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Introduction

We have given, in [3], the structure of right artinian rings satisfying the
following conditions: i) the Jacobson radical of a ring is square zero and
ii) every submodule of a direct sum of hollow (local) modules is also a direct
sum of hollow modules. The latter property cited above implies that every
maximal submodule of a direct sum of #z41-copies of a hollow module with
length ¢ contains a direct summand.

In this paper, we shall study this property for any right artinian ring, and
reproduce, in §1, the results similar to ones in [3] without the assumption
that the Jacobson radical is square zero. In §2 we shall give a characterization
of some rings in terms of the property above.

1 Property (**)

Let R be a ring with identity. In this paper, every R-module is a unitary
right R-module. Let M be an R-module. We shall denote the Jacobson
radical of M by J(M) and the radical of R by J or J(R), respectively. Through-
out this paper we assume that R is a right artinian (semi-perfect) ring and every
R-module M has the finite composition length, which we denote by |M|. If M
has a unique maximal submodule J(M), M is called hollow (local). In this
case M~eR[A for a primitive idempotent e and a right ideal 4 in eR.

Given a family N={N,}i., of (hollow) modules, we denote by D(XV) the

direct sum 2 @N,. If N;=N for a fixed module N, we indicate this by N,
We have studied in [3] the following property:

(**) Every maximal submodule of D(N) contains a non-zero direct summand
of D(N).

Since the above property is preserved by Morita equivalence, we may assume
that R is a basic ring. Hence, from now on, we assume that R is a right ar-
tinian and basic ring. Let N be a hollow module with finite length. We
put N=NJ/J(N), and S (=Sy)=Endi(N). Then A=Endg(N) is a division
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ring. We have the natural homomorphism ¢ of S into A. It is clear that
ker @=]J(S) alnd im @ is a subdivision ring of A, because |N|<<co. We put
im =Sy (=S). We assume D=D(N,, n)=3>DN;; D> BN,;D-- D> DNy,

where Ny~N,, and N L@N i if 737, Let M be a maximal submodule clf D.
Then MD J(D) and M=M]|J(D) is expressed as M=>1PM,, where M, is
7

a maximal submodule of g @®N,, for some 7 and M j=2k DN, for j=i. There-

fore, when we study the property (**), we may assume N,;~N, for all i. We
shall identify all Endg(N,) and denote them by A. Then D=D/J(D) is a A-
vector space and M contains a subspace M’ which is a maximal subspace of

%}"EBN ; for some & (n>3), (cf. [3] §2). Hence M contains a submodule M’
maximal in i‘; @N;. Thus we obtain the following:

Lemma 1. Let N={N}}_, be a family of hollow modules with finite lergth.
If D(N') satisfies (**) for a subfamily N'={N;}:., of N with k'>k>2, so does
D(N) (for the case k=1, see Theorem 6 below).

Since R is semi-perfect, N~eR/A for a primitive idempotent e and a right
ideal 4 in eR. Then A=eRefefe and Sy={x=eRe|xACA}. We sometimes
denote Sy by A(4).

We have defined a max. quasiprojective module in [2]. This is nothing
but A=S, in our case.

Theorem 1. Let N be a hollow module with |N| <<oco. Then the following
conditions are equivalent:
1) N is a max. quasiprojective.
2) N has the lifting property of simple modules modulo the radical (see
[1)).
3) N™ has the above property for n>2.
4) N satisfies (**).

Proof. It is clear from [1], [2], except 4).
1)e>4). This is clear from Theorem 2 below.

From Theorem 1 we are interested in case where A2Sy=S. We may
assume that A is a right S-vector space and we denote the dimension of A by

[A: S].

Theorem 2 ([3], Lemma 5). Let N, A, and S be as above. Then [A: S]
=k<oo if and only if N*+V satisfies (¥*), but N* does not.

We shall give a more general result than Theorem 2. Let N, and N, be
hollow modules with |N,| <|N,| <co. We assume N,~N,. We shall identify
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N, and N, and denote Endg(N,) by A. Then we have the natural mapping
@ of Homg(N,, N;) into A. Put im ¢=A(N, N,) which is a right S n,-Subspace
of A. We can express N;—eR/A; i=1,2. Then |4,|>|A4,| and Homg(V,, N,)
={xEeRe|xA,C A,}.

Theorem 2'. Let N, and N, be hollow modules with finite length (N,~N,).
If [AJA(Ny, Ny): Sy, )<k, D=N{*Y®N, satisfies (**). Conversely, if D satis-
fies (**) and |N,| > |N;| then [A|ANN, Ny): Sy,]<k.

Proof. We assume first |N,|>|N,|. We may assume N,=eR/A4; for
i=1,2. Put D=eR/4A,® -+ PeR/A,PeR[A,. Assume D satisfies (**).
Let {5, &, -**, 8,11} be any set of elements in A. We shall express every ele-
ment in D as (@,, @, ***, Gp11, G,1,), Where the a; are in eR and & is the residue
class of ; in eR/A. Take a,=(, 6, -, 6, 8,). A;=(0, &, 8, *+, B, &), ***, Aprs
=(d, **, 0, ¢, 5,.1). Let M be the submodule of D generated by {o;}:%l and
the elements in J(D). Then M is a maximal submodule of D. Put D=D/J(D)
DM=M|J(D). M contains a non-zero direct summand M, of D by (**).
We may assume that M, is indecomposable and hence cyclic. Let 8 be its
generator. Then B=a,y,-+a,y,+ *** + 11 Vi1+J, Where the y; are in eR and
jisin J(D). Since B¢ J(D), we may assume that the y; are in eRe and 3,30
(R is basic). Consider an epimorphism y» of eR onto ,GeR given by settmg
’\]/‘(") Br: r€eR. Put B=(@y,+71 €yitin s EVentians 1y1+82_')’z+
+ 84114117 4+2), Where the j, are in ¢], and put z=ey,+7,. Let x be in ker .
Then 2x=zex& A4, Hence x&(ze)"'4, and so |M,| > |BeR|=|eR/ker ¥r| >
|eR/(ze)"'A,| =|eR[A,|. Since |eR/A,| > |eR|A;| and M, is an indecomposa-
ble direct summand of D, |M,|<|eR/A,|. Hence lMll—leR/AQI, which
implies ker Yr=(2e)"'4,. Therefore (ey;+j;)(ze)'4, < 4, for i=2, -+, k+1
and (8, y1+ *** +8pe1Ver1Hirrz) (2€)7'4, S 4,.  Accordingly, ¢((ey,+],) (ze) D)
=yz'€A(4;) and @((8: )1+ *** + 81 Vert Tas2) (€)™ ) =8+8,y,27 1+ -
+-8p Ve ' EA(4,, 4)). Hence [AJA (4, A): A(4,)]<k. Conversely, we
assume that [A/A(4,, 4,): A(4;)]<k and M a maximal submodule of D. Then
M> J(D). Let z; be the projection of D onto the i-th component. If z;(M)
=0 for some j, M=§ @ON,DJ(N;). Hence we may assume 7, (M)=+0 for

all 2. Then M contains a basis {&,, &, ***, @,+,} as above. Since [AJA(4,, 4,):
A(A4,)] <k, there exists a set {7y, Jy, ***, o1} in A(4,) such that 336y, EA(4,,
A,). Hence M contains an element 8=2ct;y;=(¥, Fa ***5 Ft1s Zgiy,-), and
so M contains a direct summand of D by [3], Lemma 17. If we put N,=N,
in the theorem, then we have Theorem 2. Finally we assume |N,|<<|N,].
Then there are no epimorphisms of IV, onto NV,, and so A(V,, N;)=0. Hence
[AJA(N,, N,): Sy,]=[A: Sy,1<k. Therefore D(k+2) satisfies (**) by Theorem
2 and Lemma 1.
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The argument given in [3], §3 shows that the converse part in Theorem
2’ does not hold without the assumption |V,| > |V;]|.

Theorem 3. Let {N;}i..(t>2) be a set of hollow modules. Assume |N;|

=|N,|, N;~N, and [A: SN] k<oco for all i. Put D=N,"Y@N,*?P --- D

N0, where k+1=3)s;, and s;>1. Then D satisfies (**) if and only if N;
~N, for all 1.

Proof. If N;~N, for all 7, then D(N,, k+1) satisfies (**) by Theorem 2.
Conversely, assume the property above. Since #>2 and >1s,=k+1, s, <k
We shall first show that some two of {N;}i.; are isomorphic to each other.
According to Theorem 2 there exists a maximal submodule M; of N,“?, which
contains no non-zero direct summands of N,0. It is clear that M, is generated

by J(N,©?) and the set of elements {6,=(d, -, z, o, ., 8,)ENC}, where
the 8, are elements of eRe. Let {5, 5, -, 3;,} be a set of independent

elements of A over Sy, for i<t—1. We can assume N;=eR/4;. Let M be
kij

the submodule of D generated by {«;;=(5, -, é’: 0, +++y 8;;)}ia1.j=1, where k;;
R R 1+] and J(D). As in the proof of Theorem 2’, put B=(éyn
+j11, ) eyls,+]1s,a vty 8V~ i tsg=1 11y11+ +$tsg 1Y ese- 1+.7k+1) and assume
that the direct summand M, of D, and hence of M, is generated by 3. Then
M,=BR=ReR-+(M,N J(D))=ReR+J(M,)=ReR. Since Be](D), some y;; is
not in efe. Assume first that y;;=o for all i<t—1. Then M,SN,’, Let
7 and 7z;; be the projections of D onto M, and the jth component of N,¢?,
respectively. Since J,;%=o0 for some j, z;;(M;)+0. Hence, M, being isomor-
phic to some N,, M,~N,. Since y;;=o for i<t—1, 8=j+0, where jE
j(gl IGBN:‘(S"))’ 0=2>30;y,+(o, -+, 0, Jas e jk+1)EMogNt(s')- Hence M,=feR

is epimorphic to MF=60eR, and so |M,|>|M#|. Noting that z(M¥)=
n(M)=M, and M, is hollow, we know that »|M¥ is an epimorphism, and
hence #|M§ is an isomorphism. Therefore D= M¥@ker =, and so Mg
(EM,) is a direct summand of N,“?, which is a contradiction. Accordingly,
;50 for some i<t—1, say i=j=1. If y,,%0 for p=*1, m,(M,)=*0. Hence
N,~M,~N,. Assume y,,=o for all p%1 and all g. Then we have the situa-
tion similar to the proof of Theorem 2’, and obtain ¥,y €A(4,). Therefore
8uyutSuyi + +85, 31, F0, and so z,,(M,)*0, which means N,~M,~N,.
Thus we have shown that some two of {/V;}{., are isomorphic to each other.
Hence we can show the theorem by induction on 2.

From the proof above we have

Theorem 4. Let N, and N, be hollow modules with N,~N,. Assume
|N;|=|N,| and [A: Sy,]=k. Then N,~N, if and only if D(k+1)=N{P DN,
satisfies (**).
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Theorem 5. Let {N,._},‘.,l (t=2) be a set of hollow modules. Assume | Nj|
=|N,|, N;~N,, and [A: Sy]=k<oo. If NNW@N,®D -« BN, satisfies
(**), then some two of {N,};., are isomorphic to each other.

2 Direct sums of hollow modules with same length

We assume again that R is a right artinian ring.

Theorem 6. Let N be a set of representatives of the isomorphism classes
of hollow modules.  Then there holds the following:

1) Every N €N satisfics (**) if and only if R is semi-simple.

2) Every N\®N, (N,EN) satisfies (**) if and only if R is right serial.

Proof. 1) Let e be an arbitrary primitive idempotent in R. If (*¥) is
satisfied then eR is hollow and hence e/=0, which proves that R is semi-simple.

2) If R is right serial then, for any N N, N~¢R/A with a primitive idem-
potent e and a characteristic submodule 4 of eR. Hence A(4)=A, and there-
fore every N;@N, (N;=N) satisfies (**) by Theorem 2. Conversely, if every
N,®N, (N;EN) satisfies (**) then, by Theorems 2 and 4, A=A(4) and eR/A4
~eR/B for any primitive idempotent e and maximal submodules 4 and B in
eJ. Hence B=xA for some unit element x in eRe. In view of [3], Proposition
1, we may assume that J?=0. Then, since A=A(4), we have B=xA=A.
Therefore R is right serial.

Theorem 7. Let N’ be a set of hollow modules such that |N;|=|N;| and
N,~N; for all N;, N;,EN'. Then all N®N,®N; satisfy (**), but not all
N,®N, (N;eN’), if and only if N’ satisfies either

a) all N in N’ are isomorphic to each other and [A: Sy]=2, or

b) A=Sy for all NEN’ and N’ contains excctly two isomorphism classes.

Proof. This is immediate from Lemma 1 and Theorems 3, 4 and 5.

Theorem 8. Let N’ be as in Theorem 7. Then all N;®ON,DN,DN,
satisfy (**), but not all N\®N,DN; (N;EN’), if and only if N’ satisfies one of
the following:

a) All N in N’ are isomorphic to each other and [A: Sy]=3.

b) There are no N in N' such that [A:Sy]=3, and if I=1 or 2 then N’
contains exactly one isomorphism class of N such that [A: Sy]=L

c) A=S, for all NEN’ and N’ contains exactly three isomorphism classes.

Proof. This is also easy by Lemma 1 and Theorems 3, 4 and 5.
The following example will illustrate what Theorem 8 intends to expose.

Example 1. Let # be a positive integer. Let % be a field, and x an in-
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determinate. Put L=k(x) and K;=k(x'). Considering L as a K,-vector
space, for any hyper-subspaces V" and V'’ in L we can show directly that {x&L
|xV S V}=K,; and yV=V" for some y in L. Put

n n, N3
LL - L L L L v L -
K;

0

" 7
where i,%1, if p#q. Then eujz%n_‘zp: ©Ly, where L,,=(0, 0, -, \1\4/, 0, -+),
9=1
i=§j n;+q+1, and L, AL, if (p, 9)=F(p’, ¢'). Hence, every maximal sub-
iz ;

7
module in e,, ] is of the form 4,,=(0, L, -+, L, ?//, L, --+), where V is a hyper-
subspace of L over K;. Further, 4,,=e,ye,A}, for some y in L and A(4,,)
=K;,. Therefore, for each i there exist exactly #; non-isomorphic classes
of maximal submodules NV; in e, J such that [A: A(N;)]=i;.

Theorem 9. Let R be a commutative and locol artinian ring and let N
be a set of representatives of the isomorphism classes of serial modules with length
two. In case R|] is infinite, if there exists a natural number n such that all N,
DN, D - DN, (N;EN) satisfy (**) then R is a serial ring, and conversely.
In case R[] is finite, there exists a natural number n such that all NN, P -
@ N, satisfy (**).

Proof. Let K=R/] and ]/]zzi @ A; with simple K-modules 4;. If

K is infinite, then 4,4, contains infinitely many submodules isomorphic to
A,. Hence N is infinite provided m>2. Therefore J/J?=A, if and only if
there exists a natural number # such that all N;®N,P -+ N, (N,;EN) satisfy
(**), and hence by [3], Proposition 1, if and only if R is serial. If K is finite,
then J/J? is also finite. Hence N contains m modules, and therefore all N,
DN, D -+ DN, satisfy (**).

Similarly, we can prove

Theorem 10. Let R be a local algebra of finite dimension over an algebra-
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ically closed field. Let N be a representative set of the isomorphism classes of
serial modules with length two. Then there exists a natural number n such that
all Ny®N,® -+ @ N, (N,EN) satisfy (**) if and only if R is right serial.

The author would like to express his hearty thanks to the referee who
was patient to make up the original manuscript understandable.
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