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For a ribbon knot, we will define, in §1, the ribbon disk pair associated
with it. On the other hand, J.F.P. Hudson and D.W. Sumners gave a method
to construct a disk pair [2], [13]. In §1 and 2, we will generalize their con-
struction and show that a ribbon disk pair is obtained by our construction and
vice versa.

In [10], C.D. Papakyriakopoulos proved that the complement of a classical
knot is aspherical. As an analogy of this, we will prove, in §3, that the com-
pelment of a ribbon disk is aspherical, and it follows from this fact that the
fundamental group of a ribbon knot complement has no element of finite order.
In the final section, we will calculate the higher homotopy groups of a higher-
dimensional ribbon knot complement, and in Theorem 4.4 we show that a
ribbon n-knot for n=3 is unknotted if the fundamental group of the knot comple-
ment is the infinite cvclic group. This result is proved independently by A.
Kawauchi and T. Matumoto [5].

Throughout the paper, we work in the piecewise-linear category although
the results remain valid in the smooth category.

1. Preliminaries

1.1. By S” we denote an n-sphere, and by B" or D" an n-disk. By dM, int
M and cl M we denote the boundary, the interior and the closure of a manifold
M respectively. In this paper, every submanifold in a manifold is assumed to be
locally flat. If OM =@, by DM we mean the double of M, i.e. DM is obtained
from the disjoint union of two copies of M by identifying their boundaries via
the identity map. For a subcomplex C in a manifold M, N(C; M) is a regular
neighbourhood of C in M. By a pair (M, W) we denote a manifold M and a
proper submanifold Win M,i.e. W NOM=0W. An n-disk pair is a pair (M, W)
such that M is a disk and W an n-disk. Two pairs (M,, W,) and (M,, W,) are
equivalent if there exists a homeomorphism from M, to M, which maps W, to W,,
and we will identify two equivalent manifold pairs. Let DM, W)=(DM, DW)
and 0(M, W)=(0M, 0WW). We denote the unit interval [0, 1] by I, and the Eu-
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clidean n-space by R”. Let R:™* be the hyperplane in R” whose n-th coordinate
is t, R} the half space of R” whose n-th coordinate is non-negative, and RZ=
cl(R"—RY).

An n-knot K" will mean an embedded n-sphere in an (n-2)-sphere S**%
An n-knot is unknotted if it bounds an (n+1)-disk in S**2. For a proper disk D"
in a manifold M, (M, D") is unknotted, or D" is unknotted in M, if there exists an
(n+1)-disk D*** in M such that D"**N9M is an n-disk in 8D"*! and cl(0D"*'N
int M)=D". For terminologies in halnde theory, we refer the readers to [11],
and for knot theory, to [14].

1.2. Let S§, S%, «++, Sw be mutually disjoint n-spheres in a g-manifold M*
for n=1, ¢g=3. Suppose that an embedding B: B" X I— M’ satisfies

B(B"XI)N(SEV -V Sh) = B(B"xI).

Then we call 8 or B(B" X I) a band compatible with S§\ -+ Sh,.
Let B3y, ***, B, be bands compatible with SgV ---\Y S}, such that

(1) B(B"XI)NBiB"xI)=¢ ifi%j, and
(2) U{SH 0=<i<m}V U{B;(B"xI); 1<j=<m} is connected.
Then
(U{ST; 0i<m}— U {B,(B"x0I); 1=j <m})V | {B,(0B"x I); 1= <m}
is an n-sphere, and denoted by
F(Sz, ) Sh; By, B) -

Suppose that M*=.S"*2 and there exist mutually disjoint (n+1)-disks Bg*',
B1*Y, ..o By with 0B7*'=S8% for 0<i<m. Then

K” = g(S(’)', *tty S:'n, Bl) R ﬁm)

is called a ribbon n-knot of type (B, ***5 Bm)-
Our definition of a ribbon n-knot is equivalent to that of [19].

RemMark 1.3. In 1.2, it is easily seen that we can deform isotopically each
band so that

Bi(B"x {0}) if j=0,
BiB"xI)NST= {By(B"x{1}) if j=1, and
0 otherwise.

Thus we assume that each band of a ribbon n-knot satisfies this condition.

1.4. Let D**? be obtained from the disjoint union of S"*2x I and B"*® by
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identifying S"**x {1} and 9B"*®. Let K" be a ribbon n-knot of type (8, -+,
B.), then we can construct an (n-+1)-disk L*** in D"** which bounds K" x {0}
as follows: Let Di*'=(S7x[0, 3/4])VY (B¥*'x {3/4}) in S***xI for 0<i<m,
where B}*' and S} are asin 1.2. For 1=<j<m, let B;: B,xIxI—>S""*x I be
the product of B; and a map from I into I which takes ¢ to #/2, i.e.

Bi(x’ »it)= (Bi(xx ), t/2)
for x€B" and y, t€1. Then

L = (U D 0<i<m}— U {B,(B"x 0Ix I); 1< j<m})
U | {B,(8B" x Ix I)V B,(B"x Ix {1}); 1<j<m}

is an (n+1)-disk and bounds K" x {0} in D**3, Note that the section of L"*! by
S*t2x {t} is

(1) K"x{} if 0<t<1/2,

(2) (U{Sy0sismpV U {8,(B" xI); 1Sj<mb)x {12} if t=172,

(3) (SaV-VYSnx{}  if 12<t<3/4.

(4) (BiV--VBL)X {34} if t=3/4,

(5) ¢ if 3/4<t<1. (See Fig. 1)
Ty
]
t=0 t=1/2 t=5/8 t=3/4
Fig. 1

We call L**! in D"*3 the ribbon (n+1)-disk associated with a ribbon n-knot K",
or (D**3, L**") the ribbon (n-+1)-disk pair associated with K".

The double D(D**3, L**1) of a ribbon (n+1)-disk pair is an (n+1)-knot in
the (n+-3)-sphere DD**2.  Since D(D*'V -+ VY DY) is a trivial (n+1)-link and
each 9(B,(B"x Ix1I)) is a band, PL**! is a ribbon (n+1)-knot. Then we say
that 8(D"*3, L**") is an equatorial knot of D(D**3, L**"). (See [19].)

1.5. We will generalize the construction of (n-+1)-disk pairs in [2] and [13],
forn=1. Let D§*' be an unknotted (n+1)-disk in B**3. Adding m 1-handles
hi, -+, hy to B**® such that A} N D3*'=¢@ for each 7, we obtain an (n-+3)-disk with
m 1-handles, say V. We take mutually disjoint oriented 1-spheres a}, **-, &t,, 0N
0V such that a; intersects the belt sphere of A} at only one point, a; Nkj=@ for
= j and that 0D3*' bounds an (n+2)-disk in V-,V --Va,. Then we call
{a;} a system of standard curves, or simply standard, on 0V. Let A, be a proper



164 K. Asano Y. MaruMoTO AND T. YANAGAWA

2-disk in N(8Dj*'; 0V) such that A, intersects dD3*! at only one point, then we
call A, a meridian disk of dD3** in 8V and ay=0A, a meridian of dD3*' in OV,
where we give an orientation to «,.

Let u; be a simple closed curve in 3V—0Dg*! for 1={=<m such that there
exists an ambient isotopy of 8V which carries %; to e; for allZ. Then we add m
2-handles A2, ---, b5 to V along u,, -+, u,, such that h? N D§*'=@ for each 7. By
the handle cancelling theorem, k? cancels A} for each i, i.e. VAV --- Vi, is an
(n+3)-disk D"*3, In general, Di*! is not unknotted in D**3, so we rewrite Dj+?
in D"*3 as L**1,  We say that the pair (D**3, L**?) is of S-type.

Let Ay, for 1<{=<m, be mutually disjoint meridian disks of dDg*' in 9V,
and 7; a band in 8V compatible with «; and a,;=0A; such that

(1) %(B'XDNv(B'xI)=¢ for i%j, and
(2) (B XDNNEDS"; 0V) = vi(B'x {0}) for 15ism.

Then there exists an ambient isotpoy of 8V which carries v; to ; for 1=i=m,
where v; =% (at;, ati; ;) for each i. Thus the (n+3)-manifold obtained from V'
by adding m 2-handles with v;, for 1 <7 =m, as the attaching spheres is an (n-+3)-
disk which contains D3*! as a proper (n-+1)-disk, then this disk pair is said to be
of S*-type. Clearly, a disk pair of S*-type is of S-type. ’

1.6. Let C, be a bouquet of m+1 1-spheres e, ei, -, en. Let 2; be the
element of 7,(C,) represented by e; for 0=i<m. By C denote the 2-dimensional
cell complex obtained from C, by attaching 2-cells e, ---, e5 such that 0e? is an
element w;=w;(,, 2, ***, 2,) of 7,(Cy) with w,(1, 2, -+, 2,)=%; for 1=i=m.
Then we call C a cell complex of S-type.

In 1.5, cI(V—N(D5*'; V)) has a 1-dimensional spine. Hence, by the as-
sumption on the attaching spheres %; of 4%, we have the following:

Proposition 1.7. Let (D**3, L"*") be an (n-+1)-disk pair of S-type for n=
1. Then cl(D*3—N(L**'; D**3)) collapses to a cell complex of S-type.

1.8. Under the notation in 1.5, for a closed curve ¢ in 8V —8D;*!, we can
choose an element w E7,(8V—08D}*') such that, by choosing an arc /in 0V —0D;**
spanning ¢ and a base point, w is represented by ¢VYI. Then we say that w is
represented by c. We remark that the choice of wen,(0V—0D5*"), represented
by ¢, depends on the choice of /. But, in this paper, our argument does not
depend on the choice of . Let wer (0V—0D3*") be represented by two simple
closed curves ¢; and ¢, in 0V —D@3*!. If n=2, then there exists an ambient iso-
topy of @V which carries ¢; to ¢, and keeps 0D3*! fixed, but this is false for n=1.

2. Ribbon disks and disk pairs of S-type

Lemma 2.1. Let w=w(2y,2,,"",2,) be a word in F, the free group on
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20,81y ¥m-  Then w(l,2,-++,2,)=2; in F if and only if there exist a word t;
in F and an integer &; such that

w = (I (t;2t7")")=; .

Proof. The sufficiency is trivial. To prove the necessity, suppose w(1,
2,y %,)=2;. 'Then there exists a word w; in F which does not contain the
letter 2, for 1 <j=<r such that

W = W, R Wp20 2 W,2¢"W,4,; and
W Wy W, W,y = 2; In F

where &; is an integer for 1=<j=<r. Let t;=ww, --w;, then it is trivial that
the required result holds.

Lemma 2.2. Let Di*',V, a; and u; be as in 1.5. Then there exist mutually
disjoint meridian disks Ay;; of 0D3*' in OV, and a band v;; in OV compatible with o;
and & ;;=0A; for 1<i=m and 1< j <r(z) such that

(1) vB'xNNvuB'xI) =0 if (Gj)*k 1),

(2) 7B XI)NN@Ds; V) = 7;(B'x {0}),

(3) 7;B'x)Nay=0 if ik, and

(4) there exists an ambient isotopy of OV which keeps OD3*" fixed and carries

u; to the simple closed curve

Ez:(ai) ail) °tty air(i); Yirs ***y (Yir(i))

for 1=i=<m. (See Fig. 2.)

_— U;

D+

Fig. 2

Proof of Lemma 2.2. For n=1, the assertion is easily shown by the modi-
fication as in Fig. 3.
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3< 5 o<

oD}
Fig. 3

Suppose n=2. Let F=m,(0V—0D;*"), then F is the free group on 2y, 2y, ***, 2,
where 2; is represented by «; for 0=<i<m. Let w,=w;(2, 2y, ***, 2,) be an ele-
ment in F represented by #; for 1<¢<m. Then w1, 2, -**, 2,,)=2; for each i.
By Lemma 2.1, there exist a word ¢;; in F and an integer &;; for 1={=<m and
1< j=r(?) such that

w; = (II (t;j20t77)9)2: .

We note that w; is represented by a simple closed curve #; on 0V —0D5*! of the
form

F(ai, Gy, ooy @iy Viny s Yirtd)

- where &;; and 7;; satisfy the required conditions (1), (2) and (3). By 1.8, there
exists an ambient isotopy of 81 which keeps dDg*! fixed and carries u; to #@; for
allZ. This completes the proof.

Using Lemma 2.2, we have the following Proposition 2.3:

Proposition 2.3. For n=1, an (n+1)-disk pair of S-type is of S*-type.
(The authors should like to thank Prof. F. Hosokawa for pointing out a simpler
proof than their original one.)

Proof. Let (D"*3,1**") be an (n+1)-disk pair of S-type constructed in 1.5.
We will use the notations D§*!, V, a;, u; and A% in 1.5, and notation in Lemma
2.2. By Lemma 2.2, we may assume that the attaching sphere u; of A? is

F(ai, Gy =y Ay Yiny = Vi)

for 1=i<m. If r(1)=1 for all {, then there is nothing to prove. Hence we as-
sume 7(¢)=2 for some 7. The 2-handle A? can be regarded as an embedding of
B?*x B"*' in D" such that

Ri(B?x B*) NV = h}(0B*x B**') = N(u;; 0V—0D;"").

For some g€ int B**!, we may assume A}(0B?X ¢)=u;. Then we can define an
embedding g;: B>—D"*? by g,(x)=h}(x,q) for x&B?. 'The number of connected
components of a;— U {7;;(B*X {1}); 1=<j=r(s)} is equal to r(z), and denote the
connected components by U, -, U,;». We take a point P; in 9B so that g;(P;)
€U; for 2<j=<r(i). Then there exist mutually disjoint proper simple arcs T
in B? such that one end point of T'; is P; and the other in g7'(U)) for 2= <r(i).
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(See Fig. 4.) Let W;=N(T';; B?) for 2<j=<r(7), then W; is a 2-disk. We can
regard hi(W;x B**") as a 1-handle on V whose core is 24(T";Xq). Let V be ob-
tained from V by attaching 1-handles A¥(W;Xx B**') to V for 2= j=<r(3), then ¥V
is an (n+3)-disk with m+-7(?)—1 1-handles. Obviously cl(B*— (J {W;; 2<j<
7(9)}) has 7(i) connected components, say W,, -+, W,;). (See Fig. 4.) Then

H(B*X By = U {B(W, x B*™); 25 j<r(9}
VU {R(W,x B*Y); 1=<k=r()} .

Hence h}(W, x B**) can be regarded as a 2-handle on V, for 1=<k=r(3), whose
core is hi(W, X q), thus the attaching sphere is A%(0W, x g). By choosing a system
of standard curves {c,} on V suitably, it follows that k2(0W, X q) is F(cx, @3 Vi)
for 1=k=r(7). (See Fig.5.) For any 7 with 7({)=2, repeat the above. Then
it follows that (D**3, L**") is of S*-type, and this completes the proof.

Fig. 4

A Yz s Vit
! \

Fig. 5

Theorem 2.4. Suppose n=1. Then a ribbon (n-+1)-disk pair is of S-type,
and conversely an (n-+1)-disk pair of S-type is a ribbon disk pair.

Proof. Suppose that (D**3, L"*') is a ribbon (n4-1)-disk pair, for n=1,
constructed in 1.4. In order to prove that (D**3, L**') is of S-type, it suffices to
show that (D**3, L"*') is obtained from (¥, D§*'), as in 1.5, by adding 2-handles
on V. We will find V in D**3 such that L**! is unknotted in V.

Let (D**3, L**") be associated with a ribbon n-knot of type (8,,+*,8,). We
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will use the notation in 1.2 and 1.4. Let A**! be an (n+1)-disk, then there exists

an embedding f;: A**' X I—D"*3, which is a collaring of D}*' in D**3, i.e. fy(A**!
X I) n L”HCf,-(A“HX O)ZD?“, f,-(A"HX I) n 6D”+3=f;(6A”+‘ X I) and fi(A”HX
INNIm B;=B;B"x0xI) for 0=i<m, 1=j<m. Let N; be a regular neigh-
bourhood of f;(A"**x {1})in D**3 for 0=<7=<m such that N; N f,(A**' x I)=f,(A"*
X [1/2, 1]) and N;NBi(B"xIxI)=@ for 1=j=<m. We note that there exists a
homeomorphism g;: A" x D> N; for eachi. Let V=cl(D*""*— [J {N;; 0=i=
m}), then V is homeomorphic to an (n+3)-disk with (m+-1) 1-handles. Remark
that {g.(px0D?; 0=<i<m} is a system of standard curves on ¥, where pEint
D**'. Then D"*?is obtained from V¥ by adding 2-handles {NV;} with the attahc-
ing spheres {g;(p x0D?»}. Let U= J {fi(A""'x[0,1/2]); 0=<i=<m} V |J {B;(B" X
IxI); 1=j=<m}, then U is an (n+2)-disk in ¥ such that L"*'CoU and cl(0U—
L**") is an (n+1)-disk in 8V. This implies that L"*' is unknotted in V, hence
(D3, L") is of S-type.

Let (D**3, L**1) be an (n+1)-disk pair of S-type. By Proposition 2.3, we
may assume that (D"*3, L") is of S*-type. Suppose that (D"*3, L**") is con-
structed as in 1.5, and we will use the notation in 1.5, i.e. D**? is obtained from
V by adding 2-handles with the attaching spheres v;=% (at;, @yi; ¥;). Then we
can “pull back” v; along the band 7, until v; is deformed to coincide with «;.

The 1-handle 4, as in 1.5, is homeomorphic to B**2x I, and we write Ai=
(B**?x I); for convenience. We may assume that &} N\ N(a;; V)=(B%3*?x I); and
a; N (BY?x {1/2}); is one point for 1=<i=<m, where B%*? is an (n-+2)-disk in B**2,
Without loss of generality, we can assume that the band f; attaches to ; in a re-
gular neighbourhood, in a;, of (B3**x {1/2});Na;, hence int (v;(B*'x1)Na;)D
(B%*?x {1/2}); Nex; for each i. Let 0;: B" X Ix I—V be an embedding such that
0(B"X IXI)NoV=0,(B"x I1x0), 0(B"xXIxI)NDs*'=0,(B"x0xI) and 6,(B"
XIXT)N (B3 x {1/2});=0:(B"x {1} x I)C(0B%**x {1/2}); for 1=<i<m. Let
D '=cl((0B***x {1/2});Nint V) for 1=<i{<m. By choosing 6; suitably, we can
deform D3*' by an ambient isotopy {@,} of V, which is a “pull back” of v; along
the band 7;, such that @, is the identity map of V and ¢,(D§*") is

(U{D?; 0<i<m}— | {0;(B"x0IxI); 1=j=m})
VU {0,0B"xIxI)VO,(B"xIx {1}; 1<j<m} .

Let BX*?=cl(B"*2—B%*?), then we can assume that (B***x {1/2}); does not in-
tersect 2-handles {#%} in V, hence D7*!,--+, D}*! are unknotted in D*"H3=F \J p2\J
-\ b}, thus @,(D§*?) is a ribbon (n+1)-disk in D**2. This completes the proof.

A. Omae [9] proved that the boundary pair of a 3-disk pair of S-type is
a ribbon 2-knot for a special case, and L.R. Hitt [1] announced that he proved
that the boundary pair of an (n+1)-disk pair of some type is a ribbon z-knot and
the converse.

By Proposition 1.7, Lemma 2.1, the proof of Lemma 2.2 and Theorem 2.4,
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we have the following:

Corollary 2.5. Let (D"*3, L**") be a ribobn (n-+1)-disk pair for n=1, then
cl(D*3—N(L**'; D**3)) collapses to a cell complex of S-type. Conversely, let C
be a cell complex of S-type. Then there exists a ribbon (n-+1)-disk pair (D**3,
L™ for n=1 such that C is a spine of the exterior of L**' in D"*3,

In [19], the third author proved the following Proposition 2.6, and we can
give an alternative proof by using Theorem 2.4:

Proposition 2.6. For n=2, every ribbon n-knot has an equatorial knot.

Proof. Let K" be a ribbon n-knot, and (D”**3, L**') the ribbon (n+41)-disk
pair associated with K”. By Theorem 2.4, (D"*3, L"*") is of S-type. Hence
there exists an unknotted (n+1)-disk D3*! in V, an (n+3)-disk with m 1-handle,
such that (D"*3, L**?) is obtained from (V, D3*") by attaching m 2-handles 43, ---,
k% to V—Di*'. (See 1.5.) We can realize V in R**® so that

(1) Visaregular neighbourhood of Win R"*3, where W is a bouquet of
m 1-spheres in R§*?, and V N Ri*2=N(W; R}*?),
(2) the pair (V, Di*') is symmetric with respect to R3*?, and
(3) Di*'NR:*?is an n-disk, say D}, and D' N R**? is an (n+-1)-disk for
E=-+.
Let Vo=V NR;*? then 8V,C0V. Hence we can choose a system of standard
curves {a;} on 0V, so that it is also standard on V. A meridian o, of D% in
dV, is a meridian of 0D3*' in V. For the attaching sphere u; of a 2-handle A?
on V, let w; be an element of z,(0V —0D3*") represented by u; for 1 <i<m. Since
7(0Vy—0D5)=m,(0V—0D;*") by the isomorphism induced by the inclusion, we
may regard w;Ex,(0V,—0D;). By Lemma 2.1 and the proof of Lemma 2.2,
there exist mutually disjoint simple closed curves #@,,++,#,, in 8V,—0D§ which
represent w,, ***,%,,, and an ambient isotopy of ¥, which carries #; to «; for all 7.
By 1.8, #; and u; are ambient isotopic in 0V —0D;*", because #; and u; represent
the same element w; in 7,(0V—0D;*'). This means that we can choose the
attaching sphere u; of A% in Vo=V N R;*2. Then we can realize each 2-handle 4?
in R**3 so that it is symmetric with respect to Rj*?. Hence it follows that V'V |}
{h%; 1=<i<m} is symmetric with respect to R** and

@OV | {125 1<i<m}) O R%, 0D5+ \R%) = (D32, L%)
is an n-disk pair of S-type. Then (S**? K")=9)(D%*?, L}) has the equatorial
knot 8(D%*?, L%). This completes the proof.
3. Asphericity of ribbon disks

In this section, we will prove that the complement of a higher dimensional
ribbon disk is aspherical which is an analogy to the case of classical knots [10].
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3.1. Regarding S* as a one point compactification of R*, we may consider
that a 2-knot is in R*. By Proposition 2.6, we can assume that a ribbon 2-knot
K? satisfies the followings:

(1) K?is symmetric with respect to R§,

(2) K2N R4 has elliptic critical points only in R3, and

(3) KZ2NR! has hyperbolic critical points only in R} (Fig. 6).

=0
Fig. 6
Deforming the above description, it is easily seen that K? can be described as
follows:
(1) all elliptic critical points occur at R} or R%,, and
(2) all hyperbolic critical points occur at R§ (Fig. 7).

—ABES

t=2

[

L]
L]
t=—2 t=-15 t=-—

t=—2 t=—15 t=-1

Fig. 7

The latter description of a 2-knot is called a splitting by S.J. Lomonaco [7],

then using this splitting, he has stated the following in the proof of Theorem 3.2
in [7]:

Proposition 3.2. Let K? be a ribbon 2-knot of type (By, ***, Bn), and d} a
proper 3-disk in N(3;; S*) such that the intersection of d; and B;(B*xI)is B:(B?x
{1/2}) and 0d}C S*—K?. Let * be a base point in S*—K?, and I; a simple arc in
S*— K? which spans the base point * and 0d3, then we denote by [0d?] the element of
(S —K?)=my(S*— K?, *) represented by 1;U0d;. Then m,(S*—K?) is generated
by [0d}),--,[0d%) as a Zm\-module, where Zr, is the integral group ring of m,—=
m(S*—K?). (See Fig. 8.)

B:NR: B:(1R} Bi(1RY

0d} [1R3

. od? [\ R}
@ 5) o @
ad?ﬂléﬂ admfg‘H ad;ﬂéll
Fig. 8
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The following Proposition 3.3 has been proved by the third author [20]:

Proposition 3.3. Let (D**3, L**") be the ribbon (n+1)-disk pair associated
with a ribbon n-knot K", and (S**3, K**\=Q(D**3, L**"). If n=2, then m(S"**
_K")D__,”I(Dn+3_Ln+l) g”.I(Sn+:«]_1<n+l).

Lemma 3.4. Let (D"*3, L**") be the ribbon (n+-1)-disk pair associated with
a ribbon n-knot K". If n=2, then the inclusion from S*"**—K" into D"*3—L**!
induces an onto-homomorphism rwy(S*"*—K")—my(D"3— L**") as Zz,-modules.

Proof. Let N, T be regular neighbourhoods of L**! in D**? and K" in S**?
respectively, then in order to prove Lemma 3.4 it suffices to show the surjectivity
of m,(S*"*2—int T)—my(D"*—int N).

Let =? be a 2-dimensional polyhedron in D***—int N. By Theorem 2.4,
D*3—int N consists of 0-, 1- and 2-handles. By the general position argu-
ments, we can assume that 3? does not intersect the cores of 0-, 1- and 2-handles.
This implies that =? is in the boundary collar of D***—int N. Hence we can
move X7 homotopically into 9(D"**—int N), and we denote the image of =? in
9(D***—int N) by the same symbol 2. Note that 9(D**3—int N)=(S*"*—int T
l}JB"“X S?, where f is an identifying map of 9(B**'x S*) and 9(S"**—int T)=

0T. Again by the general position arguments, 3* does not intersect p X S in
o(D***—int N), where pE int B**', thus we can push 32 into S***—int 7. This
fact and Proposition 3.3 follow the required result. This completes the proof of
Lemma 3.4.

Lemma 3.5. For a ribbon 3-disk pair (D, L*), we have m,(D°— L%)=0.

Proof. Let (D5, L?) be associated with a ribbon 2-knot of type (8, **+, B,).
Then we will use the notation in 1.4 for =2 and in Proposition 3.2. The 2-
sphere 8d} bounds the 3-disk (84} x [0, 3/4])\ (d} x {3/4}) in D°—L? for each i.
It follows from this and Lemma 3.4 that 7,(D°— L*)=0.

The following Theorem 3.6 is a generalization of [18]:

Theorem 3.6. Let (D"*3, L"*") be a ribbon (n+1)-disk pair with n=1, then
D3 — L**1 §s aspherical.

Proof. By Corollary 2.5, there exists a cell complex C of S-type such that
D*3—L**! is homotopy equivalent to C. Again by Corollary 2.5, there exists a
ribbon 3-disk pair (D® L?) such that D°*—L3 is homotopy equivalent to C. It
follows from Lemma 3.5 that 7z,(C)=0. Let C be the universal covering space
of C. Then H,(C)=0 for i=3, since C is 2-dimensional. 'Thus, by Hurewicz
theorem, C is aspherical, because 7,(C)==m,(C)=0. Therefore C is aspherical.
This completes the proof.
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ReMARK 3.7. A cell complex of S-type is a subcomplex of a contractible
2-complex, and it follows from the proof of Theorem 3.6 that a cell complex
of S-type is aspherical. This gives a partial answer to a problem of J.H.C.
Whitehead: Is any subcomplex of an aspherical 2-complex aspherical?

Corollary 3.8. Let K" be a ribbon n-knot for n=1, then =,(S"**—K") has
no element of finite order.

Proof. For n=1, the assertion is a special case of [10]. For n=2, this
is true by Proposition 3.3, Theorem 3.6 and a result due essentially to P.A.
Smith (p. 216 in [3]), namely: The fundamental group of an aspherical poly-
hedron of finite dimenion has no element of finite order.

T. Yajima characterized the knot groups of ribbon 2-knots in [16], then
by Colrollary 3.8 and [16] we have the following:

Corollary 3.9. Let G be a finitely presented group having a Wirtinger pre-
sentation cf deficiency 1 with G|G'=Z. Then G has no element of finite order.

4. Unknotting ribbon knots

Theorem 4.1. Let K" be a ribbon n-knot for n=3, then we have =, (S"**—
K"=0 for 2<i<n—1.

Proof. By Proposition 2.6, there exists a ribbon n-disk pair (D**?, L") such
that DD, L")=(S"*, K"). Let (D*?, L) be a copy of (D**?, L") for =+,
then 9(D**?, L") is obtained from the disjoint union of (D3*?, L}) and (D% L)
by identifying their boundaries via the identity map. Let (S**, K§™')=08(D%*?,
L%),i.e. K§7' is an equatorial knot of K". Let X be the universal covering space
of §**2—K" X, the lift of D**—L? in X for €=, and X, the lift of S*"'—K}™*
in X. By Proposition 3.3, all of X, X_ and X, are also universal covering spaces.
By the Mayer-Vietoris theorem, we have the following exact sequence:

g Hi(X+)®H:‘(X—) - H:(X) - Hi—l(Xo) g Hf—l(X+)@Hj—1(X—) g

By Theorem 3.6, H;(X,)=0 for j=1 and €=+. Therefore it follows that H;(X)
=H,;_(X,) for j=2.

Suppose n=3, then 7,(S*—K?%=H,(X)=~H,(X,)=0. By induction on the
dimension n, it is easily seen that the fact H;(X)=H;_,(X,) and H,(X;)=0 implies
H(X,)=0 for 1=<i{=<n—1, and this implies the required result.

4.2. Addendum to Theorem 4.1. From the proof of Theorem 4.1, it
follows that z,(S"*2—K")==m,_,(S""'—K§™") for n=3. Concerning =,(S""*—K")
for a ribbon n-knot K" with #=3, we can conclude the similar result to that in
Proposition 3.2.



RiBeoN KNoTs AND RiBBON Disks 173

The following Proposition 4.3 is due to A. Kawauchi ([4] or p. 331 in [14]):

Proposition 4.3. For a 2-knot K? S*—K? is homotopy equivalent to S* if
and only if = |(S*—K?)=Z.

Theorem 4.4. Let K" be a ribbon n-knot for n=3. If = (S*"?*—K")=Z,
then K" is unknotted.

Proof. We can use the notation in the proof of Theorem 4.1. Note that,
in the proof of Theorem 4.1, we have H;(X)=H;_(X,) for j=2.

Suppose n=3 and =,(S*—K?%)=Z, then by Proposition 3.3 it follows that
7 (S*—K3)=Z, where K} is an equatorial knot of K3 By Proposition 4.3, we
have H,(X;)=0 for all i=1. It follows from this that H;(X)=0 for j=1. There-
fore S°- K? is homotopy equivalent to S?, hence by [6], [12] and [15], K® is un-
knotted. Similarly, for n=4, it is easy to see that the assertion is true by induc-
tion on the dimension #. This completes the proof.

Recently A. Kawauchi and T. Matumoto [5] have obtained independently
the same result as Theorem 4.4.

The following is obtained by Proposition 3.3 and Theorem 4.4:

Corollary 4.5. Let K" be a ribbon n-knot for n=4, then any equatorial
knot of K" is unknotted if K" is unknotted.

For n=2, Corollary 4.5 is false. For example, Kinoshita-Terasaka knot is
an equatorial knot of the unknot [8]. The case =37 still remains open.

FiNnaL Remar. In 1.2, 1.4 and 1.5, we defined a ribbon knot, a ribbon
disk pair and a disk pair of S-type. It is easy to generalize our definition of
ribbon knots to the case of links, i.e. ribbon links. Then the same generaliza-
tions are possible for ribbon disk pairs and “of S-type”. In this generalized
case, Theorems 2.4 and 3.6 remain valid.
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