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0. Introduction

Consider an algebraic differential equation of the first order F(yyy')=0 over
an algebraically closed ordinary differential field k of characteristic 0, where F
is an irreducible polynomial o\er k. Recently Matsuda [3] presented a dif-
ferential-algebraic definition for F—0 to be free from parametric singularities
and gave a purely algebraic proof of the following theorem essentially due to
Fuchs [2] and Poincare [8]: Suppose that J F = 0 is free from parametric sin-
gularities. Then it is reduced to a Riccati equation or a defining equation of
elliptic function by a birational transformation over k if the genus of F=0 is 0
or 1 respectively. The author [4] proved that under the above assumption it
is reduced to an equation of Clairaut type by a birational transformation over k
if the genus is greater than 1. This theorem is essentially due to Poincare [8],
Painleve [5] and Picard [6].

Here a differential-algebraic formulation and its proof of the following
theorem which is essentially due to Painlevά [5], [6] will be given: The general
solution η of F=0 depends algebraically upon an arbitrary constant over some
differential extension field of k if and only if there exists an algebraic differential
equation of the first order G—0 over k such that it is free from parametric sin-
gularities and the general solution of G=0 is a rational function of η and η'
over k. Here, we assume that k contains non-constants.

Let k be an algebraically closed ordinary differential field of characteristic
0. and Ω be a universal differential extension field of k. Suppose that K is
a differential subfield of Ω and it is an algebraic function field of one variable
over k. Let P be a prime divisor of K and KP be the completion of K with
respect to P. Then KP is a differential extension field of K and the differentia-
tion is continuous in the metric of KP (cf. [1, p. 114]). Let vP and tP denote
respectively the normalized valuation belonging to P and a prime element in
P. The following definition is due to Matsuda [3]: K is said to be free from
parametric singularities over k if we have vP(tP)^0 for each prime divisor P of
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K. Here, we do not set the assumption that K takes the form k(y,y') with
some element y of K, which is done in [3]. In this general situation is the
author's paper [4] which will be quoted later.

Let k* be a differential extension field of k in Ω; we take for granted that
the field of constants of β* is the same as that of k and K9k* are independent
over k. Since k is algebraically closed, K and k* are linearly disjoint over k
(cf. [11, p. 19]). K*, kQ and Kf will indicate k*(K), the fields of constants of
k and K* respectively; kQ is algebraically closed.

DEFINITION. K will be said to be of Painleve type over k if there exists such

If K1 is of Painleve type over k and K2 is an algebraic extension field of
Kx of finite degree, then K2 is so over k: For K2 and &* are independent over k.

Theorem. K is of Painleve type over k if and only if there exists a differential
subfield of K which is free from parametric singularities over k.

The "if" part is known: For, a differential subfield M is of Painleve type
over k in our sense if M is free from parametric singularities over k (cf. [4]).
Suppose that K is of Painleve type over k. Let Γ be the totality of those prime
divisors P of K satisfying vP(t'P)<0. Assume that K is not free from parametric
singularities over k. Then Γ is not empty. Let P be an element of Γ. Then
the number nP defined by nP=l—vP(tP) does not depend on the choice of a
prime element tP in P. It is an integer greater than 1. We define GP as the
group of all differential ^-automorphisms of KP that are continuous in the metric
of KP. By a theorem of Rosenlicht [9, Th. 3] we have the following:

Lemma. GP is a cyclic group of order nP,

Let L denote the totality of those element of K each of which is left in-
variant under GP for any P in Γ. Then L is a differential extension field of
k. It is proved to be free from parametric singularities over k. Thus Theorem
is obtained. If k contains non-constants then L takes the form k(yyy

f) with
some element y of L.

In case Γ = φ , we set L=K.

Proposition. Suppose that K is of Painlevέ type over k. Then, every
differential subfield of K which is free from parametric singularities over k is con-

tained in L.

Lemma, Theorem and Proposition will be proved in §1, §2 and §3 respec-
tively. In the last §4 some examples will be given.

REMARK 1. Suppose that K is of Painleve type over k. Then, there
exists such kf that (Kf)0Φk0 and [K*: k*(K$)]=[Kf: kf((K?)Q)] if A
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where Kf=kf(K) and (Kf)Q denotes the field of constants of Kf.

REMARK 2. By a result (3) in §2 we have the following: If K*=k*(K$)
for some ft*, then K is free from parametric singularities over ft. Hence, K is
free from parametric singularities over ft if K* is so over some algebraically
closed ft*.

The author wishes to express his sincere gratitude to Professor M. Matsuda
for his kind advice.

1. Proof of Lemma

Let P be an element of Γ and n be nP. By a theorem of Rosenlicht [9, Th. 3]
there exists a prime element t in P such that tf=ct1~n with a nonzero element c
of ft. Suppose that σ is an element of GP. Then, we have vP(σx)=vP(x) for
each x in KP> since σ is continuous in the metric of KP. We shall prove that

σt=£t with £M=1, £Gft0. In KPi σf=Σ~-itfί*f'+1; a'i^K βo=f=O Differentiation
of this expression of σt gives us

(σty = Σr-

here we assume that α t =0 if £<0. On the other hand

Hence,

Comparing the constant terms of both sides, we have cal=c and flo=l; <̂o is a

constant. Let us show that tff = 0 for any ί ^ l . To the contrary assume that
there exists an index ί2^1 with α ΦO. Let j be the minimum of those indices.
The coefficient of t} on the left hand side of (1) is (n-\-j)cal~ιaj. Hence aj=0.
This is a contradiction. Thus #,•=() for any z'2^1. Therefore σt=St with S=a0.
Conversely let £ be an ra-th root in ft0 of 1 and 0 be a mapping of KP to itself
defined by

θ(x) = Σ W"> * = Σ

Then θ is a continuous ft-automorphism of KP. It is a differential one: For,

θ(χ') =

W = (**)'•
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2. Proof of Theorem

Suppose that K is of Painleve type over k. We may assume that k* is
algebraically closed, since K and the algebraic closure of k* are independent
over k. If Γ is empty, then K is free from parametric singularities over k.
We assume that Γ is not empty. Let P be an element of Γ. We have a
prime element t in P such that tf=ct1~n (cf. §1). There exists uniquely a prime
divisor P* of K* such that the restriction of v% to K is vP, where v% is the
normalized valuation belonging to P*. The completion KP of K with respect
to P is a subfield of the completion K% of K* with respect to P*.

We shall show that K* and i£ P are linearly disjoint over K. They are so if
and only if A* and KP are linearly disjoint over k, since ^*=&*(i£) and K, k*
are linearly disjoint over k. Assume that m elements al9 •••, am of k* are linearly
dependent over KP: ΣίLitf^—0 with u^KP and #, Φθ for some i. We may
suppose that vP(uχ)1^vP(μ?) for any /. For each i let &, be an element of k such
that vP[Uiluι—bi)>Q. Then ^ = 1 and 2? l-iΛA = 0 Hence Λj, * ,βm are linearly
dependent over &. Thus &*, Xp are linearly disjoint over & and j£*, i£P are
linearly disjoint over K.

For each element σ of GP there exists uniquely a continuous differential k*-
automorphism σ* of KP* whose restriction to KP is σ. Set G*={σ*; σGG P }.
Let us define a subset L*(P) of i£* as the totality of those elements of K* each
of which is left invariant under G£. Put L*=Π L*(P), P ^ Γ . Then, L* is a
differential extension field of &*.

We shall prove that Kf is contained in L*. Let 7 be a constant of K*
that is transcendental over k. Take an element P of Γ. In X"ί* we have

Ύ = ΣΓ-ΛA

Differentiation of this expression of 7 gives us

0 = 7 ' - ΈT-plicai+ai-

here we assume that ^=0 if i<p. This implies

( 2 ) icdi+aί-n = 0

In particular, pcap

Jϊ-ap-n=pcap=0. Hence />=0. We shall show that /= 0 (mod n)
if α, Φθ. To the contrary assume that there exists an index i such that αt Φθ
with i^βO (mod ri). Let 7 be the minimum of those indices. Then we get a^n

= 0 , and βy=0 by (2). Hence our assertion is true. Since σ*f=fy 7 is con-
tained in L*(P). Hence 7^L*.

Put L{P)=L*(P) ΓΊ If and L = L * Π K= Π L(P), P G Γ . By the definition of
L* and L, L* I3^*(L). We prove that

( 3 ) L* = k*{L).
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Let x be an element of L*. Since L*CK*=&*(^), we have

*Σ5-M = 0;

here Λ, , b^k* and «,-, v^K. Among those expressions of x pick one with a
minimal s. We may assume that au ,ar are linearly independent over K and
vs=l. Then

( 4 ) tfj, •••, ary xbly •••, # δ s _ i

are linearly independent over J^ by the minimality of s. Let P be an element
of Γ. Then the members of (4) are linearly independent over KP, since K*
and KP are linearly disjoint over K. Take an element σ* of G*. Then,

0 = σ*(ΣΣ-i<W-*Σj-i*;»/)

= Σί-i0f<rtt, — ί ί Σ y - i ^ ; ,

since O-*Λ:=Λ:. We have σ ^ s = ^ s by ̂ s = l . Hence,

Σί-Λίw—Λi O-^Σ^l^i-^) = 0.

Since each of Ui—σUi and Vj—σVj is in ̂ P , we obtain Ui=σUi and Vj=σVj (1 ̂ ί
^ r , l ^ y ^ ί ) . Hence, uh Vj^L(P). They are in L and xGft*(L). Therefore
(3) holds.

By (3) we get L Φ&, since L* Z)J^^ 2&0- We shall prove that L is free from
parametric singularities over k. Let Q, vQ and T be a prime divisor of L, the
normalized valuation belonging to Q and a prime element in Q respectively.
Suppose that P is an extension of Q to K. Then, LQCZKP. Let e be the rami-
fication exponent of P with respect to L. Take a prime element tx in P such that
τ=tl Then,

ι) = vP(t[)-\ ,

and

( 5 )

If P $ Γ , we have vP(t{)^0 and p β(τ')^0. Let us assume that P e Γ . Then
each element of LQ is left invariant under GP. By (5), evQ(τ')=e—n. For each
σ of GPy σt=6t, £*=1. There exists an element σ of GP such that £ is a primi-
tive n-th. root of 1. Since vP(tejτ)—{), there exists a nonzero element a oik such
that vP(f\r—ά) > 0. We have

vP{σ(te\τ-ά)) = p

since σt=St and σ τ = τ . Hence,
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We have 6e=l, because Vp(te/τ)=0. Therefore, n divides e, since £ is a primitive

n-th. root of 1: evQ(τ')=e—n^O. Thus L is free from parametric singularities

over k.

3. Proof of Proposition

Suppose that M is a differential subfield of K which is free from parametric

singularities over k. Then M*=k*{Mt) for some &*, where M*=k*(M) and

Mf is the field of constants of M* (cf. [4]). Since K^Z^Mt^ko,Kf contains

k0 properly. We may suppose that k* is algebraically closed. Since L* includes

K$, Mf<Z.K$clL*. Hence, M*=k*(Mf)(ZL*. Thus,

MaKΓlM*c.KnL* = L.

4. Examples

EXAMPLE 1. Suppose that K=k(t) and t'=t2— 1. Then a ^-automorphism

σ of K defined by σt—ί/ΐ is a differential one. Let P be a prime divisor of

K determined by vP(t)=l. Then σ is not continuous in the metric of KP.

EXAMPLE 2. Rosenlicht [10] proved the following theorem: Suppose that

k=k0 and K=k(y): If K is of Painleve type over k in our sense, then either

y'=aflfy °*y'=Vgy with/, gtΞk(y) and a<EΞk.

EXAMPLE 3. Suppose that K=k(t) and 2tt'=l. Let P be the prime

divisor of Kdetermined by vP(t)=l. Then nP=2, and Γ = {P}. The generator

σ of GP satisfies σt=^—t9 and L=k(t2).
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