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0. Introduction

This paper is concerned with the following one dimensional one phase
Stefan problems with the unilateral boundary condition on the fixed boundary:
Given the data, ¢ and /, find two functions s=s(¢) and u=u(x, ) such that the
pair (s,u) satisfies

0.1) Lu=u,,—u,=0, O<w<s(t), O0<t=T,
(0.2) .0, t)yev(u(, 1)), 0<t=T,
(S (0.3) u(s(t),t)=0, 0<t<T,
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(0.4) u(x, 0) = ¢p(x)=0, 0=x=<!, s(0)=I1=0,
and the free boundary condition
(0.5) $§() = —u(s(®), t), 0<t<T.

Here T'>0 and /=0 are the given constants. ¢ is a maximal monotone graph
in R? with v(H)>0, where H is a non-negative constant. (0.2) is the unilateral
boundary condition, which appeared in the theory of nonlinear semigroups as
the typical example in [1]. (0.5) is the so-called Stefan’s condition.

The above problem arises as a mathematical model for melting of solid.
The function u(x,?) represents the temperature distribution in the liquid, and
the curve x=s() represents the position of the interface, which varies with the
time ¢ as the solid melts. The unilateral boundary condition (0.2) models
serveral physical situations, including the temperature control through the
boundary [7, Ch. 1] and the heat flow subject to the nonlinear cooling by the
radiation on the boundary [9, Ch. 7].

For the sake of simplicity, in writing down (0.1)—(0.5) we choose a system
of variables such that the thermal coefficients (conductivity, heat capacity, den-
sity, latent heat) disappear.

In this paper we prove the global existence and uniqueness of the classical
solution (s,#). The problem of this type with the linear boundary condition on
the fixed boundary have been considered by many authors [3], [4], [5], [6], [9],
[12], [13], [15], [17] and [18]. The problem with a nonlinear boundary con-
dition has been considered by Fasano and Primicerio [24]. However the pro-
blems with the unilateral boundary condition have not yet been studied. As
is well known if s(¢) is given, the problem (0.1)-(0.4) is a unilateral problem
which has been considered, using the theory of nonlinear semigroups in the
Hilbert space L2 (See [1], [2], [8] and [19].) Thus, there are two difficulties.
One is the fact that s(¢) is unknown and the other is how to obtain a classical
solution.

We construct a solution for good data by using a primitive implicit di-
fference sheme with only a device of capturing a free boundary explicitly through
step-by-step process in time. This Difference scheme is a modification of the
Nogi’s scheme [13] for the linear boundary condition on the fixed boundary.
When we estimate the difference solutions, we use the ideas of Petrovskii [14],
Nogi [13], Brézis [1,2] and Yotsutani [19]. For the general data we obtain a
solution as a limit of solutions for good data. Uniqueness is based upon the
maximum principle, its strong form [11], a parabolic version of Hopf’s lemma
[9] and the comparison theorem for the unilateral problem.

The plan of the paper is as follows. In §1 we state main results. §2-8
are devoted to prove the existence of a solution under the slightly stringent
conditions on the data. The method consists of:
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(i) Introducing a difference scheme.

(i) Proving that the difference scheme has a unique solution.

(iii) Proving the convergence of the difference scheme.
§ 2 deals with item (i). In §3 we prepare the several comparison theorems
and collect some known properties of the maximal monotone graphs in RZ
These are used in §4, 5, 6, 7. §4 establishes item (ii). In §5, 6 and 7 we
derive estimates for solutions of the difference scheme. These are used in §8
to establish item (iii). In §9 we prove the existence of the solution of the
moving boundary problem which is auxiliary for the original one. In §10, 11
and 12 we prove the uniqueness theorems. In §13 we prove the existence
theorem for the case / >0, and in § 14 we give the proof of Corollary. In §15
we prove the existence theorem for the case /=0. In §16 we state the modifi-
cation of the estimates of Bernstein and prove Lemma 8.1 and Lemma 8.2 (i).

We consider the asymptotic behavior of the solutions, and the two phase
problem of this type in Yotsutani [21] and [20] respectively. As for the ap-
plications to mechanics, see Chung & Yeh [28] and Murao & Yotsutani [29].

The author would like to express his gratitude to Professor H. Tanabe for
his useful suggestions and encouragements.

1. Statements of main results

As for the definition of the maximal monotone graphs, see § 3 if necessary.
The assumptions required on the Stefan data are as follows.
(A) ¢(x) is non-negative, bounded and continuous for a.e. x&[0, /].

ReMARk 1.1. The assumption ¢=0 results from the physical background.
Remark 1.2. If /=0 there is no ¢. We do not need (A).
We introduce the notations,

(1.1) D = {(x, t); 0<x<s(t), 0<t<T}, D = the closure of D in R?,
D’ = {x, t); O<x=s(?), 0<t<T},
(1.2) Z = {x=[0, []; x is a discontinuous point of ¢} X {0}.
Definition 1.1. The pair (s, %) is a solution of the Stefan problem (S) if

i) s(0)=L s()>0 for >0, s€C([0, T)NC>([0, T7).
ii) uis bounded on D, ueC=(D°)NC(D—Z),

ST SSU) Uy (%, t)dxdt<<+ oo for each 710, T].
T J0

iii) (0,1), (0.3), (0.4) and (0.5) hold.
iv) For a.e. t€[0,T[, u,(0, t) exists and satisfies (0.2).
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RemArk 1.3. If /=0, we omit (0.4).
We can now state the existence and uniqueness theorems.

Theorem 1. If 1>0 and the data ¢ satisfies (A), then there exists a solution
(s, u) of the Stefan problem satisfying
(T
0

(*) ST S:w tul,dedt+T s ) uldx <<+ oo .

0

Theorem 2. Under the same assumption of Theorem 1, the solution (s, u) of
the Stefan problem is unique.

Corollary. In particular, if 7 is a single valued maximal monmotone func-
tion, then it follows that u,(x, t) C(D— {t=0}) and

(1.3) u,(0, t) = y(w(0, t))  for allt€]0, T].
Theorem 3. If =0 and v satisfies the following assumption,

(B) D)2[0, H] and ¥(0)C]—oo, O[,

then there exists a solution (s,u) of the Stefan problem satisfying (*).

Theorem 4. Under the same assumption of Theorem 3, the solution (s, u) of
the Stefan problem is unique.

RemARK 1.4. The assumption (B) guarantees that the solid melts. For
example, if v=0, then the solid could not melt.

Remark 1.5. We will extend the results of Theorem 3 and 4 in [21].
ReEMARK 1.6. We know that the free boundary x=s(t) is a monotone in-
creasing function in § 13.

2. Difference scheme

Let />0. We use a net of rectangular meshes with the uniform space
width & and the variable time steps {k,} (n=1, 2, :-:). Time steps {k,} are
assumed to be unknown and they are determined by the rule that k/k, gives
gradient of a desired free boundary at each time ¢=t,, so that the free boundary
crosses each mesh line just at each corresponding mesh point. Let’s introduce
discrete coordinates.

(21) X5 Zj'h > ]= 0’ 1’ 27 EY
2.2) t,=3U ok, =12 1,=0,

where & varies in such a way that //h=], is an integer, and net functions s, and
u’} which correspond to s(¢,) and u(x;, t,) respectively. By our rule we can put
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(2.3) Sa=Juh (J4: integer, n =0, 1, 2, -+-).
Further we introduce usual divided differences:

2 4_ n l n ” n_ __ 1 n ”

(2.4) Ujs = 7{(":41—“:') y U= -h~(u,-—u,~_1),

2 S ” _ 1 n n n "_ ___ 1 ” n—1

(2.5) Ujsz = _h’z(ui+l_2ui+ui—l)’ uip = (Wi—ui"), etc.

In our scheme the heat equation is replaced by the pure implicit difference
equation,

(2.6) Lyj=ujs—ujr=0, 1=j=<],—1.

The boundary and initial conditions are put in the following forms,

(2.7) us. E7(us) ,

(2.8) wy, =0,

(2.9) uj=¢;=¢@x;), 1=j=J.

The Stefan’s condition is replaced by an explicit formula
h —

(2.10) " =—uy 5.

Our algorism is the following. [3: a positive constant,
1° uf=¢; 1=j<J0), se=Jo-h=L
For n=1, 2, 3, -+ successively,
2.1° if —u’};l_l;>ﬂ\/_h_, then we take J,=J,_,+1 and get &, from (2.10),
2.2° if —u'}:[l;gﬁ\/f, then we take J,=/,_, and k,=/} /B,
3° solve the difference equation (2.6) for {u}}; under the boundary condi-
tions (2.7) and (2.8) with the initial condition {u}7'};.

Remark 2.1. We prove the well-definedness of 3° in §4.

3. Preliminaries

In this section we state several comparison theorems and recall some pro-
perties of maximal monotone graphs in R?
Let us denote by D, the set of mesh points of

{(xj, t,); 0=x,<s,,0=¢,<T}.
We denote by T}, T}, T's, T, and D, respectively

Ty = D,n{(0, t,); 0<t,<T},
T} = D,N {(x;, 0); 0=x,<I},
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Ii=D,n {(x;, 2,); x;=s,},
Ir,=TiUT;uT;,
Dh = Dh_I‘h’

The following two lemmas are well-known. (See [14, p. 355-356].)

Lemma 3.1 (The maximum principle). Let a function " be defined on D,
and satisfy the equation

(3.1 utz—ur=0 (resp. utz—u37=0)
on D,. Then it has the maximum (resp. minimum) value at the mesh points of T',.

Lemma 3.2 (The strong maximum principle). Under the assumptions of
the previous lemma, let u} have the maximum (resp. minimum) value at a mesh
point (xp, ty)ED,. Then uwi=uf on {(xj, t,); 0=<x;=<s,, 0=t,=<ty}.

The following lemma is essential in obtaining necessary estimates.

Lemma 3.3 (The Neumann-type comparison theorem). Let a function wj
be defined on D, and satisfies

(3.2) Law;=0 inD,,
(3.3) wj=0 on T;UT},
(3.4) —wp, =0 on Th— {(0, 0)} .
Then

w?=0 in D, .

Proof. Assuming the contrary, @} has the negative minimum. By the
strong maximum principle and (3.3), the minimum is attained at a mesh point
(0, ty), N=1, and we have w)>w{. Thus we get w{,>0, which contradicts
(3.4). q.e.d.

Next, we collect some known properties of the maximal monotone graphs
R? in stated in Brézis [2].

Let v be a mapping from R into R which could eventually be multivalued,
i.e., to every uE R we associate a subset ¥(#) C R (which may be empty). We
set D(v)={uER; v(u) is not empty}, R(v)=U {v(u); ucR} and (I+v)(u)
={u+f; fev@}.

DeFINITION 3.1.  One says that v is a monotone graph in R? if it satisfies
(fl—“fz)(ul“‘uz)go fOr any ul, uZED('}’), fIE'Y(ul), fZE’)’(uz) .

DEFINITION 3.2. One says that a monotone graph in R? is maximal mono-
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tone if it is maximal in the sense of the inclusion of graphs, i.e., it admits no

proper monotone extension.

Lemma 3.4. Let v be a maximal monotone graph in R®. Then for every
h>0, R(I4+-hy)=R and (I+hv)™: R— R is a singlevalued contraction mapping,
ie.,

|I+h7) () —U+hY) ) | S 81— for any g1, ER.
Proof. See Brézis [2, Proposition 2.2].

Lemma 3.5. Let v be a maximal monotone graph in R* with v(H)=>0.
Then there exists a lower semicontinuous convex function 6 from R into ]— oo,

+ oo] such that =% + oo, § 20, (H)=0 and 30 =1y, where

00(u) = {fER; 0(v)—0Ww)=f(v—u)  for any veD(0)},
D(0) = {ucR; 6(u)<—+oo}.

Proof. See Brézis [2, p. 43].

4. Existence of the unique solution for the difference equation

We prove the following existence and uniqueness lemma,

Lemma 4.1. Let {uj'}g;s;,_ | and k, be given. Then there exists a
unique solution {u3},<;<; for the following difference equation

+2) WU et g,
(4.2) Aty (wp),
(4.3) - uy,=0.

Proof. Since 7 is maximal monotone, (I4-AY)™! is a contraction mapping
from R to itself with D((I+hv)™')=R by Lemma 3.4. So (4.2) is equivalent to
uy=(I+hv)'(ul). We consider the following auxiliary problem

(4.4) viu _ tha=libela, 1<),
(4.5) = E,

(4‘6) ‘Z)'},, =

It is well-known that this problem has a unique solution (see [14]). We denote
by {v%&)}; the solution of the problem. We define the mapping

II: RoE— (I+hy) Y(vi(E))ER.
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Thus the problem is reduced to the following problem: Prove that IT has a
unique fixed point.

We shall show that IT is a strict contraction mapping from R to itself.
Since D((I+hv™"))=R and (I+Av™") is a contraction mapping, we have

4.7) D) =R,
(4.8) |TI(E)—T1(7) | = |}(&)—2i(7)].

Applying the maximum principle to v%(£)—o7(%), we have
(4.9) [vj(E)—vi(m) | = |E—n], O0=j=]..
Taking j=1 in (4.4), we have

n x ” ” 1 n—1 — _kﬂ
A= TR M=

Therefore we have
(4.10) [01(E)—2i(n)|

gﬁ {103(8) —v3(n) |+ |vE(E)—vi(n) |}

2n
< —_
1422 &=l

by (4.9). Returning to (4.8) and using (4.10), we see that II is the strict con-
traction mapping. q.e.d.
5. Estimates of the solutions under the condition (A.1)

Let us show some properties of the solutions of our scheme under the
slightly stringent conditions on the data, which are the following:

(A.1) I>0, ¢(x) is non-negative, bounded, continuous for a.e. xE[0, ]
and further there exists a positive constant K such that

p(x)=K(I—x), for any x<[0, 7] .
Remark 5.1.  (A.1) implies (A).
Lemma 5.1. Let ¢ satisfy (A), then we have
(5.1) O0=wuj=max {||plli=on, H} , 0=j=],, t,=T.

Proof. Assume that u} has the negative minimum. By the strong maxi-
mum principle, (2.8) and (2.9), the minimum is attained at a mesh point (0, 7),
N =1, and we have %} >uf and u} <0.
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Thus we get uf,>0 and y(u))c]—oo, 0] by virtue of v(H)>0 with H=0.
This is a contradiction. So we have 0=<u}. The other inequality follows
from a similar argument. q.e.d.

REMARK 5.2.  From this lemma, we have —u’ ;=0.
Lemma 5.2. Let ¢ satisfy (A.1), then we have
(5.2) 0=—u}:=C, t,=T,
where C,=max {K, max {||$|| =0, H}/I}.
Proof. We put L=C, and consider the function
Wao(¥)> t) = L(ssy—%;),  0=j=],, n=m,.
It satisfies the difference equation (2.6) and the inequalities

wno(sm tu) = L(Sno*sn)go ’ n=mn,,
Wa (%), ) ZK(I—2)Z(*;), 1=j=o,

by (A.1), and
Wao(0, t,)Z Ll Zmax {||¢pll=,p, H} Zus,  £,=T,
from Lemma 5.1. By the maximum principle, we get
wa(%j, t)2Zuf,  0=j=/], n=n,,
and especially for n=mn, and j=], —1, we have
L(s,,—=x ,”o_l)gu'}go_t .
Thus we obtain
Lhz —(uf, —u7, 1) -
This implies (5.2). q.e.d.
Lemma 5.3. Let ¢ satisfy (A.1), then we have

(5.3) 0<%§c, for 0<h=CYR,

(5.4) |m =S| SCilty—ts, | for 02, 1, <T.
Proof. By Lemma 5.2 and the difference scheme, (5.3) is obvious. (5.3)
implies (5.4). q.e.d.
Lemma 5.4. Let ¢ satisfy (A.1), then we have
(5.5) I<s,=14-C/T, t,=T.
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Proof. By Lemma 5.2, we have

I<s, — I+3V2_, k,%

4
= 14+ 51 ky(—u, 5)
= I+E,;-l kp'CléH‘ClT ’

where 2" means summation except for numbers p such that J,=],_,. q.e.d.
Lemma 5.5. Let ¢ satisfy (A.1), then we have
(5.6) |u} 1| SCF for 0SKE<C3[R2.

Proof. We note Uy 1 F=U 17

Consider the case J,=/,_,+1. By uj =u7! =0 and Lemma 5.2, we have

u'}n—l_u”/u i
h "k,

= |(—u},)(—u}, DI =CT.

l), 7l =luf, 7l =

Now consider the case J,=/],_,. We see

N U P O N it Y
Tt h k, h k,
h -
= = {—uj +uf sH=CT
k,
in the same way. q.e.d.

The next two lemmas are obtained by Lemma 5.1, 5.2, 5.4, 5.5 and the Petro-
vskii’s technique (see Lemma 16.1, 16.2 and 16.3).

Lemma 5.6. Let ¢ satisfy (A.1) and ¢y nEC¥([I', 1]), then there exists a
positive constant C, ; depending on | and d such that

(57) lu’;il écl,d ) l’<d éxjésn ) OétnéT)
(5.8) lulz| <Cryy  U<d<wx;<s,, 0<t,<T.

Lemma 5.7. Let ¢ satisfy (A.1) and ¢,y n€CX([I', 1]), then there exists
a positive constant Cy ,, depending on d, and d, such that

(5.9) lu’;;f’ - Iu?,‘;;l écd;.dz y l’<d1§xj§dz<sn ) O_S_tﬂéT .

6. Estimates of the solutions under the condition (A.2)

In this section we obtain the estimates which are independent of / under the
slightly stringent conditions on the data. These estimates are necessary for the
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proof of Theorem 3 and the two phase problem [20]. We introduce the follow-
ing condition:

(A.2) >0, ¢(x) is non-negative, bounded, continuous for a.e. x&[0, /]
and further there exist constants K >0, d'€D(y) and d<D(v) such that

d(X)=K(l—x) for any x€]0, ],
—Kx4-d'=¢p(x)<Kx+d  for any x<]0, I[ .
REMARK 6.1.  (A.2) implies (A.1), and (A.1) implies (A).

Lemma 6.1. Let ¢ satsify (A.2), then there exists a positive constant
C(>K) independent of I such that

(6.1) —C=us, <0, t,<T.
Proof. Since v is maximal monotone and y(H)=0, we see

(i) [H, P[, where H<P<oo,
D()N[H, o[ =y (i) [H, o[, or
(iii) [H, P], where H<P<oo .
We shall obtain the upper bound for above three cases respectively.

Case (i). D(Y)N[H, co[=[H, P[, where H<P<co. There exists e such
that

(6.2) d<e<P, min {£; E€v(e)} >K .
We shall show
(6.3) u=Ze, t,=T.

Consider first the case n=1. Assuming ug>e, then the function w}=Kux;+
e—uf} satisfies

Lw;=0,

w; = Kx;+e—p(x;) 2 K;+d—p(x,) 20,

wljl = Ks,+e=0,

—wp, = —K4up,(€ —K+v(us)) = —K+min {&; E€7(e)} 20,
by virtue of (A.2) and (6.2). By Lemma 3.3, we have w;=0. For j=0, we get
wi=e—u;=0 which is a contradiction. Thus we obtain ug=<e. Next, applying
the maximum principle, we have w};>0, that is, Kx;+e=u}. Therefore we
see uj<e in the same way. Repeating this argument we obtain (6.3). From
ug, v (us) and (6.3), we have

(6.4) up.<max {o; c€v(e)}, t,=T.
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Case (ii). D(v)N[H, oo[=[H, ool.
If sup {n; (§, )7} =00, then (6.4) follows from the argument similar to
Case (i). Ifsup {n; (&, n)Ev} <o, we have us, <sup {7; (¢, 1)}, t,=T.
Case (iii). D(v)N[H, oo[=[H, P], where H S P<oo.
The function W(x;, t,)=Kx,;-+ P satisfies
LW =0,
W’},go ’
W9 = P+ Kx;=d+Kx; = p(x;) ,
Wi = Pzug,

by (A.2) and ug=D(v). Hence by the maximum principle, we have Wj=uj.

Especially for j=1, we see

ui—P
h b

K= t,=T.
Therefore we have

ul—up .
T <K for n with ug=P,

v(u3)9”7;"3_s_min {£; Ecy(P)}  for n with ul<P.
We can obtain the lower bound similarly if we replace K by
max {K, (inf D(7v)+1)/1}. q.e.d.

Next, we obtain the estimate of the free boundary by using the previous
lemma.

Lemma 6.2. Let ¢ satisfy (A.2), then we have
(6.5) 0=—uj:=C, t,=T.

Proof. The inequality —u% ;=0 is obvious by Lemma 5.1. 'We show the
other inequality. Consider the function

W,o(%;, t,) = C(5,0—%;) , 0=;=/J,,n=n,,
which satisfies the difference equation (2.6) and the inequalities

Wpo(Sns 2s) = C(5,y—5,) =0 = uy, , n=mn,,
Wao(¥)y 0)Z K(I—2;) = p(x;) , l1=j=Jo

by (A.2), and

—wWoy(0, 2,), = C = —ug,, n=mn,,
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by the previous lemma. By Lemma 3.3 we get
Wy )2, OS], nsn,,
and especially for n=n, and j=], —1, we have
C(sno_'x]no—l)gu'}o,,o—l .
This implies (6.5) by virtue of w7, =0. q.e.d.

Noting that Lemma 5.3, 5.4 and 5.5 are derived from Lemma 5.2, we obtain
the following lemmas.

Lemma 6.3. Let ¢ satisfy (A.2). then we have

(6.6) 0<%§C for 0<h=CY8E.

n

Lemma 6.4. Let ¢ satisfy (A.2), then we have

(6.7) I<s5,<I4+CT, t,<T.
Lemma 6.5. Let ¢ satisfy (A.2), then we have

(6.8) luf 1zl SC? for 0<h=C? 3.

7. L%estimates of the solutions

In this section we get the -L’-estimates. of the difference solutions. We
employ the ideas of the nonlinear semigroups (see Brézis [1,2,23] and Yotsutani

[19D).

Since o is a maximal monotone group in R? with v(H)=0, there exists a
lower semicontinuous convex function 6 from R into ]—oo, co] such that
0%+ o0, 620, 6(H)=0 and 0= by Lemma 3.5.

The following inequality is a so-called variational inequality.
Lemma 7.1. Let u satisfy (2.7) and (2.8). Then we have
(7.1) 2= uhe(ef—uf)hA0(wh) — O(ut) = — 2027 wha(w—u)h,
(72) S (s Ot) —0u) = — Sei" e~k

Sfor wj such that w =0 and wi e D(6).
Proof. We first show (7.1). For the sake of simplicity we drop 7.
25 wja(wj— . )h+-6 (o) — O(uy)

= uyz(w;—u;)—23/5 11(“:':—“;'—1,:)(”;—”;') — Ugy(Wo— o)+ O (w,) — 6 (5)
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=— 21-1 (u,,, J—l,x)(w.i J) - —21=‘1 u:ﬂ(w.i—ui)h

by w;=u;=0 and u,=00(%,). (7.2) follows (7.1) by the inequality ab=
(a*4-0%)/2. q.e.d.

The next lemma is useful for further estimates. Let us fix the function v(x)

~He ) foro=x=l,
(7.3) o(%) =
0 for I<x.

Lemma 7.2. Let u} satisfy (2.6)-(2.8). Then we have
(74) LS Y kB, 0k, + e (65—,
5 S0 D25 ok, + 3 000k, + B (v,
where v;=v(x;).
Proof. Substituting v; for @} in (7.2) and noting uj,;=uj;, we see
(7.5) ~2,’.o vj:h Z,’.o'lui'fh-w(%)—e(“ﬁ)
Tt wii(v,— ")h

=l S o)~ o)} o )h

lIV

24 { SV (o, fh— ) B (o, h}
Now we observe that

1 1o 1 1 on
(76) 5 S 7 ok = B o,

by u7! =v; =0, since J,=],_,or J,.;4+1. Multiplying (7.5) k, and noting
(7.6), we have

- 2,’:3 v;.lhk, —% D5t ulhk,+0(v )k, —O(ub)k,
25 i G—o)th— Bre™ (47 o)

Therefore we obtain (7.4) by summing up. q.e.d.

The following lemma is the most important L*-estimate.
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Lemma 7.3. Let u} satisfy (2.6)-(2.8). Then we have
(7)o SR by sy by S5 01006

< U S e, 2} O,

Proof. We set
ot _{ uyt for0=j= /.1,
1o for J,.<j.

Taking #"~' as w} in (7.2), we have

14

3 S Y S w05 — 0w
e

By @77'=0(j= J,_) and u};=u} (1=j< J,—1), we have

(7.8) %2;;0-1-1 u’}"‘}h—-;— Ta=t o T4 O(ul")— O(u)

j=1
%2]"_1 u’;xEthn .

je1

Multiplying (7.8) ¢,_,, and noting k,_,=t,_;—1,_;, We get
%kn—l 2{:0—1_1 u?_lxzh—l-%tn—z 2,{:0—1_1 u?—leh

2ty U ey 00 )ty 005 —4-,00)
=SV b, (W hE
Therefore we obtain (7.7) by summing up. q.e.d.
Combining Lemma 7.2 and 7.3, we have the following lemma.

Lemma 7.4. Let u} satisfy (2.6)-(2.8). Then we have
(79) e YA Wyt ey S 1, 0(0)

<L S VA 0,y S 00k, S (W0 )b

Now we get the necessary estimate.

Lemma 7.5. Let ¢ satisfy (A.1). Then there is a positive constant C, such
that
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(7.10) Sy, Vs tp_l(uf,?,,;)”hkp—f—%t,,_l Licvuthdt, 0@ <C, .

Proof. We have
(7.11) 1= h =s,<1+C,T
by Lemma 5.4, and
(7.12) o SHJL,  O(o)=0(H) = 0,
by the definition. Combining Lemma 7.4, (7.11) and (7.12), we get (7.10).

8. Convergence of the scheme

In this section we prove the convergence of the scheme when ¢(x) satisfies
the following condition (H.1).

(H.1) ¢(x) satisfies (A.1) and ¢, n€C([I', I]) for some /',
o=r<i.

Now we take a sequence {4} (h—0) such that h=h,=I/2". Define a con-
tinuous function s,(f) connecting the adjacent points (s,, ¢,) and (s,,, f,+,) by the
straight line for each interval [t,, #,,,]. It follows from Lemma 5.3 and Ascoli-
Arzela’s theorem that a subsequence of s,(f) converges uniformly on [0, T'] to
a continuous function s(z). .

We shall show that the net functions # can be extended to the region G=
[0, o[ X [0, T] in such a way that the family of extended functions {u,(x, £)}, will
be uniformly bounded on G and equicontinuous in any region G* whose closure
is contained in G=]0, co[X]0, T']. First we extend u} to all the mesh points of
G by defining =0 (j=J,). uj denotes extended u} again. We devide each
rectangle [x;, x;,,]X[¢,, 1,,1] into two triangles by a straight line connecting
(x;, t,) and (%44, 2,,1). We define u,(x, ¢) as a piecewise linear function which
equals to the value of net function # at the corner of the triangles. Itis easy to
see that the function u,(x, f) constructed in this way is continuous in G, and
that, it has the maximum at a mesh point. Hence we have by Lemma 5.1,

(8.1) 0=<uy(x, {)<max {||p||,«, H} inG.
Further we have the following lemma. For a proof, see § 16.

Lemma 8.1. Let ¢ satisfy (A.1). Then there exists a constant C, depending
on T such that

luy(x, O)—uy(Z, £)| <C,{|x—ZX |2+ |1—F |V} (%, >0, ¢, >71>0).
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By (8.1), Lemma 8.1 and Ascoli-Arzela’s theorem it follows that a subse-
quence of u,(x, t) converges uniformly in G to a function u(x, {)C(G). Since
u,(s,(2), t)=0, it is easily shown that

(0.3) u(s(t), )=10 0<t=T).
By using the Petrovskii’s technique [14, p. 357-358] we have
0.4) li?ol u(x, ) = ¢(x)

for any continuous point of ¢.

We prepare some lemmas to investigate the unilateral boundary condition
(0.2).

Lemma 8.2. Let ¢ satisfy (A.1). Then we have
(Q) u(x, yeC>(D)NC(D—Z) and
(0.1) U, —u, =0 inD.

(i1) u(-, t)eC[([0, s(2)]) for any t=]0, T'].
(iii) (0, t) is bounded on 10, T'] and u(0, t)= C(]0, T1J).
(iv) For any t&]0, T] and £>0, there exist >0 and h,>0 such that

[u4(0, $)—u,(0, 2)| <€  for |s—t| <8 and h=<h,.

In particular u,(0, t)— u(0, ) as the subsequence h—0.

v) S'Y”’ 'ru,,,zdxd'r—i—%t Ss‘" w dx 4 10(u(0, 1))
0

0do
<C, forts]0, T].
Proof. We prove that u=C~(D) and u,,—u,=0 in §16. We have
(8.2) |u(x, t)—u(®, {)| <C.{|x—Z%|"V*+ |t—F| ¥4} (x, >0, t, F>7)
by Lemma 8.1. Hence we obtain (i), (ii) and (iii) by (8.1) and (8.2). We

observe that
83)  lu(x, )—u(0, )] <x¥? (g‘ugdg )‘”g 2xC 3" (x>0)
0
by using Lemma 7.5. We have
|uh(0) S)—u(o) t)!
= |u(0, s)—uy(x, )|+ |us(x, 5)—u(x, 3)|
+ lu(x, s)—u(0, s) |+ u(0, 5)—u(0, 1)
= (Gt} 2+ Juy(x, 5)—u(x, 5))|
+ {4xC.J8} 2+ |u(0, s)—u(0, £)],  for s>% ,
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by Lemma 7.5 and (8.3). For any £>0, there exists x such that {4xC,/f}2<¢&/4.
Let fix x. 'Then there exist #,>>0 such that

[uy(x, s)—u(x, s)| <€/4  for h=h,,
and 8> 0 such that
[4(0, s)—u(0, )| <&/4 for s with |s—1]|<<3.
Thus (iv) holds. It is easy to show (v) by using Lemma 7.5 and (iv). q.e.d..

Lemma 8.3. Let ¢ satisfy (A.1). Then a.e. t<[0, T] u, (0, t) exists, and
u,(0, ) L:,(]0, T']).

Proof. By Lemma 8.2 (v), we have

8.4) ([P wiamar=c,.

0Jo

Therefore, for a.e. t€]0, T, there exist C,>0 such that SS(t)uZdex <C,. Hence,
0

for a.e. t€]0, T, u,(0, t) exists and

u, (0, t) = lim u,(x, 1),
230

u (0, £) = u (12, z)+s e, .

0
i
Thus we have

12,(0, )| < |w(]2, ?) |+S‘("|u,,|dx, ae. te]o, T[.
0
This implies #,(0, ) L{,(]0, T']) by Lemma 8.2 (i) and (8.4). q.e.d.

Now we investigate the unilateral boundary condition.

Lemma 8.4. Let ¢ satisfy (A.1). Then for a.e. t<[0, T, u, (0, {) exists
and satisfy

0.2) u,(0, t)Ev(u(0, t)) .

Proof. Fix 0<m<7,<T. Let ¢, ,<7=t,<t,<7,<t,,;. By Lemma
7.1, we have

(8-6) Eg=m+l Ellﬁo—l ugx(w‘;x_uﬁx)hkp+zz=m+l e(wlg)kp_2$=m+l 0(ug)kp
=—2Vams 2,{31—1 wf (wi—ub)hk, ,

where n& D(0) and
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—l(xj—l) for 0=x,<1,
w =1 |

J

0 for I<x;.

In view of Lemma 7.5, it follows that
(8.7) 2 ams1 230257 whhk, < Cyf7,

With the aid of (8.7), the weak compactness of L*(D) and the fact ,—u pointwise
in D, we have

8.8) [ s:"’u,,zdxdtg Cylm,
(8.9) Semor 225" sk, — | [ o u)dva

as h—0 (through the subsequence of {A}). Noting (8.9) and Lemma 8.2 (iv),
and applying Lebesgue’s convergence theorem and Fatou’s lemma to (8.6), we
get

(8.10) [ S:"’ (w0 —u), dxdt -+ S:’o(n)dt— (oo, oyar

Ty fs(t)
>—S S (00— u)dxdt
0

Since we can integrate by parts in view of Lemma 8.3, it follows that
s(t)
(8.11) S O o 0—u)d
0
= u,(s(2), t)(w(s(2), ©)—u(s(2), £))—u.(0, )(w(0, £)—u(0, 1))
- js(‘)u,(w—u),dx
0

s(t
0

— —u,(0, #)(n—u(0, t))—s (00— 1) dx
for a.e. t<[0, T]. Thus it is easily seen that
STzﬁ(n)dt——STzﬂ(u(O, t))dtgsfzu,(o, 1)(n—(0, #)) dt
k51 1 1

by (8.10) and (8.11). Hence at all Lebesgue’s points of 8(x(0, ¢)) and #,(0, £),
we have

0(7)—06(u(0, 2))Zu,(0, 2)(7—u(0, t))
for all = D(0), which implies
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u,(0, £)=00(u(0, t)) = v(u(0, t)) for a.e. t€[0, T]
by the definition of 94 in Lemma 3.5. q.e.d.

We shall investigate the Stefan’s condition (0.5).

Lemma 8.5. Let ¢ satisfy (H,1). Then s(t)C'(]0, T]) and
(0.5) () = —u,(s(2), 1), 0<t<T.

Proof. We see that lim u,(s(f)—E&, t)=wu,(s(¢), ) exists and u(s(?), t) €
C(]0, T]) using [10] or [3, Lee:ronma 1] since s(t) is Lipshitz continuous on [0, T'].
We shall show
(8.12) lim 33 0, 2y = S:u,,(s(T), e (tSt<ty.).

We put l=(l+1)/2, L=I'+(-1')/4, L=I—(-1')/4. We define r=r(h)=
min {j; x;=jh=1l}. We have
(8.13) w0 Uy ik = 2050 wizk, 23050 2357 uha bk,

= >V uz (¢ )k,,mLS g ks 4(x, 7)dxdr ,

where u; , is a piecewise linear function naturally extended from the net function
u}z, and u";, # is a step function naturally extended from the net function #7,; by
defining u*; w(&, )=0 if (&, 'r)EED,, We observe that {uz;}, are uniformly
bounded and equicontinuous on [/, L] X [0, T'] by Lemma 5.6 and 5.7, {u%z ;},
are uniformly bounded on [/}, oo[X [0, T'] by (5.8), and uz ,—u,, u*%; ,—u,, hold
in the distribution’s sense by the argument similar to the proof of Lemma 8.2
(i). Hence we have

lim 335 w2y = [ iy e+ (" dvdr = ((ugo(r), 7yar

by (8.13), Ascoli-Arzela’s theorem and the weak compactness of L2
Now we have

5(0) = I+ S'sh(f)dT (St <tys1)
= LH3W { sign s,,(f)}(h/k,,ﬂ)k,,HJrS §i()d

where

sign §(7) =
tyST<tnyq

{ 1 (if $(m)>0on [z, £,[),
0 (if§,(r)=0on [£,, t,.[) .
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This can be put in the form

¢
t

s;(t) = 1=23020 uf sy ‘I‘S Su(T)dr ,

where >’ means the summation except for number z such that §,(¢,4-0)=0,
which occurs if |u} ;| =<8/ h. Hence

t —
sit) = 1= 33wy sBy s+ S, i(Mdr+O(VT), O<t<T.
Take & — 0 through the subsequence. Then we get

s(t) = 1= w.(s(r), 7y
0
by (8.12), Lemma 5.2 and Lebesgue’s convergence theorem. This means
s(t)eC'(]0, T]) and $(t)=—u,(s(2), t). q.e.d.

RemARk 8.1. It can be shown that s(z)eC=(]0, T']) and uC=(D") by
virtue of Schaeffer [16] and Lemma 8.5.

ReEMARK 8.2.  We will show the uniqueness of the solutionin § 12. There-
fore the full sequence of (s,(2), u,(x, t)) converges to the true solution.

We have proved the existence of a solution (s,#) under the condition (H.1).

9. Moving boundary problem

Consider the following moving boundary problem: Given the data ¢ and
the given non-decreasing function s(2)& C([0, T']) N C*'(]0, T']), that is positive
for t>0, find a function u=u(x, t) such that

9.1) Lu=u,—u, =0, O<x<<s(t), 0<t<T,

() (9.2) 1,(0, £)sv(u(0, ), 0<t<T,
(9.3)  u(s@2),©)=0, 0<I<T,
(9.4) u(x, 0) = ¢(x), O<x<s(0)=1.

Here T is a fixed but arbitrary positive number. % is a maximal monotone
graph in R? with y(H)=>0 where H is a constant.

Remark 9.1. C%(]0, T']) denotes the space of Lipshitz continuous func-
tions on ]0, T']. We need not assume the non-negativity of ¢ and H.

DEerFINITION 9.1. wu=u(x, t) is a solution of the moving boundary problem
(M) if
i) uis bounded on D. usC=(D)NC(D—Z),
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T (s(t)
S s tu (%, t)’dxdt<<+ oo,
0 Jo

where D and Z are the sets defined by (1.1) and (1.2) respectively.
ii) (9.1), (9.3) and (9.4) hold.
iii) For a.e. t€[0, T, u,(0, ) exists and satisfies (9.2).

REMARK 9.2. If /=0, there is no ¢, and we omit (9.4).

Proposition 9.1. If the data ¢ is bounded and continuous for a.e. x<[0, I]
when 1>0, or we suppose further that v(0) is not empty when 1=0, then there
exists a solution u of the moving boundary problem (M).

REMARK 9.3. The uniqueness will be shown in Proposition 10.1.

We shall show Proof. We use the difference method and modify the di-
fference scheme in § 2.

First consider the case />0. We use a net of rectangular meshes with the
uniform space width % and variable time steps {k,} (n=1, 2, ---). Here k varies
in such a way that I[/h= J, is an integer. We follow the notations from (2.1) to
(2.9)in §2.

Our algorism is the following.

1° uj=¢; 1= =)o), so=Jorh=l.

For n=1, 2, - successively,

2.1° if s(t,_.,+~/ h )—S$,_1>h, then we take J,=],_,+1 and k,=min {t=
ty-1; s(t)_sn—lzh}'—tn—ly

2.2° if s(t,_,4+\/h )—s$,1=h, then we take J,=],_, and k,=\/ 1,

3° solve the difference equation (2.6) for {#}}; under the boundaiy condi-

tion (2.7) and (2.8) with the initial condition {u}™'}.

The step 3° is well-defined by virtue of Lemma 4.1. By the proof of Lemma
5.1 we have

Lemma 9.1. ] is uniformly bounded with respect to h.
In view of Lemma 7.4 and the proof of Lemma 7.5 we obtain

Lemma 9.2. There is a positive constant C, such that
n Jp—1 ? _\2 1 Tu=1 _un2 n<é
(9.5) 20220721 t, 1(uhiz) hkp—i_?tn—l 2z uhh4-t, Ou)=C, .

Noting that Lemma 8.1-8.4 holds in view of Lemma 7.5, the conclusions of
Lemma 8.1-8.4 hold in this case, too. Hence we can easily show the convergence

of the scheme as in § 8.
Now consider the case /=0. We change the scheme only for #=0, 1, 2.
Define #,=0, t,=min {t>0; s(t)=h}, t,=min {t>0; s(£)=2h}, u?=0 (05 <2).
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We use the same algorism as the case />0 for n>2. Then noting that we can
use =0 in place of v defined in (7.3) by virtue of the assumption that v(0) is
not empty, we can show the convergence of the scheme in the case /=0.

10. Comparison theorems for the moving boundary problem

We will show the uniqueness of the solution of the moving boundary pro-
blem (M) stated in § 9 and the comparison theorems. We need not assume
that s(#) is a non-decreasing function in this section.

First we prepare the fundamental lemma.

Lemma 10.1. For a given function s(t)€ C([0, TT)N C*'(]0, T7), let p(x, )
and q(x,t) be functions satisfying
(10.1) $,9€C~(D)NC(D—Z'x {0}) N L=(D)
(10.2) STSs"’(p,,2+q,x2)dxdt<+oo for each r€]0, T,
T JO
(10.3) Pu—p: =0 in D, q,—q¢=0 D,
(10.4) p(x, 0)=¢g(x, 0) a.e. x<]0, I[,
(10.5) p(s(2), t)y=q(s(2), t)  for all t<]0, T],
(10.6) (940, )—p:(0, 1))(9(0, )—p(0, 1))*20  a.e t€]0, T],
where o =max {a, 0}, s(0)=1=0,
D={(x, t); 0O<x<s(?), 0<t<T},
Z'={x€[0, I]; x is a discontinuous point of p or g}, and Z' is a set of
zero measure. Then we have
p(x, t)=q(x, t) inD.
Remark 10.1. If s(0)=/=0, there are no p(x, 0) and g¢(x, 0). We omit
(10.4) and define Z’'= {0}.

Proof of Lemma 10.1. 'We employ the idea of Brézis [1, p. 109-110]. Mul-
tiply the first equality of (10.3) by v—p and integrate over [§, s(#)—8§], then
s(t)-8 s(t)-8
L pi(v—p)dx— 58 Du(v—p)dx =0  for 0<z<T.

With the aid of the integration by parts,

s(t)—8 s(t)—8 s(t)—8
[ so—par—1po—p0 +( plo—p)d=0.
Taking v=max {p, ¢} =p+(¢—p)*, we obtain

s

a0.n) [ sty dv—oa—py L+ [ pdG—py ar = 0.

8
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Similarly we see that

s(¢)—8

s(t)-8 s()—
[ aw—gdr—lao—gl "+ [ w—gpar = 0.

Taking w=min {p, ¢} =¢—(¢g—p)*, we obtain

s(t)=8 N pqs-8 (578 +
(108) " ala—p)aetlala—p)" "= e da—p)hdr=0.
Adding (10.7) to (10.8), we get

s()—8 s(t)-8

(10.9) [ apra—pra+ " @—p)dlg—2) 3 ax

= [q—P)g—2)"T;" """

We note
(10.10) % % S;(t)—s {(q—p)*}2dx

= sa( )_S(Q*P)t(q_‘b)ﬂlx —{—%5(1) {(g(s(®)—38, t)—p(s(t)—3, t))*}?
and

o1y [ gp) gty ="ty 2axzo0.

Consequently using (10.10) and (10.11) in (10.9), and integrate over [§, ], we
get
1

(10.12) > S;(t)_s {(q—p)"}2dx—

L1 ta-pyas
=( ltg—pg—py 00 dr
2 s s —8, D—p(s()—8, 7).

With the aid of (10.2) and the proof of Lemma 8.3, we can use Lebesgue’s
convergence theorem. Letting 6 —0 and using (10.5), we obtain

(10.13)

1O e 1O
21 e yar— L [ da-p)ya
t
<—{ @0, 7)=.0, D)a(0, )—p(0, 7))*dr .
Applying (10.6) for (10.13) and letting € — 0, we get

% S:m {(g—p)" }dx g% S:{(q(x, 0)—p(x, 0))*}2dx =0, O<t<T,
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in view of (10.4), which implies ¢< p in D. g.e.d.
Remark 10.2. We will also use Lemma 10.1 in [20] and [21].
As a consequence of Lemma 10.1 we have the following proposition.

Proposition 10.1. Let u and @ be solutions of (M) corresponding, respectively,
to the data {s(t), u(x,0)} and {3(t), @(x, 0)} which satisfy the assumptions stated
in Proposition 9.1, s(2)<3(¢), u(x, 0)<d(x, 0) and u(s(t), t)=u(s(t), t)=0. Then
we have
(10.14) 0=<d—u=<max {|[@(, 0)—u(-, O)|| ., [|E(s(t), )| =0 1}
in D={(x, t); 0<x=s(t), 0<t < T}, where L"=L~(0, ), I=s(0) and we define
lla(-, 0)—u(+, 0)|| =0 when [=0.

Proof. Noting the boundary condition (9.2) and the monotonicity of 7,
and applying Lemma 10.1 in D, for p(x, t)=7d(x, ¢) and q(x, )=u(x, t), we get
d(x, t)=u(x, £). Similarly applying Lemma 10.1 in D, for p(x, £)=u(x, £)+
max {|[a@(+, 0)—u(+, 0)||,, |[u(s(?), 2)||.~} and q(x, {)=7(x, t), we have the right
part of the inequality (10.14). q.e.d.

Remark 10.3. Proposition 10.1 implies the uniqueness of the solution of
the moving boundary problem (M).

Proposition 10.2. Let u be a solution of (M). If we suppose
u(x, 0) = ¢p(x)=0, O<w<<s(0)=1,
especially when 1 >0, and H =0. Then we have
0=<u(x, £)<max {H, |l¢ll.~0,n} ,

where we define ||p||,= n=0 when I=0.

Proof. Putting k=max {H, ||¢||.~¢ n}, we obtain

(w0, 2),—k)(u(0, t)—k)*=0, a.e. t€]0, T,

by virtue of the assumption y(H)=>0 with H =0, the monotonicity of ¥ and
the boundary condition (9.2). Hence applying Lemma 10.1 for p(x, £)=Fk and
q(x, t)=u(x, t), we have k=u(x, ). Similarly applying Lemma 10.1 for p(x, £)
=u(x, t) and ¢(x, £)=0, we get u(x, £)=0.

11. Reformation of the free boundary condition

We now return to the general situation of the Stefan problem (S). We
state useful results concerning the reformation of the free boundary condition

(0.5).
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Lemma 11.1. Let (s, u) be a solution of (S), then it follows that for any
o, t€]0, T

ALl s(f) = s(o) +SW’ u(x, a)dx—SS(t)u(x, ) dx— S' w0, T)d .
Conversely if s(t)eC([0, TT)NC*(]0, T']), u satisfies (M) and (11.1), then
we have $(t)=—u,(s(2), t), t<]0, T].

Proof. Let (s, ) be a solution of (S). Integrate (0.1) over its domain of
validity, (11.1) follows in view of (0.3) and (0.5). Conversely suppose that (s, )
satisfies (M) and (11.1). By differentiating (11.1), §(¢)=—u,(s(¢), t) follows in
view of (0.3) if u,(s(¢), t) exists and is continuous for 0<<¢<7. But this last
assumption is guaranteed by Geverey [10] or Lemma 1 of Cannon & Hill [3].

q.e.d.

Lemma 11.2. Let (s,u) be a solution of (S), then it follows that for any
o, t€]0, T]

(11.2) st = s(o)*+2 Ssmxu(x, o) dx—2 Ss“)xu(x, av+2{ w0, rydr.
Conversely if s(t)eC([0, T])NC°Y10, T'), u satisfies (M) and (11.2), then
we have s(t)=—u,(s(?), t), t]0, T'].

Proof. Let (s, #) be a solution of (S). We set Lu=0 and v(¥)=—x in
Stoke’s theorem

(11.3) Sa {(vu,—uv,)dr+uvdx} = S {vLu—uL*v}dxdr =0
G G

where L* is the adjoint of L, and G={(x, 7); 0<x<s(r), o<7<<t}. Thus
(11.2) follows in view of (0.3) and (0.5). The latter part will be handled in the
way we used in the latter part of the proof of Lemma 11.1. q.e.d.

12. Proof of Theorem 2 and Theorem 4
In what follows we use the fact that we have already proved the existence of

solution of (S) under the assumption (H.1) in § 8.

Consider two sets {/;, ¢;}, i=1, 2, of Stefan data. If ;>0 we require that
¢; satisfies (A), and if /;=0 theie is no ¢,. Let (s;, ;) be a solution of (S)
corresponding to the data {/;, ¢;}.

Lemma 12.1. Under the above assumptions, let ¢, <, and 0 <1, <1,.
Then, for 01T,

si() =sx(2) -
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Proof. First we prove that, in the case 0=<1/,<<l,, s,(£)<<s,(#). Assuming the
contrary, set {,=min {¢; 5,(f)=s,(#)}. Clearly $,(z,) =5,(2,) and #,>0. We may
have that u,(s(¢), ) >0 for 0<<¢<t, by virtue of Proposition 10.1, Proposition
10.2 and the strong maximum principle [11], ruling out the trivial case u,=u, =0,
si(8)=1, s)(t)=1,. Hence u,—u,>0 in the region, 0 <x<<s (1), 0<t=¢, by
Proposition 10.1 and the strong maximum pinciple. Since #,—u, vanishes at
the point (s,(2,), 2,), it follows from the parabolic version of Hopf’s lemma [9]
that

5‘1(’0) = ““x,x(sl(to)’ to)<—u2’,(s1(t0), t)) = Si(to)

which is a contradiction.
Now we treat the case /;=1[,. Let (s}, u3) be a solution of (S) corresponding
to the Stefan data {/,4-8, ¢3}, where

Pa(%) 0=x=l,
) —
¢2(x)_{ 0, L=x<l+3.

Since ¢, satisfies the assumption (4), ¢3 satisfies the assumption (H.1). Hence
the above definition is well-defined. By the previous paragraph, s,()<<s}(?)
for all §>0. Now (s, u,) and (s3, u3), being the solution of (S), must satisfy
their versions of (11.1) respectively. Subtracting them and noting Proposition
10.2, we obtain

(12.1) s3(2)—s,(2) ;
< 53()—s(0) + S:Z(d)ug(x, <) dx——S?m uy(, o)dx

=i s s, 0} s (02,0, )—,00, b

But by Proposition 10.1 we get #3—u,=0. We estimate the integrand of the last
term. We have u}(0, 7)=u,(0, 7) for 7]0, T']. Consider first the case
u(0, 7)>u,(0, 7). We have u} ,(0, 7)—u, (0, 7)=0 by virtue of the unilateral
boundary condition (0.2) and the monotonicity of v, if the differential quotients
of them exist. For the case u3(0, 7)=u,(0, ), we obtain u} ,(0, 7)—u, (0, 7)=0
by the fact u§—u,=0, if the differential quotients of them exist. So we have
u} (0, 7)—u, ,(0, 7)=0 a.e. 7€]0, T']. Hence letting o tend to zero, we obtain
s3(t)—sx(t) =< (I4-8)—1=3 by (12.1) and the definition of ¢3. Therefore s,(t) <
s3(1)<s,(t)+8. Since 6>0 can be picked as small as desired, we obtain
5(2) =s,(2). q.e.d.

Now we give the proof of the uniqueness theorem.

Proof of Theorem 2 and Theorem 4. If (s;, »,) and (s, u,) are two solu-
tions of the Stefan problem (S), then s;=s, by Lemma 12.1. Hence »,=u, by
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Propsiotion 10.1.

13. Proof of Theorem 1

We give the proof of the existence theorem for the case />0 under the
assumption (A4).

Proof of Theorem 1. We may assume ¢30. We begin the proof by
defining

s | D), 0=x<l-3,
‘i’(x)‘{ 0, I—s=<x<l,

for each & satisfying 0<<86<</. Since ¢ satisfies the assumption (4), it follows
that for each & with 0<<8</there exists a K=K(J) such that the assumption
(H.1) is satisfied, that is, 0 =< ¢*(x)<K(8)(/—x). Hence, for each §,=27"/,
n=1, 2, .-+, there exists a unique solution (s", #”) of the Stefan problem (S)
corresponding to the data {/, ¢$**} by the result in § 8 and Theorem 2. From
Lemma 12.1 the sequence {s,} is a monotone increasing sequence of functions,
which are bounded above by the solution of the Stefan problem (S) corres-
ponding to the data {/+1, ¢} where ¢ is extended as zero over I<x=<I+1.
Consequently. there exists a function s(t):lim s"(t). From Proposition 10.2,

the strong maximum principle, the parabolic version of Hopf’s lemma and the
fact that ¢ =0 it follows that each s, n=1, 2, .-, is a strictly monotone increas-
ing function of ¢. Hence, for >0, s'(¢)—1>0. Putting

K1 = max M = max {||¢”L°°(0,l)1 H} ’

M
si(r)—1
for each 7 satisfying 0<o <7 <7, we have from Proposition 10.1 and 10.2
that

0=u"(x, 1)< K, (s"(2,)—x)
for 0=x=s"(7) and o <t=<t,. Since #"(s"(t,), t,)=0, it follows that
(13.1) 0<—us(s"(2o), t) =K, .
Hence, for all n=1, 2, ---,
(13.2) 0<s"(1) <K,

for s<t<T. Thus, it follows that the limit functon s is Lipshitz continuous
with Lipshitz constant K, for ¢<t<7. In order to demonstrate the con-
tinuity of s at f=0, consider the solution (p, v) of the Stefan problem



STEFAN PROBLEMS WITH THE UNILATERAL BoUuNDARY CONDITION 393

Lv=20, I<x<p(t), 0<t=T,
o, t)y=M, 0<t<T,
v(p(t), £) =0, 0<t<T,
p(t) = —u,(p(?), ), 0<t<T,
p(0)=1.

The existence and uniqueness of the solution of the above problem is known in
Cannon & Hill [4]. It follows from Proposition 10.2 and Result 2 in Cannon,
Hill & Primicerio [5] that s'(t)<s(f)<p(f) for 0=<t<7T. Since s' and p are
continuous at =0, so is s.

Let u denote the solution of (/) with the moving boundary s and the data
¢. This is well-defined by Proposition 9.1 and 10.1. We shall show that for
any o >0 :

(13.3) w—u uniformly in DN {t =4}

as n— oo, where D= {(x, #); 0<x<s(t), 0<¢t<T} and it is understood that {u"}
are extended as zero over their original domains of definition. By Proposition
9.1 we have uC (D) N C(D—Z) and

T (s(t)
S S tu, dxdt<< oo .
0J0

Since 0=<u"<M, u" is uniformly bounded in D. With the aid of the proof
of Lemma 7.5 and the assumption />0, there exists a positive constant C in-
dependent of # such that

n

T (s"(2)
S S tu*tdxdt<C,
0J0

tf Cwr(x, tpdx=C, 10, T].
0

Hence it follows from Lemma 16.3 and Ascoli-Arzela’s theorem that there
exists a function #€ C(D—Z) such that
u—u inDN{t=¢} as n=mn, — oo

for all ¢ €10, T'].
Now we wish to show that u=#% in D. Repeating the calculations in the
proof of Lemma 10.1 for p=u" and g=u, we see that for all £>0

(13.4) % S:""’ {(u—u”)*}zdx-—% S:"‘” {w—u"y*Ydx

< S :[(u—u”)x(u——u")Jr]f,"(f) drl‘% S :5"(7){(u(S"(T), T)—u'(s'(7), 7)) }dr
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by using (10.12). Here we observe that

(13.5) [(—u"). (u—2")*],
=@ (s"(7), ) —u"("(7), (" (7), D) —u'($(7), T
—(w((0, T)—u"(0, 7))(w(0, )—u"(0, 7))*
< (u(s(7), ) —u"($(), T)((E(7), 7))

by the unilateral boundary condition on x=0 and #"(s"(r), 7)=0. Using
(13.5) in (13.4), and noting that u, is continuous to the moving boundary by
Lemma 1 in Cannon & Hill [3], {¢"}, is a monotone increasing sequence of
functions which are bounded above by u in view of Proposition 10.1, and (9.3)
holds, we obtain that «=#% and

(13.6) 1 SS(') {(u—n)yYrdx< L g:m {(u—u)*}2dx

2 ) 2
1 s(8)
< - —u™)\?
_2&{Wu»w

for any natural number m by letting n—co in (13.4). Letting £—0 in (13.6),
we get

2 tw—myyas
2 Jo
1 !
< | (@—gmYar=s,lglioon
Since 8,,=1/2" is arbitrary, we obtain
s(t)
[ {w—myyax=o,

0

which implies (u—%)*=0, i.e., u<%. Hence u=1u.
Consequently as 7— oo

«"—u  uniformly in DN {t=0}

for all 710, T1.
Finally we investigate that (s, u) satisfies the Stefan condition (0.5). Since
each (s", #") is a solution of the Stefan problem (.S) with the data ¢+, we have

s"(%) ) t
St = s"(a)2+zs xu'(w, o)av—2 [ wu(a, )2 u(0, r)dr
0 ¢

0
for ¢, t€]0, T] by Lemma 11.2. Taking the limit as #—co we obtain

s(t
0

S(8) = s(o)*+2 S:(a)xu(x, o) dx—2 S wu(x, f)dxt2 S' (0, )dr
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for o, t€]0, T'], which implies that (s, u) satisfies the Stefan condition (0.5) in
in view of Lemma 11.2. Further it can be shown that s(z)eC=(]0, T']) and
ueC=(D") in view of Schaeffer [16]. q.e.d.

14. Proof of Corollary

We prepare the fundamental lemma concerning the maximal monotone
graphs in R?

Lemma 14.1. Let v be a maximal montone group in R?. Suppose that
¥(u) is single valued at ucD(7y). Then v(+) is continuous at u.

Proof. Let D(v)2u,—ucD(Y), v(u,)>f, and vu)={f}. We shall
show that f,—f. If uctint D(v), then () could not be single valued by the
assumption YyC R?. So we may suppose #<int D(v). Hence {f,}, is bounded
sequence in R. There exist fER and a subsequence {f, ;};C R such that
fo;—f. Thus {[u,, f,,]};C7, u,,—u, f,,—~F By Brézis [2, Proposition 2.5],
we have [4, f]€v. Hence fevy(u), that is f=f in view of ¥(u)={f}. There-
fore we obtain f,— f without taking a subsequence. q.e.d.

Proof of Corollary. Since € C=(D’)N C(D—Z) holds by Theorem 1 and
2, it follows that for any #,&10, T'] u(-, t,) € C*(]0, s(t,)]) N C([0, s(¢,)]). Hence,
without loss of generality, we may assume the assumption (H.1) for the data
¢. We use the fact that u is constructed as the limit of the sequence {(s;, #;)},
of the solutions of the difference equations under the assumption (H.1) for the
data ¢. Therefore we can apply the results in §8. Since v is a single valued
maximal monotone graph in R? D(7) is an open interval and (+) is a con-
tinuous function on D(v) by Lemma 14.1. Using this fact and Lemma 8.2
(iv), for any t€]0, T'] and £>0, there are §>0 and %,>0 such that

(14.1) [7 (@0, $))—v(w(0, 7)) | <&

for |s—t|<<6 and h=<h,. Set 2j=uj,. It follows that L,27=0 and 25="(u3).
Combining these with (14.1) and applying the Petrovskii’s technique [14, p. 364—
368] we observe that u, is continuous to the boundary x=0 and u,(0, t)=
v((0,¢)). The continuity to the free boundary of u, is known. Hence
u,eC(D— {t=0}). q.e.d.

15. Proof of Theorem 3

We give the proof of the existence theorem for the case /=0 under the
hypothesis

(B) D(v)D[0, H] and (0)c]—eo, O .

Proof of Theorem 3. Consider the sequence {(s", #™)},, of the solutions
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of the Stefan problem (S) for the data {{1/m, 0}},. The sequence {s"} is a
monotonically decreasing sequence of increasing continuous functions in ¢ by
Lemma 12.1. Set s(f)=1lim s"(). We note that each data {1/m, 0} satisfies the

assumption (A.2) and (H.1) by the hypothesis (B), so each solution (s”, #™) is
constructed as the limit of the sequence {(s",, #™,),} of solutions of the di-
flerence equations. We can apply the estimates in §6. By using Lemma 6.2,
it follows that there exists a positive constant C independent of m such that

") <C  for 0<t<T.

Here, in view of Ascoli-Arzela’s theorem, we see that s"(#)—s(f) uniformly on
[0, T] as m—>co and s(¢) is an increasing continuous function on [0, T]. First
we shall show that s(z) >0 for £>0. Assuming the contrary, let

(15.1) ‘ 0<t, = max {t]0, T]; s(¢) = 0} .
It follows that there exists a positive constant C independent of m such that
(15.2) " (x, t)| =C, O<x<<s™(t), O<t<T,

by using Lemma 6.1, Lemma 6.2, »”,(x, 0)=0 and the maximum principle.
Hence

(15.3) 0=u"(x, 1)< C-s"(2), 0=<x=s(t), 0=t=T.
Since s™(¢)—>s(¢)=0 uniformly on [0, £,], we obtain
(15.4) u™(x, t) — 0 uniformly, 0=x=s(t), 0=t=1,,

as m—>oco, Let 7 be a maximal monotone in L%0, #,), which is defined as the
natural extension of ¥ (see Brézis [2, p. 25]). Consequently we get

(15.5) u"(0, -)E7@"(0, -))  in L¥0, z)

in view of u",(0, {)ev(u"(0, t)) a.e. t<]0, T']. By using (15.2), {#".(0, -)},.
is bounded in L*(0, #,). Hence there exists a v(-)eL*0, t,) and a subsequence
{u",}; such that

(15.6) u"i (0, <) = ov(+) weakly in L*(0, #,)

as m;—oo, From (15.4), (15.5), (15.6) and Brézis [2, Proposition 2.5], we have
9(+)€¥(0) which implies

o(1)E7(0) a.e. T€]0, ¢,] .
Using the hypothesis (B), we obtain

(15.7) S: o(r)dr<0 .
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Meanwhile we have

m

(15.8) (t) = l/m—S: Cuma, t)dx—S:u"',(O, T)dr

by using Lemma 11.1 and the fact #™(x, 0)=0, 0=<x=<1/m. Taking ¢=1¢, and
letting m=m ;— oo, we obtain

0= — Stov(-r)d'r>0
0

with the aid of (15.1), (15.4), (15.6) and (15.7). 'This is a contradiction. Thus
s(¢)>0 for £>0.

Let u denote the solution of (}) with the moving boundary s and the data
¢. This is well-defined by Proposition 9.1. We can show that for any ¢ >0

(15.9) 4" —u  uniformly in DN {t=¢} as m — oo

by the similar argument used in the proof of Theorem 1.

Hence, following the argument in the last part of the proof of Theorem 1,
(s, u) satisfies the heat balance (11.2) which implies that (s, ) is the solution of
the Stefan problem (S) for the data {0, -}. Further it can be shown that s(f)
C=(]0, T']) and u=C=(D’) in view of Schaeffer [16]. q.e.d.

RemarRk 15.1. We have proved the existence of a solution indirectly.
But we can also prove it by the finite difference method directly. The difference
scheme is as follows.

0° #=0, J,=0,

1° ti=k=h, J;=1, w=I+hy)0), ui=0.
As for n=2, 3, ---, we determine k, and {u}},g;<;, by using the same rule stated
in §2. The proof is essentially similar to that of Theorem 3, so we omit it.

16. Appendix

We shall state the useful three lemmas which are the modifications of the
results of Petrovskii [14, p. 357-360]. To get the estimates for the divided
differences of the solutions of the difference equations, Petrovskii used a device
employed by Bernstein [22] for estimating the derivatives of the solations of a
parabolic equation.

We use the notations introduced in §2 and 3. We need not assume that
the moving boundary T'}: x;=s, is non-decreasing. Let {#}} be a family of
net functions satisfying the difference equation

Lui=ul;—ul7=0 inD,.

In what follows we assume that the uniform space width % and variable time steps
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{k,} are sufficiently small. We first state the lemmas.
Lemma 16.1. Suppose that

(16.1) 0<s,<M, (0<t,<T),
(16.2) |u}|=<M, onD,,
(16.3) Iu'},,ﬂ =M, (0<¢,=T), |uf | <M, Oo=slr'sx;</,).-

Then there exists a positive constant L, ; depending on M,, M,, M, and d such
that

lupl<L, ('<d<x<s,, 0=4,<T).
Lemma 16.2. Suppose that (16.1), (16.2), (16.3) and
(164)  |uy,0alSM, (0<t,ST), |ulz|<M, (0<I'sx<],).

Then there exists a positive constant L, , depending on M,, M,, M,, M, and d such
that

lu7x;l §L2,d (l'<d§x,‘<sn, OétnéT) .
Lemma 16.3. Suppose that

lufz] =K, (h<x;<b, 0<t,<T),
lu(}:&?l .§K2 (l1<x1<lz) .

Then there exists a positive constant K, ,, depending on K,, K,, d, and d, such that
|ufzz| <Ky 4, (h<di=x;=d,<l,, 0<t,<T).
We shall prove the above lemmas.

Proof of Lemma 16.1. First we assume /’=0. Let us consider the func-

tion

(16.5) 27 = (u},)?F(x;)+ Cv} onkE,,
where

(16.6) E,= {(x, t,); h<x;<s,—h, 0=t,<T},

F®) = (x—h){2a—(x—h)}?
= {az—(.ac—h—a)"’}2 , a=(M+1)2,
(16.7) o = @V HW-),

and C is some positive constant. We shall show that if C is sufficiently large,

(16.8) L,2i=2%:—25=0
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on E,={(»;, t,); h<x;<s,—h,0<t,<T}. Noting L,(u},)=0, after some

calculations, we get the following equality (see [14, p. 359]).

(16.9) L,2% = Cl(ufs1 o)+ 5) Ry 41 7051 o)
+(w-1, 2+ Ra(UG 1 7]+ (@ Li(F)
+F[(u72:)" 4 (u}:2)" - Ro(u27)°]
—I-F,[u?,+u}’+1.,]uj’,,—I—F;[u§,+u7_1',]ujx; .

Now using the argument of [14, p. 359-360], we observe that

(16.10)  Fujee)+Fo[uftufun Jujee 2 —(207+RY[3(3:) + (1 2)]

and

(16.11)  F(uj) +Flufetuio Jujz = — ai—hY[3(w})+ )1, )]

where x}=(x;—h)—a. In view of (16.10), (16.11) and the fact that F >0, we
obtain

(16.12) L, = [C+Ly(F)—3(2x)-+hy>— 3(2x)— )] ()’
+[C—(2xj+h)|(ujt 1)+ [C— (2% —h)] (-1 <)

from (16.9). Obviously, if C=C,, is sufficiently large, all the terms on the
right side of the inequality (16.12) will be nonnegative. Hence we have shown
(16.8).

By Lemma 3.1 and (16.8), we see that 27} has its largest value on the boundary
of E,. Therefore we have

B MHM+-1)'4+-2Cy Mi=M  onE,
by (16.1), (16.2) and (16.3). Consequently we have
(32 < Mt~ hy {2a—(x,— WY,
which implies
(16.13) W PSLI@)  (@sx<s, 0L,<T),
where L?=8M. We can treat the case /’>0 similarly. q.e.d.

Proof of Lemma 16.2. First assume /’=0. By (16.1), (16.2), (16.3), we
have

(16.14) WhLP<LYd) (d<x,<s,, 0=t,<T)

noting (6.13) in the proof of Lemma 16.1. Now using the proof of Lemma 16.1
b_y taking u}, defined on {(x;, ¢,); d <x,;<s,, 0=¢,<T} instead of u} defined on
D,, we obtain
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(@3):) =8{MA(M+1)'4-2C, L[} d?} (24 =x;<sy, 0=t,<T)

from (16.1), (16.2) and (16.4) by noting (16.13). We can treat the case I'>0
similarly. q.e.d.

Proof of Lemma 16.3. 'We can show the conclusion by the argument similar
to the proof of Lemma 16.1. .q.e.d.

We shall prove Lemma 8.1 (i). We prepare a useful lemma due to Ishii
[25, Lemma 3.1]. For the sake of completeness we give the proof of it here.

Lemma 16.4. Let v(x, t) be a Lipshitz continuous function on Q=/[a,;, a,] X
[b1, b;).  Then we have

(16.15) lo(%, F)—o(x, 1)
=L{( sup | "o, ipasyet( [ o, panarymy
by St<by Jay b Jay

S(ERNTNLSTY
for any (%, ?), (x, £) €0, where
L = max {242B™V4 24~ 2B 1} ,
A=a,—a, B=b—b,.

Proof. We put n=2"'"AB V?|t—{|"% a=(a,+a,)/2,

7 (if x<a),
= &) ={ —n (fx=a),

C, = sup (Sazv,(x, £)2dx)V?
byst=b, Jay
C,=( S”’ [ 0w, tpaxdrye
by Jay

We observe that x+&€E[a,, a,] for any (x, £), (x,£)€ Q. It is easily shown that
&(v(x, T)—v(x, t))
x+e (X - x
= {740, ot D= outt, naryag

{7 o, mamas
Hence we have
n)o(x, H)—o(x, )| = |&| |o(x, F)—ov(x, 1)
< |S:+e 2|x—E|V2C,dE| + | S F—2 ] S:f”f(f» PYdry |

<29VIC,+ | F—1 | Vo 2C,
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Thus we obtain

(16.16) | (v(x, £)—o(x, 2)|
<2C,(AB[2)2|F—t| V- C(AB[2) 1P| F—t| ™, B—B~™,
SL(CHC) | E—t| M.

It is easy to show (16.15) by using (16.16). q.e.d.
ReEMaRk 16.1 It is obvious that (16.15) holds for any function v such that
v, L~ (b, by; L¥(a, a,)) and v, L*Q).
Proof of Lemma 8.1. By the definition of u,(x, ), we have

iuh(x: t) =

{ iy (< <(1—0)x;+0x;11) »
ox

u(1—0)x;4-0x ., <x<x;..),

where t=(1—0)t,+0t,,,, 0=<6<1, and

)
—guh(x, t)=ulilq,

where
(1=0)x;+0x;  <x<(1—0)x;11+0x),,,
t= (l—e)tn+€tn+l ’
0<0<1.

Hence we obtain
So {5“;,(.”, t)} dx
. o *iv1( O 2
] Zj-o S‘! {5;“;,(-”, t)} dx
= 2070 {(u}* 1) Oh~+(u}:)*(1—O)h}

= 0 2370 (ui*3)’h+(1—0) 2370 (w}. )k
<2C/t,_,, t=(1-0)t,+06t,,,,

and

S‘” S:{iuh(x, t)}zdxdt

tmor ot
<V D5 (uh)hE,
SV 2T (W), <Cft, .y,

from Lemma 7.5. Therefore we have
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(16.17) sup r{iuh(x, t)}zdxgzé,/tm_l,
tmst<T Jo L Ox
ty (0 2 ~
(16.18) Szm-, Sh {auh(x, t)} dxdt<Clt, ..

Thus we obtain the conclusion by (16.17), (16.18) and Lemma 16.4. q.e.d.
Proof of Lemma 8.2 (i). It is easily shown that
(16.19)  (w)z—ul)w} = wiwha+u) Wi+ () w—ujw)): —Ww))s .
Let w(x, ) C7(D), that is, w is an infinitely differentiable function which has
a compact support in D. By (2.6) and (16,19), we obtain
2” 2] (uh(xj, t,,)w?,;—{—uh(xj, t”_l)w;!?)hk” == O .
Letting #— 0 through the subsequence of {/},

T (s(t)
(16.20) S S W@,y tt0))drdi — 0
0vJ0

for any weC5(D). Since uC(D) and it satisfies (16.20), it follows that
u(x, tyeC=(D),
U,,—u, =0 inD,

in view of the well-known result concerning the heat equation (see [26, p. 248]).
q.e.d.
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