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1. Introduction. Asymptotic sufficiency of maximum likelihood (m.L)
estimator in regular cases has been studied by many authors (see Wald [17],
LeCam [2], Pfanzagl [12], Michel [8], Suzuki [14], [15], and so on).

In [6], Matsuda showed that for k& N={1, 2, ---} a statistic T, ,=(T,,
GP(2,, T,), -+, G¥(z,, T,)) is asymptotically sufficient up to order O(n~*?).
Here {7,} is a sequence of asymptotic m.l. estimators and G{"(z,, ) denotes
the m-th derivative relative to @ of the log-likelihood function. In the case
k=1, T, , means T,.

The purpose of this paper is to investigate asymptotic sufficiency of a
statistic constructed by m.l. estimators in the following cases. Let x,, -+, x,
be independent and identically distributed random variables with common
density p(x—8), —co<<x, << oo, where # is an unknown translation parameter
and p(x) is uniformly continuous and positive only on the interval (0, ). We
shall consider here two cases.

Case (i): p(x)~ax  as x— 40, where a>0.

Case (ii): p(x)~ax'® as x— 40, where a, 8>0.

It is assumed that in Case (i) Fisher’s information number is infinite. Let
é,, denote m.l. estimator of @ for the sample size n. In this case, Takeuchi

[16] and Woodroofe [20] proved the asymptotic normality of ~/ % anlogn ((9,,—0)

and the speed of convergence to the standard normal distribution was given
by Matsuda [4]. Moreover, it was shown by. Takeuchi [16] and Weiss and
Wolfowitz [19] that 0, is an asymptotically efficient estimator of 8.

In Case (ii), it is well known that if Fisher’s information number ] is finite,
then the distribution of v/ Jn (6,—6) converges weakly to the standard normal
distribution. The order of convergence to normality is o(r™/?) for every »<<B3
if =1 and O(n~"%) if 8>1 (see Matsuda [3] and cf. also Pfanzagl [11]).

In both cases, Mita [9] showed that m.l. estimator is asymptotically suffi-
cient up to order o(1). For n, ke N define 8, ,—=(4,, GP(z,,8,), -+, G¥(z,, 4.y,
where é,,,l means é,,. We shall show that in Case (i) the statistic é,,’,, is
asymptotically sufficient up to order o((log #)™*) for every v<(k+1)/(k+3)
and that in Case (ii) é,,.,, is asymptotically sufficient up to order o(n~") for every
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v< 2—(1%%_—_’1_)35 if B<k(k-+3) and is asymptotically sufficient up to order O(n*?%)
if B> k(k+3).

In Section 2 we introduce the results of von Bahr and Esseen [1] and Nag-
aev [10] which are useful to estimate probabilities of deviations for sums of
independent and identically distributed random variables with a restricted
moment. Section 3 is devoted to the problem of asymptotic sufficiency in
Case (i) and Section 4 to the one in Case (ii).

2. Probabilities of deviations. Let V), ---, Y, be a sequence of random
variables (r.v.’s) and put szi} Y, 1=m=n. Using the elementary inequality

ARRIES ) A
it follows from Markov’s inequality that for x>0
2.1 P{|S,|zx} <2 DNE| Y|, r<1.
If the r.v.’s satisfy the relations
2.2) E(Y,1S,)=0 as. 1=m=<n—-1,
then von Bahr and Esseen [1] showed that
(2.3) E|S,I'S2E|Y,l",  1=r<2.

The condition (2.2) is fulfilled if the r.v.’s are independent and have zero means.
In this case, (2.3) together with Markov’s inequality implies the following
inequality

(2.4) P{|S,|zx} =<2 E| Y, 1=r=2,

for x>0.

Let V), -+, Y, be a sequence of identically distributed independent r.v.’s
and E(Y;)=0, E(Y?=1. In [10], Nagaev proved the following theorem (cf.
Lemma in Michel [8]).

Theorem 2.1. If§,=E|Y;|"<<co, r>2, then
(2.5) P{|S,|>x}<cEmnx"

4 ,\/ 1 n2-1 0
for x> nmax[ogl—cr—f:, ],
where K,=1-+(r-+1)"*2exp(—r) and c is an absolute constant depending only on r.

ReMARK 1. It is obvious that Theorem 2.1 remains valid even if E(Y,?)=0.
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As a consequence of Theorem 2.1 we obtain a result on probabilities of
moderate deviations: If £,<<co, r>2, then there is a positive constant ¢ such
that

P{ I Snl >C\/m} == 0(”"’(""2)/2) .

It is remarked that Theorem 4 in Michel [7] implies the above result under
the same condition and Lemma 1 in Pfanzagl [13] gives a uniform version of
this result when r=3.

3. Asymptotic sufficiency: Case (i). For =R, let P, be a prob-
ability measure on the Borel real line (R, ). It is assumed that every P, is
absolutely continuous with respect to the Lebesgue measure x on R and dP,/
du=p(x—80). Foreach ne N={l, 2, ---}, let (R", B") be the Cartesian product
of n copies of (R, B) and P, 4 be the product measure of # copies of P,. Fur-
thermore, let u, denote the product measure of # copies of u and set p,(z,, 6)
=dP, ¢/dp, for 0= R and z,=(x,, -+, x,)ER".

Let % be a positive integer equal to or greater than 2. We shall impose the
following Condition A4, on p(x).

Condition 4,

(i) p(x) is a uniformly continuous density which vanishes on (— oo, 0)
and is positive on (0, o).

(ii) p(x) is (k+1)-times continuously differentiable on (0, o).

Let g(x)=log p(x) for x>0 and g™(x) be the m-th derivative of g(x).

(iif) For some a&(0, o) and v (0, o)

() =ax-HO(), gD(x)=x"+-O(x"1), g(x) = —x~*-+O(x"?),

g9(x)=0(x7%) and g¢V(x)=0(x"*1) as x— +0.

(iv) For every t=0, there exists >0 such that

[ 1getn 1 pe) du<oo
(v) For some M>0
[ 169 1p(x) dp<co

(vi) For every a>0, there exist >0 and >0 such that

@ [“sup [g(a-+0) 1+"p(s) d<

(b) S:,Slllsps | g®(x+u)| p(x) dp<oo ,

(c) Swsup Ig(k+1)(x—{—u) | p(x) du<oo .
al*1<8
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Let M,=min(x,, ---, x,) and G (2, t)——-z”}g(x,-—t) for t<M,. Condition
i=1
(1) insures that m.l. estimators of @ for the sample size z exist in the interval

(—oo, M,). Let {0,; nEN} be a sequence of m.l. estimators. Woodroofe
[20] remarked that condition (i) and

[, —e p(9) du<eo

imply all assumptions of Wald [18] and that, moreover, if g(x) is continuously
differentiable, then {é,,} will form a consistent sequence of roots of the likeli-
hood equation

0,<M, and G{(z,,6,)=0.

We shall use a,,=/\/ % an(log n+log log ) rather than V % an log n as the

convergence order of m.l. estimator to the true parameter @ (see [4] and [5]).

Since @ is a translation parameter, we restrict our attention to the case
that §=0. The following lemma is the same as Lemma 5 in [5] except that
conditions (v) (b) and (v) (c) in [5] can be replaced by weaker conditions (vi)
(a) and (vi) (b) because of (2.4).

Lemma 3.1. Let conditions (i)—(iii), (vi) (a) and (vi) (b) be satisfied for
k=2. Then for every s (0, 1) there exists c>>0 such that
P,o{ sup [a;*Gi(z,, t)+1] Zc(log )~} = O((log n)*™),

[HETICH]

where b,(s)=a; (log n)*2.

Remark 2. It seems to be impossible to improve Lemma 3.1 (see Remark
in [5]).

Using (2.4) instead of Chebyshev’s inequality in the proofs of Lemma 1
and Lemma 2 of [4], we obtain the following Lemma 3.2 and Lemma 3.3, re-
spectively.

Lemma 3.2. Let conditions (i)—(iii) and (vi) (a) be satisfied for k=2. Then
for sufficiently small £€>0, there are events D,, neN for which P,q{(D,)}=
o((log n)™*) and z,€ D, implies

sup n'GP(z,, t)<—1.

—e<ICHy
Lemma 3.3. Let conditions (i)—(iii) and (iv) be satisfied for k=2. Then
for every €>0
P,o{10,1 2€} = o((log n)).

Lemma 3.4. Let Condition A, be satisfied. Then for every s (0, 1)
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P,,{a,18,| =log log n} = O((log n)*™Y).

Proof. We shall use ideas related to Woodroofe [20]. It follows from
Lemma 3.2 and Lemma 3.3 that

(1) P,fad,<—loglogn} = Pn,o{ifg‘l’(xi+al 'log log #) 20} +o((log n) ™) ,

32) P, {a,,é,,; log log n} = P,,.O{Z” gM(x;—az'log log n)<0,
- M,>a; log log n} +o((log n)™") .
Using Lemma 3.1 and the equality
,2 &V(x;4-az'log log n) = ?:‘_} g9(x;)+ay'log log n 'E:l 29(x;4u,)

with u, (0, a;'log log 7), (3.1) implies that

P,, {a,0,<—log log n} <P, {a’ g gY(x;) z% log log n} +O((log #)*™") .
A similar argument shows that (3.2) implies

P, o{ad,Zloglog n} <P, {o5" 33¢(x)< - log log n} +O((log n)*™)..
Lemma 3 in [4], together with the fact

<I>(*% log log n) = o((log 7)7"),

leads to the desired result. Here ®(x) denotes the cumulative distribution
function of the standard normal distribution.

Lemma 3.1 and Lemma 3.4 yield the following lemma.

Lemma 3.5 (cf. Lemma 6 in [5]). Let Condition A, be satisfied. Then
for every s&(0, 1) there exists ¢>0 such that
Pood, sup 167G (5, &,-2)+11 Ze(log m) = O((log n)") .
H < byls

We shall investigate an asymptotic behavior of a;*'G$*'(z,, t), |t—8,|
<b,(s), with 2=2.

Lemma 3.6. Let conditions (i)—(iii) and (vi) (c) be satisfied for some k=2.
Then for every s<(0, 1) there exists c>0 such that

P,.{ sup |a;*'G¢+Y(z,, t)| =c(log n)~ ¢V} = O((log n)*™").

T 1K 26 ()

Proof. Since P, ,{M,=<2b,(s)} =O((log n)*""), we may assume that M,>
2b,(s). Then G{*V(z,, ;):(—1)"“2 g¥(x;,—1) for |t]| =2b,(s). Let a>0

be so small that p(x)<2ax and |g*™(x)| <Lx~*! for 0<x<<2a where L is a
positive constant, and choose §>>0 to satisfy condition (vi) (c¢). Then we have
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(3.3) |az*1G (2, t)| < Laz*~* 336 (x,—2b,(s))**
+a* 13 sup | g4+ V(x;+u) |
*=

for |t] <2b,(s) and all sufficiently large n. Here >, denotes the summation
over i <n satisfying u <x,<<v.
To evaluate the first term above define {Y,;; i=1, ---, n} by

Y,; = (x;,—2b,(s)) 1, if 3b,(s)=«x,<a,
=0 , if x,<<3b,(s) or a<w;.

Since E(Y,?)=0(b,(s)~*), it follows from Chebyshev’s inequality that
Py o{la* 3} (Yu—E(Y,))| 25 (log m)" ¢+ — O((log n)'~).
Moreover, using a;"‘lgE( Y,;)=0((log n)~*+Y%?) we obtain
P, o{1a;** 3 ¥, | 2(log m)=¢*9} = O((log n)*™).

This, together with the fact P, , {”Z Y, 2336 (x;—2b,(s)) *"} =O((log n)*~Y), im-
plies
P, o{lax* 1236 (x,—2b,(s)) "' | Z(log m)~*+D*/%} = O((log n)*~").

It remains to estimate the second term on the righthand side of (3.3). It
follows from Markov’s inequality and condition (vi) (c) that

P, o{az* 1237 sup | g*D(x;+u)| 2 (log m)=**D"} = o((log m)*™") .
<8
This completes the proof.

RemARK 3. It is easily seen that in the case k=2 the distribution of 7~ ¢*+)/?

21g®*t)(x;) converges weakly to a stable law with characteristic exponent 2/
i=1
(k+1). By the same reason as of Remark 2, we cannot expect to improve

Lemma 3.6.

The following lemma immediately follows from Lemma 3.4 and Lemma

3.6.

Lemma 3.7. Let Condition A, be satisfied for some k=2. Then for every
s&(0, 1) there exists c>0 such that

P,o{ sup |a;*'G¢+(z,, 8,+1)| =c(log n)~**V/3} = O((log n)*™Y).

T Sbuls)

At first we study asymptotic sufficiency of m.l. estimator b,
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Theorem 3.1. If Condition A, holds, then there exists a sequence of families
of probability measures {Q, o; 0E R}, nE N, such that
(a) for each neN, b, is sufficient for {0, 4; 6= R}
(b) for every v<1/2
up [[P, 4~ Quoll = o((log 1))

Proof. Let I,() be the indicator function of a set 4. We define

0 (3 0) = Iy, yow,(25) €xp {Go(2m é,)—_; a,%0,—0)}
720 0) = ¢(0) ¢,%(20 0)
where
Vo= {z.ER"; a,10,—6| <log log n} ,
W, = {z,€R"; sup |a;°GP(z,, 0,+1)+1|<c(log n)~¥%}

111SbaC1/2>
and C”(G)Z[qu”*(z”’ 0) dp,]™'. Here the constant ¢ in W, is determined by
Lemma 3.5 with s=1/2.
For every A 3", let O, 4{4} :S 7,22, 0)dp, and Q:,k,,,{A}:S 0,52, 0)d 1ty
A A

According to the factorization theorem, for each n&N 8, is sufficient for

{Qn ,0 H o S R} .
Next we have

(B4 IPu— Okl = 15050 00,4 ,0) I dsy

<

[, oy 11055 O)ipu(52r O) .l O)d,

+P,o{(Va )} +Pool(W,)} -

It follows from Lemma 3.4 that sup P, ,{(V, )} =0((log #)""). And Lemma
3.5 implies that sup P,{(W,)} =g5?(log n)~¥%). It remains to estimate the first

term on the righthand side of (3.4). Since
Gz 0) = Gl B) 4 (0—0,YCP (24, 0,%)
with |6,*—0,| <10,—0], we have for z,&€V, ,n W,

(2 0)| 1 . Gz b -l—az .
1 m‘~|1 exp {—[G.(2, 0) G,,(.,,,é’,,)—{—2 ”(én )]} |

< ¢(log log n)X(log n)~2
= o((log #)7")..
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Here we used the inequality |1—exp (x)| =2|»| for sufficiently small x.
Thus we obtain

sup [|P, ¢—O¥Foll = o((log 7)7") .
0ER
Since
sup |1—¢,(0)'| = sup | P, {R"} —O%,{R"} |
0cR 0cR
= o((log #)™),
we have
sup ”Pn,o‘—Qn,o”§ sup ”Pn,o— i,",,,II—I—sup “Qn*,O—Qn,O“
6ER R 6ER
= o((log n)™)+sup [1—¢,(6)|
€R
= of(log n)™).
This completes the proof.

We can also show higher order asymptotic sufficiency of the statistic é,,',,
:(ém GElZ)(zm én)’ Ry Gslk)(zm én))'

Theorem 3.2. If Condition A, holds for some k=2, then there exists a
sequence of families of probability measures {R, o; 6= R}, nE N, such that

(a) for each nE N, the statistic é,,.,, is sufficient for {R, 4; 0= R}

(b) for every v<<(k+1)/(k+3)

sup [|1Py6—Ry 0l = of(log n)7").
Proof. Let
ru*(zm 0) = IVn,Oan,k(zﬂ) €xp {Gn(zm én)'*—gz(a:nﬁ' Gf,"”(z,,, én)} ’

7.(2, 0) =T, (D)r,*(2,, 9),
where

W= {z,€R"; sup |a;*'G{*V(z,, é,,—l—t)l <c(log m)~®D/k+Y |
|t|§b,,(2/(k+3))

(—,'-,,(0) = [SR"rn*(zm 9) dl"n]—l
and V,, is the same as in the proof of Theorem 3.1. Here the constant ¢ in
W, ; is determined by Lemma 3.7 with s=2/(k+-3). Moreover, define R, ,{4} =
S 7.(2, 0) dp, and R¥, {A}:S 7, %(2,, 0) du, for every A= B". Then it fol-
A A

lows from the factorization theorem that é,,'k is sufficient for {R, o; 6ER}.
Using the Taylor expansion



AsympTOTIC SUFFICIENCY II 265

G 0 = Gulsn O+ 3000 G101, ) = G0z, 0,)

with [6,*—0,| <10,—8|, we have for z,&V, ,N W, ,

_M = |1—e — 2 — é : (e_én)mG(m) é
tl Pn(zm 0) ‘ Il XP{ [G“( » 0) G( » ") mz=}2 m! " (2'”, ")]}I

(k—zH)l (log log m)**1(log m) /49

= o((log n)™).

Hence an argument analogous to the proof of Theorem 3.1 shows that Lemma
3.4 and Lemma 3.7 imply

sup [|P, o—Rifsl| = o((log 7)),
0€ER
which leads to
sup ||P, g—R, ol = o((log n)™").
0ER
This completes the proof.
ExampLes (Woodroofe [20]). Let

f(x) = r[T(2/r)]* x exp(—&"), x>0 for some >0,
or f(x) = [r(147)]" »(14x)27, x>0 for somer>0,

then Condition 4, is satisfied for every 2=2.

4. Asymptotic sufficiency: Case (ii). We continue to use the same
notations as in Section 3. We shall need the following Condition B(B, k) on
p(x) where 8 is a positive number and % is a positive integer.

Condition B(f, k)

(i) p(x) is a uniformly continuous density which vanishes on (—oo, 0)
and is positive on (0, o).

(ii) p(x) is (k-+2)-times continuously differentiable on (0, o).

(i) HH)=0(x*"), gO(x)=0(x""), gO(x)=0(x%), g(x)=0(x~), g(x)
=0(x"*") and g**B(x)=0(x"*?) as x— +0.

Moreover, g®(x) <0 for sufficiently small x>0.

—min | B+2  (B+2) (k+3) B+2
Let p; mln[ > 2(k+,8—}—3)] Po= mm[k—}—Z k—l—l] and

—min| 212 (8+2) (k+3)
Ps mm[ 7 (k2+5k—i—B+6)]. It is clear that p,<2p;,<2p,.

(iv) For every =0

[ 1e+01mp(3) dieo .
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(v) There exists M >0 such that

(a) {71896 1700 d<ceo,

(b) [ 162@)1p) du<oo

(c) (7109 1p3) dp<coo

(vi) For every a>0, there exists >0 such that

(a) S: sup | g9(x-+u)|"1p(x) dp<oo,
(b) Sjﬁ‘,‘gps | gD (x+-u) | sp(x) du<<oo .

Let jz—gwg(z)(x) p(x) du. Conditions (i)-(iii) and (v) (b) guarantee
0
that J is finite. Moreover, we need
(vii) J>O0.
According to condition (iii), it may be expected that g*(x) has the ab-

solute moment of order r for every r<(B8+2)/(k+1), but we will not always
require this. That is, conditions (i )—(iii) and (v) (c) insure that

(41)  E|g*™(-)|"<co for every r<(A+2)[(k+1), if BSk(E+3),

E|g*™(+)|*2< 00, if B>k(k+3).
We define A* and v* as follows
% _ (R+1) (R+3) P B(h3
(4.2) by 2t 313) or B<k(k+3),
* — min [ £ _Bk+1) 0. keN
(4.3) v min [2 * Bkt BLY) ], for B3>0, keN .

It is noticed that A*>1/2, and that »*<k/2 for B<<k(k+3) and v*=£k/2 for
B=k(k+3).
(4.1) together with (2.1), (2.4) and (2.5) implies
(44) P o{IXg* )| 20} = o(n™), 0<p=k—1,
P..,o{lg; [g* D (x)—E(g“ (D] 287} = o(n™), k—1<B<k(k+3),
Pn,o{lg [*0(x)—E(g*()]ll ZcVnlog n} = o(n™), B=k(k+3),

P {13 [6#()— E(g®* ()]l Zev/n Tog n} = ofn™*), >k(k-+3),
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where v<<»* and ¢ is a positive constant independent of ».
Hereafter, we shall use ¢>0 as a generic constant independent of nEN.

Lemma 4.1. Let conditions (1i)—(iii) and (vi) (b) be satisfied for some 3>0
and kReN. Then for every L>>0 there exists c>0 such that for v<v*

Poo{sup I3] [ (x,+1)—gh V()] Zar} = o(n™),  B<k(+3),
and

P,o{ sup |31 [g®(x,+1)—g*D(x,)]| Zend,} = O(n~"?), Bzk(k+3),

1S Ldy i=1

where d,—=n"Y?\/log n and the supremum is understood to be infinite if M,<Ld,.

Proof. Let a>0 be so small that p(x)<<cx®*! and |g®**P(x)|<<cx™*% for
0<x<2a. Since P, {M,<2Ld,}=o0(n"""), we may assume that M,>2Ld,.
Using the equality

2160w +H) = 31 0()+ 3] | g 2nit-u) du
we have for sufficiently large # and |¢| <Ld,
*#5) I (=g ()] < [ 2][e (e, —Ld,) 7+
+237 sup |g* x )],
where § is determined by condition (vi) (b). For i=1, .-+, n let us define
(4.6) U, = (x,—Ld,)*?*, 2Ld,<x;<a,
=0 R otherwise.

Since E|U,|"<c<co for every neN and r<(B8+2)/(k+2), it follows from
(2.1), (2.4) or (2.5) that

P,o{3 U, 2di'n™} = o(n™), B=E,
P, o {13} [Uu—E(U,)]| 2di'n*} = on™), k<B<k(k+3),

P IS U= BUN 20} = ow),  BZA(EA3).
This implies that

P, o {200(x—Ld,)**22d7'n"} = o(n™),  B<k(k+3),
P, o{20(xi—Ld,) "z cn} = o(n™"), Bzk(k+3).

Taking account of condition (vi) (b), a similar argument shows that

P,o{317 sup |84 2(xi+4)| 22470} = ofn™), B<k(k+3),
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P, sup | g#*B(x;4-u) | = cn} = O(n~*?), B=k(k+3).
Thus, (4.5) implies the desired assertion.

REmMARK 4. If B=k(k+3), then for every L>0 there are events H,,neN
for which P, o{(H,)} =0O(n"**) and 2, H, implies

2 [ D(xi4-2)—g* x)]| Scnl2] .

I’ISLd i=1

Lemma 4.2. Let conditions (i)-(iii), (v) (b), (vi) (a) and (vii) be satisfied
for some 3>0 and keN. Then for sufficiently small £>0 there are events D, *
neN for which P, ,{(D,*)}=0(n""") and z,=D,* implies

sup, Gz, t)<—Jnl5

gL
Proof. Let a>0 be so small that g®(x)<0 for 0<x<<2a and S:g‘z)(x) p(x)
du>—]/5. Then the event M, <& implies that
@ < o 52y, —
_Sup, Gz t)= _sup 217 g¥(x,—1)
= Za ‘”(x,)-H:‘ 237 sup | gO(xi+u) .

Let &=min [§, i(g sup | g®(x+u) | p(x)dp)~'] with 3, §<a, satisfying condi-
tion (vi) (a). Then

M,<e, 3% g<2>(x,.)—nj°°g<2>(x) P(%) du<Jn5
and

3 sup 129s+u)| —n(  sup |g@w-+u)| p(x) du<l?

1158 a 18158 5¢
imply
sup GP(z,, )<—Jn/5.

~e<I<Hy,

Since p,>1, it follows from (2.4) or (2.5) that
P,y {537 89(x)—n | g2(x) p(x) duz Jul5} = O™),

P, o337 sup |g9(stu)| | sup g0+l px) duzd" = 0.
=8 a 1M=8 5&
Lemma 4.2 follows easily.

The following lemma is proved in the same manner as Lemma 2 in [4]
except that (2.4) or (2.5) is used instead of Chebyshev’s inequality.

Lemma 4.3. Let conditions (i)—(iii) and (iv) be satisfied for some B3>0
and kReN. Then for every €>0
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Pn,o{‘én| 28} = O(n_w) ¢

Lemma 4.4. Let conditions (i)—(iii), (v) (b), (vi) (a) and (vii) be satisfied
for some 3>0 and ke N. Then for every L>0

P, o sup |23 [g®(xi+-1)+]]1 2 Jn/2} = O(™™).

H<Ldy i=1

Proof. Since E|g®(+)|""* < o0, (2.4) or (2.5) implies that
P, o{ |3 [g®(x)+]11 = Jnf6} = O(@™).

It remains to estimate the right side of (4.5) with k=1. Let U,; be the same
as in (4.6) with k=1. It is easy to see that

E|\U, | Sc<o for r<(8+2)3<1, ifB=<1,
E|\U, | Sc<oo for 1<r<(B+2)/3, if I<B<k(k+3),
E|Uy|*<5c<oo, if Bz=k(k+3).

Accordingly, from (2.1), (2.4) or (2.5) we obtain
P, o{cLd, 33 Uy Juf6} = o(n™),

so that
Pﬂ,O{CLdn Zs(xi_l‘dn)_sg]n/6} = o(n-v*) .

Moreover, condition (vi) (a) together with (2.4) or (2.5) gives us
P, {Ld, 237 sup | gO(w,+u)| = Jn/6} = o(n~"").
Y
Thus the lemma follows.

Lemma 4.5. Let conditions (i)—(iv), (v) (a), (v) (b), (vi) (a) and (vii)
be satisfied for some 3>0 and ke N. Then there exists L>>0 such that

P,o{10,| =Ld,} = O(™).
Proof. It follows from Lemma 4.2 and Lemma 4.3 that for every L>0
(47) Pn,o {éné _Ldn} = Pn,o{Zi: g(l)(xi"{_Ldn)gO} +O(n—w) ’

*#8)  Po{f,zLd} = P, {31gV(x—Ld,)<0, M,>Ld} +O(n™).
Using the equality
3180(xA-Ld,) = 31 g(w)+Ld, 31 g% (xi+-u,)
with #, (0, Ld,), Lemma 4.4 implies that
(49) Py of3gM(xi+Ld,) 20} ZP, o {318(x) glz—Lx/n—lEg}Z} +O(m™).
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Since E| g®(+)|*1< o0, it follows from (2.5) that
(4.10) Poo{Se0s) 2Ll alog n} — o)

for some large L>0. Thus relations (4.7), (4.9) and (4.10) imply
P {0, <—Ld} =0@n™).

By a similar argument, (4.8) implies
P,,{0,2Ld} — O™).

The following lemma is an immediate consequence of (4.4), Lemma 4.1
and Lemma 4.5.

Lemma 4.6. Suppose that Condition B(B, k) holds for some B3>0 and
keN.
If B<k(k+3), then there exist L>0 and c¢>0 such that for 0<v<v*

Poo{sup |GE* (s, ,+0) | Zan} = on), 0<B=k—1,
tisLd

,,,,{sup|G<'=+l>(z,,,é,,+t) E(GE¥+9(+,0))| =en™} = o(n), k—1<B<k(k+3),

=

Pl sup 16 (e by )~ B(GE (-, )| Zev/n og a} =o(n™), B=k(k+3),

where \* and v* are defined by (4.2) and (4.3), respectively.
If B>Fk(k+3), then there exist L>0 and ¢>0 such that

P, o{ SUP |Gg“1)(zm é,,-l—t)—E(Gﬁ.k‘”(-, 0))| = cV'n log n} = O(n~*2).

Now we shall discuss asymptotic sufﬁcxency of the statistic é,, =0, G2(z,,
én)’ e, GP(2,, (9,,)), ke N, where (3,, , means 0

Theorem 4.1. If Condition B(B, k) holds for some B3>0 and k€N, then
there exists a sequence of families of probability measures {Qf,; 0= R}, nEN,
such that

(a) for each ne N, the statistic é,, . 15 sufficient for {OF.4; 6= R}
(b) 'sup [IP.s— Okl = o(a™) for O<w<o,

E o Bk+1)
2’ Ak+B+3))

Proof. The proof of the theorem is analogous to those of Theorem 3.1
and Theorem 3.2. Let

@5 0) = Ity owty (=) exp {Gilz,, O — L (000}, if k=1,

where v*¥=min l:
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k . m
= V;k,o(\ W,’,k,k(zn) CXP {G,,(Z',,, éu)""nE:z (i”—zé'—”)— Gﬁ,”’)(z,,, é,‘)} y
if k=2 and 0<B<Zk—1,
A k — "
= Ip g ) exp (Gulen 0343 0= 610, 4,

+w E(G¢HV(-, 0)}, if k=2 and B>k—1,

(k41!
where
Vi = {l0,—0|<Ld,},
Wik = { sup |G+ 1z, O,+1)| <en*} if 0<B=<k—1,
t|SLdy
= { sup |G (z,, O, +0)—B(GLV(:, 0) | <on™} , if k—1<B<h(k+3),
t<Ldy
= {l |Suzp [Ggm)(z,,, én+t)—E(G§,"+l>(-, 0))l<6\/n_l<o<—g n}, if B=k(k+3).
t|ISLdn

Here L>0 and ¢>0 are determined by Lemma 4.5 and Lemma 4.6. Moreover,
let g, (2, 0) be the normalizing of ¢¥(z,, ) and let Q% , be a probability
measure with the density g, «(2,, ). Since the remaining part of the proof
runs parallel to the lines of the corresponding part of the proofs of Theorem
3.1 and Theorem 3.2, we shall omit it.

In the case 8>k(k+3), we can improve Theorem 4.1, if condition (v) (b)
in B(, k) is replaced by a stronger condition (v) (b)".
(v) (b)’ There exists M >0 such that

{718 1742p(x) dueo .

In this case, condition (v) (b)’ with conditions (i )—(iii) implies E | g®(+) |**?< 0.
This leads to a stronger result than Lemma 4.4: For every L>0 there exists
¢>0 such that

(+.11) P, o{ sup. |32 [e@(xi+2)+]1| ZcV/nlog n} = o(n™*7).

Lemma 4.7. If Condition B(B, k) with (v) (b)’ replacing (v) (b) holds
Sfor B>k(k+3), then

P, o{16,+] 0" 31 ¢0(x;) | ZnY(log n)¥?} = O(m~*") .
i=1
Proof. By a Taylor expansion we obtain

Bt T in 31 g0(x) = BytJ " n7 (3] [6(0) —g M (xi—0)]}
= J7 70, 3 (g —0,%)+]]
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with |0,*—0|<16,—60|. This, together with Lemma 4.5 and (4.11), implies
the desired assertion.

Theorem 4.2. If Condition B(B, k) with (v) (b)’ replacing (v) (b) holds
for B>k(k+3), then Theorem 4.1 holds with the following (b)’ instead of (b):

(b)’ sup ||P, o— Ol = O(n™*?).
6ER

Because of Remark 4 and Lemma 4.7, Theorem 4.2 can be shown in
quite the same way as in the proof of Theorem 2 in [6].

REMARK 5. Suppose k=1. From Theorem 4.1 and 4.2 it follows that
if 8<4, then m.l. estimator d, is asymptotically sufficient up to order o(n™")
for every v<<B/(4-+p) and that if 3>4, then 8, is asymptotically sufficient up
to order O(n™'?).

ReEMARK 6. Theorems 4.1 and 4.2 still hold even if a sequence of m.l
estimators {é,,} is replaced by {7,} with the following properties: There
exist positive constants 7, and 7, (depending on »*) such that

(1) sup P, o{z,€R"; n*| T,(2,)—0| = (log n)1} = O(n™"")
€R

) sup P, o{z,ER"; n”" 130 60(x,—T,(2,) | = (log m)2} = O@m™).
€R i=1

{T,} with properties (1) and (2) is called a sequence of asymptotic m.l.
estimators of order O(n~"*) (see Michel [8] and Matsuda [6]).
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