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Introduction. Symmetric R-spaces are specific riemannian symmetric
spaces. These spaces are canonically realized as complete connected full
parallel submanifolds of euclidean spaces and as minimal submanifolds of
certain hyperspheres in the euclidean spaces. Conversely, a complete con-
nected full parallel submanifold is congruent to the product image of imbed-
dings homothetic to the canonical imbeddings of symmetric R-spaces (Ferus
[3], Takeuchi [18]). Roughly speaking, symmetric R-spaces are constructed
as follows. Take a non-degenerate Jordan triple system which is compact
and let (g, p) be the positive definite symmetric graded Lie algebra constructed
from its Jordan triple system in the Koecher’s fashion, i.e., §=g_,Pg,Pg,
is a graded Lie algebra of non compact type and p is a Cartan involution of g.
Let g=1!®p be the Cartan decomposition. Then there exists a unique
element v such that g., p=0, 41, are eigen spaces of ad(r) with eigen
values » respectively. Then a symmetric R-space is defined as the orbit of
v by the connected Lie subgroup of GL(g) with the Lie algebra ad(f)|p.
Here the euclidean metric on P is given by the restriction of the Killing form
of g to p.

Naitoh [11] has defined notions “orthogonal Jordan triple system”, “or-
thogonal symmetric graded Lie algebra”. An orthogonal Jordan triple system
V, {}, <>)is a Jordan triple system (¥, { }) with a non-degenerate sym-
metric bilinear form < > on V. Non-degenerate Jordan triple systems are
orthogonal Jordan triple systems with their trace forms. An orthogonal sym-
metric graded Lie algebra (g, p, < >,) is a symmetric graded Lie algebra (g, p)
with a non-degenerate symmetric bilinear form < >, on p. Semi-simple
symmetric graded Lie algebras are orthogonal symmetric graded Lie algebras
with the restrictions of the Killing forms of g to p. Between these objects
there exists a natural one-to-one correspondence, which is the extension of
the Koecher’s way. (See § 1 for these precise definitions and the correspond-
ence.) Moreover, in the above paper, we have constructed pseudo-riemannian
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symmetric R-spaces from orthogonal Jordan triple systems satisfying some
condition (S) in the same way as riemannian symmetric R-spaces. The condi-
tion (S) provides the existence of the point v&p. (See § 2 in detail.) Pseudo-
riemannian symmetric R-spaces are specific pseudo-riemannian symmetric
spaces.

In this paper, firstly, we will show the following. Let M be a complete
connected parallel submanifold of a pseudo-euclidean space E satisfying that,
for any point p& M, (1) the normal space at p is linearly spanned by the image
of the second fundamental form at p and (2) there exists a normal vector at p
such that the shape operator for it is the identity map. Then,

(A) All such spaces M are exhausted by pseudo-riemannian symmetric
R-spaces (Theorem 2.6).

Moreover assume that E is a pseudo-hermitian space and that M is a totally
real submanifold of E such that dimgz M=dim; E. Then;

(B) All such spaces M are exhausted by pseudo-riemannian symmetric
R-spaces constructed from orthogonal Jordan triple systems such that their
Jordan triple systems are associated with Jordan algebras with unity (Theorem
2.11).

Next we will show the following.

(C) Pseudo-riemannian symmetric R-spaces are imbedded as minimal
submanifolds of certain pseudo-riemannian hyperspheres in pseudo-euclidean
spaces if and only if the associated orthogonal Jordan triple systems are non-
degenerate Jordan triple systems (Theorem 3.1).

Moreover we will list up pseudo-riemannian symmetric R-spaces associated
with simple (non-degenerate) Jordan triple systems by using the classification
given by Neher [13, 14].

The author wishes to express his hearty thanks to Professor M. Takeuchi
for useful comments.

1. Preliminaries

Let K be either the field R of real numbers or the field C of complex num-
bers. A Jordan triple system over K (abbreviated to JT'S), by definition, is
a finite dimensional vector space V' over K with a K-trilinear map {}: VX VX
V —V satisfying the following two conditions:

(]TS 1) % », 2’} = {z: Y, x} ’

(JTS2) [L(% ), L(u, v)] = L(L(x, y)u, v)—L(u, L(y, x)v)
for x, y, 2, u, vEV, where L(x, y), x, yV, denote K-endomorphisms of V'
defined by L(x, y)z={x, y, 2t for z€V. Two JTS's (V, {}), (V', {}")

are equivalent to each other if there exists a K-linear isomorphism § of V" onto
V' such that
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8({x, y, 2}) = {8(x), 8(), 8(2)}’
for x, y, € V. The trace form 8 of a JTS (V, { }) is defined by
B(x, y) = Trace of L(x, y)

for x, yeV. A]JTS is called non-degenerate if the trace form is non-degenerate.
The trace form B of a non-degenerate JTS (V, { }) is a non-degenerate sym-
metric bilinear form satisfying

(1.1) B(L(x, )2, w) = B(z, L(y, x)w)
for x, y, 2, weV.

A symmetric graded Lie algebra over K (abbreviated to SGLA), by defini-
tion, is a Lie algebra g over K with an involutive automorphism p of g satisfy-
ing the following four conditions:

(SGLA 1) g=g.,DPg,PBg; is a graded Lie algebra, ie., [Gu, 8] Guiy
where g,= {0} for A0, 4-1,

(SGLA 2) p(8u)=8-u for p=0, 41,

(SGLA 3) g, acts faithfully on g_,3 {0} by the adjoint representation ad,

(SGLA 4) 8=I[a-1 8]

Two SGLA’s (g, p), (8', p’) are equivalent to each other if there exists a Lie
algebra isomorphism A of g onto g’ such that

AMEe) = g4 for £ =0, 41, and Aop = p’on..

An SGLA (g, p) is called semi-simple if g is semi-simple, i.e., the Killing
form of g is non-degenerate. Returning to an SGLA (g, p), put

I={Xeg;pX)=X}, p={Xeg;pX)=—X}.

Then we have the canonical decomposition: g=1%@)p and the Lie sub-
algebra t acts on the vector space p by the adjoint representation. Denote
by B the Killing form of g. Assume that the SGLA is semi-simple. Then
the restriction B|p of B to p is a non-degenerate symmetric bilinear form
satisfying

(1.2) B{p(ad(T)X, Y)+B|p(X, ad(T)Y) =0

for Tet, X, Yep.

Now there exists a one-to-one correspondence between non-degenerate
JTS’s and semi-simple SGLA’s (cf. Koecher [8]). The correspondence keeps
the equivalence of each object. Assume that K=R. Then Naitoh [11] has
extended notions ‘‘non-degenerate JT'S”, “semi-simple SGLA” to notions
“orthogonal JTS”, “orthogonal SGLA” by taking note of properties (1.1),
(1.2) respectively, and moreover has extended the above correspondence to
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a correspondence between new notions.
Orthogonal Jordan triple system (abbreviated to OJTS): It is a JTS
(V, {}) with a non-degenerate symmetric bilinear form < > on V satisfying
(1.1" <L(x, y)2, w> = <z, L(y, x)w)

for x, y, 2, w€V. Obviously a non-degenerate JTS, together with the trace
form, is an OJTS. Two OJTS’s (V, { }, < >), (V', { }', £ )') are equivalent
to each other if there exists an isomorphism § of (V, { }) onto (V’, { }’) such
that

<3(x), 8(y)>" = <% 3

for x, y, 2€ V.

Orthogonal symmetric graded Lie algebra (abbreviated to OSGLA):
It is an SGLA (g, p) with a non-degenerate symmetric bilinear form <>p on p
satisfying

(1.2" <ad(T)X, YD, +<X, ad(T)Y), =0
for Tet, X, Y=p. Obviously a semi-simple SGLA, together with the restric-
tion B|p, is an OSGLA. Two OSGLA’s (g, p, < 2y) @', p's < D) are
equivalent to each other if there exists an isomorphism A of (g, p) onto (g’, p*)
such that

<7\‘(X)1 7\'( Y)>p’ = <Xa Y>p

for X, Yebp.
The correspondence between OJTS’s and OSGLA’s: (I) OJTS—
OSGLA. Let(V, {},< >)bean OJTS. Put
where L={L(x, y); x, yEV} . A bracket product [ ] is defined in the follow-
ing way:
[(® £, ), (2, & )]
= (fz)—&(®), [f, 81—(1/2)L(x, w)+(1/2)L(z, ), £*(y)—f*(w))

for (», f, ¥), (2, &, w)Eg, where f* denotes the transposed map of f with respect
to ¢ >. Then g, together with the bracket product [ ], is a graded Lie algebra
over R with the grading:

gy =V+{0t+{0}, g = {0} +L+10}, ¢={0}+{0}+V.
An involutive automorphism p of g is defined by

p((x, £, 3) = (3, —f*, %)
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for (x, f, y)=g. Note that an element in p can be written in the following
form:

(%, f, —%); 2f = 3, {L(=;, w;)+L(w;, 2;)}
for some x, 2;, w;EV by (1.1'). Suppose
2f = 3, {L(=z;, w)+L(w;, 2:)}, 2g = =;{L(u), v;)+L(v;, u;)} -
Then a non-degenerate symmetric bilinear form < }, is defined by

<(x»f’ _x)) (9 & _y)>p =<x, y>+zj<f(uj)7 7’1‘>
= <, y>+3;<g(z:), w>

for (x, f, —x), (¥, & —y)EPp. (This is well-defined.) The triple (g, p, < D)
constructed in the above way is an OSGLA.
(II) OSGLA—OJTS. Let(g, p, < >) bean OSGLA. Put

V= 8-1

and
{X) Y, Z} = _"2[[X’ P(Y)]’ Z]
X, ¥ = <X—p(X), Y—p(Y),

for X, Y, Z&V. Then the triple (V, { }, { >)is an OJTS.

Results in Naitoh [11]. (A) Two constructions (I), (II) keep the equiva-
lence of each object and are the inverses of each other.

(B) Let (V, {}) be a non-degenerate JT.S and (g, p) a semi-simple SGLA
corresponding to (V, {}) in the way in Koecher [8]. Then the OJTS (V, {}, 28)
corresponds to the OSGLA (g, p, B|D).

ReEMARK. In the result (B), B is positive definite if and only if p is a Cartan
involution. In this case the non-degenerate JT'S (V, { }) is called compact.

Now we define specific OJTS’s, OSGLA’s, called “orthogonal Jordan
algebra”, “hermitian symmetric graded Lie algebra” respectively, and give
a construction (III) of the former into the latter.

Orthogonal Jordan algebra (abbreviated to OJA): A finite dimensional
non-associative algebra 4 over K is called Jordan algebra if its product satisfies

pey=yex, x:(y)=xt(xy)

for x, yA. Denote by T,, x4, K-endomorphisms of A4 defined by T,(y)
=x-y for yeA. An orthogonal Jordan algebra is a Jordan algebra 4 over R
with a non-degenerate symmetric bilinear form < >, on 4 satisfying
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(13) <Tx(y): 2>A = <J’, Tx(z)>A
for x, y, 2 A. We can associate an OJTS (V, {}, <) with an OJA (4,<>,)
by putting
V=4,
and

{x: Y, 2} = (Tx-y+[Tz’ Ty])(z)’ <x; J’> = <x, y>A

for x,y, V. If A has the unity e, the OJA is reproduced from the associated
OJTS by the relation: x-y={x, y, ¢}.

Two OJA’s (4, < >,), (4', { > y) are equivalent to each other if there exists
an algebra isomorphism & of 4 onto A’ such that

<8(x), 8(¥)>ar = <%, YD4

for x, yeA. If two OJA’s are equivalent to each other, the associated OJTS’s
are also equivalent to each other.

Hermitian symmetric graded Lie algebra (abbreviated to HSGLA):
It is an OSGLA (g, p, < >,) with a complex structure J, on p satisfying

(14) ad(T)[pe]J, = Jyead(D)|p, <Jy(X), J(Y), =<X, YD,

for Tet, X, Yep. Two HSGLA’s (g, p, J,, < 2), (8, P, Jys <Dy) are
equivalent to each other if there exists an isomorphism A of (g, p, < >p) onto

(8', p's D) such that
Jp/o)\, == 7\0\]p .

The construction (1II) of HSGLA’s from OJA’s: Let (4, < >,) be
an OJA with the unity ¢ and (V, { }, < D) the associated OJT'S. By the con-
struction (I) this OJTS induces an OSGLA (g, p, < >,). Put

Jp = ad((e, 0, e)lp.
Then the quadruple (g, p, /,, < 2;) is an HSGLA.
Results in Naitoh [11]. (C) The construction (III) keeps the equivalence
of each object and is injective.

2. Pseudo-riemannian symmetric R-spaces

Let E be a pseudo-euclidean space, i.e., a finite dimensional vector space
over R with a non-degenerate symmetric bilinear form < >z on it. Let f be
an isometric immersion of a pseudo-riemannian manifold M into E. Denote
by o the second fundamental form on M, and by V, D the Levi-Civita connec-
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tion of the tangent bundle T'M, the normal connection of the normal bundle
NDM respectively. The isometric immersion f is called parallel if V¥a=0, i.e.,

(2.1)  (VEa)Y, Z) = Dx(o(Y, Z))—0o(VxY, Z)—a(Y, V3 Z)=0

for vector fields X, Y, Z tangent to M. If fis an imbedding, the image f(M)
is called a parallel submanifold of E. Returning to an isometric immersion f,
we consider the following two conditions for each point p&M:

Cy(p): NM={c,(X,Y); X, YEeT,M}g,
C(p): There exists £§,&N,M such that Ag=—17,y,

where Ag, 17, denote the shape operator for &, the i_dentity map of T,M re-
spectively. Let (M, E') be a pair of a pseudo-euclidean space E and a com-
plete connected parallel submanifold M of E satisfying the conditions C,(p),
Cy(p) for every point p&M. Two such pairs (M, E), (M’, E') are equivalent
to each other if there exists an affine isometry ¢ of E onto E’ such that

(M) = M.
Now we consider specific OJTS’s (V, { }, < ) such that
(S) 1,eL,

and construct pairs (M, E) from them. Conversely, we also construct such
specific OJ T'S’s from pairs (M, E). Hereafter we call these pairs (M, E) r-pairs.

The construction (IV) of r-pairs from OJTS’s: Let (V, { }, <) be
an OJ TS with the condition (S) and (g, p, < },) an OSGLA constructed from
this OJTS. Let K be the connected Lie subgroup of GL(p) such that the
Lie algebra is ad () | pc gl(b), and put

v = (0, 1, 0)p.

Then the orbit M=K(v) is a pseudo-riemannian submanifold of the pseudo-
euclidean space E=(p, < >,). Moreover, it, together with the non-degenerate
metric < >p|M induced from < >p, is a pseudo-riemannian symmetric space,
which is associated with the symmetric pair (K, K;), where K= {k€K; k(v)=v}
(cf. Naitoh [11]). We call this space M=K(v) the pseudo-riemannian symmetric
R-space associated with (V, { }, < D).

Proposition 2.1. The pseudo-riemannian symmetric R-space M is a complete
connected parallel submanifold of E satisfying the conditions C\(p), Cy(p) for every
point pM. Moreover, the construction: (V, {}, < D)—(M, E) keeps the
equivalence of each object.

Proof. It has been proved in Naitoh ([11], Theorem 5.7, (1)) that M is
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a complete connected parallel submanifold. We show that M satisfies C,(p),
Cy(p) for pe M. Denote by f the map of K/K, into E defined by f(kK,)=k(v).
Since f is K-equivariant, it is sufficient to see that f satisfies C,(0), Cy(0) at
o0=eK,. Put

L=1Ing, m=1In(g-.Dg).

Then the Lie algebras of K, K, are isomorphic to f, f, respectively and the
canonical decomposition of ! associated with the symmetric pair (K, K,) is
given by !=f,@m (Naitoh [11]). Identifying T,(K/K,) with m, in the same
way as in Ferus ([3], Lemma 1), we have

22  fu@=[X0], ofX, ¥)=ad(X)ad(V)
for X, Yem. It follows that
TWM = [m, v] = (8., Pag)Np, NM=gNp= {o(X, Y); X, YEm},.

This implies the condition Cy(0). The condition Cy(0) also follows from (2.2).
The second claim is obvious. Q.E.D.

ReEMARK 2.2. A non-degenerate JTS always satisfies the condition (S)
(cf. Theorem 3.1). Particularly in the case when the JTS (¥, { }) is compact,
the pseudo-riemannian symmetric R-space associated with the OJTS (V, { },
2R) is, the so called, “riemannian symmetric R-space”.

The construction (V) of OJTS’s from r-pairs: Let (M, E) be an
r-pair and fix a point p€M. Denote by R the curvature tensor of M and by
o, A the second fundamental form, the shape operator on M respectively. Put

V=TM,

and
{Xv Y) Z} = R)(X) Y)Z+Avp(X,Y)Z’ <X’ Y> = <X» Y>E

for X, Y, ZeV.

Proposition 2.3. The triple (V, { }, < D) is an O]JTS satisfying the condi-
tion (S). Moreover the construction: (M, E)—(V, {}, < D) keeps the equiva-
lence of each object.

Proof. It has been proved in Naitoh ([11], § 6) that the triple (V, { },< D)
is an OJTS. We show that this OJTS satisfies the condition (S). Take the
normal vector & in the condition C,(p). By the condition Cy(p) it can
be written in the following form: £, =3,0,(X;, Y,) for some X;, Y;eV.
Hence we have
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L, = —Aso = —3 Aa,(x;,Y.-)
= —(1/2) 3, (L(X,, Y)+L(Y,, X)))eL.

Note that, since o is parallel, tensors R, A, ) are also parallel. Hence
all the OJTS’s constructed from points p&M are equivalent to each other.
Under this note the second claim is obvious. Q.E.D.

Now we will show that the above two constructions (IV), (V) are the in-
verse of each other. Firstly we study ‘“Gauss map” defined analogously to
riemannian cases.

Let E=E, , be a pseudo-euclidean space of signature (z, s), i.e., the signa-
ture of { >g is (7, s). Taking a base point we identify E with the associated
vector space. Fix integers k, ¢ such that 0<k=r, 0=7=<s, and denote by
G(k, r; t, s) the set of vector subspaces P of E such that the restrictions < Dg|P
of { >p to P are non-degenerate and have the signature (&, t). Let H be the
identity component of the Lie group of linear isomorphisms of E which leave
{ >g invariant. The Lie group H is semi-simple and acts transitively on the
set G(k, r; t, 5). Fix PGk, r; ¢, s) and put Hy={heH; h(P)=P}. Then
the pair (H, H,) is a symmetric pair. Let § be the Lie algebra of linear endo-
morphisms of E which are skew symmetric for { >z and put

b= {hsh; (P)CP}, u= {heh; H(P)CP},

where P* denotes the orthogonal compliment of P. 'Then ¥, ¥, are Lie algebras
of H, H, respectively and the canonical decomposition of § associated with the
symmetric pair (H, Hy) is given by Hh=hPu. The restriction B|u of the
Killing form B to u is non-degenerate. Hence the set G(k, r; #, 5s) has a
structure of pseudo-riemannian symmetric space, associated with the symmetric
pair (H, H,) and with the metric B|u at the origin P.

Denote by V€ the Levi-Civita connection of G(k, r; ¢, s). A submanifold
N of G(k, 7; t, s) is called totally geodesic if, for any vector fields X, Y tangent
to NN, the vector field V§Yis also tangent to N. This definition is equivalent
to the following condition: for every Q&N and every X & TN, the geodesic
in G(k, r; t, s) starting from Q with the initial vector X is contained in N near Q.
A totally geodesic submanifold has an affine connection by the restriction of V°.
A linear subspaces 8 in u is called a Lie triple system if it satisfies that [3, [8, 8]]
c8. Complete connected totally geodesic submanifolds N of G(k, 7; ¢, )
through P correspond one-to-one to Lie triple systems 8 of u by the relation:
T,N=38, and consequently they are also affine symmetric spaces. (See Koba-
yashi-Nomizu [7] for totally geodesic submanifolds).

Let M be a pseudo-riemannian manifold of signature (%, #) and f an iso-
metric immersion of M into E=E, ;. 'The Gauss map v, of f is a mapping of
M into G(k, r; t, s) defined by
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V(p) = f(T,M)

for pe M. Denote by ¢,(X), X=T,M, linear mappings of T,M into N,M
defined by

a)(X)(Y) = oy(X, Y)

for YeT,M. Let PEG(k,r;t,s). Identify the vector space u with the vector
space 1’ of linear mappings of P into P+ by the correspondence: uch—k|Pcu’.
Then, the tangent space T,G(k, 7; ¢, s) is also identified with the vector space
u’. Under this identification, linear mappings o,(X) can be regarded as
vectors in Ty.»G(k, r; ¢, 5). Similarly to riemannian cases, we have

(2.3) (79)x(X) = o(X),

(24) (Vi) (Y) = VH(7)+ Y)—(V)x(VxY)
for vector fields X, Y of M. Thus, fis parallel if and only if 7, is connection-
preserving, i.e.,

(2.5) VE( ) Y) = (7)x(VxY) -

Lemma 2.4. Let M be a connected pseudo-riemannian manifold of signa-
ture (k, t) and f a parallel isometric immersion of M into E=E,,. Fix a point
pEM and put P=f(T,M). Then the subspace 3= {o,(X)cn'; X T,M} of
u is a Lie triple system. Let N be the complete connected totally geodesic sub-
manifold of G(k, r; t, s) corresponding to the Lie triple system 8. Then the image
YA M) is contained in N. If M is complete, the image 7 (M) coincides with N.

Proof. Denote by R, R™* the curvature tensors for the Levi-Civita connec-
tion, the normal connection respectively. For a linear mapping %2 of T,M
into N,M, k' denotes the linear mapping of N,M into T,M defined by

KH(E), YDr = <& MY )
for YeT,M. Since f is parallel, by the Gauss—Ricci equations of f, we have

R(X, Y) = o(X)'oa(Y)—o(¥)oo(X),
(2.6) R*(X, Y) = o(X)oo(Y)'—o(¥)ox(X)',
R(X, Y)oo(Z) = o(R(X, Y)Z)+o(Z)oR(X, Y)

for X, Y, Z&€T,M. Noting that, under the identification: ueu’,
[4, [B, C]] = (BoA!—AoB')oC—Co(B'oA—A'RB)
for 4, B, C €u’, we have

[(X), [o(Y), o(2)]] = o(R(Y, X)Z)
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for X, Y, Z€T,M by (2.6). It follows that [3, [8, 8]]C8.

Now we show that ¥ (M)CN. Let g be a point of M and combine g with
the point p by a broken geodesic g(f)=X3; g,(f) in M. Then, by (2.5), the curve
Y08(t)=X; ¥ sog,() is a broken geodesic in G(k, 7; ¢, 5) and the parallel transla-
tions of initial vectors of ¥,0g; to tangent vectors at the point 7,(p) are
contained in 8. Hence the complete totally geodesic submanifold IV contains
the broken geodesic 7 0g(¢), and particularly the point ¢. This implies that
VAM)CN.

Assume that M is complete. Note that 7,: M—>N is a submersion by
(2.5). Thus the image ¥ /(M) is an open submanifold of N. The complete-
ness of M also implies the completeness of 7 ,(M). Hence ¥/(M) is a con-
nected complete totally geodesic submanifold corresponding to the same Lie
triple system as N. It follows that v (M)=N. Q.E.D.

Lemma 2.5. Let f be a parallel isometric immersion of a complete pseudo-
riemannian manifold M into E. Let f be a parallel isometric immersion of a pseudo-
riemannian manifold M into E. Assume that there exist points pM, peM
such that

@2.7) ) =£8), fuT,M)=Ff(T3M),
and

(2.8) ol X, ¥) = 63X, 1)

for X, YET,M, X, YET;M such that f4(X)=1y(X), fu(V)=Ffu(¥). Then
the image f(M) is contained in the z'fnage f(M). Moreover, if M is complete, the
image f(M) coincides with the image f(M).

Proof. Let E=E, and denote by (%, #) the same signature of M and M.
Two Gauss maps 7, 74 satisfy

YD) =VHB) =P, (V)u(T,M) = (7))x(TsM) =8

for some PGk, r; ¢, s) and some 8Cu’ by (2.7), (2.8). Hence, by Lemma
2.4, there exists a unique complete connected totally geodesic submanifold N
of G(k, r; t, s) through P corresponding to the Lie triple system 8 such that
v(M)CN, 'Y}(M)CN. Without a loss of generality, we may assume that
M is simply connected. Put & =( f*;)“lo f+» Then, by (2.8) and Gauss
equations for f, f, @ is a linear isometry of T,M onto T,;]lAl which maps the
curvature tensor of M into that of M. Since M is a simply connected pseudo-
riemannian locally symmetric space and Mis a complete pseudo-riemannian
locally symmetric space, there exists a unique isometry y» of M into M such
that

\ll‘(?)‘—‘ﬁ, ‘P‘*ﬁzq}
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by Kobayashi-Nomizu ([7], Chapter VI, §§6, 7). Then v, voyr are connec-
tion-preserving mappings of M into the affine symmetric space N by (2.5)
and satisfy that (7,)s,=(77°Vr)4, by (2.8). Again, by the Kobayashi-Nomizu’s
argument, we have

(2.9) V= 'YfO\P‘ .

From this it follows that f*q(TqM=f*¢(q)(T¢(q)M) and thus N, M= Nq,(q)M
for g€ M. Define a bundle map ¥ over v» of NM onto NM by the parallel
translation of vectors with respect to the canonical connection of E. 'Then
YV preserves the fibre metrics and, by (2.9), preserves the second fundamental
forms, i.e.,

«I"N(GQ(X’ Y)) = &‘P(q)(‘l"*Xy ‘l"*Y)

forge M, X, YT, M. Since the normal connections of NM, N. M are induced
from the canonical connection of the universal normal bundle on G(%, 7; ¢, s)
(cf. Kobayashi-Nomizu [7]), Y»" also preserves the normal connections. De-
note by f~'TE, f'TE the pull-backs of the tangent bundle TE by f, f respec-
tively. Then we have the canonical identifications:

TM@®NM = f'TE = MXE, TM®NM=f'TE= MxE.

Along the proof of the rigidity theorem in Szczarba [17] there exists he H
such that, under these identifications, the mapping vr@ByY: TMHNM —TM
@NM is identified with the mapping X k: MXxE— MxE. Then, by the
condition that f*l,zf*px[r*,, we have (Y Xh)(pxX)=pxX for XEE and
thus A=1g. It follows that f*=f*ow*. Since M is connected, there exists
c€ E such that f:fm[r—l—c. The condition (2.7) implies that fzfm]f. Hence

it follows that f(M)Cf(M). )
Assume that M is complete. Then we also have f(M)c f(M) by the above
result. Hence it follows that f(M)=f(M). QE.D.

RemaARK. Lemma 2.4 was proved in Vilms [19] and Lemma 2.5 in Ferus
[2] for the riemannian cases. The proof of Lemma 2.5 is along the Ferus’
argument.

Theorem 2.6. Two constructions (IV), (V) are the inverses of each other.

Proof. (a) Let (M, E) be an r-pair. Denote by (V, { },< D) the OJTS
constructed from the 7-pair (M, E) and, moreover, by (M, E’):(K(v), (1< D)
the r-pair constructed from the OJ TS (V, { },< >). We show that two r-pairs
(M, E), (M, 1*3') are equivalent to each other. Fix pe M and identify the
associated vector space of E with T,MPN,M. Let &, be the normal vector in
the condition Cy(p). Define an affine mapping ¢ of E onto E by
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H(X+E+H(p—E)) = (—X, 4p, X)

for XeT,M, = N,M. Note that 24;=73;{L(uj, v;)+ L(v;, u;)} for E=
2jo(uj v;)EN,M. Then, from the definition of < >,, it follows that ¢ is
an isometry. Moreover the mapping ¢ satisfies

d(p) =2, Su(T,M)=T.M, 6(px(X), ps(V)) = bx(os(X, ¥))

for X, YET,M. The first equality is obvious by the condition C,(p) and
the third equahty is calculated by (2.2). Hence two submanifolds ¢>(1\4), M
of E satisfy the assumptions of Lemma 2.5. It follows that $(M)=M. This
implies that (M, E), (M, E‘) are equivalent to each other.

(b) Let (V, { }, < >) be an OJTS satisfying the condition (S). Denote
by (M, E) (K(®), (b, < >y)) the r-pair constructed from this O]TS and, more-
over, by (V', { }', < >') the OJTS constructed from the r-pair (M E) Define
a linear mapping & of V onto V'’ by

8(x) = (x, 0, x)

A

for x€V. Obviously & is an isometry. Calculating the shape operator A
of M by using (2.2), we have

Aza.5C = (2L 3)+L(y, )2, 0, —(1/2) (L(x, »)+L(y, %))2)

for A=(x, 0, —x), B=(y, 0, —y), C=(z, 0, —2)& T, M. Hence, by the Gauss
equation of M, it follows that

{8(%), 8(»), 82}’ = As,a,5,C+As,8,00A—As 2,08
= 8({3": Y, z}) .

This implies that two OJTS’s (V, { }, < >), (V', {}, <)) are equivalent
to each other. Q.E.D.

ReMaRk 2.7. (1) Consider the conditions Cy(p), Cy(p) for a pair (M, E).
Note that, to construct the OJTS from (M, E), it is sufficient to satisfy the
conditions for some point. Moreover, note that the assumption of Lemma
2.5 is a condition for one point. Hence, by Theorem 2.6, (a), the term ‘“‘for
every point” in the conditions for (M, E) can be rewritten into the term ‘“for
some point”.

(2) Let (M, E) be an r-pair. Fix a point p& M and let &, be the normal
vector in the condition Cy(p). Put o=p—&,E. By Theorem 2.6, (a), the
function: M =g—<{g—o0, g—opg=R is constant. Denote by ¢ the constant
and put H(c)={9<= E; {g—0, g—0D>g=c}. If ¢=0, the submanifold M is con-
tained in the null cone H(0) of E.

Assume that ¢=0. Then H(c) containing M is a pseudo-riemannian
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hypersurface of E. Conversely let M be a complete connected parallel sub-
manifold of E satisfying the condition C)(p) for some pe=M and contained in

H(c) (¢=#0) centered at o€ E. Since ¢#0, £,=p—o is a normal vector of H(c)
and thus of M. Note that the shape operator A7 of H(c) is given by

(2.11) A{(X) = —(1fe)& E>6X

for XeT,H(c), EEN,H(c). Then we have Ay =Af|T,M=—1;,, This
implies that M satisfies the condition C,(p). Hence the classification of com-
plete connected parallel submanifolds of E satisfying C,(p) for some p and
contained in H(c), ¢=#+0, is reduced to that of OJTS’s satisfying (S) and
v, v>p=c. Particularly, in riemannian cases, the classification gives that of
complete connected strongly full parallel submanifolds of a euclidean sphere
(cf. Ferus [3], Takeuchi [18]).

A pseudo-hermitian space, by definition, is a pseudo-euclidean space E
with an almost complex structure J satisfying that

<J@), J(9)>e = <% y2x

for x, yeE. A pseudo-riemannian submanifold M of a pseudo-hermitian
space H=(E; ]) is called totally real if J(TM)CNM. Consider pairs (M, H)
of pseudo-hermitian spaces H and (dim HJ2)-dimensional complete connected
totally real parallel submanifolds M of H satisfying the conditions Cy(p), Cix(p)
for every peM. We call such pairs (M, H) h-pairs. T'wo h-pairs (M, H),
(M’', H') are equivalent to each other if there exists a holomorphic isometry
¢ of H onto H' such that

(M) = M'.

Now we will give a one-to-one correspondence between A-pairs and OJA’s
with unity. The correspondence is a special case of the constructions (IV),

).

The construction (VI) of h-pairs from OJA’s: Let (4,< >,) be an
OJA with the unity e. Denote by (V, {}, < D) the OJTS associated with
(4, < >4). Then, since L(e, )=T,=1,, this OJ TS satisfies the condition (S).
Let (8, p, Jp» < >y) be the HSGLA constructed from the OJA (4, < >,) and
put

M=K(V), H=(p,Jp’< >p)

Proposition 2.8. The pseudo-riemannian symmetric R-space M is (dim H/2)-
dimensional and totally real in H. Moreover the construction: (4, < >,)—
(M, H) keeps the equivalence of each object.

Proof. Note that Ny,M={(0, T,, 0); x= A}. Then the first claim is
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obvious from the definition of J, (cf. Naitoh [11], Theorem 5.7, (2)). The
second claim is obvious. Q.E.D.

The construction (VII) of OJA’s from h-pairs: Let (M, H) be an
h-pair and denote H=(E; J). Fix p&€M and define a product - on T,M by

XY =Jo,X, )
for X, YET,M. Denote by A this algebra and put  >,=< >z

Proposition 2.9. The pair (4, < >,) is an OJA and the vector E=— J(&,)
is the unity of A. Moreover the construction: (M, H)— (A, < >,) keeps the
equivalence of each object.

Proof. It has been proved in Naitoh ([11], Lemma 6.1) that the pair
(4, < >,) is an OJA. We show that the vector E is the unity of 4. Note that

(2.12) JouX, V)= —A;Y

for X, Y&T,M, since M is totally real (cf. Naitoh [9], Lemma 2.4). Thus
we have

X-BE=E-X=—Jo,(J§), X) = —Ag,(X) =

for X T,M by the condition C,(p). It follows that E is the unity of 4.
Note that, since o is parallel and M is totally real, the tensor Jo on M is
parallel with respect to the Levi—Civita connection of M (cf. Naitoh [10], Lem-
ma 1.2). Hence all the OJA’s constructed from points p&M are equivalent
to each other. Under this note the second claim is obvious. Q.E.D.

ReMARK 2.10. The OJTS associated with this OJA is the same as defined
in Proposition 2.3 (cf. Naitoh [11], Lemma 6.1).

Theorem 2.11. Two constructions (VI), (VII) are the inverses of each other.

Proof. (a) Let (4,< >,) be an OJA with unity. Denote by (4’, < Du)
the OJA constructed from (A4, < >,) by carrying out the constructions (VI),
(VII) succesitively. It has been proved in Naitoh ([11], Theorem 6.3, (2))
that two OJA’s are equivalent to each other.

(b) Let (M, H) be an k-pair and fix a point pM. Denote by (4, < >A)
the OJA constructed from the /4-pair and the point p and, moreover, by (M H )
the A-pair constructed from (4, < >,). We show that two h-pairs (M, H),
(M H ) are equivalent to each other. Let ¢ be the affine mapping of H onto
H defined in the proof of Theorem 2.6. Then ¢ is an isometry such that
S(M)=M. Note that
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Px(X+JY) = (=X, — Ty, X)

for X, YEeT,M by (2.12). Then it follows that ¢y J=] o¢, from the de-

finitionof J,. Hence two h-pairs (M, H), (M, H ) are equivalent to each other.
Q.E.D.

ReEMARK 2.12. Theorem 6.3 in Naitoh [11] is a special case of Theorem
2.11.

3. Minimal pseudo-riemannian symmetric R-spaces

Let M, M be pseudo-riemannian manifolds and f an isometric immersion
of M into M. Denote by { >, the metric on M and let (7, s) be the signature
of M. Let {e, ¢, €., €.} be an orthonormal basis of T,M, i.e.,
e eou=—1, <e;, epu=1, <e,, e,py=0 for 1=i=<r, 14+7r=j=<r+s, 1=a=+d
<r-+s. The mean curvature vector n, at p& M is defined by

('+s)7ip = -0 o-,(e,-, ei)+2;::+l o'p(ej) ej) ,

where o denotes the second fundamental form of f. The mean curvature
vector is independent of the choice of an orthonormal basis of T,M. The
isometric immersion f is called minimal if %,=0 for all p M. Moreover,
if f.is an imbedding, the image f(M) is also called a minimal submanifold of M.

Theorem 3.1.%)  Non-degenerate JTS’s satisfy the condition (S). Fix
a real number ¢=+0 and let (V, { }, < D) be an OJTS satisfying the condition (S).
Then the pseudo-riemannian symmetric R-space associated with the OJTS is a
minimal submanifold of H(c) centered at the origin of the vector space p if and
only if (V, { }) is non-degenerate and { >=(c/dim V)-8, where 3 denotes the trace

form of (V, { }).

Proof. Let (V, {}, < >) be an OJTS with trace form B and / a linear
endomorphism of V' defined by B(x, y)=<I(x), y> for x, y& V. Then we have

(3.1) = =311 Lie, e;)+ 235541 Liej, e;)

where {e,, **-, €,, €,41, ***, €,,,} denotes an orthonormal basis of V" for the metric
{ > of signature (r, s) (cf. Naitoh [11], (7.1)). Assume that the OJTS
(V, { },< D) satisfies the condition (S) and that the pseudo-riemannian sym-
metric R-space M= K(v) associated with the OJTS is contained in H(¢)
(¢0) centered at the origin of the vector space . Denote by 4, %, the mean
curvature vectors at &M of the inclusions: M—>p, M—H (€) respectively.

(*) C. Blomstrom has proved this theorem using the Lie algebra theory in: Symmetric
R-spaces with indefinite metric, Abstracts of Amer. Math. Soc., 4 (1983), No. 4, 83T-53-
246.
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Then we have

(3.2) By = py—(1/¢)-v
by (2.11) and, on the other hand, we have
(3.3) (dim V)%, = (0, /, 0)

by (2.2), (3.1). Note that the inclusion: M-y is K-equivariant. Then,
by (3.2), (3.3), M is a minimal submanifold of H(Z) if and only if I=(dim V/&)-1,.

Now we show the first claim. Assume that (V, {}) is non-degenerate
and consider the OJTS (V, { }, B). Then, since I=1,, we have 1,€L by
(3.1). Hence this JT'S satisfies the condition (S).

Next we show the second claim. Assume that (V, { }) is non-degenerate
and put (V, { },< D)=, {}, (¢/dim V)-B). Then, since I=(dim V/c)-1,,
it follows that <Ii, vp,=c by (3.1) and thus MzK(v)CH(c). Moreover, by
the above note, M is a minimal submanifold of H(c). The converse is obvious
by the above note. Q.E.D.

Remark 3.1. Theorem 3.1 implies that the classification of complete
connected parallel submanifolds M of FE satisfying the condition C(p) for every
PEM and being minimal in H(c), ¢=0, is reduced to that of non-degenerate
JTS’s. Ferus [4] has proved the theorem for riemannian cases.

ReMARk 3.2. Two examples of pseudo-riemannian symmetric R-spaces
which are not minimal have been given in Naitoh [11]. One is the case when
the Lie algebra g is semi-simple, and the other is the case when the Lie algebra
g is not reductive.

Now we study OSGLA’s and pseudo-riemannian symmetric R-spaces
associated with non-degenerate OJTS’s (V, {}, (¢/dim V)-RB), ¢+=0. A JTS
(V, {}) over K is called simple if all the subspaces W of V satisfying that
W, V,VycW, {V,W, V}cW, {V,V, W}CW are only {0} and V. Ob-
viously simple JTS’s are non-degenerate and it is known that any non-
degenerate JTS is decomposed into the finite sum of simple JT'S’s uniquely up
to an order. Return to the case when K=R. Let (V, { }) be a non-degenerate
JTS and fix a real number ¢=0. Suppose that the JT'S is decomposed into
the sum of simple JTS’s (V;, {},), 1=j=<k, and denote by B, B; the trace
forms of (V,1}), (Vj, { };) respectively. Put ¢;=(dim V;/dim V)c. Then
the OJTS (V, {}, (c/dim V)-B) is decomposed into the sum of the OJTS’s
(Vi { }» (cj/dim V). B)), 1=j=<k. Hence objects associated with (V, {},
(¢/dim V)-B) is also decomposed into the sum of objects associated with
(Vi {}j (c;/dim V})-B;), 1=j=<k. Particularly, it follows that

(3.4) (M, E) = (M, E)X - X (M, B,



750 H. Narton

where (M E’),( ZW,», EA'j) denote the pseudo-riemannian symmetric R-spaces
associated with OJTS’s (V, { }, (¢/dim V)-B), (V;, { }}, (c;/dim V;)-RB;) re-
spectively. Next we note that, in the construction: OJTS—-OSGLA, SGLA’s
(8, p) are independent of changing the metrics of OJTS’s. Hence homo-
geneous spaces K/K, associated with pseudo-riemannian symmetric R-spaces
are also independent of the metrics. Under these notes, our aim is to list up
objects g, t, ¥, associated with all simple JTS’s.

Now Neher has classified all simple JT'S’s over R by constructing new
JTS’s from compact simple JT'S’s in the following two ways: one is the “‘com-
plexification”, and another is the “modification”.

(a) Complexification. Let (V, { }) be a JTS over R. Put V¢=CQV
and extend the R-trilinear mapping { } into a C-trilinear mapping { }¢:
VExXVEexVC—VC Then the pair (V¢ {}€)is a JTS over C and thus
can be regarded as a JTS over R naturally. We call this JTS the complex-
ification of (V, { }).

(b) Modification. Let (V, { }) be a JTS over R and a an involutive
automorphism of the JTS. Denote by V.. the +1-eigenspaces of o respectively.
Put

Ve=v.ov—-1v.cVe {}*={ t°|V°.

Then the pair (V*, { }*) is a JTS over R. We call this JTS the modification
of (V, {})bya.

Results in Neher [12]. (1) All simple JT'S’s over R are realized as
all complexifications and modifications of compact simple JTS’s.

(2) Two complexifications of compact simple JT'S’s are equivalent to each
other if and only if the original JT'S’s are so.

(3) Two modifications of compact simple JT.S’s are equivalent to each other
if and only if there exists an isomorphism between the original JT.S’s through which
the involutive automorphisms are conjugate to each other.

(4) Complexifications and modifications of compact simple JT'S’s are never
equivalent to each other.

Moreover, in Neher [13], [14], all involutive automorphisms on compact
simple JTS’s have been given explicitly up to conjugacy. To list up our ob-
jects we will use his explicit results and the following three lemmas.

Let (V, { }) be a non-degenerate JT'S over R and (V°, { }°) the com-
plexification. Denote by (g8, p), (g%, p€) their semi-simple SGLA’s con-
structed from (V, { }), (V¢ { }€) respectively.

Lemma 3.3. The Lie algebra g€ is the complexification of § and the

involute automorphism p€ is the C-linear extension of p to g. Moreover vC=v.
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Hence Lie algebras (§€)u, p=0, +1, 1€, (), are the complexifications of @,
u=0, 41, ¥, L, respectively.

Let (V*, { }) be the modification of (V, { }) by an involutive automor-
phism a. Denote by (g%, p*) the semi-simple SGLA constructed from (V*,
{}*). Note that (V¢ { }€) is also the complexification of (V*, { }*). For an
automorphism & of (V, { }) denote by § an automorphism of (g, p) defined by

&((%, f, 3)) = (8(), 8of 087", 3())

for (x, f, y)Eg,and by &° the C-linear extension of & to g°. Denote by 7 the
conjugation of g€ with respect to the real form g.

Lemma 3.4. The conjugation v of g€ with respect to @* is given by
7*=qC7 and, moreover, p®=p€|g®, v®*=v. Hence the restrictions of v to (g€,
p=0, +1, ¢, (¥€), are comjugations with respect to (§*)u, =0, +1, %, (%),
respectively.

Proof. Note that [@®, 7]=0. Then it follows easily that @Cor is a con-
jugation of g°. Denote by L, the -+1-eigenspaces of the involutive auto-
morphism: L& f—aofoacL. Regard L, L* as subalgebras of L naturally.
Then we can see easily that L®=L,®+/—1L.. Under this note it follows
that g*={X g®; aor(X)=X}. This implies that &or is a conjugation
with respect to g*.

The other claims are obvious by Lemma 3.3. Q.E.D.

A JTS (V, { }) over R is called hermitian if there exists a complex struc-
ture J on V satisfying that

Jix, y, 2} = {Jx, 9, 2} = —{x, Jy, 2} = {x, 9, J2}
for x, y, s€V. A conjugation of a hermitian JTS (V, { }) is, by definition,
an involutive automorphism & of the JTS such that §oJ+ Jod=0. Put
V= {xeV;8x)=x}, {}s=1{}IVs.

This JTS (Vy, { },) is called a real form of (V, { }) defined by the conjuga-
tion §. A real form of a hermitian JT'S is non-degenerate if and only if so is
the original JTS.

Let (V, {}) be a non-degenerate hermitian JTS and (V,, { };) a real
form of the JT'S defined by a conjugation §. Note that

(3-5) (Ls)°(x, y) = L(x, 8(»))

for », yeV and thus (L;)®=L. For f&L, denote by f*, f*® the transposed
maps of f with respect to the trace forms of (V, { }), (Vs { }s) respectively.
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Then, by (3.5), we have
(3.6) f¥® = §of*o§.

Let (g, p), (85, ps) be the 'semi-simple SGLA’s constructed from (V, {}),
(Vs { }s) respectively. Note that (g;)°=g as linear spaces. Define an R-
linear mapping A of (g,)¢ onto g by

A(x, £, ) = (%, 1, 8(»))

for (x, f, y)=(g;)°. Then A is a Lie algebra isomorphism by (3.5), (3.6).
Let (V5)® { }5) be the modification of (V { };) by an involutive automor-
phism a of (V3, { },).

Lemma 3.5. The image A((85)") is given by
A((8,)") = {X €g; a%8(X) = X}

and, moreover, Ao(ps)*oA~'=380p|A((85)"), A((vs)*)=v. Hence the images
A((85)")r), =0, +1, A((%)"), A(((E:)*)o) are given by

A(((85)")n) = {X Egu; @°8(X) = X},
A(()°) = {X €g; a®08(X) = Sop(X) = X},
A(((]))0) = {X Egy; a®8(X) = Sop(X) = X} .

Proof. We show the first claim. Denote by = the conjugation of g¢
with respect to g;. Then, by Lemma 3.4, it follows that

A((85)") = {X €g; AcaoroA/(X) = X} .

Here, by easy calculations, we can see that AoToA~'=7, Ac@CoA~'=aC,
7=0, and thus Ao@CoroA~'=g%3. Moreover, by Lemma 3.4, (3.6), it is
verified that Ao(p;)"0A™'=80op on A((g;)*) and it is obvious by Lemma 3.4
that A((v,)*)=v.

The other claims are obvious. Q.E.D.

Now we start to list up our objects. Compact simple hermitian JTS’s
are devided into six types. They are denoted by notations: I, II, III, IV,
V, VI according to the classical ones. Compact simple JTS’s which are not
hermitian are realized as all real forms of compact simple hermitian JTS’s.

Let M(p, q; C) be the vector space of complex (p, g)-matrices and denote
by «(*)=%, v(¥)=+' the ordinary conjugation, transpose of * respectively. Put

)smﬁ%@=@fﬁs£m)

_—lﬁ-i

s, =,
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0 1 0 1
2p) = 2 I2p) = ( ").
sen=(_) o) wea=(]
Let gl(p; K) be the Lie algebra of square matrices of degree p with elements

in K. The Lie algebra gl(p; C) is identified with a subalgebra of gl(2p; R)

by the injection: X+\/—*1Y—>( X;;), X, Yegl(p; R). For a sub-

algebra g of gl(p; C), denote by § the image by this identification.
TYPEIL Put
V=MpqC), {X VY 2} =XVZ+ZV'X.

This compact simple hermitian JTS is called of type I,,, The trace form B
is given by

(L.a) B(X, Y) = (p+q) Trace XY*.

For SeM(p, p; C), T =M(q, q; C), denote by (S, T) a linear endomorphism
of V defined by (S, T)(2)=S8SZ+ZT for Z€V. Then we have

(Ib) L={S, T)eEnd V; Tr S =Tr T}, (S, T)* = (5, T%.

Let (g, p) be the SGLA constructed from (¥, { }). Then the Lie algebra g
is isomorphic to 8I(p-+¢; C) by the correspondence:

S (1/\/7))()‘

€ wenne(_ 2, oM

Under this correspondence, we have

(Ld) p«—»Xe_Xf,,,H(—(q/anq)-l,, 0 )

0 (plp+a9)-1,
Moreover, identifying g€ with éi( p+q; C)°cgl(2(p+q); C), we have

—(g/p+9)-1,

o LOETTE L @lerae, 0
7 roX- X, o ~ptarl,
(plp+9)1,

Now we give examples of how to decide our objects. By (I.d), Lemma
3.3, it follows that

(8, %, %) = (Bl(p+q; C), 3u(p+q), 3u(p)D3u(q)DR)
(8% 19, (¥%)) = (8l(p+q; C)DB8l(p+q; C), 8l(p+g; C), 3(p; C)D8l(g; C)DC).
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Let & be a conjugation of V defined by S(X) =X. Then, under the identifica-
tion (I.e), we have

8°(X) = S5(2p, p)XS(2q, q)
and thus, by (I.e),

8%7(X) = S(2p, p)XS(24, q)
for X E/ﬁ\I( p+¢; C)°. By Lemma 3.4, it follows that
(¢°, 1%, (F°)) = (BU(p+q; R)DSl(p+4¢; R), 8l(p+¢; R), 8l(p; R)Dsl(g; R)DR).

Suppose that p=q and let « be the involutive automorphism of V; defined by
a(X)=X*'. 'Then, under the identification (I.c), we have

3(X) = X, a%(X) = J(2p)X'](2p)
and thus, by (I.d),

a8(X) = J(2p)X'J(2p), op(X) = —X*
for X €8l(2p; C). By Lemma 3.5, it follows that
((85)% (£5)% ((25)")o) = (8u(p, P), 80*(2p), 80(p; C)).

Objects for other cases of classical types I~IV are also decided in this
way. For S&€M(p,p; C), TEM(q, q; C), denote by [S; T] a linear endomor-
phism of M(p, q; C) defined by [S; T)(Z2)=SZT.

Table I

0 8 t %o Remark

1y 3l(p+4¢;C) 3u(p+q) su(p)D3u(q) DR Ipq

_ aC 4 () -

_ Bl(p+(q szBC) sl(p-+q;C) Sl(pirc(fq);ﬂac)@c I5€

) s ts (8 -

: 81(2p; C) 8*(2p) 31(p; OBR Iy

— 81(2p; C) 51203 R) 51(p; OBR Iy
[S6.);S@R] | slp+qs0) | meTaTizho | e iNO Tse

. TR | weteR | "R | T real form
—djepsjeal| MGG | arept | OB R | Tana real form

2 8u(p, p)D2u(p, p) su(p,p) 8U(p;CYOR | Ipp, real form




Pseupo-RIEMANNIAN SYMMETRIC R-SPACES

Conjugation: 6=rx.
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a s Is (t5)o Remark
1pg 3(p+q; R) go(p+q) 3o(p)D3o(q) I3
— (85)€ ()¢ ((t))o —
- 8l(p+¢;C) #0(p+4q;C) | 30(p; C)D3o(g;C) 1€
a (8)* (t:)® ((£5)*)o -
v 3u(p, ) 30%(2p) 30(p; C) Lpy
—v 8u(p,p) 30(p,2) 80(p, C) Iss
(S S@m] | ap+qR) | PPTITZh ] SpDE I
—1J2p);J(29)] eu*(2p+2q) 30*(2p+29) 30*(2p)D30*(29) Ipp2
Conjugation: 8=—r[J(2); J29)].
@ 85 ts (ts)o Remark
1ps su*(2p+2q) ap(p+q) sp(p)D3p(q) Izp,20
— (85)¢ ()€ ((t)€)o —
- 81(2p+24;C) 3p(p+4¢;C) sp(p; C)Bsp(q; C) I35,2e€
a (5)® (ts)® ((¥5)%)o -
—olJ(2p);J(2p)] 3u(2p, 2p) 3p(2p; R) sp(p; C) I2p,2s
v[J(29);J(2p)] 3u(2p,2p) 8p(p, ) sp(p; C) Iop.20
—[S(Z(%qu A | 8@ R) ap(p+a;R) | 3p(p; R)Dap(a; R) 2,20
[%&’,]gfé{;e : a*(2p-+29) Bp(p+q—ij:_l2) sp(p ;x{d@e, N Ipza
Conjugation: 8=ro.
a 8 ts (t)o Remark
1py 8u(p, p) 3u(p)Dau(p)DR 3u(p) Ipy
- (85)€ ()¢ (€)% -
— 81(25; C) MO8 oC a(p; C) I,,C
a (8s)* (t)® ((t8)*)o -
v 31(2p; R) 3l(p; C)BR 3l(p; R) Iy
—0v s(2p; R) A R R al(p; R) I,
[S@.d); S | aup,p) kSR | mGe—d) Irs
—[S(2,5); S(®.5)] u(p,p) 8l(p; C)BR 3u(j,p—J) Iy
T | awdp) R 8u%(2p) Lipas
—ulJ(2p);J(2p)] au*(4p) 31(2p; C)DR 3u¥(2p) Iop,2p
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TYPE II. Let V'=0(p; C) be the vector spéce of skew symmetric complex
matrices of degree p and put

{X,Y,2y = —-XYZ-2YX.
This compact simple hermitian JTS is called of zype II,. The trace form 8
is given by
(II.a) B(X, Y) = (p—1) Trace XY*.
For SeM(p, p; C), put (S)=(S, ).
(ILb) L = {(S)€End V; S€sM(p, p; C)}, (S)*=(5).

Let (g, p) be the SGLA constructed from (V, { }). Let 30(2p; C) be the
Lie algebra of complex matrices X of degree 2p such that [(2p)X*'+ XI(2p)
=0.This is isomorphic to 80(2p; C). Then, the Lie algebra g is isomorphic
to 80(2p; C) by the correspondence:

& ) e

Then we have

S (1/\/7)X).

(L) ANV2)Y -8

Under this correspondence, we have

R N A
»
Moreover, identifying g€ with é_?)(Zp; C)°cgl(4p; C), we have
oo, [
(ILe) v e
ro XX, 0 —up,
(1/2)-1,
Put [S]=[S*; S] for S M(p, p; C).
TABLE II
0 g t t Remark
1y 30(2p; C) 30(2p) su(p)POR 11,
~ 8¢ te 1% -
— 30(2.0;3([3)2% .C) 80(2p;C) 3l(p; C)PC 11,c
5 gl 1 (8)o -
[S(®.] 80(2p; C) 80(27,2p—2j) 8u(j,p—)OR 11,
—[S(p.5)] 80(2p; C) 80*(2p) 8u(j,p—/)OR 11,
£ 80(p, p)D3o(p, p) 80(p, p) 81(p; RYOR 11,, real form
fLJ2p)] ao¥(4p)Dav*(4p) 30*(4p) 3u*(2p)DR | Ily, real form
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Conjugation: 0=r.

a 85 ts (¥8)o Remark
17y 3(p,) 30(p)Dio(p) 0(p) 11,
~ )¢ e ()% —
- 30(2p;C) 3o(p; C)P3o(p; C) ao(p; C) 11,6
a () (to)® () -

[S(,)] 30(2,) P08 1 seip—i) 11,
S (2, 2) (93 C) 30(j,p—) 1,
) W) | WCODIN2) | 0¥2p) 10y
~LJ@p)] 0%(4) #(2p;C) 80%(2p) 1L,

Conjugation: 0=r[J(2p)].

a 85 ts (t5)o Remark

1ps 30%(4p) 3u(2p)BR 3p(p) 11,,

— (8s)€ (ta)C ((t5)C)o —
C— 30(4p; C) 81(2p; C)®C 3p(p; C) I1,¢

a (85)* (ta)* ((f8)*)o —
IS5 .01 3o*(4p) 81(2j,2p—2j)®R 3p(j,p—J) 11,
—[S(.; 0.1 80*(4p) ¥ (2p)DR 3p(j,p—) ALz
[S2p,p)] 80(2p, 2p) 31(2p, RYOR 3p(p; R) 115,
—[S2p,)] 30(2p, 2p) 3u(p, P)OR 3p(p; R) 11,

TYPE III. Let V=S(p; C) be the vector space of complex symmetric
matrices of degree p and put

{X,Y, 2} =XYZ+2ZYX.

This compact simple hermitian JTS is called of zype III,. The trace form
B is given by

(IlLa) B(X, Y) = (p+1) Trace XY*.
Moreover we have
(IIL.b) L = {(S)€End V; S€M(p, p; C)}, S)* = (§’) .

Let (g, p) be the SGLA constructed from (V, { }). Then the Lie algebra g
is isomorphic to 8p(p; C) by the correspondence:
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TABLE III
s g t f Remark
1y 3p(p; C) 3p(p) 3u(p)®R 11,
— € tc (o -
— 3p(p; C)Dap(p; C) 8p(p; C) 31(p; O)BC I1,¢
g g8 s (1) —
[S(2.] 3p(p;C) 3p(j, p—7) 3u(j,p—J)OR 111,
—[S(,5] #p(p;C) 3p(p; R) au(j,p—j)OR 111,
x 3p(p; R)D3p(p; R) 3p(p; R) 3(p; RYDR | 111, real form
«[J(2p)] 3p(p, )BEP(P, P) 3p(p,2) 3u*(2p)OR 111, real form
Conjugation: 8=r.
a 85 ts (ts)o Remark
1yy 3p(p; R) 3u(2)BR 30(p) 111,
— (8s)¢ ()€ ((t5)€)o -
— 3p(p; C) 3l(p; C)BC 8o(p; C) I11,¢
a (8)* (ts)* ((t5)*)o -
[S(p:)] 3p(p; R) 3u(j,p—i)OR 30(j,p—1) I,
—[S(.] 3p(p; R) 8l(p; RYOR 80(j,p—J) 111,
LJ(2p) 3p(p, ) 3u(p, p)OR 80%(2p) I,
—[J2p)] 3p(p, ) 3u*(2p)DOR 30%(2p) 183 P9
Conjugation: d=x[J(2p)].
P g8 ts (ts)o Remark
lyy 3p(p, p) 3p(p)D3p(p) 3p(p) I,
- (85)€ (B)C ((15)C)o -
— 3p(2p; C) 3p(p; C)Dap(p; C) 3p(p; C) IL,,C
a (8)* (ts)* ((t)*)o —
S(p.43£,i)] 39(p,0) w20 1 a,—d) 1L,
—[S(#,7;0.0] 3p(p,p) 3p(p;C) 8p(j,p—5) 1z,
[S(2p,p)] 3p(2p; R) 3p(p;C) 3p(p; R) 111z,
—[S2p,p)] #(2p; R) 3p(p; R)D2p(p; R) #(p; R) I11,,
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(IILc) (X, (S), Y)«-»( § (1/‘/7)‘){).

~(V2)Y -8
Moreover g€ is identified with Q/:;(p, C)°cgl(4p, C). Under these correspond-

ences, we have the same relations (III.d), (IIl.e) as relations (II.d), (IL.e) re-
spectively.

TYPEIV. Put
V=2cC", {X,Y,Z} =2{XVZ+2Z'V)X—(X'Z)Y} .

This compact simple hermitian JTS is called of zype IV,. The trace form B
is given by

(IV.a) AX, ¥) = n(X'T),
and moreover we have
L= {S+a-1,€End V; S€80(n; C), acC},
(S+a-1,)* = (S*+a-1,).

Let (g, p) be the SGLA constructed from (V, { }). Let 80(n+1, 1; C) be
the Lie algebra of complex matrices X of degree n+2 such that S(n+2, n+1)X*
+XS(n+2, n+1)=0. This is isomorphic to 8o(n+2; C). Then, the Lie
algebra g is isomorphic to 8o(n+1, 1; C) by the correspondence:

0 —(X+Y)V\2 —a )
2

(IV.b) {

(IV.e) (X, S+al,, V) (X+Y)V2Z S (X=Y)v/

—a (X=-Yyv2Z 0

Under this correspondence, we have

00 —1
(IV.d) poX—>—X,vol 00 0]
—10 0

Moreover, identifying g¢ with B/L;(n%—l, 1; €)°cgl(2(n+2); C), we have
00 —1

oz, [ 9870

(IV.e) v e

0
0
0
T X - X, 0

0

00 —1[
00 0
—10 0

For S €M(n, n; C) denote by the same notation S a linear endomorphism
of C" defined by S(Z)=S-Z for Z=C™.
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TABLE IV
0 g - 7 R ¢ to Remal;k
1y 80(n+2;C) so(n-+2) 80(n)BR I,
— C , tc (1), —
. Oy | w20 %(n, C)DC 1V,
8 ) 1 (t8)o _
sd) | wm+2;0) | s(i+2m—j) | 80(i,n—)BR IV,
V=@ | s@n+2;0) s0*(2n+2) 8o*2n)OR Vs
wst) | GO a1, +1) | 80(G,n—)®R | IV, real form
Conjugation: 8=xS(n, ).
a o ts (ts)o Remark
17 soj+1,n—+1) | PUTHE. L ag@sotn—i) v,
— (8s)¢ (t5)C ((5)€)o -
- wnt2,0) | O | Vo IV.¢
a (a8)” (ts)® (') -
i | PO | HE, e
—V=U@n | s*Qa+2) so(n-+1;C) 80(n; C) IVau(ji =)

Now we consider exceptional types V, VI. In principle, objects in these
cases can be also listed up in the same way as in the classical cases. But we
use another way here. The objects g, , ¥, associated with compact simple
JTS’s of these types are listed up in [Kobayashi-Nagano [6]]. Hence we can
easily list up the objects g¢, ¢, (¥¢), associated with their complexifications
by Lemma 3.3. Next fix a compact simple JTS of these types. Then the
number of modifications of its JT'S is finite (Neher [14]). Let g% t° (%),
be the objects associated with the modification of its JTS by an involutive auto-
morphism «. Then g% 1% (%), are real forms of g¢, ¢, (£¢), respectively.
Moreover, we can easily see that Lie algebras g®, ("), are isomorphic to Lie
algebras g%, (£7%), respectively, where g=®, (£™®), denote objects associated
with the modification by the involutive automorphism .—a. Under these notes
we apply for pairs (g° ), (1%, (£*),) the Berger’s classification [1] of simple
symmetric spaces. We describe only results in the following tables V, VI.

RiMARK. In this occasion I would like to correct two errors in my papers
[9], [11] (Part I) about parallel submanifolds.
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(1) [9]: P 42717 submanifolds—Kahlerian or totally real submanifolds
P 435} 13 planer—Kihlerian or totally real planer.
(2) [11] (PartI): P 95111 (n+2)c, (n+2)c/(n+1)—3c, 3c/2.
These errors have no influence on contents of above papers.

TABLE V
g t ‘ to ‘ Remark
EgC E, 20(10)BR
8¢ e (), —
E¢CPEC E¢ 80(10; C)pC
8 B N -
E¢C E} 30(10)OR
E¢C E? 30*(10)OR
FsC E? 30(4, 6)PR
E¢C E3 30*(10)PR
E¢C E} 30(2,8)BR
EYDE} E} 30(5, 5)PR real form 1
EDES E¢ 30(1,9PR real form 2
Real form 1
85 ts (%s5)o Remark
E} gp(4) 3n(2)Dap(2)
(8s)€ (t)C ((13)C)o -
EeC #(4;C) 8(2; C)Da(2;C)
(88)* (ts)* ((8)®)o —
E} 3p(2,2) 3p(2)D2p(2)
E} 3p(2,2) 3p(2;C)
£} 8n(2,2) sp(1, 1)ban(1, 1)
B3 8(4; R) 8p(2; R)D3p(2; R)
Ej 3p(4; R) 8p(2;C)
] 8p(1,3) ap(1, 1)Dap(2)
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Real form 2
03 ts (15)o Remark
E# F, a0(9)
(83)¢ (ts)c ((t8)C)o —
EqC F,c 30(9;C)
(a)* (13)® ((t)*)o -
E4 F? 30(9)
E} F} 30(4, 5)
E4 F3 30(1,8)
TABLE VI
g t o Remark
E,C E, E¢PR
g¢ tc (t€)o -
E,CPHE,C E,C EChC
gl © (t8)o -
E.C E3 E¢DR
E,c E} EiDR
E,C Ez EI®R
E,c F} E}OR
E,c E3 EiDR
EJDE} E} EI®R real form 1
E3DE} E3 E{DR real form 2
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Real form 1
g3 Y5 (5o Remark
E} au(8) 3p(4)
(8p)€ ()¢ (t8)C)0 —
E,C 3(8;C) 3p(4;C)
(89)* (Y (()*)o -
E} 3u*(8) 3p(4)
E} 8u(4,4) 3p(4; R)
E; 31(8; R) 3p(4; R)
E} 3u(4,4) 8p(2,2)
E} 8u*(8) 8p(2,2)
E3 8u*(8) 8p(1,3)
E? 8u(2,6) 8p(1,3)
Real form 2
g3 ts (%s)o Remark
E3 E¢®R F,
(8p)€ ()¢ (YN -
E.C EcHC F¢
(€ (ts)* ((t8)®)o —
E3 E{DR F,
E} E¥BR Fi
E} EXDR F}
E3 E¥PR F?
E3} E{DR F?

763
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