QUASICONFORMAL METRIC AND ITS APPLICATION TO QUASIREGULAR MAPPINGS

Masayuki MOHRI

(Received September 14, 1982) (Revised May 21, 1983)

The quasiconformal metric introduced by Kuusalo [5] seems to me useful for studying the *n*-dimensional quasiregular mappings but has not ever been fully utilized in these connections except what are found in V.M. Gol'dstein-S.K. Vodop'yanov [2] and H. Tanaka [14].

In this paper we shed light on some features of quasiconformal metrics on subdomains of \bar{R}^n and apply those to quasiregular mappings to obtain several important properties of them, among others, a characterization for quasiregularity which comes to a generalization of the result in O. Martio, S. Rickman and J. Väisälä [6, Theorem 7.1]. Most of the statements in the sequel remain to hold in \bar{R}^n , but we often confine ourselves to R^n in order to avoid inessential complexities in technique.

1. Notations and terminologies

 R^n ($n \ge 2$): the *n*-dimensional euclidean space.

 \bar{R}^n : the one point compactification of R^n .

 m_{α} : the α -dimensional Hausdorff measure.

 $m=m_n$: the *n*-dimensional Lebesgue measure.

q: the spherical metric.

For a point $x \in \mathbb{R}^n$, the coordinates of x are denoted by x^1, \dots, x^n and |x| is the euclidean norm.

Let E be a subset of \overline{R}^n , then \overline{E} , ∂E , E^c denote the closure, the boundary, the complement of E respectively, all taken with respect to \overline{R}^n .

Given two sets $E, F \subset \mathbb{R}^n$, d(E, F) is the euclidean distance between E and F, d(E) is the euclidean diameter of E and $E \setminus F$ is the set-theoretical difference.

Suppose given a non-empty compact proper subset E of \overline{R}^n and an open set $G \subset \overline{R}^n$, including E, then we call the pair (E, G) a condenser and we may define the (conformal) capacity cap(E, G) as the (conformal) modulus of the family of all paths connecting E and ∂G in G (cf. [3]). If $E = \phi$ or $\partial G = \phi$, then we set cap(E, G) = 0.

A compact proper subset E of \overline{R}^n is said of capacity zero if $\operatorname{cap}(E, G) = 0$ for some open set $G \subset \overline{R}^n$ such that $E \subset G$ and $\overline{G} \neq \overline{R}^n$, otherwise of positive capacity. A subset E of \overline{R}^n is of capacity zero if and only if all compact subsets of E are of capacity zero, or else E is of positive capacity. We refer to [6], [10] for the properties of the capacities.

2. Quasiconformal metrics

Let G be a domain in \overline{R}^n . Given two points $x, y \in G$, the quasiconformal distance $c_G(x, y)$ between x and y, relative to G, is defined by

$$c_G(x, y) = \inf \operatorname{cap}(E, G)$$
,

where the infimum is taken over all continua E in G, which contain both x and y. It is easy to see that c_G is a pseudometric and a conformal invariant. According to [5] we call c_G a quasiconformal metric.

From the definition of quasiconformal metrics and the properties of condenser capacities follows immediately the following

Proposition 1. Let G, G' be domains in \overline{R}^n such that $G \subset G'$. Then

$$c_G(x, y) \ge c_{G'}(x, y)$$

for any two points $x, y \in G$.

Proposition 2. Let G be a domain in \overline{R}^n and let F be a set closed relative to G, which is of capacity zero. Then

$$c_{G\setminus F}(x, y) = c_G(x, y)$$

for any two points $x, y \in G \setminus F$.

REMARK 1. Note that $G \setminus F$ is also a domain since F is of (n-1)-dimensional Hausdorff measure zero ([10, Corollary 1 of Theorem 8], [4, Corollary 1 of Theorem IV 4 and Theorem VII 3]).

Proof of Proposition 2. Let $x, y \in G \setminus F$ and let E be an arbitrary continuum in G, which contains both x and y. Select a non-increasing sequence $\{D_j\}_1^\infty$ of subdomains of G such that each D_j is relatively compact in G and $\bigcap_{j=1}^\infty \bar{D}_j = E$. Then for each j, we can find a path γ_j joining x with y in $D_j \setminus F$ since $D_j \setminus F$ is a domain (Remark 1) and $x, y \in D_j \setminus F$.

From the properties of condenser capacities we obtain

$$c_{G\backslash F}(x, y) \le \operatorname{cap}(|\gamma_j|, G\backslash F)$$

= $\operatorname{cap}(|\gamma_j|, G)$
 $\le \operatorname{cap}(\bar{D}_i, G),$

where $|\gamma_i|$ is the locus of γ_i .

Letting $j \to \infty$, since $\lim_{i \to \infty} \text{cap}(\bar{D}_i, G) = \text{cap}(E, G)$ ([6, Lemma 5.7]), we have

$$c_{G \setminus F}(x, y) \leq \operatorname{cap}(E, G)$$
,

from which it follows that

$$c_{G\setminus F}(x, y) \leq c_G(x, y)$$
.

The reverse inequality is derived from Proposition 1.

q.e.d.

Theorem 1 (cf. [5, Theorem 2]). Let G be a domain in \mathbb{R}^n . Then either c_G is a metric or c_G equals identically to zero according as G^c is of positive capacity or not. Furthermore whenever c_G is a metric, the topology induced by c_G is equivalent to the one induced by q and the identity mapping of G is the uniformly continuous mapping of the metric space (G, c_G) onto the metric space (G, q).

Proof. If G^c is of capacity zero, then cap(E, G)=0 for all continua E in G, hence $c_G(x, y)=0$ for all $x, y \in G$.

If G^c is of positive capacity, then [7, Lemma 3.11] proves that c_G is a metric and the identity mapping of G is the uniformly continuous mapping of (G, c_G) onto (G, q). Now for every $x \in G$ with $x \neq \infty$ and all $y \in \{y \in R^n : |x-y| < d(x, \partial G)\}$, we have

$$c_G(x, y) \le \operatorname{cap}(\bar{B}^n(x, |y-x|), B^n(x, d(x, \partial G)))$$

$$= \omega_{n-1} \left(\log \frac{d(x, \partial G)}{|y-x|} \right)^{1-n},$$

where $B^n(x, r) = {\tilde{x} \in \mathbb{R}^n : |\tilde{x} - x| < r}$ and ω_{n-1} is the area of the unit (n-1)sphere. Suppose $\infty \in G$. If we set $\phi(x) = \frac{x}{|x|}$, then since ϕ is conformal, we have

$$c_G(\infty, y) = c_{\phi(G)}(0, \phi(y)) \leq \omega_{n-1} \left(\log \frac{|\phi(y)|}{r}\right)^{1-n}$$

for all $y \in B^n(r)^c$, where $B^n(r)$ is a ball with the center 0 such that $B^n(r)^c \subset G$. These inequalities imply that the topology induced by c_G is weaker than the one induced by q, which completes the proof.

Here we refer to two estimates of quasiconformal metrics from below. From [6, Lemma 5.9] we have the following

Proposition 3. Let G be a domain in \mathbb{R}^n with $m(G) < \infty$. Then

$$c_G(x, y)^{n-1} \ge b_n \frac{|x-y|^n}{m(G)}$$

for all $x, y \in G$, where b_n is the constant in [6, Lemma 5.9].

Proposition 4. If G is a domain in \mathbb{R}^n with a continuum $C \subset \partial G$, then

$$c_G(x, y) \ge 2^{-1}c_n \log \left[1 + \frac{\min\{|x - y|^2, d(C)^2\}}{2\min\{d(x, C)^2, d(y, C)^2\}} \right]$$

for all $x, y \in G$, where c_n is the constant in [16, Theorem 10.12].

Proof. Let E be an arbitrary continuum in G, containing x, y. Select two points $x_1 \in E$, $x_2 \in C$ with $|x_1 - x_2| = d(E, C)$ and let x_0 be the midpoint of the line segment joining x_1 with x_2 . Then we see easily that both E and C meet $S^{n-1}(x_0, r) = \partial B^n(x_0, r)$ for each r, $r_1 < r < r_2$, where $r_1 = 2^{-1}d(E, C)$, $r_2 = 2^{-1}\sqrt{d(E, C)^2 + 2\delta^2}$ and $\delta = 2^{-1}\min\{d(E), d(C)\}$. Hence if we let Γ be the family of all paths connecting E and C in $B^n(x_0, r_2) \setminus \overline{B}^n(x_0, r_1)$, then using [16, Theorem 10.12], we obtain the following estimate of the modulus $M(\Gamma)$.

$$\begin{split} M(\Gamma) &\geq c_n \log \frac{r_2}{r_1} \\ &= 2^{-1} c_n \log \left[1 + \frac{2\delta^2}{d(E, C)^2} \right] \\ &\geq 2^{-1} c_n \log \left[1 + \frac{\min\left\{ |x - y|^2, d(C)^2 \right\}}{2 \min\left\{ d(x, C)^2, d(y, C)^2 \right\}} \right]. \end{split}$$

Since Γ is minorized by the family $\widetilde{\Gamma}$ of all paths connecting E and ∂G in G, we have

$$cap(E, G) = M(\Gamma) \ge M(\Gamma)$$

$$\ge 2^{-1}c_n \log \left[1 + \frac{\min\{|x-y|^2, d(C)^2\}}{2\min\{d(x, C)^2, d(y, C)^2\}} \right],$$

from which the required inequality follows.

q.e.d.

Corollary 1. Suppose that G is a domain in $\overline{\mathbb{R}}^n$, all of whose boundary components contain at least two points. Then c_G is a metric and the set $\{y \in G: c_G(x, y) \leq r\}$ is compact for any $x \in G$ and any r > 0. Therefore (G, c_G) is a complete metric space.

Example 1. $c_{R^n} = 0$ for all $x, y \in R^n$.

EXAMPLE 2. If G is a bounded domain in R^n , then c_G is a metric since G^c is of positive capacity. Moreover (G, c_G) is a complete metric space whenever ∂G is a continuum.

Example 3. It is known by Gehring that

$$c_{B^n}(0, x) = \operatorname{cap}(J(|x|), B^n)$$

for all $x \in B^n$, where B^n is the unit ball and $J(|x|) = \{y \in B^n : 0 \le y^1 \le |x|, y^2 = \dots = y^n = 0\}$. From this relation we have

$$\max \left\{ c_n \log \frac{1+|x|}{1-|x|}, \, \omega_{n-1} \left(\log \frac{\lambda_n}{|x|} \right)^{1-n} \right\} \leq c_{B^n}(0, \, x) \leq \omega_{n-1} \left(\log \frac{1}{|x|} \right)^{1-n},$$

where λ_n is a constant depending only on n and ω_{n-1} is the area of the unit sphere.

3. Quasiregular mappings

In the following the notation $f: G \rightarrow R^n$ always implies that G is a domain in R^n and f is a continuous mapping of G into R^n , unless otherwise stated.

Given $f: G \rightarrow \mathbb{R}^n$, we employ the following notations:

$$L(x, f, r) = \sup \{|f(y) - f(x)| : |y - x| = r\} \text{ for } x \in \mathbb{R}^n \text{ and } r > 0;$$

$$L(x, f) = \limsup_{r \to 0} \frac{L(x, f, r)}{r};$$

$$J(x, f) = \sup \lim_{j \to \infty} \frac{m(f(A_j))}{m(A_j)},$$

where the supremum is taken over all regular sequences of closed sets tending to x in the sense explained in [13];

N(y, f, A) is the cardinal number of $\{x \in A: f(x)=y\}$ for any $y \in R^n$ and any $A \subset G$;

$$N(f, A) = \sup \{N(y, f, A) : y \in R^n\} \text{ for any } A \subset G;$$

Given an arbitrary relatively compact subdomain D in G and any $y \notin f(\partial D)$, $\mu(y, f, D)$ denotes the topological index in the sense stated in [9] (cf. [6], [10]); f'(x) denotes the Jacobian matrix whenever all partial derivatives exist at x; $|f'(x)| = \sup\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}$.

According to [6] we say that f is quasiregular if f is ACL^n and $|f'(x)|^n \le K \det f'(x)$ a.e. in G for some constant $K \ge 1$. We refer to [6], [10] for the basic properties of quasiregular mappings. Here we quote only the following fundamental facts.

If $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping, then f is sense-preserving, discrete and open, and hence f(G) is a domain. "f is sense-preserving" means that $\mu(y, f, D) > 0$ for every relatively compact subdomain D in G and for all $y \in f(D) \setminus f(\partial D)$. Let (E, D) be an arbitrary condenser in G, i.e. $D \subset G$, then the inequality

$$\operatorname{cap}(f(E), f(D)) \leq K_I(f) \operatorname{cap}(E, D)$$

holds and further

$$\operatorname{cap}(E, D) \leq K_o(f)N(f, D)\operatorname{cap}(f(E), f(D))$$

also holds if D is a normal domain for f, that is, D is a relatively compact subdomain of G and $f(\partial D) = \partial f(D)$, where $K_I(f)$, $K_O(f)$ are the inner, the outer dilatation of f respectively. From the above capacity inequalities we obtain easily the following

Theorem 2. Let $f: G \rightarrow \mathbb{R}^n$ be a quasiregular mapping. Then

$$c_{D'}(f(x), f(y)) \leq K_I(f) c_D(x, y)$$

for any two domains $D \subset G$, $D' \supset f(D)$ and for all $x, y \in D$. Further if f is not constant and D is a normal domain for f, then

$$\inf \{c_D(x, \tilde{y}): \tilde{y} \in f^{-1}(f(y))\} \le K_O(f)N(f, D)c_{f(D)}(f(x), f(y))$$

for any $x, y \in D$.

REMARK 2. Let f be a mapping of a domain D into a domain D'. Suppose that there exists a constant K>0 with the property:

(*)
$$c_{D'}(f(x), f(y)) \le Kc_D(x, y)$$
 for all $x, y \in D$.

If $c_{D'}$ is a metric, then f is continuous. Furthermore if c_D , $c_{D'}$ are metrics, then f is a uniformly continuous mapping of (D, c_D) into $(D', c_{D'})$ and hence f is also a uniformly continuous mapping of (D, c_D) into (\bar{R}^n, q) (Theorem 1).

The condition (*) assures the quasiregularity for mappings under some assumptions. To see this, we need some preliminaries.

Given $f: G \to \mathbb{R}^n$, we say, according to [9], that f is locally of bounded variation in the Banach seuse (briefly, locally BVB in G) if $\int_{\mathbb{R}^n} N(y, f, D) dm(y) < \infty$ for every relatively compact subdomain D of G.

Suppose that $f: G \rightarrow \mathbb{R}^n$ is locally BVB and that D is a relatively compact subdomain of G. Set

$$\Phi_i(E, D) = \int_{\mathbb{R}^n} N(y, f, D \cap P_i^{-1}(E)) dm(y)$$

for each i, $1 \le i \le n$, and for Borel sets E in $P_i(D)$, where P_i is the orthogonal projection of R^n onto $R_i^{n-1} = \{x \in R^n : x^i = 0\}$. Then $\Phi_i(E, D)$ is a countably additive set function of Borel sets in $P_i(D)$. The (symmetrical) derivative $\Phi_i'(z, D)$ of $\Phi_i(E, D)$, i.e.

$$\Phi'_i(z, D) = \lim_{r \to 0} \frac{\Phi_i(B^{n-1}(z, r), D)}{m_{n-1}(B^{n-1}(z, r))}$$

exists and is finite m_{n-1} -a.e. in $P_i(D)$.

Lemma 1 (cf. [6, Lemma 2.17]). Let $f: G \rightarrow \mathbb{R}^n$ be locally BVB. If there exists a constant c > 0 such that

$$\left[\sum_{1}^{k} d(f(\Delta_{j}))\right]^{n} \leq c\Phi_{i}'(z, Q) \left[\sum_{1}^{k} m_{1}(\Delta_{j})\right]^{n-1}$$

for each relatively compact open n-interval Q in G, each i, $1 \le i \le n$, a.e. $z \in P_i(Q)$ and any disjoint finite sequence $\{\Delta_1, \dots, \Delta_k\}$ of closed subintervals of $Q \cap P_i^{-1}(z)$, then f is ACL^n .

Proof. The proof is much the same as that of [6, Lemma 2.17].

It is easy to see that f is ACL. To prove that f is ACLⁿ, since the situation is the same in any case, it is sufficient to show that $\left|\frac{\partial f}{\partial x^n}\right|^n$ is integrable on each relatively compact open n-interval Q in G.

Suppose $Q=Q_0\times J$, where Q_0 is an open (n-1)-interval in R^{n-1} and J is an open 1-interval in R^1 . Set

$$g(z, u) = \left| \frac{\partial f}{\partial x^n}(z, u) \right|, \quad g_j(z, u) = \frac{j}{2} \int_{-1/j}^{1/j} |g(z, u+t)| dt$$

for each positive integer j with $0 < \frac{1}{j} < d(Q, \partial G)$, whenever these make sense. Then we see, as in [6], that g, g_j are all measureble in Q and

(1)
$$g_j(z, u) \rightarrow g(z, u)$$
 a.e. in Q_0

for a.e. $u \in J$.

Now given each $u \in J$ and each j, we set

$$F_{u,j}(E) = \Phi_n\left(E, Q_0 \times \left(u - \frac{1}{j}, u + \frac{1}{j}\right)\right)$$

for Borel sets E in Q_0 . Since $F'_{u,j}(z) < \infty$ a.e. in Q_0 the condition (#) implies that f(z, t) is absolutely continuous on $\left[u - \frac{1}{j}, u + \frac{1}{j}\right]$ as the function of t and the nth power of its total variation is not greater than $cF'_{u,j}(z)\left(\frac{2}{j}\right)^{n-1}$ for a.e. $z \in Q_0$. Hence we obtain

$$g_j(z, u)^n \leq c \frac{j}{2} F'_{u,j}(z)$$

a.e. in Q_0 . Integrating over Q_0

(2)
$$\int_{Q_0} g_j(z, u)^n dm_{n-1}(z) \le c \frac{j}{2} \int_{Q_0} F'_{u,j}(z) dm_{n-1}(z)$$

$$\leq c \frac{j}{2} F_{u,j}(Q_0)$$

$$= c \frac{j}{2} \int_{\mathbb{R}^n} N\left(y, f, Q_0 \times \left(u - \frac{1}{j}, u + \frac{1}{j}\right)\right) dm(y)$$

for each $u \in J$.

If we let

$$\Psi(E) = \int_{\mathbb{R}^n} N(y, f, Q_0 \times E) dm(y)$$

for Borel sets $E \subset J$, then Ψ is countably additive for Borel sets in J and hence the derivative $\Psi'(u)$ of Ψ exists and is finite a.e. in J. For $u \in J$ such that (1) holds and $\Psi'(u)$ exists, Fatou's lemma and (2) yield

$$\int_{Q_0} g(z, u)^n dm_{n-1}(z) \leq \liminf_{j \to \infty} \int_{Q_0} g_j(z, u)^n dm_{n-1}(z)
\leq c \lim_{j \to \infty} \left[\frac{j}{2} \Psi\left(\left(u - \frac{1}{j}, u + \frac{1}{j}\right)\right) \right]
= c \Psi'(u).$$

Integrating over J, we have

$$\int_{Q} g(x)^{n} dm(x) \leq c \int_{J} \Psi'(u) dm_{1}(u)$$

$$\leq c \Psi(J)$$

$$= c \int_{\mathbb{R}^{n}} N(y, f, Q) dm(y) < \infty,$$

which completes the proof.

Lemma 2. Given $f: G \rightarrow \mathbb{R}^n$, if there exists a constant K > 0 such that the property (*) is satisfied for any two domains $D \subset G$, $D' \supset f(D)$, then

$$L(x,f)^n \leq \tilde{K}J(x,f)$$

for all $x \in G$, where \tilde{K} is a constant depending only on n, K.

Proof. Given $x \in G$ and r, $0 < r < \frac{1}{2}d(x, \partial G)$, choose $y \in G$ such that |x-y|=r and |f(x)-f(y)|=L(x, f, r). Let J_r be the line segment joining x with y and set $D_r = \{z \in R^n : d(z, J_r) < r\}$.

If D' is an arbitrary domain containing $f(D_r)$, then the condition (*) and Proposition 3 yield

$$\frac{L(x, f, r)^{n}}{r^{n}} = \frac{|f(x) - f(y)|^{n}}{r^{n}}$$

$$\leq \frac{K^{n-1}}{b_{n}} \frac{m(D')}{r^{n}} c_{D_{r}}(x, y)^{n-1}$$

$$= \frac{K^{n-1}}{b_{n}} c_{D_{r}}(x, y)^{n-1} \frac{m(D_{r})}{r^{n}} \frac{m(D')}{m(D_{s})}.$$

It is easy to see that both $c_{D_r}(x, y)$ and $\frac{m(D_r)}{r^n}$ are constant for all x, r and y which are taken as above. Set $\widetilde{K} = \frac{K^{n-1}}{b_n} c_{D_r}(x, y) \frac{m(D_r)}{r^n}$ and if we bring D' arbitrarily close to $f(D_r)$, then we have

$$\frac{L(x,f,r)^n}{r^n} \leq \widetilde{K} \frac{m(f(D_r))}{m(D_r)} \leq \widetilde{K} \frac{m(f(\overline{D}_r))}{m(\overline{D}_r)}.$$

Obviously, \tilde{K} depends only on n, K.

Letting $r \rightarrow 0$, we obtain

$$L(x, f)^n \leq \tilde{K} J(x, f)$$
.

q.e.d.

Theorem 3. Suppose that $f: G \rightarrow \mathbb{R}^n$ is as in Lemma 2. If f is sense-preserving and locally BVB, then f is quasiregular.

Proof. First of all we assert that f is ACLⁿ. To do so, we have only to show that there exists a constant c>0 with the property in Lemma 1. Let Q be an arbitrary open n-interval with $\bar{Q} \subset G$. Fix i, $1 \le i \le n$, and let $z \in P_i(Q)$ with $\Phi'_i(z, Q) < \infty$. Given any disjoint finite sequence $\{\Delta_1, \dots, \Delta_k\}$ of closed subintervals of $P_i^{-1}(z) \cap Q$, set $D_{j,r} = \{x \in R^n : d(x, \Delta_j) < r\}$ for each j, $1 \le j \le k$, and for r>0. Let $D'_{j,r}$ be an arbitrary domain containing $f(D_{j,r})$ whenever $D_{j,r} \subset G$.

Suppose that r is so small as the following properties hold: $D_{j,r} \subset Q$ for each j, $1 \le j \le k$; $D_{1,r}, \dots, D_{k,r}$ are disjoint; $r \le nm_1(\Delta_j)$ for all j, $1 \le j \le k$. Then owing to the manner in which r was chosen we have

$$c_{D_{j,r}}(x, y) \le \frac{m(D_{j,r})}{r^n} \le \frac{2\omega_{n-1}m_1(\Delta_j)}{r}$$

for each j ($j=1, \dots, k$) and all $x, y \in \Delta_j$. On the other hand Proposition 3 yields

$$c_{D'_{j,r}}(f(x),f(y))^{n-1} \ge b_n \frac{|f(x)-f(y)|^n}{m(D'_{j,r})}.$$

By these two inequalities and the condition (*) we obtain

$$|f(x)-f(y)| \le c_1 r^{(1-n)/n} m(D'_{j,r})^{1/n} m_1(\Delta_j)^{(n-1)/n}$$

for all $x, y \in \Delta_j$ $(j=1, \dots, k)$, where c_1 is a constant depending only on n, K. It follows from this inequality that

$$d(f(\Delta_i)) \leq c_1 r^{(1-n)/n} m(f(D_{i,r}))^{1/n} m_1(\Delta_i)^{(n-1)/n}$$

for each j ($j=1, \dots, k$).

Summing over $1 \le j \le k$ and using Hölder's inequality, we have

$$\{\sum_{1}^{k} d(f(\Delta_{j}))\}^{n} \leq c \frac{\sum_{1}^{k} m(f(D_{j,r}))}{m_{n-1}(B^{n-1}(z,r))} \{\sum_{1}^{k} m_{1}(\Delta_{j})\}^{n-1},$$

where c depends only on n, K. Now

$$\begin{split} \sum_{1}^{k} m(f(D_{j,r})) &= \sum_{1}^{k} \int_{f(D_{j,r})} 1 dm \\ &\leq \sum_{1}^{k} \int_{f(D_{j,r})} N(y, f, D_{j,r}) dm(y) \\ &= \int_{\mathbb{R}^{n}} N(y, f, \bigcup_{1}^{k} D_{j,r}) dm(y) \\ &\leq \int_{\mathbb{R}^{n}} N(y, f, Q \cap P_{i}^{-1}(B^{n-1}(z, r))) dm(y) \\ &= \Phi_{i}(B^{n-1}(z, r), Q) \,. \end{split}$$

Hence

$$\{\sum_{1}^{k} d(f(\Delta_{j}))\}^{n} \leq c \frac{\Phi_{i}(B^{n-1}(z, r), Q)}{m_{n-1}(B^{n-1}(z, r))} \{\sum_{1}^{k} m_{1}(\Delta_{j})\}^{n-1}.$$

Thus letting $r \rightarrow 0$, we obtain

$$\{\sum_{i=1}^{k} d(f(\Delta_{i}))\} \le c\Phi'_{i}(z, Q) \{\sum_{i=1}^{k} m_{i}(\Delta_{j})\}^{n-1},$$

from which it follows that f is ACLⁿ (Lemma 1).

Since f is continuous and sense-preserving, f is monotone in the sense that if D is an arbitrary relatively compact subdomain of G, then the unbounded connected component of $f(\partial D)^c$ contains no point of f(D). Hence all components of f are monotone functions in the sense of Lebesgue. It is known that a monotone continuous ACL^n -function is differentiable almost everywhere in the domain of the function ([11]). So f is differentiable a.e. in G, from which it follows that L(x, f) = |f'(x)| and $J(x, f) = \det f'(x)$ (as f is sense-preserving), a.e. in G. Consequently Lemma 2 implies that

$$|f'(x)|^n \leq \tilde{K} \det f'(x)$$

a.e. in G, where \tilde{K} depends only on n, K, which concludes the proof.

REMARK 3. If $f: G \to \mathbb{R}^n$ is sense-preserving, discrete and open, then f is locally BVB in G, since $N(f, A) < \infty$ for every relatively compact subset A of G ([6, Lemma 2.12]). Hence the above Theorem 3 generalizes a part of the Theorem 7.1 in [6].

As applications of the preceding results we prove alternatively the several known properties of quasiregular mappings.

Theorem 4. Let $f: G \rightarrow \mathbb{R}^n$ be a non-constant quasiregular mapping. If G^c is of capacity zero, then $f(G)^c$ is also of capacity zero.

Proof. On account of Theorem 2,

$$c_{f(G)}(f(x), f(y)) \leq K_I(f)c_G(x, y)$$

holds for any $x, y \in G$. The right-hand side of this inequality is always zero since c_G is identically equal to zero (Theorem 1). Hence $c_{f(G)}(f(x), f(y)) = 0$ for all $x, y \in G$. Therefore if $c_{f(G)}$ is a metric, that is, $f(G)^c$ is of positive capacity, then f is constant, which comes to a contradiction. Thus $f(G)^c$ is of capacity zero.

Theorem 5 ([7, Theorem 3.17]). Let G, G' be domains in \overline{R}^n and let $K \ge 1$ be a constant. Suppose that G'^c is of positive capacity. Then a family of quasi-regular mappings f of G into G' such that $K_I(f) \le K$ is equicontinuous if we consider G' as a metric space with the metric g.

Proof. If G^c is of capacity zero, then all mappings belonging to the family in the theorem are constant and hence the theorem is trivial. Suppose that G^c is of positive capacity. Given $x \in G$ and $\varepsilon > 0$, choose $\eta > 0$ such that $c_{G'}(\tilde{x}, \tilde{y}) < \eta$ implies $q(\tilde{x}, \tilde{y}) < \varepsilon$. If U is a neighbourhood of x such that $c_G(x, y) < \frac{\eta}{K}$ for all $y \in U$, then $q(f(x), f(y)) < \varepsilon$ for any f belonging to the family under consideration and for all $y \in U$.

Theorem 6 ([7, Theorem 4.1]). Let G be a domain in \mathbb{R}^n and let F be a relatively closed subset of G, which is of capacity zero. Suppose that $f: G \setminus F \to \mathbb{R}^n$ is a quasiregular mapping for which $f(G \setminus F)^c$ is of positive capacity. Then f is uniquely extended to a continuous mapping $\tilde{f}: G \to \mathbb{R}^n$ such that the restriction f^* of \tilde{f} to $G \setminus \tilde{f}^{-1}(\infty)$ is quasiregular. Furthermore $K_0(f^*) = K_0(f)$ and $K_1(f^*) = K_1(f)$.

Proof. If G^c is of capacity zero, then $(G \setminus F)^c = G^c \cup F$ is also of capacity zero. Hence f is constant or else a contradiction arises (Theorem 4), from

which the theorem is obvious. Hereafter we suppose that G^c is of positive capacity. Further we may assume that f is not constant. Then f is a uniformly continuous mapping of $(G \setminus F, c_G)$ into (\bar{R}^n, q) (Remark 2) as $c_{G \setminus F} = c_G$ on $G \setminus F$. Since $G \setminus F$ is dense everywhere in G and (\bar{R}^n, q) is a complete metric space, f is uniquely extended to a continuous mapping $f: G \to \bar{R}^n$. $\tilde{f}(F)$ contains no non-empty open set, because owing to the way of path lifting ([12]) and a modulus inequality under quasiregular mappings ([8]), we can show that $\tilde{f}(F)$ is of capacity zero. Therefore since F is 0-dimensional, it follows from [15, Theorem 9 and Corollary to Theorem 4] that \tilde{f} is locally sense-preserving discrete, open, and hence f^* is sense-preserving, locally BVB (Remark 3) as the local sense-preservingness implies obviously the sense-preservingness.

To see that f^* is quasiregular, it remains to be proved that the condition (*) holds for a constant K>0. Let $D\subset G\setminus \tilde{f}^{-1}(\infty)$, $D'\supset f^*(D)$ be any domains. Then we have

$$c_{D'}(f(x), f(y)) \le c_{f(D \setminus F)}(f(x), f(y))$$

$$\le K_I(f)c_{D \setminus F}(x, y)$$

$$= K_I(f)c_D(x, y)$$

for all $x, y \in D \setminus F$, and hence

$$c_{D'}(f^*(x), f^*(y)) \leq K_I(f)c_D(x, y)$$

for all $x, y \in D$ since $F \cap D$ is nowhere dense in D. It is obvious that $K_0(f^*) = K_0(f)$, $K_I(f^*) = K_I(f)$, since $F \cap \tilde{f}^{-1}(\infty)$ is of Lebesgue measure zero. q.e.d.

REMARK 4. The \tilde{f} in Theorem 6 is, in fact, quasimeromorphic in the sense stated in [7].

References

- [1] B. Fuglede: Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [2] V.M. Gol'dstein and S.K. Vodop'yanov: Metric completion of a domain by using a conformal capacity invariant under quasiconformal mappings, Soviet Math. Dokl. 19 (1978), 158-161.
- [3] J. Hesse: Modulus and capacity, Thesis at University of Michigan, 1972.
- [4] W. Hurewicz and H. Wallman: Dimension theory, Princeton, 1941.
- [5] T. Kuusalo: Generalized conformal capacity and quasiconformal metrics, Proceedings of the Romanian-Finnish Seminar on Teichmüller spaces and quasiconformal mappings, Braşov, 1969.
- [6] O. Martio, S. Rickman and J. Välsälä: Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. A I 448 (1969).
- [7] O. Martio, S. Rickman and J. Väisälä: Distortion and singularity of quasiregular mappings, Ann. Acad. Sci. Fenn. A I 465 (1970).

- [8] E.A. Poleckii: The method of moduli for non homeomorphic quasiconformal mappings, Math. USSR Sb. 12 (1970), 260-270.
- [9] T. Radó and P.V. Reichelderfer: Continuous transformations in analysis, Berlin, 1955.
- [10] Yu. G. Resehtnyak: Space mappings with bounded distortion, Siberian Math. J. 8 (1967), 466-487.
- [11] Yu. G. Resehtnyak: Generalized derivatives and differentiability almost everywhere, Math. USSR Sb. 4 (1968), 293-302.
- [12] S. Rickman: Path lifting for open discrete mappings, Duke Math. J. 40 (1973), 187-191.
- [13] S. Saks: Theory of the integral, Warszawa, 1937.
- [14] H. Tanaka: Boundary behaviours of quasiregular mappings, Lecture Notes in Math. 747, Berlin, 1979, 405-408.
- [15] C.J. Titus and G.S. Young: The extension of interiority, with some applications, Trans. Amer. Math. Soc. 103 (1962), 329-340.
- [16] J. Väisälä: Lectures on *n*-dimensional quasiconformal mappings, Lecture Notes in Math. 229, Berlin, 1971.

Department of Applied Physics Faculty of Engineering Osaka University Yamadaoka 2–1, Suita Osaka 565, Japan