(%)) Aa(2(%)) ' AF(g) for x& S,
g€ Spin(2n). From this the claim follows immediately.
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iv) Define f: P*"'— GL(2*"!, C) and h: P! X Spin(2n)— GL(2"!, C) by
fr(x)=A3,(ux))"? and h(z(x), g)=A%((x))A%(g)A%(¢(x))" for x=S™, g
Spin(2z) respectively. Then we see similarly that 1(B3(&,,))=08(f)®1+B(h)+
1®B(Az).

Considering the injection z*: K-{(P*')— K-S we get z*(B(f))
=—24(77). On the other hand by the definition of »,,., and Lemma 1.8
we have z*(v,,_)) =V (73 —77)=24(77). Therefore B(f)=—vzy-1.

Let C Spin(2n)=[0, 1] X Spin(2n)/ {1} x Spin(2n). For (x,1)=S™°X L, (t,8)
€[0, 1]1x Spin(2n), v = C**~! the assignment [x, A]® ([£, £], v) — (=(%), [2, g,
A(2(x))Av) gives an isomorphism of vector bundles

a: (S™°x ¢ L) ® (C Spin(2n) x C¥'™") = P*~1x C Spin(2m) x C*"*

where [ ]’s denote the equivalence classes. Let E and F be the quotients
of the two copies of CSpin(2n)x C¥ ™" and P*~'x CSpin(2n)X C?™" by the
equivalence relations which identify ([0, g], v) with ([0, g], A3.(g)v) and (=(x),
[0, g], v) with (z(x), [0, g], Az.(¢(x))A3.(2)A%(2(x))'v) for xS, g Spin(2n),
90" respectively. Then we may view E and F as vector bundles over
S' A Spin(2n), and P~ x S' A Spin(2n), respectively and we have 7;,.,QE=F
through a where v, ,=i*§,,. Therefore we obtain by definition

B = [F]—2+
= Vou1 Q[E]—2"7"
= Y1 ®([E]—2""") by (1.5)
= (Yau-1+1)QB(Az1)

from which we obtain the claim. q.e.d.

Lemma 34. i) §(1QB(A%) = &n+1, (1QB(AR)) = —1,

i) O(vzs-1Q1) = E1+2,,

iii)  3(vyu-1QB(AZ) = (Eeut1)B(Ezn) »

8(v2a-1@B(Az)) = (Eant1)B(E2n) — (E20+2)B(830) »

iv) 3(1®B(A2)B(Az)) = (E2at1) (B(820) —B(Ezn)) »

V) 8(v2a-1@B(A4)B(A%)) = (E2at1)B(824) B(Ex) -

Proof. i) Here we consider K#(Z?°ASpin(2n),) as a subgroup of K¥
(=% Spin(2n)) in a canonical manner. Let E and F be the quotients of
the disjoint sums B3"°X Spin(2n)x C?"~" U B3"* x Spin(2r) X C?"~* and B¥"°x
Spin(2n) X C¥ "' U B3"° x Spin(2n) x 2*'L by the equivalence relations which
identify (x, g, v) with (x, g, A7,(i(x)g)v) and (x, g, v) with (x, g, A3, i(x)v) for
xE 8™ geSpin(2n), v&C?™" respectively where Bi*°=B3"°=B*°, Then
by definition §(1®B(Az,))=[E]—2*" and 7; A1=[F]—2""'[L]. Through
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the isomorphism B?"°X Spin(2n)x C¥ " = B?**x Spin(2n) x2*~'L given by
the assignment (tx, g, v)— (tx, g, A3.(g)v), 0<t<1, we get LQF=E. Hence
L7 N1=[E]—2""" and so §(1QB(A3.))=L7s A1 which implies §(1QB(Az))
=[E2]=Ent1.

By the same argument as above we obtain §(1Q8(Az))=L7; A1l. Hence
it follows from Lemma 1.8 that §(1Q B8(Az))=—1.

ii) Immediate from i) and Lemma 3.3, iii), because 8/=0.

iii), iv) By Lemma 3.2 we have §(I(B(&:)) (1QB(A%))=—PB(Ex)3(1Q
B(A3,)). Because of this, the first formula of iii) follows from i) and Lemma
3.3, iv). From this, i) and Lemma 3.3, iii), we get iv) by using the equality
S(I(B(82s) (1QB(A))=—R(82)0(1QB(A%,)). The rest follows from the
equality 8(1(8(8,,)) (1QB(Az)))=—0B(8,,)8(1QB(Az,)), the above results and
Lemma 3.3, iii).

v) Similarly this follows from the equality &((8(82,)) (V2r-1QB(AZ))
=—3(024)0(V20-1Q B(Az))- q.e.d.

Theorem 3.5 (cf. [6, 8, 10, 15]).
K*(SO(@2n)) = ABOPo)y -+, BOpsn), BB, L) D(Z 1D Zp-1-Ey)
as a ring with relations
Ein= —28, B(&)®E,=0.

Proof. Since I is injective by Lemma 3.2 and multiplicative, we see by
(1.5) and Lemma 3.3, iv) that the relations hold. Using Lemma 3.3 we also
see by Propositions 2.1 and 2.3 that the right-hand side R of the desired equality
is a subring of KO*(SO(2n)). Let m be a monomial of &,, and B(\*p,,) (1<k
<n—2). Then by Lemma 3.3, i) and ii) we have 8(I(m)y)=md(y), ycK*
(P QK *(Spin(2n)), up to sign. Using this, it follows from Lemma 3.4
that K*(SO(2n))=R, because & is surjective by Lemma 3.2. q.e.d.

Next we consider K*(SO(2n—1)). Observe the exact sequence of the
pair (Z*°ASpin(2n—1),, Z*°ASpin(2n—1),) in the equivariant K-theory,
then using an equivariant homeomorphism of [12], Lemma 4.1 we have the
following exact sequence

*
(3.6) - — R*(S?ASpin(2n—1),) 2 R A Spin(2n—1),)
3‘»12@(21'0/\ Spin(2n—1),) ‘—!i K*(S*ASpin(2n—1),) — - .

Here we can check easily that &8* agrees with the transfer. Since 8*=2
and K*(Spin(2n—1)) is torsion free by Proposition 2.3, we see that 8* is in-
jective and hence X is surjective.

From this, for any x&K¥#(=*°ASpin(2n—1),) we may write x=1;_,
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AX(t Ay) for some yeK*(SO(2n—1)). Let J: K¥E*°ASpin(2n—1),)
—K*(SO(2n—1)) be as in (3.1). Then by definition we obtain J(x)=—2""*
&sm-1y, which shows by (1.5) that J is zero. Thus by (3.1) we obtain

Lemma 3.7.
0 < K¥="ASpin(2n—1),) 2 K*(P"%)@K*(Spin(2n—1))
z K*(SO(2n—1)) < 0
is exact where §=¢z,-,5, and 8(I(x)—)=(—1)x8(—) for x=K(SO(2n—1)).

Consider the following commutative diagram with the exact rows as in
Lemmas 3.2 and 3.7

0 < K*(SO(2n)) i K*(P*1)QK*(Spin(2n))
7, ) S r
0« KE;“(E""/\ Spin(2n—1),) < K*(P*"*)Q K*(Spin(2n—1))
i K*(SO(2n)) < 0
7

z K*(SO(2n—1)) < 0

where 7’s denote the homomorphisms induced by the natural inclusions. Ap-
ply 7 (resp. r¢,) to the formulas of Lemma 3.3 (resp. Lemma 3.4) then we
obtain

Lemma 3.8. i) I(&,-)) = 7,01,

i) J(B(Vom-r) = 1@B(NVps-) (1<k<2n—1),

i) 1(B(Ezn-1)) = 2+ V2u-2) B(Asza-1) -

Lemma3.9. §(1Q8(As-1))=—X(rF A1)=LX(7¥ A1) and X(7{ N\ B(Ezn-1))
=0 where X is as in (3.6).

Theorem 3.10 (cf. [6, 8, 10, 15]).

K*(SO@2n—1)) = MBN'Pou-1)s ***s B p2n-1)s B(E2a-1))D(Z+ 1D Zpr-1+ 1)
as a ring with relations
gn—l = —2&-1, :8(52n—1)®fzn—1 =0.

Proof. Similar to the proof of Theorem 3.5 except the fact that K*(SO
(2n—1)) is generated by 1, B(\'ps-1) (1<k<n—2), B(E-1) and &,y

Let m=m(b;, -+, byy-1) = BN p2a-1)’t *** BN "?p3p-1)’n-2(by, ++, b,-,=0, 1).
Since & is surjective by Lemma 3.7 it follows from Lemmas 3.8, 3.9 and the
equality of Lemma 3.7 that K¥(="°ASpin(2n—1),) is generated by X(7i A



800 H. MiNam1

m(by, -+, b,-5)) (by, -+, b,.,=0, 1) as a module. To prove the rest, by (3.6)
it therefore suffices to prove that the image of ¢7'8*: K*(S?ASpin(2n—1),)
— K¥(Spin(2n—1))=K*(SO(2n—1)) is contained in the right-hand side of
the required equality. Now a short computation shows that ¢7'8*(y(71 Am))
=(2+&,,-)m and ¢ *(Y(T¥) AmB(Az,-1))=mB(&;,-;). This completes the
proof.

4. KO*(SO(8n)), KO*(SO(8n—1)) and KO*(SO(8n+1))

The calculation of KO*(SO(n)) proceeds in a manner parallel to that of
K*(SO(n)). As before we have by (1.3) the following short exact sequences.

Lemma 4.1.
) 0« KOXSO(31) < KOHP* )@ yous, KO*(Spin(8n))
L koxso@m) <o,

i) 0« ROXSTSASpin(8n—1),) < KOXP* )@ gorsy KO*(Spin(81—1))
L koxso@n—1y) <o,

i) 0 < KOHEOASpin(8n-+1),) < KOHP™)® gorsy KO*(Spin(8n+1))
L koxso@Ent1) <0

where 8=z, 0, §=z,—_s0, =chs, 0 respectively.

Proof. It is enough to show that J: KO% (Z8+10 A Spin (8n+-7),) —
KO*(SO(8n+1)) is zero for i=0, —1, 1. Because of J(ws A1)=—2""&,,, i)
follows from (1.5) immediately. But we postpone to prove ii), iii), whose proofs
will follow after Lemmas 4.10, 4.14 respectively. q.e.d.

We note here that also there holds
4.2) 8(I(x)—) = (—1)'x8(—) for x€KO(SO(8n-+tj)),j=0, —1,1.
First we consider KO*(SO(8z)). We have

Lemma 4.3. i) I(&,) = 7,101,

i) I(B(Mps)) = 1Q BN psa)+Em7Veu1®1 (€ = 0, 1, 0<Ek<8n),
i) J(8(3s,)) = 1Q(B(Adn)—B(A)) —V5u-1®1,

iv) I(B(Es)) = (Yan-11+2)QB(Ags)— Vg1 ®1 .

Proof. Similar to the proof of Lemma 3.3. But in the proof of ii) it

does not necessarily follow that B((A\*ps,)c)=0 because I?é“(P“"):Zz-m’)’g,,.
q.e.d.
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Let p=0, m=q¢=38n and /=—2 in (1.3) when A=KO. Then as it follows
from the calculation of Proposition 2.2, 1) that g, , satisfies &(pg,-,®1)=
mox A1 we get

(4.4) pen-1Q1) =
Furthermore by the same proof as that of Lemma 3.4, i) we obtain
(4.5) (1®B(Aw)) = —1.

By (4.4) and (4.5) 8(nQ@B(As)+ 1s,-1@1)=0, which shows that there exist
an element Cs,,EI’(\é"z(SO(Sn)) such that

(4°6) I(Es,,) = ﬂl®ﬁ(A8—ﬂ)+#‘8n—l®1 .

For A?A§, viewed as a real representation of SO(8n) we have I(B(\’Af,))
=1QLBA\A%)+E0Ye-1®1 (=0, 1) by the same argument as Lemma 4.3,
ii). Since RO(Spin(8n))=<R(Spin(8n)), using Theorem 10.3 of [11], §13 and
the real version of (2) of [9], I §4 we see that %,8(\%A{,), as an element of KO*
(Spin(8n)), is a linear combination of 7,8(A!pg,)’t +++ BN 2pg,)len-2 (byy ++*, byyosp
=0, 1). Hence using i), ii) of Lemma 4.3 we see that 7,B(\?A§,) is a linear
combination of 7i&§,B(\'ps,)" -+ B(A"2pg,)ln-2 (a, by, -+, b,,—,=0, 1, i=1, 2),
since I is injective. For A%Aj, we also have the same result. Considering
the restriction of 7,8(\*Ai,) to KO*(SO(8n—1)) we see that a similar result
holds for 7,8(A%Ag,-1)-

Then since I is injective and multiplicative we obtain by Lemma 4.3 the
following

Proposition 4.7. In KO*(SO(8n)) the following relations hold:

i) &= —2&,

i) B(8e)’ = B(&w) =188 =0
i) 7an = 2% nans 7Len = 0
iv) £3,8(Em) =0

Proof. i) Immediate from (1.5).

ii) When we replace n by 4z in the proof of Lemma 1.8 we see that 3(5)
defines an element of Eé"(Spin(Sn)/Spin(Sn——1)). Let p: Spin(8n) — Spin(8xn)/
Spin(8z—1) be the natural projection. Then p*(B(5))=B(As,)—B(As) by
definition. Since Spin(8x)/Spin(8n—1)~S*~!, we have B(5)’=0 and hence
B(Ad)*+B(As)*=0.

From Lemma 4.3, iii) it follows that I(8(S8;,)%)=1Q(B(As.)*+B(Asm))
+v§,-,®1. This shows B(&,)*=0 because »3,,=0 by Proposition 2.2, 1).
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Similarly we have I(B(&.,))=(7Vsn-112)R2B(As)+vE,-1®1. By Pro-
position 2.4 B(Az,)? is divisible by »,. Therefore we get B(&,)’=0. The last
formula follows analogously as in the second because w2, ,=0 by Proposition
2.2,1).

iii, iv) The proofs are parallel to the case ii), so we omit them. q.e.d.

By the arguments applied to Lemma 3.4 and by (4.2), (4.4) and the above
observation of B(A\?A3,) and B(A’Ag,) we obtain

Lemma 4.8. i) 3(1Q8(A:)) = Ewt1, 3(1Q8(AR)) = —1,
ii) S(1®B(Ai)B(As)) = (Esnt1) (B(Esa)—B(3s4)) »
iii) 8(vg-191) = & t2,
iv) O(Vsr-1QB(Ass)) = (Esnt1)B(Esn) »
3(¥8,-1QB(A5)) = (Esat1)B(Esn)—(Esnt2)B(8sn) »
V) 8(”8n—1®B(Agn)B(A§n)) = (Esrf’1)/8(38;:)3(88”)+771§sn16(7\'2A3n) )
vi) 8(ugn-1®1) = n1,
vil)  S(usn-1QB(Ass)) = m(Esat1) (B(Esn)—B(8sn))+(Esnt1)Cen 5
3(1sn-1QB(A%)) = Ean
Vi) 8(pgs-1@B(AL)B(A5)) = (Eant1)Esa(B(Es)—B(Ssn))
+7iat+1)B(NAR),
ix) 8(7s-1®1) = 8(1QB(N1pg,) -+ B(N*pg,)) = 0
(I<i< - <6, <8n).

Theorem 4.9.
KO*(SO(Sn)) = AKO*(+) (B(xlpsn)a ) 6(7\,4"—2[)5,,), B(asn)) ﬁ(es:x))
®z(Z- 1DZyn-1+84,DZ,+ §8n)
as a KO*(+)-module with the ring structure given by
BV = n (BN +( JBOV P (1<k<4n—2)
and the relations of Proposition 4.7 in which Q ; is left out.

Proof. The first relation follows from (1.7). The rest is quite similar
to the proof of Theorem 3.5. q.e.d.

We next consider KO*(SO(8z—1)). Define &g, € I’C\é“z(SO(Sn—l)) by
1*($ss)=Css-1 Where 7: SO(8n—1)— SO(8n) is the inclusion. As in the com-
plex case by Lemma 4.3 and (4.6) we have

Lemma 4.10. i) I(&,-)) = ¥5-,01,

i) I(B(\*ps-1)) = 1QBN pan-1)+EmTe-2Q1 (€ =0, 1, 0<k<82—1),



K-THEORY OF SO(n) 803

ili) I(B(E&t-l)) = (VSn-2+2)®18(A8n—1) ’
iv) I(Eau-1) = mOB(Ags-1)+ 18,1 .

Proof of Lemma 4.1, ii). As we got (3.6) we have an exact sequence
—_ 5% ~
-« — KO*(S® A Spin(8n—1),) — KO¥(Z*° A Spin(8n—1),,)
x L L
— KO¥(="° A Spin(8n—1),) —\—I: KO*(S"ASpin(8n—1),) — --

where 8* also agrees with the transfer and +» denotes the forgetful homomor-
phism. Observe the composition I¢s'd*. (Here KO¥(Spin(8z—1)) is of
course identified with KO*(SO(8n—1)) as noted in §1, a).) As before we
have by definition 8*(yr(of Am))=wi A(Egu-1+2)m and $*(Yr(of A1) (1AmB
(Agy-1))=0i AmB(E,-,) where m is a monomial of B(A*ps,-;) (1<k<4n—2).
Using Lemma 4.10 we therefore see that I¢3'6* is injective. This implies
that &* is injective and so X is surjective. Hence for any xEI?é?(E“"‘m
ASpin(8n—1),) we may write ¥=w;_1 AX(wi Ay) for some ye KO*(SO(8n
—1)). Thus by (1.5) J(x)=—2"""¢,,_,y=0, which completes the proof.
From the injectivity of I and Lemma 4.10 we obtain

Proposition 4.11. In KO*(SO(8n—1)) the following relations hold:
i) Egn—l = _—ZESn—l

i) B(Eg-1)' = Eou-r1 =10

1ii) 7)¥§8n—1 = 2%nEsn-1, NLon-1=10

iv) Esn-18s-1 = B (Egn-1)

V) B(ESn—l)ESn—l = ﬂf‘fs”—lﬁ(VAsn—l)

vi) Egu-1B(Ean-1) = 0

Let X: IE\O%(EM ASpin(8n—1),) — 1?62(2”/\ Spin(8z—1),) be as in
the proof of Lemma 4.1, ii). Under the identification KO¥(Spin(8z—1))=
KO*(SO(8n—1)) we obtain by Lemma 4.8 the following

Lemma 4.12. i) §(1®B(Au-1)) = —X(of A1) = HX(of A1),

i) 8(pp-20Q1) = nX(f A1),

i) 8(pgn-2QB(Agn-1)) = X(wi Agn-1) = HX(07 Asa-r)

iv)  8(Vsu-2®1) = S(1QB(N1pg,) -+ BN opss)) = 0 (1<, <+ <, <8n—1),
v) X(ot AB(Ew-1)) = 0.

Using (4.2) we see by Lemmas 4.10 and 4.12 that Eéﬁ(27'°ASpin(8n—1)+)

is generated by x(w?‘ /\ﬁ(leSn—l)bl ot B(XM— pSn—l)b”"ngﬂ—l) (bl’ ) bm—Z) C=0, 1)
as a KO*(+)-module. Therefore the parallel argument as Theorem 3.10 yields
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Theorem 4.13.

KO*(SO(Sn_l)) = AKO*(+) (ﬁ(xlpmx—l)’ *t%y :3(7\'4”_21-"8”—1), B(E&s—l))
@z(z' 1®ZZ""1‘§&:—1®Z2'§8”—1)

as a KO*(+)-module with the ring structure given by

BN punr) = mBN N )+ BN pw))  (1<h<An—2)
and the relations of Proposition 4.11 in which @ ; is left out.
Finally we discuss KO*(SO(8n+1)).

Lemma 4.14. i) I(&,,) = 7,1,
i) I(B(\'Psnr1)) = 1@ BN Pgurr) +Em7s,@1, (6=10,1, 0<k<8n+1),
i) J(B(Esr1)) = (Vant2) QB (Dgps1) -

Proof. Similar to the proofs of Lemma 3.3, i), ii), iv). But we have a
supplemental term in ii) by the same reason as in Lemma 4.3, ii). As for vanish-
ing of the corresponding element ¢ in iii) to B(f) in the proof of Lemma 3.3,
iv), we have 7*(a)=0 by the definition of & and Proposition 2.2 where ¢ denotes

the inclusion P®*~2C P%*. Hence we get a=0 because 7*: I’EO-"I(P"”)—>I?6‘1
(P?*"2) is an isomorphism. q.e.d.

Proof of Lemma 4.1, iii). Consider the exact sequence of the pair (2",
%% in the equivariant K-theory, then it is clear that i*: K (2% — K (=)
=R(G) is injective and so K (Z"*)=Z-(1—L) as a subgroup of R(G) where
7 is the inclusion 3*°C 3.  Similarly 1256(2"°)=Z «(1—H) as a subgroup of
RO(G).

As we saw in the proof of Theorem 3.10 K¥(='° A Spin(8n-1),) is gen-
erated by X(7i Am(by, ++, b)) (byy ++*5 byy-1=0, 1) where X=(GFA1)* and
by, *+*5 byu-1)=B\ Pgn11)" *++, B pgyi)’n-1. Since £*(77)=1—L we have
X(ri AN1)=(1—L)AL

Here we regard K¥(—) as a cohomology theory over R(G)QZ[p]/p'=1
where p=K%(+) is the Bott class. Let ¢ and » denote the complexification
homomorphism and the realification homomorphism respectively. Let x&

12\65(21'°/\Spin(8n—l—1)+). Then because of r(p)=ni, r(r®)=n,, r(x®)=0 and
rc=2, we see that 2x is a linear combination of 2(1—H)Am(b, -+, b,,-1),
(1—H)Ayim(b,, -+, b,,—,) and (1—H)Anm(b, ---, b,,-;). Let X=(EFA1)*:
KO¥(="° A\Spin(8n+1),) — KO¥(Z"° A Spin(8n+1) . )= KO*(SO(8n+1)). Then
we therefore have

2X(x) = §8n+l(22a(bb B b‘n-—l)m(bh °tty bm—l)
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+218(b11 ° bm—l)’ﬁm(bh R bm-l)
+ZY (b, -y byp-r)nim(byy -+, byu-1))
for at(by, -+, bim-1)s Y(Bys ***5 biu-1)EZ and B(by, -++, b,,-,)=0, 1 where = denotes
the finite sum with respect to (b, :**, &,,-,). From this, because of J(ws Ax)
=21, 1 X(x) and (1.5), we have
](m: /\x) = 24”-17]458n+1 E'Y(bl, R bm—l)m(bl’ M) b4n-1) .

Since IJ=0 we have by Lemma 4.14

24”—177458:&1@27(1’1’ R bm—l)m(bl) "ty bux—l) =0.

By Propositions 2.2 and 2.4, 7,7s, is of order 2* and KO*(Spin(8n-+1)) is tor-
sion free. Thus we see that (b, -, b,,-;) are divisible by 2. Therefore
J(wx Ax)=0 by (1.5). This proves that J is zero. q.e.d.

As above we regard I%G(E""):Z «(1—H) as a subgroup of RO(G) in
the following. To calculate 8(1®Q[3(Ag,+;)) we mimic the proof of Lemma 3.4, i).
Then we see that 3(1®B(Agy.1)) is defined as an element of f{\éc(E""“”).
Moreover §(1Q@8(Agn+1))=0(1RB(As:))+6(1QB(As,)) as an element of I’{\é’c
(=%%). Hence using Lemma 3.4, i) we have §(1Q8(Agr))=(H—1)Aw;,
that is,
(4.15) 3(1QB(Agrs1)) = (H—1)AL.

Let 8*: KO(P™) = KOg}(S%*%) — KOg'(S**%) be the coboundary
homomorphism of the exact sequence of the pair (B3**!°, S§§**1:%) in the equ-

ivariant KO-theory. Then it follows that one generator 5, of Eé‘z(Ps”) as
in Proposition 2.2 is characterized by &%(py,)=n(H—1)Aws. Therefore we
obtain

(4.16) 8(®1) = mEH—1)AL.

From (4.14) and (4.15) it follows that 8(®B(Ags+1)+7:.®1)=0. Hence
there exists an element vg,; of KO*(SO(8n-+-1)) such that

(4'17) I(U8n+1) = 771®:3(A8n+1)+178n®1 .

By the injectivity of 1 and Lemma 4.14 we then have

Proposition 4.18. In KO*(SO(8n-+1)) the following relations hold:
i) §§n+1 = _ZEan
ii) B(gsn+l)2 = Vg1 =0

9  ane1 .
1) 91 = 2" 'nEanr1y NVgns1 = 0
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iV) :8(58”+1)U8n+1 = 77%58n+16(7\'2A8n+1)
V) EsnrtVsnir = mB(Egnsr)
Vi) Ean+1:3(58n+1) =0

Here we note that we have the similar remark to B(A*Ay,41) as B(A2AR,),
that is, 7,8(A\?Ag,1) is represented as a linear combination of 7i{£8,+18(\'pges1)
o B pgyia)’n-1 (@, by, -+, b,,-,=0, 1, =1, 2). Using this and (4.2), by
Lemma 4.14, (4.17), (4.15) and (4.16) we obtain

Lemma 4.19. i) §(1QB8(As41)) = (H—1)A1,

i) (@) = nH—-DAL,

i) 8(7es®@B(Agns1)) = (H—1) Avgyys

iv) 8(7s:®1) = S(1QBMN1pgss1) =+ BNspgar1)) = 0

(A<i< - <i,<8n+1),

v) (H—1)APB(Ew)=0.

From this we see that I?éﬁ(E""/\ Spin(8zn-+1),) is generated by (1—H)
ABN Pyi1)’t -+ B pgyi1)un-15,41(by, -+, byn—y, ¢=0, 1) as a KO*(+)-module.

Theorem 4.20.

KO*(SO(8”+1)) = Axo*(+) (B(leswl)a ) B()“4n_lpsn+l)a B(GSn-H))
®2(Z’ 1D Zyn+Eg 1D Z,e Van+1)

as a KO*(+)-module with the ring structure given by

B (XsznH)z = nl(ﬁ(x‘z()“kp&l+l))+ (877:— 1) B(kaauﬂ)) (1 Sk<4n— 1)

and the relations of Proposition 4.18 in which Q ; is left out.

Proof. It suffices to prove that KO*(SO(8n+-1)) is generated by B(\pg,+1)
(I1<k<4n—1), B(Esnt1)) Esnsr and vg, ;. Because the rest is proved in the similar
way as in the preceding theorems.

Consider the exact sequence of the pair (Z'°ASpin(8z+1),, =*°A Spin
(8n+1),) with a commutative diagram

—— *
-« > KO¥(Z'"° A Spin(8n+1),) i KO*(SO(8n+1)) N KO*(Spin(8n+1)) — ---
c) cl
K*(SO(8n+1)) =K *(Spin(8n+1)) .
V4

Let m=m(b,, +**, b,,-;) be as in Proof of Lemma 4.1, iii). Take any x KO*
(SO(8n+-1)), then we see by Proposition 2.4 that z*(x) is represented as a
linear combination of mB(Ag,+1)%s 1MB(Agns1)y MiMB(Agers)’ and nmB(Agys1)’
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(c=0, 1). Compare cz*(x) with z*¢(x) using Theorem 3.10 and Proposition
2.3. Then we see that z*(x) is a linear combination of 2‘mB(As,.,)"s mmB
(A8n+l)c’ ﬂfﬁ(Aan)c and 774m18(A8n+1)ca because of 6(171)=C(77§)=0, 0(774)=2”'2
and 7*(B(Esnt1))=2B(Ass+1) Where p= K %(+) is the Bott class. Clearly 2'mg3
(Agns1)’s mm, 7im and 2°pmB(Ag,.,)° belong to Im z* and also 5imB(Ag,.,)
(=1, 2) do so because of 7*(vg,+1)=18(Agnr1) by (4.17). Therefore if z*(x)
has not an,3(As,+1) (@ odd) as a monomial, then it follows from the remark
following Lemma 4.19 that x belongs to the right-hand side of the required
equality.

If z*(x) has such a monomial as above then we see that there exists an
element & of KO*(SO(8n-+1)) satisfying ¢(®)=u?mB(Egps1)+1Esnr1y for some
yeK*(SO(8n+1)). Here again we consider the following exact sequence of
Atiyah [2], (3.4)

5
e = KO™9(X) — KO(X) = K~9(X) = KO (X) — -

when X=S0(8n-+1). Since §(u2)=r(2) for 2k K* 4 X), we have %imB(Egnyy)
=Eg,17(v). But applying I to this equality and using Theorem 3.10, Lemma
4.14, Propositions 2.2 and 2.4 we see that such a relation does not hold in KO*
(SO(8n+-1)). q.e.d.
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