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1. Introduction

Let G be a finite group of order [ G \ and F be an algebraically closed field of
characteristic 0. Let T be an irreducible representation of G over F and dτ be
the degree of T. As is well know, dτ divides \G\. Furthermore there exists a
sharper result due to Ito [2], namely, dτ divides the index in G of every abelian
normal subgroup of G. Let sτ be the order of det T, that is, sτ is the smallest
natural number such that \T(x)\*?=l for all x^G, where (T1^)! is the deter-
minant of T(x). In Lemma of [4] we showed the first part of the following

Theorem 1. Let T be an irreducible representation of G over F. Then we
have

(i) ^Γ|2|G|,
(ii) if dτ or sτ is odd then dτsτ \G\.

The second part follows from (i) by considering the 2-part of dτsτy since
both dτ and sτ divide | G \.

The purpose of the present paper is to prove the following theorems.

Theorem 2. If G has an irreducible representation T over F with dτsτχ \ G \ ,
then the following holds.

(i) A 2-Sylow subgroup P of G is cyclic and PΦ1. Hence G has the
normal 2-complement K.

(ii) CP(K)=1.
(iii) T is induced from a representation of K.

The converse of Theorem 2 is also true:

Theorem 3. If G satisfies (i) and (ii) in Theorem 2, then G has an irreducible
representation T with dτsτχ \ G \ .

We also have the following

Theorem 4. Let T be an irreducible representation of G over F. Then we
have
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dτsτ*ζ\G\.

If dτsτ=Gy then G is cyclic.

I express my thanks to Professor H. Nagao for his valuable advice.

2. Proofs of the theorems

To prove our theorems we need the following Lemma.

Lemma. Let T be an irreducible representation of G over F, H a normal

subgroup of G of index n and T0 be an irreducible component of TH, TH the restric-

tion of T to H. Then we have the following.
(i) If Tff=TQ, then dτ=dTQ and sτ nsTQ.

(ii) If T=To, then dτ=ndTo and sτ 2sTo. Furthermore if 2 dTQsTo or sτ

is odd, then sτ\sTo.

Proof, (i) is clear. We prove (ii). Clearly dτ = ndTQ. We set sτ=s,
dTo=d0 and sTQ=s0. Let xl9 •••, xn be a complete set of coset representatives of
H in G. We extend Γ0 to all elements of G by setting TQ(x)=0 for all x&H.
We may assume that T(x) is a n X n matrix of blocks whose (i, y)-th entry is

the d0 X d0 matrix T0(xT1xXj):

(XEΞG).

Hence for each *<ΞΞG, we have | T(x)\ =(—

y i=l, •••, n, and m is an integer. Therefore, for each

T0(yn)\, where
| T(x)\2so=l

and hence s 2sQ. If s is odd then s s0, and if d0 or SQ is even then | T(x) |so—1

for each x^G and hence s

Proof of Theorem 2. We prove (i) by induction on | G |. Put dτ=d and
sτ=s. Since d s / J f \ G \ , by Theorem 1, (ii) 2 d and 2 s. In particular PΦ1
and 2 | G: G1 \ , where G' is the commutator subgroup of G. Let H be a normal
subgroup of G of index 2 and T0 be an irreducible component of TH. By
Clifford's theorem, Tff=T0 or T=Tξ. Put dTo=dQ and sTo=sQ.

(a) Suppose TH= T0. Since dsX | G |, by Lemma, (i) d^X \ H \ and hence
both d0 and SQ are even. Therefore by the induction hypothesis, P Π H is cyclic.

Suppose P is not cyclic. For each x<=P, <#2> φP Π H and | T(x) \ 2= \ T0(x2) \.
Hence | T0(x2)\'</*= 1 and | T(x)\s°=l. On the other hand, for each 2-regular
element x(=G, \T(x)\so=l, because s 2s0. Therefore for each x<=Gy \T(x)\s°

= 1 and hence s Thus ds
tion. Therefore P is cyclic.

(b) Suppose T=To.

^ and dΌs0 2\H\ = \G\, which is a contradic-

We may assume 4 |G|. Suppose d0s0 is odd.
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Then since d=2d0, s is even and s 2s0 we have ds=4r with r odd. By Theorem

1, (i) r G\ and hence ds |G|, which is a contradiction. Thus 2 d0sQ and by
Lemma, (ii) s SQ. Then ds 2d0s0 and hence d^0/f\H\. By the induction
hypothesis, PΓ\H is cyclic. Suppose P is not cyclic. For each x^PΓ\H,

I T(x) I = I T0(x) I I 3Γ

0(:y~1*);) I = I TJ(xy~lxy) \ , where y is an element of P which
does not belong to PΓ\H. Since P Π # is a cyclic 2-group and x and
jy'^ry are of the same order, ocy^xy does not generate PΓ\ H. Hence

\T0(xy~1ίxy)\t^2=l and \T(x)\^=l. For each x<=P which does not belong
to P Π H, I T(x) I — I T0(x2) I , because ί/0 is even. Since P is not cyclic,
|Γ0(*2)|V2==1, hence \T(x)\s*'2=l. Therefore for each *<ΞΞP, | T0(x) \s»/2= 1.

On the other hand, for each 2-regular element x^G, \ T0(x) \ V2— 1 because
s s0. Hence s sQ/2 and ds 2d0 s0/2=d0s0. By Theorem 1, (i) we have ds |G|.
This is a contradiction. Therefore P is cyclic. By Burnside's theorem G has
the normal 2-complement K. Thus (i) is proved.

Now we show (iii). Let 7\ be an irreducible component of Tκ, K the
inertial group of Tλ in G and let T be an irreducible representation of K such

that T= TG and that Tl is an irreducible component of Tκ. Put dTι=dly sTι=sl9

dχ=d and ST=S. Since K/K is cyclic, TK=T1 and d=d1 (see the proof of
[1, (9.12)]). As d is odd, ds \K\ by Theorem 1, (ii). If 2 3$, then j 5 by

Lemma, (ii). Hence ds \G: K\ds\ \ G: K\ \K\ =\G\. This yields a con-
tradiction. Hence iχds. Since |X": jR^| is a power of 2, by Theorem 1, (i)
ds \K\. Therefore ds 2|G: R\3s\2\G: K\ \K\. Thus we see K=K. This
completes the proof of (iii).

Finally we prove (ii). From (iii), |P| d. From (i), CP(K) is a central
subgroup of G. Hence d \G: CP(K}\. Therefore CP(K} = \. This com-
pletes the proof of the theorem.

Proof of Theorem 3. We set |P| =2°, P=<»and y=x?-1. Since CP(K)
— 1, y induces a non-identity automorphism of K. By [3, Satz 108], there is a
conjugate class of K which is not fixed by y. Hence y does not fix some
irreducible representation of K over F, say T0. Since <^yKy is the unique
minimal subgroup of G/K, K is the inertial group of Γ0 in G. Hence TO is an
irreducible representation of G. We set T=T$. Then 2a\dτ and we see
|Γ(*)|=-1. Hence dτsτX\G\.

Proof of Theorem 4. We prove by induction on | G |. If G is abelian,
then the theorem is trivial. We assume that the theorem is true for any proper
subgroup of G. First we prove ώ< |G|. Suppose ds>\G\. By Theorem 1,
(i) ds=2\G\. Since d |G|, s is even and 2\ \G: G'|. Let H be a normal
subgroup of G of index 2 and T0 be an irreducible component of TH. By the
induction hypothesis and Lemma, T=T$ and dTosTo= \H\. By the induction

hypothesis, H is cyclic, d=2 and s=\G\. Hence G is abelian, which con-
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tradicts d=2. Thus we have proved <fc< |G|. Next we prove the remaining
part of the theorem. Suppose ds= \G\. We may assume GΦl. Since d< \G \ ,
ίφl and hence GΦG'. Let L be a normal subgroup of G of prime index
p and TΊ be an irreducible component of TL. We prove L is cyclic. By the
induction hypothesis and Lemma, if TL=Tλ or if T— Γf and ί/ΓlfΓl is even, we
see easily L is cyclic. Put dTι=dl and sTι=slf If T=T° and J^ is odd, then
we see ILI^rf^ or \L\=2dlsl. By the induction hypothesis, \L\=d1s1 implies
L is cyclic. In the case \L\ =2d1sl, let U be the normal 2-complement of L.
As dfo is odd, by Clifford's theorem and Lemma, (ii) we see that (T^u is ir-
reducible and sλ is the order of det (T^)Ό and that dlsl= \U\. Hence by the
induction hypothesis, U is cyclic. Hence dl=\ and s1= \ U \ and hence \L' |2.
On the other hand L'ctΛ Therefore Z/—1 and L is cyclic. Thus we have
proved that L is cyclic. If TL=T^ then d=l and s=\G\, hence G is cyclic.
Suppose T= Γf, then d=ρ, \ G'\ =p and s= \ G: G' \. Let M be any normal
subgroup of G of prime index. By the argument applied to L and by d=p,
\G:M\=p. Hence G\G' is a p-group and hence G is a />-group. Since
|G'|=/>, G' is a central subgroup of G. By s=\G: G'|, G/G' is cyclic.
Therefore G is abelian. This contradicts d—p, and this completes the proof.
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