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1. Introduction

Let G be a finite group of order |G| and F be an algebraically closed field of
characteristic 0. Let T be an irreducible representation of G over F and d; be
the degree of T. As is well know, d; divides |G|. Furthermore there exists a
sharper result due to Ito [2], namely, d; divides the index in G of every abelian
normal subgroup of G. Let s, be the order of det T, that is, s, is the smallest
natural number such that |7(x)|*r=1 for all xG, where | T(x)| is the deter-
minant of T(x). In Lemma of [4] we showed the first part of the following

Theorem 1. Let T be an irreducible representation of G over F. Then we
have

(i) drsr|21Gl,
(H) i dr or s is odd then dys;| |G|

The second part follows from (i) by considering the 2-part of drs;, since
both d; and s, divide |G ].
The purpose of the present paper is to prove the following theorems.

Theorem 2. If G has an irreducible representation T over F with drsp ¥ |G,
then the following holds.
(1) A 2-Sylow subgroup P of G is cyclic and P 1. Hence G has the
normal 2-complement K.
(if) CpK)=1.
(iii) T is induced from a representation of K.

The converse of Theorem 2 is also true:

Theorem 3. If G satisfies (i) and (ii) in Theorem 2, then G has an irreducible
representation T with drs; f |G |.

We also have the following

Theorem 4. Let T be an irreducible representation of G over F. Then we
have
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drs:<|G|.
If drs;=G, then G is cyclic.

I express my thanks to Professor H. Nagao for his valuable advice.

2. Proofs of the theorems

To prove our theorems we need the following Lemma.

Lemma. Let T be an irreducible representation of G over F, H a normal
subgroup of G of index n and T, be an irreducible component of Ty, Ty the restric-
tion of T to H. Then we have the following.

() If Ta=T,, then dr=d;, and s;|nsy,.

(i) If T=TS, then dr=nd, and sT’ZsTo. Furthermore if ZIdTosTO or sy
1s odd, then sy |sz,.

Proof. (i) is clear. We prove (ii). Clearly d;=mnd;. We set s;=s,
dr,=d, and s; =s,. Let x,, -+, x, be a complete set of coset representatives of
Hin G. We extend T to all elements of G by setting T(x)=0 for all x&£ H.
We may assume that T'(x) is a # Xz matrix of blocks whose (z, j)-th entry is
the d,x dy, matrix To(x7 wx;):

To(x7 ) veveeeee Ty (x7 'x,)

T(x) = ( ) (x€G6).

To(x;’ Kxgy)eeeeeenee To(x;l x,,)
Hence for each x&G, we have |T(x)|=(—1)%"|Ty(y1)|+|To(ys)], where
y;€H, i=1, ---,n, and m is an integer. Therefore, for each x=G, |T(x)|*0=1
and hence s’Zso. If s is odd then s, so, and if d, or s, is even then |7T(x)[%=1
for each x=G and hence siso.

Proof of Theorem 2. We prove (i) by induction on |G|. Put dr=d and
sy=s. Since ds ¥'|G|, by Theorem 1, (ii) Z,d and 2' s. In particular P =1
and ZI |G: G’|, where G’ is the commutator subgroup of G. Let H be a normal
subgroup of G of index 2 and T, be an irreducible component of T5. By
Clifford’s theorem, Ty=T, or T=T§. Put d;,=d, and s; =s,.

(a) Suppose Ty=T,. Sincedst |G|, by Lemma, (i) dys, 4" |H | and hence
both d, and s, are even. 'Therefore by the induction hypothesis, P N H is cyclic.
Suppose P is not cyclic. For each xP, <x®>=+PNH and |T(x)|?=|Ty(x?].
Hence | To(x?)|%?=1 and |T(x)|%*=1. On the other hand, for each 2-regular
element xG, |T(x)|%=1, because s|2s,. Therefore for each x€G, |T(x)|%
=1 and hence slso. Thus ds’doso and doso’ 2|H|=|G|, which is a contradic-
tion. Therefore P is cyclic.

(b) Suppose T=TF. We may assume 4l |G|. Suppose dys, is odd.
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Then since d=2d,, s is even and s\Zso we have ds=4r withr odd. By Theorem
1, (i) rIG | and hence ds’ |G|, which is a contradiction. Thus Z‘doso and by
Lemma, (ii) s’so. Then ds)Zdoso and hence dys, /' |H|. By the induction
hypothesis, PN H is cyclic. Suppose P is not cyclic. For each x&PNH,
[ T(x)| = |To(x)| | To(y xy)| = | To(xy~'xy)|, where y is an element of P which
does not belong to PNH. Since PN H is a cyclic 2-group and x and
y7xy are of the same order, xy 'xy does not generate PN H. Hence
| To(xy~'xy)|*o2=1 and | T(x)|*/>=1. For each xP which does not belong
to PNH, |T(x)|=|Tyx%]|, because d, is even. Since P is not cyclic,
| To(x?) |*¥*=1, hence |T(x)|*?=1. Therefore for each xEP, |Ty(x)|%"?=1.
On the other hand, for each 2-regular element x=G, | T (x)|**?*=1 because
s)so. Hence s\so/Z and dledo-so/szoso. By Theorem 1, (i) we have ds} [G].
This is a contradiction. Therefore P is cyclic. By Burnside’s theorem G has
the normal 2-complement K. Thus (i) is proved.

Now we show (iii). Let T, be an irreducible ccmponent of Ty, K the
inertial group of 7, in G and let T be an irreducible representation of K such
that 7= 7°¢ and that T\ is an irreducible component of Tx. Put dr,=d, sy, =s,
d7=d and sz=3. Since K/K is cyclic, Tx=T, and d=d, (see the proof of
[1,(9.12)]). As d is odd, d5||K| by Theorem 1, (ii). If 2|d5, then s|5 by
Lemma, (ii). Hence ds‘ |G: IZ!JS‘( |G: K||K|=|G|. This yields a con-
tradiction. Hence 2 /d§. Since |K: K| is a power of 2, by Theorem 1, (i)
JE\ |K|. Therefore ds‘ZIG: IZ’|J§\2|G: K||K|. Thuswe see K=K. This
completes the proof of (iii).

Finally we prove (ii). From (iii), | P| ‘d. From (i), Cp(K) is a central
subgroup of G. Hence d‘ |G: Cp(K)|. Therefore Cp(K)=1. This com-
pletes the proof of the theorem.

Proof of Theorem 3. We set | P|=2° P=<x>and y=4*"". Since Cp(K)
=1, y induces a non-identity automorphism of K. By [3, Satz 108], there is a
conjugate class of K which is not fixed by y. Hence y does not fix some
irreducible representation of K over F, say T, Since {yK) is the unique
minimal subgroup of G/K, K is the inertial group of T, in G. Hence T'§ is an
irreducible representation of G. We set T=T§. Then 2°|d; and we see
|T(x)|=—1. Hence drs; f |G].

Proof of Theorem 4. We prove by induction on |G|. If G is abelian,
then the theorem is trivial. We assume that the theorem is true for any proper
subgroup of G. First we prove ds<<|G|. Suppose ds>|G|. By Theorem 1,
(i) ds=2]|G|. Since dl |G|, s is even and 2| |G: G’|. Let H be a normal
subgroup of G of index 2 and 7, be an irreducible component of 7. By the
induction hypothesis and Lemma, T=T¢ and d;s;,=|H|. By the induction
hypothesis, H is cyclic, d&=2 and s=|G|. Hence G is abelian, which con-
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tradicts d=2. Thus we have proved ds<|G|. Next we prove the remaining
part of the theorem. Suppose ds=|G|. We may assume G 1. Since d< |G|,
s=+1 and hence G=+G'. Let L be a normal subgroup of G of prime index
p and T be an irreducible component of 7,. We prove L is cyclic. By the
induction hypothesis and Lemma, if T,=T, or if T=T¢ and dr sz, is even, we
see easily L is cyclic. Put dr =d, and s; =s,. If T —=T¥¢ and d.s, is odd, then
we see |L|=d,s, or |[L|=2d,s,. By the induction hypothesis, |L|=d,s, implies
L is cyclic. In the case |L|=2d,s,, let U be the normal 2-complement of L.
As d;s, is odd, by Clifford’s theorem and Lemma, (ii) we see that (7)) is ir-
reducible and s, is the order of det (T})y and that d;s;=|U|. Hence by the
induction hypothesis, U is cyclic. Hence d;=1 and s,= | U | and hence |L’||2.
On the other hand L'c U. Therefore L'=1 and L is cyclic. Thus we have
proved that L is cyclic. If T',=T,, then d=1 and s=|G/|, hence G is cyclic.
Suppose T=T¢, then d=p, |G'|=p and s=|G: G’|. Let M be any normal
subgroup of G of prime index. By the argument applied to L and by d=p,
|G: M |=p. Hence G/G' is a p-group and hence G is a p-group. Since
|G'|=p, G’ is a central subgroup of G. By s=|G: G'|, G/G’ is cyclic.
Therefore G is abelian. 'This contradicts d=p, and this completes the proof.
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