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0. Introduction

We say that a probability measure Px on D(R+->Rd) solves the martingale
problem for a Levy type generator L starting from x at time t=0 if

is a Pj-martingale with Mf

0=0 for all test functions/ on Rd. The martingale
problem for second order elliptic differential operators was studied by Stroock
and Varadhan [7]. It was Grigelionis [3] who first gave a martingale formula-
tion of Markov processes associated with certain integro-differential operators.
Komatsu [4], Tsuchiya [9] and Stroock [8] discussed the existence and the uni-
queness of solutions for the martingale problem associated with a Levy type
generator L. The existence was proved in [4] and [8] under a certain continuity
condition. The uniqueness was shown in [4] and [8] in a context that the
principal part of L is a second order elliptic differential operator. Tsuchiya [9]
proved the uniqueness in the case where the principal part of L is the generator
of an isotropic stable processes with index a (l^£α<2) and the perturbation
part of L has the upper index β<a (for the precise meaning, see the remark
following assumption [A2] in section 2). The purpose of this paper is to improve
the results in [9] by making use of the theory of singular integrals in Calderόn
and Zygmund [1].

Let exp [t ψ^Λ)(ξ)] be the characteristic function of a stable process with
index a. Then ψ("\ξ) is a homogeneous function of index α, arid the genera-
tor A^ of the stable process is given by

(x).

In case l < α < 2 , the operator A^ has the following expression

Λmf(χ) = \[f(χ+y)-f(χ)-ydf(χ)W*ψy),

where Mi<A)(dy) is a measure on /^{O} such that there is a finite measure
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MfrXdω) on Sd~ι satisfying M^\dy)=M^\dω)r'ι-Λ dr with y=\y\ ω=rω. We
assume that the measure Mi4Λ)(dy) has the Radon-Nikodym density m(<Λ\y)
with respect to the Lebesque measure dy which is rf-times continuously differ-
entiable on /^\{0} and not identically 0. Let JS(α>) be the operator

(x, dy)+b<*\χ).df(χ).

In case l < α < 2 , the assumption for B (Λ) is as follows: b^a\x) is an arbitrary
bounded measurable vector and every | N(Λ) (x, dy) | is dominated by some
measure N^\dy) such that

We shall consider the martingale problem for the operator

L = A<Λ>+B<*>.

We say that the operator A(€t) is the principal part of L and the operator B("\
the perturbation part of L. In this paper, we shall be exclusively concerned
with the uniqueness theorem, for the existence has been already proved in a
more general case under some additional conditions on L (see [4] Theorem
5.4 or [8] Theorem 2.2).

The author expresses his thanks to Professor T. Watanabe for some valu-
able advice.

1. Some preliminary results

First of all, we shall list the notations which will be used without further
references.

Let x=(xl9 -- yxd)(=Rd and d=(d1} •••, dd) with d^d/dxj. For v=(vu •••, vd),

set I H ^ i H Yvd and

The Fourier transform £F and the inverse Fourier transform ΞF"1 are defined by

3f{ξ) = J e-**f(x)dx , %-ιφ(x) = (2*)"'J e^

The sup-norm and the ZAnorm of a function/(ΛJ) on Rd are denoted respective-
ly by Il/H and \\f\\L*. Let S(Rd) denote the space of tempered functions on Rd.
A function f(ω) on Sd~1={ω^Rd; | ω | = l } is said to belong to the space
Cn(Sd~1) if there exists an w-times continuously differentiable function g(x) on
Rd such that f(x)=g(x) for | Λ ? | = 1 . The area element of the surface S*'1 is
denoted by σ(dω). Finally set Θ(Λ:)=Λ; if \x\^ί and Θ(x)=0 if | Λ ; | > 1 .
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We shall next consider the generator A(Λ) of a stable process with index
a, 0<a^2. The generator A(Λ) has the following expression.

A™ fix) = J [f(x+y)-f(x)W"\dy) (0<«< 1),

(*) = j U(χ+y)-f(χ)-θ(y) df(χ)]M<»(dy)+ydf{χ),

(χ) = j U(χ+y)-Kχ)-ydf{χ)]M<-«\dy)

(*) Σ«W(*)

where a=(au)^Oy γ e ^ and M{*\dy) a measure on i^*\{0} such that there
is a finite measure Mh*\dω) on S^"1 satisfying

Mί Vωy-1"* lίr with y= \y\ω=rω ,

| ω | = l

Let exp [^ ( Λ )(f)] be the characteristic function of the α-stable process. The
exact form of the function ψ{*\ξ) was obtained by Levy [6]: for 0 < α < l or
\<a<2,

I l ω l = 1

and for α = l or α = 2 ,

It is well known that, for a

From now on the measure M< a\dy) is assumed to have the density func-
tion m(a\y) with respect to the Lebesgue measure dy. Then m<-a\y) is a homo-
geneous function with index —d—a on i2rf\{0}, i.e. m(*)(ry)=r~d~<*m<-"\y) for
r>0, and satisfies

Mf\dω) = mP>(ω)σ(dω) for |ω | = 1 ,

f ω mSι\ω)σ{dω) = 0 .
J lωl=l
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Here and after we shall assume the following.

Assumption
For 0 < α < 2 , m(rt)(ω) belongs to C^S*'1) and it is not identically 0. For a=

2, the matrix a^=(ai/) is positive definite.

Lemma 1.1. Under assumption [Aχ]9 the function ψ(Λ)(ξ) belongs to Cd+1

1) and Re ψ ( β )(£)<0 as long as £ΦO.

Proof. Since

S<- = fi, ({ϊES», E , > ^ } U

it is enough to show that V<-)(?) i s (<ί+l)-tiines continuously difFerentiable
on each of the above similar 2d manifolds. We shall consider only the mani-
fold

D = (f eS*"1; f = (ξlt - , ?„),
Z

Let ξ(ΞD and 2^j^d. Then £i(8/8£y)|£ ωΓ = ω/9/8ωi)|£ ωΓ, Using
Stokes's theorem, we have

= f — \ξ ω\<tm<-Λ\ω)(-iy-1dω1A Άdωj-1Adωj+1A- Adωd
J lωl— lQCύi

= - ( I f » I Λ — »w(ω) ( - ίy-'dω, A Λ A^Λrfω J + 1 Λ Λrf
J|ω|=l Qcθχ

Inductively it is proved that, for z/=(0, v2y •••, vd) with

|
| ω | = l

[ |e ω
l ω | = l CCΰi

where (f18)v=(fI8/8fa)
v« (f1a/βfί)

v-. Therefore

, lω fl mWίωM
lωl=l
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This implies that the function I \ω ξ\"m("\ω)σ(dω) is (rf+l)-times conti-
J lω|=l

nuously differentiable on D. Similarly it is proved that the functions

|
l ω | = l

(
| ω | = l

are (rf+l)-times continuously differentiable on D. From (1.1) and (1.2) we
see that ψ^a\ζ) is (J+l)-times continuously differentiable on Z), and thus
ψ<"\ξ) belongs to C ^ S * " 1 ) . It is obvious from (1.1) and (1.2) that Re ψ("\ξ)
< 0 for ξΦO.

Lemma 1.2. Let φ(ξ) be a homogeneous function with index 0 and φ(ξ)
belong to Cd(Sd~ι). Let ΞF~xφ denote the inverse Fourier transform of φ in the
distribution sense. Then there is a homogeneous function h(x) with index —d
such that h(ω) belongs to C°(Sd-1),

(1.4) ( h(ω)σ(dω) = 0
J |ω |=l

and S~1φ(x)=h(x)+CφS(x)> where 8(x) is the Dίrac 8-function and cφ is the mean
value of the function φ over the surface Sd~ι:

CΦ~\ φ(ω)σ(dω)l\ σ{dω) .
J|ω|=l J|ω|=l

Proof. In case d=l, it is not difficult to see that

9-Wx) = m^ΦkiΣ) ±+Φ(i)+Φ(-i) 8{x).
2 πx 2

Now suppose that d}^2 and xφO. Define

h(x) = lim(2τr)-4 ώ(ξ) e~^^'xdξ
e o JRd

= lim (2π)-"[ φ(ω) ( ( V " 1 eir< ° *+

εjo Jlωl=l Jo

= lim (2π)-"[ φ(ω) (-i)d(d-l)\ {

Let 1 ->71 = 1, Sv={ζ^Sd"1; ζ η^O} and σd-2(dξ) be the area element on Sv,

and define

v(Vf t) - ( φ(tv+Vl-ft) σd-2{dζ)
J S
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χ(2π)-d(-iY(d-l)\ (l-*

Then

h{η) = lim \ v(η, t) (t+t6)'ddt

= <lim (t+iS)-d, v(Vy ί)>
β|0

where ζt~d

9 •> is defined by

<r2ffl-1, ©(ί)> = jY2--1 {»(')-»(-*)

(see Gel'fand and Shilov [2]). Since φ(ω)^Cd(Sd-1)i it follows that (d/dt)k

v(ηy t)(O^k^d) are continuous in (97, ί ) G S r f - ι x ( - l , 1); and thus A ^ G C 0 ^ " 1 ) .

It is immediate to show that the function h(x) is homogeneous of index — d. Let
p(f) be a test function on R+ such that 0fSp(r)5Π, p(r)=0 if r ^ 2 and p(r)

Then

Π A(ω)r-d{p(r)
Jθ J lωl=l

= \h(x){P(\x\)-p(2\x\)}dx

= 0 .

Therefore I A(ω)σ(rfω)=0. Since the distribution 3~ιφ is homogeneous of
J |ωl=l

index — d and since the support of the distribution ΞF~ιφ—h is concentrated
on the origin, there is a constant cφ such that

Ξί-ιφ{x)-h{x) = cφ S(x).

We shall show that the constant Cφ is the mean value of the function φ over
the surface Sd~\
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cφ = lim <3 r - 1 ώ-Λ, <r' | 2 / 2 e>
ί*0

= lim
s o

= lim

φ(ω) σ(dω)- ( V "
| ω | = l Jo

= ( φ(ω)σ(έ/ω)/( σ(dω) .
J|ω |=l V J |ω |=i V

The last equality holds because

| ω | = l

Theorem 1. Let φ(ξ) be a homogeneous function with index 0, and φ(ω)
1). F i χ a c o n s t a n t p^ 1<^<«DO. Then there is a constant Cp such that

(1.5) \\3-ι[φ3f]\\LP^Cp\\f\\LP for allf^S{Rd).

Proof. Set h{x)=3!~ιφ{x)—cφ δ(x), where cφ is the mean value of φ over

Sd-\ Define

(A*/) (x) = lim ( h(y)f(x~y)dy.
ε o J | ^ | > ε

By Lemma 1.2, h*f is a singular integral. From a theorem of Calderon and

Zygmund [1], there exists a constant cp such that | | A * / | | L * ^ £ J | | / | | £ * for all

fϊΞS{Rd). Note that

= ff->*/ - h*f+cφf for each/e<S(Λ").

Set Cp=cp-\- \cφ\. Then we have (1.5).

The function φ2(ξ) = ξjξjlψ(2)(ξ) satisfies the condition of the above

theorem. In Stroock and Varadhan [7], inequality (1.5) associated with the

function φ2{ζ) played an essential role in the proof of the uniqueness theorem.

We shall apply Theorem 1 for the function φ(£)— \ξ\Λjψ{<Λ){ζ) in case 0 < α

< 1 , and for the function φ(f)=fy|?Γ~7Ψ ( β )(f) in case l ^ α < 2 . From

Lemma 1.1, these functions satisfy the condition of Theorem 1. Inequality

(1.5) is also essential in this paper.

2. Perturbation of generator of stable processes

Let p{Λ) (t, x—y) be the transition function of the α-stable process with
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the generator A^\ Then, for t>0, we have

(2.1) p<"\t, x) = %'ψ^] (x).

Since ψ^ (ξ) is a homogeneous function with index a, we have

\^t-l*Li) JJ ^t-j iλrj L JJ yly L Λ/J

The λ-potential operator G[a) of the α-stable process is given by

(2.3) G^ftx) = \~[e-*y>(t, x-y)f(y)dtdy

(x)dt

for each/ε<S(J20. Let

(2.4) ί ( )

Jo

Then |l5rλ*)IL1=λ " 1 a n d G^f—g^*/- From Young's inequality we have

(2.5) iiGryii^λ-'ii/iu iiGr/ii^λ-'ii/ii.

For 0 < δ < l , define a pseudo-diίferential operator | 3 | δ by

(2.6)

Lemma 2.1. Let 0 < δ < 1. There are constants cλ and c2 such that

(2.7)

(2.8) /(*+*)-/(*) = c2j( | ^+^I *-"- Iy I δ"d) 181 sf(x-y)dy

for each smooth bounded function f on Rd.

Proof. Since the function Φ(Λ ) = 11 I x+y I s~d— \ y \ s~d \ dy is isotropic and

homogeneous with index δ, (2.7) follows if Φ(Λ;0)<OO for some #oΦθ. If
xo=(2, 0, - , 0), then

\\\χo+y\°-d-\y\*-"\dy
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= 2 lim ί (\y\*-*- Ixo+y\»-*)dy ι - dyd
#+<*> J-Kyi<N

(
Kyi<N

' \ \xt>+y\s-"dyί - dyd)

We shall next prove (2.8). Note that

where c2=2-W~ϊr-dΓ((d-δ)l2)ir{SI2). Suppose that/<=S(R"). Then

f(x+z)-f(x) = 3-ι3f(x+z)-3-λ3f{x)

= c2( I I *-"* I d IY) (χ+z)-c2( I I *-"* 191 sf) (x)

= c2\(\y+z\s-'-\y\*-<)\d\*f(x-y)dy.

Next suppose that / is a smooth bounded function on Rd. There is a sequence
{/„} ^S{Rd) such that/„(*)-/(*),

sup | | | a |7 . | |<oo and |9 | δ /»W- I9I7W-

Since (2.8) is satisfied for each fny from Lebesque's convergence theorem,
we see that (2.8) also holds for/.

In the following two lemmas, let l<p<oo and fG:S(Rd), and let c's de-
note constants independent of λ and/.

Lemma 2.2. (i) // 0 < α ^ 1, then

(2.9) I I G i ^ ^

(ii) If I<a^2, then

(2.10) ll9MΛy(

Proof. Let 0 < α < l and f<=S(Rd). From (2.8) we have

-rf-1 r-') 19 r
Therefore by (2.7) and Young's inequality

Note that

l8| σi-)/= s-'
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Thus, by Theorem 1, we have

Since \\\Gia)f-f\\Lp^2\\f\\Lt by (2.5), we conclude that

UGPA +y)-GPf(-)\y^2c2c31y\ \\f\\Lp .

Next, let a=\ and f^S(Rd). It is easy to show that

We have, as in case 0 < α < l ,

-f] (ξ)].

From Theorem 1 and (2.5), we have

||3yGί1)/

Therefore

Hence (i) is proved. The proof of (ii) is similar to (i), so it is omitted.

Lemma 2.3. (i) If a > 1, then

(2.11) \\djG^f\\Lp^cX-1+in\f\y.

(ii) Ifap<d, then | | G ί β ) / | | g C λ - 1 + ^ | | / | | i # ; and if (a-ί)p>d, then ||9, G Γ / | |

Proof. Since, by Lemma 1.1, ψ ( 4 )(ω)eC< + 1(S''-1), we have

Id»(e^ωξ.)I ^const. (HI«-"+ If I

as long as \v\ ^d+1. Therefore

\x%p<?>(l,x)\ = I f F ^ P V ' ^

This implies that 8 ^ w ( l , * ) = 0 ( | * | ""-1) as |* |-»oo, and thus
< oo. From (2.2) we have

J13yi> ( α )(ί. *) I ̂ )
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= j V 1 / a V λ < ( j 18,/><*>(l, y)Idy)dt = ί λ " 1 + 1 / β .

Since djG^t)f=djg
(")*f, (i) is proved using Young's inequality. Similarly we have

wherep~1+q~1=l. Using (2.2), it is easy to show that

iίap>d,

if ( α -

Since GίΛ)f=gP*f and djG%*)f=djg?)*fy (ii) follows from Holder's inequality.

We shall next introduce the operator

(2.12) B^f(x) = \[f(x+y)-f(x)-Θ(y).df(x)]NW(x, dy)+b™(x)-df(x)

as a perturbation of A^\ Recall that Θ(y)=y for |y | ^ 1 and θ(y)=0 for |y | > 1 .
We shall be concerned with this operator under the following assumption.

Assumption [A2]

(1) M^\dy)+N^(x, dy)^0 in case 0 < α < 2 , and iV(Λ)(x, dy)^0 in case a=2.
(2) There exists a measure N%\dy) such that

\\y\*ΛlN%\dy)<oo and \W«\x, dy)\^Nf{dy)for allx.

(3) bi<Λ)(x) is an arbitrary bounded measurable vector in case l < α ^ 2 , and

REMARK. The constant β:

β = inf {βf; sup

is called the upper index of the operator B(<*\ If assumption [A2] is satisfied,
then the upper index β is equal to or less than a. Tsuchiya [9] considered
the case where 0<a'<a and

N<»(x, dy) = k(x, y)\y\ -d-«'dy, sup |k(x, y)\ <<χ> .

In his case, the upper index β of the operator B(a) does not exceed α', so that
β<ia. As was shown in [9], if β<.a, Lemma 2.2 can be replaced by some weaker
inequalities due to Motoo. Since Motoo's inequalities can be proved without
the theory of singular integrals, the whole argument as that in this paper be-
comes much easier.

Define a non-linear operator
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(2.13)

Theorem 2. Let ί<p<oo. There is a function kp(\) on (0, oo) such that
kt(X) I 0 as λ f oo and, for eachf

Proof. Γ L e t O < α ^ l . From (2.5) we have

On the other hand, by (2.9), we have

lit
Jλ

Let A/λ)=(2V«i)j\y\"AX-'N^dy). Then*,(λ) | 0 as λ f oo and \\B^G^f\\Lp

2° Let l < α ^ 2 . It follows from (2.5) and (2.11) that

lit \GPf(-+y)-Gi»>f(.)\N%\dy)\\L>
J\y\>l

- 2 λ " 1
Note that

\y\

8GΓ/( )l \θ{y)\N^(dy)\\LP .

Using (2.10) and (2.11), in a similar way to step 1°, we have
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sup \\\\dG^f( +θy)-dG^f(')\'\Θ{y)\N^(dy)\\LP

=S c3j(Iyr-lA\-1+v*)I@(y)\NW(dy).\\f\\LP

= cs\hiJy\(\ y\A\-ί/y-1Nt)(άy) \\f\\^-

Set

kp(\) = 2\-1\ N$\dy)+c2\\\bV

Then kp(X) I 0 as λ ί oo and \\B$>GPf\\L>£k,(\)\\f\\L>.

Let Li>=L*(Rd)={f; | |/ |L#<oo}. From (2.5), the operator GίΛ) can be
extended to the bounded operator on Lp, which is also denoted by GiΛ). It is
easy to show that

(2.14) (\-AW)Gίa)f= G?\\-AW)f = f for f(=S(Rd).

Note that if f(=S(Rd), then the function A^f is smooth and A^f(x)=0( \x\ ~d)
as I x I -> oo, so that (λ—^4 ( Λ ))/G ZA Let L be the operator

(2.15) L

From (2.14) we have

for f^S(Rd). Let &/λ) be the function of the above theorem, and choose a
constant λ, so that kp(\p)^ 1/2. If λ^λ, , since H B ^ G ^ / H ^ ^ 1/2||/||L# for all
f€ιS(Rd), the operator JS(Λ)GlΛ) can be extended to the bounded operator on
ZΛ which is denoted by [B^Gia)]. Then the operator

is well defined, and its operator norm is equal to or less than 2. For λ ^
we shall define the operator

(2.16) Rλ = G£\I-[B

From the resolvent equation:

( λ ) G i Λ ) G ( ; ) on

the space GP(LP) is independent of λ > 0 . From (2.14) we see that if f(=S(Rd)
and X^XA, then
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(2.17) Rλ(x-L)f= Rλ(\

The operator Rλ gives the λ-potential operator associated with L. Namely,
the operator (L, S(Rd)) is closable with respect to the ZΛnorm, and its closed
extension (L, D(L)) satisfies

(2.18) (\-L)RJ = f for each/eZ,* and

with D(L)=Gi*)(Lp). This fact is not necessary in the proof of the uniqueness
theorem of the martingale problem associated with L. However it will be
indispensable to the construction of the Markov semi-group with the pre-generator
(L> S(Rd)) which does not always satisfy the continuity condition as in [4]. We
shall discuss this problem elsewhere, so that the proof of (2.18) is omitted.

3. Uniqueness for the martingale problem

Let W be the space D(R+-+Rd): the space of right continuous functions
having left hand side limits. Given w in W, let Xt(w) denote the position of w
at time t. Set <W=σ(Xs; 0^s<oo) and <J^= Πξ>0o-(XS; O^s^t+S). Let L
be the operator defined by (2.15). We shall say that a probability measure Px

on the space (Wy

 <W) solves the martingale problem for the operator L starting
from x if, for each f

(3.1) M{ = f(Xt)-f(χ)- \'Lf(X.) ds
JO

is a PΛ-martingale with M{=0. We shall prove the following uniqueness
theorem.

Theorem 3. Under assumptions [A^\ and [A2], there is at most one prob-
ability measure Px which solves the martingale problem associated with the operator

starting from x.

In this section, the constant p is chosen so that p>d/a in case
and that p>d/(a—l) in case l < α ^ 2 . Let B(Rd) be the space of bounded
Borel measurable functions and C°(Rd) the completion of the space S(Rd) by
the sup-norm || ||. Spaces Lp(Rd), B(Rd) and C\Rd) are simply denoted by
£ ' , B and C°. By Lemma 2.3 (ii), we have G^(Lp)dC°. Let λ^λ, , where
λ^ is the constant defined at the end of the previous section. Since (/— [Bi(Λ)

GP])-1 is a bounded operator on L* and Rλ=G^(I-[B^G^])-\ we have

(3.2) Rx(Lp)dC° f o r λ ^ λ , .

Lemma 3.1. Let P1 and P2 be probability measures on (W, *W). Let
E*[ ] denotes the expectation by P\ If
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Pι[X0(Ξdx] = P2[X0<=dx], and

E<[\~e-«<-*f(Xt)dt\Ws] = RJ(XS) P'-a.e. (i = 1, 2)
J s

for alls^O, X^XP andf<=LpΓiB, then we have Pι=P2 on <W.

Proof. It suffices to show that the proposition

(for each 0 = so<sλ< ••• <sn and/0,/i,

holds for each n^Z+. Obviously [£P0] holds. Suppose that [^J holds. For
each O=so<s1< ••• <sk; fo,fu — ,/ΛeC° and/GΞ£,* ΓΊ C°, we have

From (3.2), the function fk'Rλf belongs to C°. Since

-EU(XSΰ) -fk(XH)f(Xt)]} dt = 0

for all X^Xp. Since the integrand

-f(Xt)]-EVo(Xs0)

is right continuous in t, it is identically equal to 0. Proposition [ίP*+i] follows
immediately.

Let Px be a probability measure on (W. CW) solving the martingale problem
for L starting from x. From the above lemma, in order to prove Theorem 3,
it suffices to show that

(3.3) Ex[\e-«<-*f(Xt)dt I <WS] = RJ(XS) P,-a.e.
J s

for each s^0,f^Lpf)B and X^Xp. Ex[ ] denotes the expectation by Px. Be-
cause of (2.17) and (2.18), relation (3.3) would seem to be valid. But the fact
that Rλ is the X-potential operator for L is not used in the proof of Theorem 3.
In case a=2, Theorem 3 is a special case of Theorem 4.4 in Komatsu [4]. Thus
we shall consider the case 0 < α < 2 .

Let Jx(dt, dy) denote the number of times s such that s^dt and AXS=XS

—Xs.(=dy\{0}. By Theorem 2.1 in Komatsu [4],
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cJx{dt, dy)=Jx{dt, dy)- t, dy))dt

is a Px-martingale measure. Namely, for each non-negative measurable func-
tion h(t> xy y) and each stopping time T,

, dy))dt].

And the process {Xt, Px} is decomposed as follows:

'Xt = *+J j.y/x(Λ, dy) in case

χt = x +

JO J

Xt = x+ \\b<»(X,)-[
Jo J

n dy))ds

\y\>l

in case a = 1 ,(3.4)

yjx(ds,dy)

in case l < α < 2 .

For a moment let g^S(Rd). Then the function G^g is smooth and its deri-
vatives are bounded. Applying the formula of change of variables of semi-
martingales (see Kunita and Watanabe [5]) for the process Xt which is decom-
posed in the form (3.4), we see that the process

is a PΛ-martingale with mean 0. Therefore

Let λ ^ λ,. Since G{a)g=Rλ(I- [B^Gia)])g, the equality

El [°e-w-»f(Xt)dt I <WS] = RJ(X.) P,-a.e.

holds good for the function f=(I-[B^G^])g. Since the class (/-[-B^GΓ])
(S(Rd)) of functions is dense in Lpf\B with respect to the L*-norm, relation
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(3.3) is a consequence of the inequality: for each / e L p Π B,

(3.5) \Ex[Γe-^-y(Xt)dt\^s]\^cx\\f\\L, P,-a.e.,
J
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where (s, x) is fixed and cλ is a constant independent of/.
Hereafter we shall prove inequality (3.5). Unfortunately the proof is

not so easy. Let {Wy W, ΊWu Q> Xt) be a stable process such that

t, dy)Q(dw) =

Set W=WxW, f = f x f , W^WtXWt and Px=PxxQ. Given w=
(wly w2)^W, let Yt(tΰ)=w2(t) and Xt(iΰ)=io1(t). (We dare to use the same
symbol Xt as before.) Let Jx(dt> dy) and cJx(dty dy) be the same objects as
before, and let

(3.6)

Jγ(dt, dy) = #{y; sξΞdt and AYS = Ys— Ys.(=dy\{0}} ,
cJγ(dt, dy)=Jr(dt, dy)-M<-*\dy)dt.

For δ>0, define the process Z\ on the space {W, <W, Px) by

Z\ = Xt- \'\ y{Jx (ds, dy)-Jy(ds, dy))

in case 0 < α < l ,

yϋx(ds, dy)-cJγ(ds, dy)
o

+NM(XS> dy)ds) in case a = 1,

XUds, dy)-'Jy(ds, dy))

in case

It is easy to show that

lim Px[ sup \Z\—Xt \ >S] = 0

for each £>0 and T<oo, Therefore we have

(3.7)

= lim εx
810

in

for each/eC°, where Ex[ ] denotes the expectation by the product measure
PX=PX x Q. Fix (s, x)<=R+χ Rd, and define

(3.8) Vίf(W) = ^
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Lemma 3.2. There exists a constant ci such that

Wlf{iv)\<ίci\\f\\LP P,-a.e.

for anyf^Lpf]B and λ>0.

Proof. Suppose that l < α < 2 . Let f^S(Rd) and v=Gi*)f. Applying
the formula of change of variables of semi-martingales for the process Zf,
we have

e-λ«-sh(Z8

t)-v(Zδ

s)

= f W-){(L-λMZJ)
J s

- ( (v(Z*+y)-v(Z*)-ydv(Z}))NW(Z*, dy)}dτ

+ [a Px -martingale with mean 0].

Therefore

(3.9) -v{Zl)

+ \ (v(Zst+y)-v(ZΪ)-Θ(y)'dv(ZΪ))NW(Zs

t, dy)}dt\Wt]
J \y\>δ

Using Lemma 2.3 (ii),

\y\>l
N^\dy))\\υ\\+(2[ \\ydv\\N%\dy))}dt

+ J_

where cλ and c2 are constants independent of /. Thus there is a constant c{
such that I V{f(w) \ £d\\f\\L> for ύ\f^S{Rd). Since V{ is a positive bounded
operator on B, by making use of the Egorov theorem, it is easy to show that

I Vlf(w)\<^d\\f\\LP for all/eJ&>nB .

Next suppose that 0<a^ί. Let f^S(Rd) and v=GPf. Then it is proved
in much the same manner as was (3.9) that

(3.10) -v(ZΪ) = j

(Z?, dy)}dt\Ws].



MARTINGALE PROBLEM FOR GENERATORS OF STABLE PROCESSES 131

And the proof of the lemma in the case 0 < α ^ l is completed in a similar way
to the case l < α < 2 .

Lemma 3.3. Let cλ be a constant such that

Then, for each f<=LpΓ\B and \^XP,

(3.11) in/W^II/lli* Px~a.e.

Proof. From Lemma 3.2, the constant

c{ = inf {c\Px[\Vlf\>c\\f\\LP] = 0 for all/eUΠ B)

is finite. Let f(ΞS(Rd) and \^Xp. By (3.9) and (3.10) we have

I Vlf(ϋ>) I ^ I I G

Since the function G^f is smooth and its derivatives are bounded on Rd, the
function BίgG^f belongs to L* Π B. Therefore

P.-a.e.

From Theorem 2, WB^G^fW^^lβ^fW^ for λ^λ,. Then

\V{f{tΰ) I ̂ 1 (

Since FJ is a positive bounded operator on B, the last inequality holds for
each f^Lp ft B. Therefore we have c{^(cλ+cl)l2, which implies that c{^cλ.
This completes the proof.

We now proceed the proof of proposition (3.5). From (3.7) and (3.11),
if/eIr*nC°,then

IEx[\~e-^f{Xt)dtIWJI = lim | Vif{tυ)\ in L\Wy <W, Px),
Js δ o

\Vlf(ΰ>)\£cλ\\f\\L> Px-z.e.

Therefore

This implies that

\Ex[\"e-«'-»f(Xt)dt\Ws]\^cλ\\f\\LP P,-a.e.,

because P x is the direct product of Px and Q. Since the operator
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g A ^ Ex[Γe-^-^g(Xt)dt\Ws]
J s

is a positive and bounded one on B, using the Egorov theorem, we see that the

last inequality holds for each / G Lp Γl B. Therefore proposition (3.5) is valid.

Hence the proof of Theorem 3 is completed.
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