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0. Introduction

We say that a probability measure P, on D(R,—>R?) solves the martingale
problem for a Lévy type generator L starting from x at time #=0 if

Mf = fX)—fo) = Lix)ds

is a P,-martingale with M4=0 for all test functions f on R?. The martingale
problem for second order elliptic differential operators was studied by Stroock
and Varadhan [7]. It was Grigelionis [3] who first gave a martingale formula-
tion of Markov processes associated with certain integro-differential operators.
Komatsu [4], Tsuchiya [9] and Stroock [8] discussed the existence and the uni-
queness of solutions for the martingale problem associated with a Lévy type
generator L. The existence was proved in [4] and [8] under a certain continuity
condition. The uniqueness was shown in [4] and [8] in a context that the
principal part of L is a second order elliptic differential operator. Tsuchiya [9]
proved the uniqueness in the case where the principal part of L is the generator
- of an isotropic stable processes with index a (1=a<Z2) and the perturbation
part of L has the upper index B<«a (for the precise meaning, see the remark
following assumption [A,] in section 2). The purpose of this paper is to improve
the results in [9] by making use of the theory of singular integrals in Calderén
and Zygmund [1].

Let exp[t ¥(£)] be the characteristic function of a stable process with
index a@. Then Y*)(£) is a homogeneous function of index «, and the genera-
tor A of the stable process is given by

A® flx) = TP OTf] (%) -
In case 1<a<2, the operator 4 has the following expression
A® fix) = S[f (0+y)—=f(%)—y -0 f(x)]M*(dy) ,

where M (dy) is a measure on R?\ {0} such that there is a finite measure
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M{®(dw) on S satisfying M®(dy)=M{(dw)r " dr with y=|y|wo=re. We
assume that the measure M (dy) has the Radon-Nikodym density m®(y)
with respect to the Lebesque measure dy which is d-times continuously differ-
entiable on R4\ {0} and not identically 0. Let B be the operator

B f(x) = S[f (x4)—f(*)— L0150y fX)IN X, dy)+b(%)+0f(x) .

In case 1<a<2, the assumption for B™ is as follows: 5*(x) is an arbitrary
bounded measurable vector and every [N (x,dy)| is dominated by some
measure N§(dy) such that

fly1oA1 M@y <o
We shall consider the martingale problem for the operator
L=A®+B" .

We say that the operator A® is the principal part of L and the operator B®,
the perturbation part of L. In this paper, we shall be exclusively concerned
with the uniqueness theorem, for the existence has been already proved in a
more general case under some additional conditions on L (see [4] Theorem
5.4 or [8] Theorem 2.2).

The author expresses his thanks to Professor 'T'. Watanabe for some valu-
able advice.

1. Some preliminary results

First of all, we shall list the notations which will be used without further

references.
Let x=(xy, -+, ;) €R* and 8=(0,, +++, ;) with 8,=8/0x,. For v=(v,, ***,v,),

v,€Z,, set |v|=v+-4v,; and
x":xi'l...x:d’ 6"—_—8‘1’1 ---8}4.

The Fourier transform & and the inverse Fourier transform ! are defined by
TAE) = | et fipde, Foig() = (2m)¢ | rp(Erae

The sup-norm and the L?-norm of a function f(x) on R? are denoted respective-
ly by |If]l and ||f]l;». Let S(R?) denote the space of tempered functions on R?.
A function fw) on S '={wER?; |w|=1} is said to belong to the space
C"(S*!) if there exists an n-times continuously differentiable function g(x) on
R? such that f(x)=g(x) for |x|=1. The area element of the surface S?7! is
denoted by o(dw). Finally set @(x)=x if [x| <1 and O(x)=0 if |x|>1.
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We shall next consider the generator A of a stable process with index
a, 0<a=2. The generator A® has the following expression.

A f(w) = | [ft9)—fm(dy) (0<a<1),
A f(x) = | [fx-+2)—f(x)— O(y) -0 [@IMP(dy)+7-0 ()
A® fx) = [ [ft+9)—f@)—y-0f@IM™(d)  (1<a<?),
A% f(x) = - 3 a1;00,f(2),

where a=(a;;)=0, yER® and M®(dy) a measure on R*\{0} such that there
is a finite measure M{”(dw) on S¢~! satisfying

M®(dy)= M{(dw)r*"* dr with y= |y|lo=r0,
Sl o M(da) = 0.
w|=1

Let exp[ty™(£)] be the characteristic function of the a-stable process. The
exact form of the function Y~*(£) was obtained by Lévy [6]: for 0<a<1 or
l<a<?,

o)

(59

and for =1 or =2,

(11) w@(E) = — Jlm:llmfl"{l—i tan " x sgn(o- )} Mi"(da);

PO = —Z{  (lo-El+20-F logla-E )M (da)Hi7-E,
(1.2)

POE) = — L E-ak
It is well known that, for all f € S(RY),

(1.3) A fla) = TYO L] (%) -

From now on the measure M®)(dy) is assumed to have the density func-
tion m(®(y) with respect to the Lebesgue measure dy. Then m®)(y) is a homo-
geneous function with index —d—a on R*\{0}, i.e. m®(ry)=r"4""m*)(y) for
r>0, and satisfies

M{P(dw) = m™(w)o(dw) for |w|=1,
j. _omM(@)o(dw) = 0.
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Here and after we shall assume the following.

Assumption [A,]
For 0<a<2, m™(w) belongs to C*(S*™*) and it is not identically 0. For a=
2, the matrix a=(a;;) is positive definite.

Lemma 1.1. Under assumption [A,], the function (&) belongs to C**'
(S84 and Re P™(£)<0 as long as E=+0.

Proof. Since
a-1_ ! d-1, 1 } { d-1, _ 1
S kl--Jl ({EES ’Ek>2\/7 U EES ’Ek< 2\/7})9

it is enough to show that Y~*(£) is (d+1)-times continuously differentiable
on each of the above similar 2d manifolds. We shall consider only the mani-
fold

— Tl f— e —1
D_{{—’ES" 175_'(51) )Ed)v El>2\/7}-

Let (€D and 2<j=<d. Then £ (9/0§))|& w|®=w;(0/0w,)|E*w|® Using
Stokes’s theorem, we have

g, [0 El MO @)o(do)

- Sl.ﬂ:f‘”’a‘i‘l |E+0] “m®(w)o(dw)

= § —a—lf-w]“m(a)(w) (Al)"'ldwl/\-"/\dw,-_l/\dco,-+1/\"'/\dwd

lo| =] awl

— —S'w|=l|§-w|¢6iwlm(d)(w) (—l)f‘lda)l/\.../\da),-_l/\a'wjﬂ/\.../\dwd

= —S|m|=1lg.wlmwj88 m®(w)o(dw) .

)
Inductively it is proved that, for v=(0, v,, -+, v,) with |v| =d,

€0)| _loE1"m®(w)o(da)

lo

- jlwl:lis-ml“(—wa—i—l) m®(w)o(dw)
where (§,0)"=(£,0/0&,)"--+(£,0/0,)"+. 'Therefore

&

et |w+E|*m™(w)o(dw)
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= Slwl=15%j lweE |"'<——co aiwl)v m™(w)o(dw) .

This implies that the function SI ' |ow-&]"m™(w)o(dw) is (d+1)-times conti-
wl=1

nuously differentiable on D. Similarly it is proved that the functions
[ _1E-0l"senE-0)m(w)o(do),

Sluﬂ:l(g ‘) log|w*&|mP(w)o(dw)

are (d-1)-times continuously differentiable on D. From (1.1) and (1.2) we
see that Y™(§) is (d+1)-times continuously differentiable on D, and thus
Y(*)(E) belongs to C***(S¢7). It is obvious from (1.1) and (1.2) that Re *)(&)
<0 for £=0.

Lemma 1.2. Let ¢(E) be a homogeneous function with index 0 and ¢(E)
belong to C*(S*7"). Let ¢ denvte the inverse Fourier transform of ¢ in the
distribution sense. Then there is a homogeneous function h(x) with index —d
such that h(w) belongs to C°(S*™1),

(14) Slwl:lh(w)a-(dw) —0

and F'p(x)=h(x)+cs8(x), where 8(x) is the Dirac d-function and c4 is the mean
value of the function ¢ over the surface S°~*:

cp = S. | (l)(w)a(dw)/g o(do) .
w|=1 lol=1
Proof. In case d=1, it is not difficult to see that

F-ip(s) — HO=HD L SO ).

X

Now suppose that d=2 and x+0. Define
— 11 -d —8|E|+ikex
M) = lim (2r) ] _g(e) et
—1im 2m) [ () (| e o(de)
ey0 lol=1 0

= lim (2m) | _8(0) (—d—D)! (o-a-+i8) “o(dw)

lo

Let |p]=1, S,={=8%"; {-»=0} and o,-,(df) be the area element on S,
and define

o ) = || dltr-v/1=78) ()
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X (27) 4 (=) (d—1D)! (1 =) 2 1<
Then
400
() = lim S o(n, ) (t--i6) dt
= <lim (t+18)7¢, v(n, t)>
— ¢p-iy tm(=1)° §w@-1
<t +==— (d—].)' (t) ‘Z)(‘r], t)>

where {¢7¢, -> is defined by

G, o(t)> — 5“t_z,. {o(t)+o(—1)

—2(o0+L O - +(;m_2)2(;)') £yt
G, o(1)> = g 72 o(t)—o(—1)

2@®~1(0) gam-1

¢ (O) 3
—2(0' (Ot +—~2 24 -+ +(2 p—"

)} dt

(see Gel'fand and Shilov [2]). Since ¢(w)EC¥S*™Y), it follows that (d/dt)*
v(n, t) (0=<k=d) are continuous in (5, £) €5 7* X (—1, 1); and thus k() € C(S*™?).
It is immediate to show that the function A(x) is homogeneous of index —d. Let
p(r) be a test function on R, such that 0=p(r)=<1, p(r)=0 if »=2 and p(r)
‘=1 for 0<r=<1. Then

Sws @)~ p(r)—p(2r)} " dr o(de)

0Jl

= [ o121 —p2ix 1) dx
= @m) [ @ o(1+1)] (B~ FLp(2] - ] (B)}
— @n)* (@ To(1 - ] (B)~2'FTo(] - )] (281} dE = 0.

Therefore gl | h(») o(dw)=0. Since the distribution F~'¢ is homogeneous of
wl=1

index —d and since the support of the distribution ¥ '¢p—% is concentrated
on the origin, there is a constant ¢, such that

Flp(w)—h(x) = cg 8(x) .

We shall show that the constant ¢4 is the mean value of the function ¢ over
the surface S*7.
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¢y = lim <F~'p—h, e I"1*?*)

230

= lim (F ¢, /2z€? F'[e™" )
ey0

— lim (Zn)“gcﬁ(é) V2nE e e g
e30

= S¢(§) 278 e ez JE

- S. _$() o{do)- g”rd-l\/‘z;-d 2 gy
wl|= 0
= ¢ o@)| o(da).
]=1 lol=1
The last equality holds because
[(rvemserrar|  ode) = (Vartewinag = 1.
wl=1

0

Theorem 1. Let ¢(E) be a homogeneous function with index 0, and ¢(w)
€CYS*"). Fix a constant p, 1<p<<oo. Then there is a constant C, such that

(1.5) NF ST Flllp=<C,lIflls  for all fES(R?).

Proof. Set A(x)=SF"'¢p(x)—c4 8(x), where ¢4 is the mean value of ¢ over
S4-1. Define

(ef) () =lim | Wy)fx—3)dy.

By Lemma 1.2, A*f is a singular integral. From a theorem of Calderon and
Zygmund [1], there exists a constant ¢, such that || f||»=c,||f]|,» for all
fES(R?Y). Note that

FNpTF fl=F 'pxf = hxf+csf  for each fES(RY).
Set C,=c,+|cs|. Then we have (1.5).

The function ¢,(E)=E&;&;® () satisfies the condition of the above
theorem. In Stroock and Varadhan [7], inequality (1.5) associated with the
function ¢,(&) played an essential role in the proof of the uniqueness theorem.
We shall apply Theorem 1 for the function ¢(£)=|&|%/4®(E) in case 0<a
<1, and for the function ¢(£)=E;|E|* Y™ (E) in case 1<a<2. From
Lemma 1.1, these functions satisfy the condition of Theorem 1. Inequality
(1.5) is also essential in this paper.

2. Perturbation of generator of stable processes

Let p (¢, x—y) be the transition function of the «-stable process with
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the generator A®. Then, for >0, we have

(21) p("‘) (l‘, x) — gf—l[et\p(")] (x) )
Since y(" (£) is a homogeneous function with index «, we have
(22) P(“) (t, x) — t-d/ap(m)(l’ t-—l/ax) .

The A-potential operator G of the a-stable process is given by
(23) Gfx) = | fep @, x—y)f(y) dtdy
- S:e-“szf-l[ew‘“’ Ff] (x)dt
= FNA—vI) T[] (%)
for each feS(RY). Let
24) g0 @) = (e p@t, x)ar.
Then ||g®||2=\"" and GPf=g®*f. From Young’s inequality we have
(2.5) NGl o= NI fllee, NGRS H=NTIAL
For 0<8<1, define a pseudo-differential operator |8|? by
(2.6) 18]° flx) = L[| EI°F f(£)] ()
= (2 Ve r(4£2)r(=2))| Ut -1yl ay

Lemma 2.1. Let 0<8<<1. There are constants c, and c, such that
(2.7) fi1etyr-—iyi=1ay = alxp?,

@8)  fata) @) = af(ly+s 131901 fz—y)dy

for each smooth bounded function f on R®.

Proof. Since the function CID(x)=S| |x+y|%4—|y|®4|dy is isotropic and

homogeneous with index 8, (2.7) follows if ®(x))<<oo for some x,%0. If
x%y=(2, 0, -+, 0), then

SI |%+y 1274 —|y|®~¢|dy

=2 laty e 1y 1y
91> -1
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T s-d__ 5-d

o 2}1_1}1016 S-1<y1<1v(lyl Pty 19y dys

— 2 8=d g oue dy,— 8-d gy ...
2}71-{2 (S ~1<y;<N Iyl dy1 dy.; S-1<y1<N -2 | xo—l—yl dy; dyd)

+1
- zLdyxg |y1°~9dy, e dys<oo.
We shall next prove (2.8). Note that
FIEI] (x) = ;] 2|9,
where ¢,=27%\/ 7" T((d—8)/2)/T(8/2). Suppose that f€S(R?). Then

ft2)—flx) = T F fla+2)—F T f(x)
= (| - 1°7%101°f) (x+2)—ex(1 - 1°~*¢8]° ) (%)

— & (1y+21 = 1317901 flx—)dy .

Next suppose that f is a smooth bounded function on R?. There is a sequence

{f.} ©S(R?) such that f,(x)— f(x),
sup [18]°f,/[<eo and |3]° f,(x) = |8]°f(x) .

Since (2.8) is satisfied for each f,, from Lebesque’s convergence theorem,
we see that (2.8) also holds for f.

In the following two lemmas, let 1<p<<oo and f&S(R?), and let ¢’s de-
note constants independent of A and f.

Lemma 2.2. (i) If0<a=l, then

(2.9) IGE2f(- +3)—GEf(HIe=cl y|®ll fllLs -
(i) If 1<a<2, then
(2.10) 18,GXf(+ +3)—0,GXf( s =cl y1* 7l fll.o -

Proof. Let 0<a<1 and feS(R?). From (2.8) we have

G flx+y)— G f(x)
=l +y "=+ 1*7)*18]| " G f(x) .
Therefore by (2.7) and Young’s inequality
NGf(- +3)—GEf( Nl =c |y °I118]° GLf || » -
Note that
181" G f = FIEI* (=¥ (€))L 1(E)]
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=7 o e )70

- [ Kl anerr—ne)].

Thus, by Theorem 1, we have
1181° G Il , < sl NGR2f—f s -
Since [ING® f—f|.s=2]|f]|.» by (2.5), we conclude that
G- +3) =GO f( )= 26,65 Y 1[I fll2 -
Next, let =1 and f € S(R?). It is easy to show that
IGEA+9)— GO 17133 10,6 1ss
We have, as in case 0<a<1,

Ve 1| & s
0,GVf = F [Wg[ww f](g)]

From Theorem 1 and (2.5), we have

[18,GRfll = cdlNGf—f Il .2 =2¢,]I f1l2 -

Therefore
NGOf(+ +9)—GOf( e =2c,d| y |l fll2 -

Hence (i) is proved. The proof of (ii) is similar to (i), so it is omitted.
Lemma 2.3. (i) If a>1, then
(2.11) 18,GX2f ll o= e fl] s

(i) If ap<d, then ||G°fI|Scn44% || fl| 05 and if (@ —1)p>>d, then |19,GLf ||
S ATV | f]] .

Proof. Since, by Lemma 1.1, ¥ (o) € C***(S? ), we have
|6"(e"’(“)(5)’g’j) [ < const. (|E|# 9 | £|@HDw=d)Re@E)
as long as |v|=d+1. Therefore
|x"8,p™ (1, x)| = | F[0"(e*P®E )] (x)| < const.

This implies that 9;p (1, x)=0(|x|~“"*) as |x|—oo, and thus |[9;p(1, +)||2
< oo. From (2.2) we have

10,80, = [ e ([10,0 (2, )1 dwyar

)
0
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= [T (100001, )1 dy)d = enrem.
Since 9;G\”f=0,g\"x f, (i) is proved using Young’s inequality. Similarly we have
161, +)llr<o and 10,51, -)llze<o
where p~'+¢'=1. Using (2.2), it is easy to show that

g1l = 4% if ap>d,
10,68llue = eA e if (q—1)p>d.

Since G f=g"+ f and 8,G" f=0,g"f, (ii) follows from Holder’s inequality.

We shall next introduce the operator
(2.12) BOf(x) = gff(xﬂLy)—f(x)—@(y)'af(x)]N (%, dy)+b ()0 f(x)

as a perturbation of A®. Recall that ©(y)=y for | y| =<1 and ©(y)=0 for | y|>1.
We shall be concerned with this operator under the following assumption.

Assumption [A,]
(1) M(dy)+N(x,dy)=0 in case 0<a<2, and N®(x, dy)=0 in case a=2.
(2) There exists a measure NG (dy) such that

Slyl“/\l N (dy)<oo and | N (x, dy)| < N§(dy) for all x.
(3) 8™(x) is an arbitrary bounded measurable vector in case 1<a =<2, and

b (x) = S@(y)N@')(x, dy) in case 0<a=1.

ReEMARK. The constant 8:
B = inf {8’; sup S|y|ﬂ'/\1|N"”(x, dy)| <o}

is called the upper index of the operator B®. If assumption [A,] is satisfied,
then the upper index B is equal to or less than a. Tsuchiya [9] considered
the case where 0<<at’<<a and

N (x, dy) = k(x, y)| y| 7" dy, sup |k(x, y)| <oo.

In his case, the upper index B of the operator B™ does not exceed o', so that
B<a. Aswasshown in [9], if 8<<ar, Lemma 2.2 can be replaced by some weaker
inequalities due to Motoo. Since Motoo’s inequalities can be proved without
the theory of singular integrals, the whole argument as that in this paper be-
comes much easier.

Define a non-linear operator



124 T. Komatsu

B f(x) = [ | fx-+2)—f(x)— 0(3)-0/x) | N$ ()
(2.13) 15[ [8f(x)|  for I<a=<2;
BYf@) = |1 fa+2)— =) | NO () for 0<a=1.

Theorem 2. Let 1<p<<oo. There is a function ky(\) on (0, oo) such that
ky(A) | 0 as A} oo and, for each f € S(R?),

IBOGE 1l <IBLGEfll oSk L
Proof. 1° LetO0<a=1. From (2.5) we have
1], 1G+9)—GEA) NS () oo
Alyl®>1
(@) (@) -1 (@)
=@f ., Ne@IcEys@ ] | NP@Ifils.
On the other hand, by (2.9), we have
1], | GOA 4 —GOA) IND @)
Alyl®=1

S ([, o 1971 ND @) sup (151 UGS +9)— GEA( )
<af, . 19I"N@@)Iflls .
Let k() =(2Va)| [* AN N(dy). Then k() | 0252 1 oo and [[BLGl.»
kM) fllz2.

2° Let 1<a=<2. It follows from (2.5) and (2.11) that
I, | GORA9)—GEA) NP @)lz»
+E - 118G f [l.0
= ZL“SIyI>1N5.?’(dy)' fllet-ca T T2 1o

Note that

HSMgI Gf(-+y)—GOf(+)—y - 0Gf(+) IN® (dy)ll 2
é”S:‘”’S 1l Y1+ 18GES(+05)—0GE () NP (@)oo

= sup I |G A(- +05)— 0G| 10G) N (@9)ls

Using (2.10) and (2.11), in a similar way to step 1°, we have
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sup I G- +65)—0GL ()| |8G) N (@y)lls
= & [(191" AN9) | 8(3) | NG (dy)-I| .2
B ‘3S|,.§1|yl(|y| ANTEYN (dy)- NI fllze -
Set
BN =27 @)+l 5] aoe
ly1>1
+03$
Then k,(\) § 0 as A 4 o0 and || BEGS || o< k,\)|1 fll..

|y 1Lyl ANT¥E)*INE (dy) -

lyl=1

Let L*=L*R%)={f; ||fll.»<co}. From (2.5), the operator G{* can be
extended to the bounded operator on L?, which is also denoted by G®. It is
easy to show that

(2.14) A—AMGOf = GOA—AD)f=f  for fES(R?).

Note that if f €S(R?), then the function 4™ f is smooth and A® f(x)=0(|x| %)
as |x|—>o0, so that A —A™)fe L?. Let L be the operator

(2.15) L=A®™4B"
From (2.14) we have
(A—L)Gf = (I—B“G)f

for feS(R?). Let k,(\) be the function of the above theorem, and choose a
constant A, so that k,(\,)<1/2. If A=\, since ||BGf||.»=<1/2|| f||,» for all
fES(R?), the operator B™G® can be extended to the bounded operator on
L?, which is denoted by [B®G{®]. Then the operator

(I—[B™G®])™": L* — L*

is well defined, and its operator norm is equal to or less than 2. For A=),
we shall define the operator

(2.16) R, = GO (I—[B"G™]))™: L* - G (L?).
From the resolvent equation:
GP—GP = (p—N)GPGP  on L?,

the space G\ (L?) is independent of A>0. From (2.14) we see that if f = S(R?)
and A=, then
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(2.17) R\(A—L)f = R(A—L)G® (n—A™)f
= R\(I—[BYGL) A—A)f = GO (A\—A“)f =f.

The operator R, gives the A-potential operator associated with L. Namely,
the operator (L, S(R?)) is closable with respect to the L?-norm, and its closed
extension (L, D(L)) satisfies

(2.18) (A—L)R,f=f for each fEL? and A2},

with D(L)=G{(L?). This fact is not necessary in the proof of the uniqueness
theorem of the martingale problem associated with L. However it will be
indispensable to the construction of the Markov semi-group with the pre-generator
(L, S(R%) which does not always satisfy the continuity condition as in [4]. We
shall discuss this problem elsewhere, so that the proof of (2.18) is omitted.

3. Uniqueness for the martingale problem

Let W be the space D(R,—R?): the space of right continuous functions
having left hand side limits. Given w in W, let X,(w) denote the position of w
at time 2. Set W=o(X,;0=s<o0) and W,= N >e0(X,; 0=5=1+4E). Let L
be the operator defined by (2.15). We shall say that a probability measure P,
on the space (W, 9¥) solves the martingale problem for the operator L starting
from x if, for each f € S(RY),

3. M = fX)—f(3)— | LAX) ds

is a P,-martingale with M{=0. We shall prove the following uniqueness
theorem.

Theorem 3. Under assumptions [A;] and [A,], there is at most one prob-
ability measure P, which solves the martingale problem associated with the operator
L=A+B™ starting from x.

In this section, the constant p is chosen so that p>d/a in case O0<a=1
and that p>d/(a¢—1) in case 1<a<2. Let B(R’) be the space of bounded
Borel measurable functions and C°(R?) the completion of the space S(R?) by
the sup-norm [|+||. Spaces L?(R?), B(R®) and C°(R?) are simply denoted by
L?, B and C°. By Lemma 2.3 (ii), we have G{”(L?)CC’. Let A=\,, where
A, is the constant defined at the end of the previous section. Since (/—[B®
G{”])™! is a bounded operator on L? and R,=G® (I—[B™G{”])"}, we have

3.2) R(L)CC®  for a=),.

Lemma 3.1. Let P' and P? be probability measures on (W, ). Let
E'[-] denotes the expectation by P'. If
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PX,edx] = P{X,=dx), and
E"[Sje"‘("” F(X)dt|W,] = Rf(X,) Pi—ae. (i =1, 2)
Sor all s=0, A=\, and f € L? N\ B, then we have P'=P* on 9.
Proof. It suffices to show that the proposition

for each 0 = sy<s;< +++ <s, and f, fi, **+, f,E€C°,
El[fO(Xso) '"fn(XS,,)] = EZ[fO(Xso) "'fn(XS,.)]

holds for each n€Z,. Obviously [%,] holds. Suppose that [<¥;] holds. For
each 0=s,<<s;<< *** <833 fo f1, *+*, [rEC® and f € L? N C°, we have

2.3 {

ETHEX,) - f(X)| e (X )ar
= EUX.) = X B e f(X )t 9,]]
= Bf(X.) - f X R
From (3.2), the function f,+ R, f belongs to C°. Since [F}],

[ (BUAEL) -+ AE X))
—BIA(X.) XX dt = 0

for all A=),. Since the integrand

B fo(Xo) - XD —E [ X ) -+ f(XD)]

is right continuous in ¢, it is identically equal to 0. Proposition [P;4,] follows
immediately.

Let P, be a probability measure on (W. 9¥) solving the martingale problem
for L starting from x. From the above lemma, in order to prove Theorem 3,
it suffices to show that

(3.3) E[ e (X )at| 9] = RAX) Poae.

for each s=0,f€ L?N B and A=\,. E,[-] denotes the expectation by P,. Be-
cause of (2.17) and (2.18), relation (3.3) would seem to be valid. But the fact
that R, is the A-potential operator for L is not used in the proof of Theorem 3.
In case =2, Theorem 3 is a special case of Theorem 4.4 in Komatsu [4]. Thus
we shall consider the case 0<<ar<<2.

Let Jx(dt, dy) denote the number of times s such that s€dt and AX, =X,
—X,_€dy\{0}. By Theorem 2.1 in Komatsu [4],
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Jx(dt, dy) = Jx(dt, dy)—(M (dy)+ N (X,, dy))di

is a P,-martingale measure. Namely, for each non-negative measurable func-
tion A(2, x, y) and each stopping time 7T,

T
B[ [ie, X, 7o, )
T
= B[] [, X, ) (4@ +NO(X,, dy)ae].
And the process {X,, P,} is decomposed as follows:

t
X, = x+u 3] x(ds, &) in case 0<a<1,

t
X, =t (| _yNOX, dy)s

lyl=1

+(§,, e Tntds )+ [{ | v7atas )

(3.4) incasea=1,

X, =wt [0@) [ yMo@)as
0 lyl>1

t t
+[1f,, Ly Tatds, )+ vistas, ay)
in case l<a<<2.

For a moment let g& S(R?). Then the function G{®g is smooth and its deri-
vatives are bounded. Applying the formula of change of variables of semi-
martingales (see Kunita and Watanabe [5]) for the process X, which is decom-
posed in the form (3.4), we see that the process

e—x(t—s)Ggﬁ) g( Xt) . G}f') g( Xs)
+S'e-w-s> (A—L)G®g(X.)dr

is a P,-martingale with mean 0. Therefore
Gg(X.) = B.[| e (v—L)GOg(X,)dt | %]
— B[ e (I [BGE X )at | ]
Let A=2,. Since G\ g=R,(I—[B*“G{”])g, the equality
E[ Sje"‘“") fX)dt|W,] =R f(X,) P,—ae.

holds good for the function f=(I—[B®G"])g. Since the class (I—[B™G{])
(S(R%) of functions is dense in L?N B with respect to the L?-norm, relation
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(3.3) is a consequence of the inequality: for each fe L*N B,
(3.5) IE,[Swe"*(“s) FX)a| W] <allflls P.—ae.

where (s, x) is fixed and c, is a constant independent of f.
Hereafter we shall prove inequality (3.5). Unfortunately the proof is
not so easy. Let {W, W, W,, O, X;} be a stable process such that

S]x(dt, dy)Q(dw) = M™ (dy)dt .

Set W=WxW, W=WXW, W=W,xW, and P,=P,xQ. Given W=
(wy, w,)EW, let Y (W)=w,(f) and X, (@W)=w,(t). (We dare to use the same
symbol X, as before.) Let J,(dt, dy) and °Jx(dt, dy) be the same objects as
before, and let

Jo(dt, dy) = #is; s€dt and AY, = Y,— Y, <d\ {0} ,
‘Jy(dt, dy) = Jy(dt, dy)—M™ (dy)dt .

For >0, define the process Z¢ on the space (W, 9P, P,) by
t
2t =X=({ 3z s dy)=Jas, dy))
in case O0<a<1,
t
zi=X=( | 3(Jxlds, dy)—Jolds, dy)
+N®(X,, dy)ds) incassea =1,
t
zt=X={ | 3(Txlds, dy)—Jolds, dy)

in case 1<a<<2.

(3.6)

It is easy to show that
lim P,[ sup | Zi—X,|>&] =0
840 TostsT
for each €>0 and T<<co. Therefore we have
(3.7) E (oo f(x, )i\ )
— lim E,[S”e-w-s) AZ)dt|9P,] in INW, 99, B.)
8Y s

for each f&C® where E,[-] denotes the expectation by the product measure
P,=P,xQ. Fix (s, x)€R, X R’ and define

(338) Vif@) = EI| e fza W)
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Lemma 3.2. There exists a constant c} such that
|V (@) | <Al fllr Pi—ace.
for any f € L*N B and 1>0. |

Proof. Suppose that 1<a<2. Let feS(R?Y and v=G{"f. Applying
the formula of change of variables of semi-martingales for the process Z3,
we have

e M9y (Z8)—o(Z?)
= (e gz -z

— [, @) @)~y -2 @YND (22, dy)}ar
+[a P,-martingale with mean 0].

Therefore

(49 o) = I e HfZ) b2 002

+{ . ) —o(Z)— () - B ZDN (2}, dy)}at| W]
Using Lemma 2.3 (ii),
|V f(@) | Slloll+ | e {1p®-o0]

+@f  Ne@)Iel+e|

lyl> 8<ly

_lly-00llNE (@)} de
2 (®) —1+d/%p
<(+2{ | NP @)l

(e 42] |y IN@Een e

8<lyl

where ¢, and ¢, are constants independent of f. Thus there is a constant ¢}
such that |V f(@)| <c}||f|l.» for all feS(R?). Since V7§ is a positive bounded
operator on B, by making use of the Egorov theorem, it is easy to show that

[V f(@)| =l f]l.e forall fe L’NB.

Next suppose that 0<a=<1. Let f€S(R’) and v=G\"f. Then it is proved
in much the same manner as was (3.9) that

(3.10) —o(z8) = B[ e {—f(z1)

], ) o ZOND (28, dy)}at| T



MARTINGALE PROBLEM FOR GENERATORS OF STABLE PROCESSES 131

And the proof of the lemma in the case 0<a@ =1 is completed in a similar way
to the case 1<a<<2.

Lemma 3.3. Let c, be a constant such that
IGPflI=27%Ifll.s  forallfEL*.

Then, for each f € L* N\ B and A=\,
(3.11) | V3f(@)| el fllLe P,—ae.

Proof. From Lemma 3.2, the constant

¢ = inf {c; P,[l Vifl>cllfll;»] = 0 for all fe L*N B}
is finite. Let fES(R?) and A=n,. By (3.9) and (3.10) we have
Vi f@)| <IG@F I+ | VIBLGEf) ()] .

Since the function G{’f is smooth and its derivatives are bounded on RY, the
function BYG f belongs to L? N B. 'Therefore

| VIBEGES) (@) <QIBPGE Sl Pr—ae.
From Theorem 2, ||BYGf|,s=(1/2)||f]|» for A=N,. Then

| V2 f(w)| % Otedliflly  P—ae.

Since V3 is a positive bounded operator on B, the last inequality holds for
each feL?NB. Therefore we have ¢} =(c,+¢})/2, which implies that ¢} =c,.
This completes the proof.

We now proceed the proof of proposition (3.5). From (3.7) and (3.11),
if fe L? N C°, then

| B[ e f(X)at| ]| = lim | V3f@)|  in LW, 5, P,
V@) Sallfle  Piae.
Therefore
EL{ e fXpar| B Sallfle Pi—ae
This implies that
BL[ e Xt W Sellflle Pa—ae

because P, is the direct product of P, and Q. Since the operator
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£ MW E,[gje‘“""g(X,)dtl W]

is a positive and bounded one on B, using the Egorov theorem, we see that the
last inequality holds for each f& L?N B. Therefore proposition (3.5) is valid.
Hence the proof of Theorem 3 is completed.
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