RIBBON KNOTS AND RIBBON DISKS

KOUHEI ASANO, YOSHIHIKO MARUMOTO AND TAKAAKI YANAGAWA

(Received October 23, 1979)

For a ribbon knot, we will define, in §1, the ribbon disk pair associated with it. On the other hand, J.F.P. Hudson and D.W. Sumners gave a method to construct a disk pair [2], [13]. In §1 and 2, we will generalize their construction and show that a ribbon disk pair is obtained by our construction and vice versa.

In [10], C.D. Papakyriakopoulos proved that the complement of a classical knot is aspherical. As an analogy of this, we will prove, in §3, that the compelment of a ribbon disk is aspherical, and it follows from this fact that the fundamental group of a ribbon knot complement has no element of finite order. In the final section, we will calculate the higher homotopy groups of a higher-dimensional ribbon knot complement, and in Theorem 4.4 we show that a ribbon n-knot for $n \ge 3$ is unknotted if the fundamental group of the knot complement is the infinite cyclic group. This result is proved independently by A. Kawauchi and T. Matumoto [5].

Throughout the paper, we work in the piecewise-linear category although the results remain valid in the smooth category.

1. Preliminaries

1.1. By S^n we denote an n-sphere, and by B^n or D^n an n-disk. By ∂M , int M and cl M we denote the boundary, the interior and the closure of a manifold M respectively. In this paper, every submanifold in a manifold is assumed to be locally flat. If $\partial M \neq \emptyset$, by $\mathcal{D}M$ we mean the double of M, i.e. $\mathcal{D}M$ is obtained from the disjoint union of two copies of M by identifying their boundaries via the identity map. For a subcomplex C in a manifold M, N(C; M) is a regular neighbourhood of C in M. By a pair (M, W) we denote a manifold M and a proper submanifold M in M, i.e. $M \cap \partial M = \partial M$. An n-disk pair is a pair (M, W) such that M is a disk and M an n-disk. Two pairs (M_1, W_1) and (M_2, W_2) are equivalent if there exists a homeomorphism from M_1 to M_2 which maps M_1 to M_2 , and we will identify two equivalent manifold pairs. Let $\mathcal{D}(M, W) = (\mathcal{D}M, \mathcal{D}W)$ and $\partial(M, W) = (\partial M, \partial W)$. We denote the unit interval [0, 1] by [0, 1], and the Eu-

clidean *n*-space by R^n . Let R_t^{n-1} be the hyperplane in R^n whose *n*-th coordinate is t, R_+^n the half space of R^n whose *n*-th coordinate is non-negative, and $R_-^n = \operatorname{cl}(R^n - R_+^n)$.

An *n-knot* K^n will mean an embedded *n*-sphere in an (n+2)-sphere S^{n+2} . An *n*-knot is *unknotted* if it bounds an (n+1)-disk in S^{n+2} . For a proper disk D^n in a manifold M, (M, D^n) is *unknotted*, or D^n is *unknotted* in M, if there exists an (n+1)-disk D^{n+1} in M such that $D^{n+1} \cap \partial M$ is an *n*-disk in ∂D^{n+1} and $\operatorname{cl}(\partial D^{n+1} \cap M) = D^n$. For terminologies in halnde theory, we refer the readers to [11], and for knot theory, to [14].

1.2. Let S_0^n , S_1^n , ..., S_m^n be mutually disjoint *n*-spheres in a *q*-manifold M^q for $n \ge 1$, $q \ge 3$. Suppose that an embedding $\beta: B^n \times I \to M^q$ satisfies

$$\beta(B^n \times I) \cap (S_0^n \vee \cdots \vee S_m^n) = \beta(B^n \times \partial I).$$

Then we call β or $\beta(B^n \times I)$ a band compatible with $S_0^n \cup \cdots \cup S_m^n$. Let β_1, \cdots, β_m be bands compatible with $S_0^n \cup \cdots \cup S_m^n$ such that

- (1) $\beta_i(B^n \times I) \cap \beta_j(B^n \times I) = \emptyset$ if $i \neq j$, and
- (2) $\bigcup \{S_i^n; 0 \le i \le m\} \cup \bigcup \{\beta_i(B^n \times I); 1 \le j \le m\}$ is connected.

Then

$$(\bigcup \{S_i^n; 0 \leq i \leq m\} - \cup \{\beta_j(B^n \times \partial I); 1 \leq j \leq m\}) \cup \bigcup \{\beta_j(\partial B^n \times I); 1 \leq j \leq m\}$$

is an *n*-sphere, and denoted by

$$\mathcal{F}(S_0^n, \dots, S_m^n; \beta_1, \dots, \beta_m)$$
.

Suppose that $M^q = S^{n+2}$ and there exist mutually disjoint (n+1)-disks B_0^{n+1} , B_1^{n+1} , \dots , B_m^{n+1} with $\partial B_i^{n+1} = S_i^n$ for $0 \le i \le m$. Then

$$K^{n} = \mathcal{F}(S_{0}^{n}, \dots, S_{m}^{n}; \beta_{1}, \dots, \beta_{m})$$

is called a ribbon n-knot of type $(\beta_1, \dots, \beta_m)$.

Our definition of a ribbon n-knot is equivalent to that of [19].

REMARK 1.3. In 1.2, it is easily seen that we can deform isotopically each band so that

$$eta_i(B^n imes I) \cap S_j^n = egin{cases} eta_i(B^n imes \{0\}) & ext{if } j = 0 \ eta_i(B^n imes \{1\}) & ext{if } j = i, ext{ and } \ \emptyset & ext{otherwise.} \end{cases}$$

Thus we assume that each band of a ribbon n-knot satisfies this condition.

1.4. Let D^{n+3} be obtained from the disjoint union of $S^{n+2} \times I$ and B^{n+3} by

identifying $S^{n+2} \times \{1\}$ and ∂B^{n+3} . Let K^n be a ribbon n-knot of type $(\beta_1, \dots, \beta_m)$, then we can construct an (n+1)-disk L^{n+1} in D^{n+3} which bounds $K^n \times \{0\}$ as follows: Let $D_i^{n+1} = (S_i^n \times [0, 3/4]) \cup (B_i^{n+1} \times \{3/4\})$ in $S_i^{n+2} \times I$ for $0 \le i \le m$, where B_i^{n+1} and S_i^n are as in 1.2. For $1 \le j \le m$, let $\overline{\beta}_j : B_n \times I \times I \to S^{n+2} \times I$ be the product of β_j and a map from I into I which takes t to t/2, i.e.

$$\overline{\beta}_j(x, y, t) = (\beta_j(x, y), t/2)$$

for $x \in B^n$ and $y, t \in I$. Then

$$L^{n+1} = (\bigcup \{D_i^{n+1}; 0 \leq i \leq m\} - \bigcup \{\overline{\beta}_j(B^n \times \partial I \times I); 1 \leq j \leq m\})$$
$$\cup \bigcup \{\overline{\beta}_j(\partial B^n \times I \times I) \cup \overline{\beta}_j(B^n \times I \times \{1\}); 1 \leq j \leq m\}$$

is an (n+1)-disk and bounds $K^n \times \{0\}$ in D^{n+3} . Note that the section of L^{n+1} by $S^{n+2} \times \{t\}$ is

- (1) $K^n \times \{t\}$ if $0 \le t < 1/2$,
- (2) $(\bigcup \{S_i^n; 0 \le i \le m\} \cup \bigcup \{\beta_j(B^n \times I); 1 \le j \le m\}) \times \{1/2\}$ if t = 1/2,
- (3) $(S_0^n \cup \cdots \cup S_m^n) \times \{t\}$ if 1/2 < t < 3/4,
- (4) $(B_0^n \cup \cdots \cup B_m^n) \times \{3/4\}$ if t = 3/4,
- (5) \emptyset if $3/4 < t \le 1$. (See Fig. 1.)

Fig. 1

We call L^{n+1} in D^{n+3} the ribbon (n+1)-disk associated with a ribbon n-knot K^n , or (D^{n+3}, L^{n+1}) the ribbon (n+1)-disk pair associated with K^n .

The double $\mathcal{D}(D^{n+3}, L^{n+1})$ of a ribbon (n+1)-disk pair is an (n+1)-knot in the (n+3)-sphere $\mathcal{D}D^{n+3}$. Since $\mathcal{D}(D^{n+1}_0 \cup \cdots \cup D^{n+1}_m)$ is a trivial (n+1)-link and each $\mathcal{D}(\beta_i(B^n \times I \times I))$ is a band, $\mathcal{D}L^{n+1}$ is a ribbon (n+1)-knot. Then we say that $\partial(D^{n+3}, L^{n+1})$ is an *equatorial knot* of $\mathcal{D}(D^{n+3}, L^{n+1})$. (See [19].)

1.5. We will generalize the construction of (n+1)-disk pairs in [2] and [13], for $n \ge 1$. Let D_0^{n+1} be an unknotted (n+1)-disk in B^{n+3} . Adding m 1-handles h_1^1, \dots, h_m^1 to B^{n+3} such that $h_i^1 \cap D_0^{n+1} = \emptyset$ for each i, we obtain an (n+3)-disk with m 1-handles, say V. We take mutually disjoint oriented 1-spheres $\alpha_1, \dots, \alpha_m$ on ∂V such that α_i intersects the belt sphere of h_i^1 at only one point, $\alpha_i \cap h_j^1 = \emptyset$ for $i \ne j$ and that ∂D_0^{n+1} bounds an (n+2)-disk in $\partial V - \alpha_1 \cup \dots \cup \alpha_m$. Then we call $\{\alpha_i\}$ a system of standard curves, or simply standard, on ∂V . Let Δ_0 be a proper

2-disk in $N(\partial D_0^{n+1}; \partial V)$ such that Δ_0 intersects ∂D_0^{n+1} at only one point, then we call Δ_0 a meridian disk of ∂D_0^{n+1} in ∂V and $\alpha_0 = \partial \Delta_0$ a meridian of ∂D_0^{n+1} in ∂V , where we give an orientation to α_0 .

Let u_i be a simple closed curve in $\partial V - \partial D_0^{n+1}$ for $1 \le i \le m$ such that there exists an ambient isotopy of ∂V which carries u_i to α_i for all i. Then we add m 2-handles h_1^2, \dots, h_m^2 to V along u_1, \dots, u_m such that $h_i^2 \cap D_0^{n+1} = \emptyset$ for each i. By the handle cancelling theorem, h_i^2 cancels h_i^1 for each i, i.e. $V \cup h_1^2 \cup \dots \cup h_m^2$ is an (n+3)-disk D^{n+3} . In general, D_0^{n+1} is not unknotted in D^{n+3} , so we rewrite D_0^{n+1} in D^{n+3} as D_0^{n+1} . We say that the pair D_0^{n+3} , D_0^{n+1} is of D_0^{n+1} .

Let Δ_{0i} , for $1 \le i \le m$, be mutually disjoint meridian disks of ∂D_0^{n+1} in ∂V , and γ_i a band in ∂V compatible with α_i and $\alpha_{0i} = \partial \Delta_{0i}$ such that

- (1) $\gamma_i(B^1 \times I) \cap \gamma_i(B^1 \times I) = \emptyset$ for $i \neq j$, and
- (2) $\gamma_i(B^1 \times I) \cap N(\partial D_0^{n+1}; \partial V) = \gamma_i(B^1 \times \{0\}) \text{ for } 1 \leq i \leq m.$

Then there exists an ambient isotpoy of ∂V which carries v_i to α_i for $1 \le i \le m$, where $v_i = \mathcal{F}(\alpha_i, \alpha_{0i}; \gamma_i)$ for each i. Thus the (n+3)-manifold obtained from V by adding m 2-handles with v_i , for $1 \le i \le m$, as the attaching spheres is an (n+3)-disk which contains D_0^{n+1} as a proper (n+1)-disk, then this disk pair is said to be of S^* -type. Clearly, a disk pair of S^* -type is of S-type.

1.6. Let C_0 be a bouquet of m+1 1-spheres e_0^1 , e_1^1 , \dots , e_m^1 . Let z_i be the element of $\pi_1(C_0)$ represented by e_i^1 for $0 \le i \le m$. By C denote the 2-dimensional cell complex obtained from C_0 by attaching 2-cells e_1^2 , \dots , e_m^2 such that ∂e_i^2 is an element $w_i = w_i(z_0, z_1, \dots, z_m)$ of $\pi_1(C_0)$ with $w_i(1, z_1, \dots, z_m) = z_i$ for $1 \le i \le m$. Then we call C a cell complex of S-type.

In 1.5, $cl(V-N(D_0^{n+1}; V))$ has a 1-dimensional spine. Hence, by the assumption on the attaching spheres u_i of h_i^2 , we have the following:

Proposition 1.7. Let (D^{n+3}, L^{n+1}) be an (n+1)-disk pair of S-type for $n \ge 1$. Then $cl(D^{n+3}-N(L^{n+1}; D^{n+3}))$ collapses to a cell complex of S-type.

1.8. Under the notation in 1.5, for a closed curve c in $\partial V - \partial D_0^{n+1}$, we can choose an element $w \in \pi_1(\partial V - \partial D_0^{n+1})$ such that, by choosing an arc l in $\partial V - \partial D_0^{n+1}$ spanning c and a base point, w is represented by $c \cup l$. Then we say that w is represented by c. We remark that the choice of $w \in \pi_1(\partial V - \partial D_0^{n+1})$, represented by c, depends on the choice of l. But, in this paper, our argument does not depend on the choice of l. Let $w \in \pi_1(\partial V - \partial D_0^{n+1})$ be represented by two simple closed curves c_1 and c_2 in $\partial V - D\partial_0^{n+1}$. If $n \ge 2$, then there exists an ambient isotopy of ∂V which carries c_1 to c_2 and keeps ∂D_0^{n+1} fixed, but this is false for n=1.

2. Ribbon disks and disk pairs of S-type

Lemma 2.1. Let $w=w(z_0,z_1,\cdots,z_m)$ be a word in F, the free group on

 z_0, z_1, \dots, z_m . Then $w(1, z_1, \dots, z_m) = z_i$ in F if and only if there exist a word t_j in F and an integer ε_j such that

$$w = (\prod_i (t_j z_0 t_j^{-1})^{\varepsilon_j}) z_i$$
.

Proof. The sufficiency is trivial. To prove the necessity, suppose $w(1, z_1, \dots, z_m) = z_i$. Then there exists a word w_j in F which does not contain the letter z_0 for $1 \le j \le r$ such that

$$w = w_1 z_0^{\mathfrak{e}_1} w_2 z_0^{\mathfrak{e}_2} \cdots w_r z_0^{\mathfrak{e}_r} w_{r+1}$$
 and $w_1 w_2 \cdots w_r w_{r+1} = z_i$ in F

where ε_j is an integer for $1 \le j \le r$. Let $t_j = w_1 w_2 \cdots w_j$, then it is trivial that the required result holds.

Lemma 2.2. Let D_0^{n+1} , V, α_i and u_i be as in 1.5. Then there exist mutually disjoint meridian disks Δ_{0ij} of ∂D_0^{n+1} in ∂V , and a band γ_{ij} in ∂V compatible with α_i and $\alpha_{ij} = \partial \Delta_{0ij}$ for $1 \le i \le m$ and $1 \le j \le r(i)$ such that

- (1) $\gamma_{ij}(B^1 \times I) \cap \gamma_{kl}(B^1 \times I) = \emptyset$ if $(i, j) \neq (k, l)$,
- (2) $\gamma_{ij}(B^1 \times I) \cap N(\partial D_0^{n+1}; \partial V) = \gamma_{ij}(B^1 \times \{0\})$,
- (3) $\gamma_{ij}(B^1 \times I) \cap \alpha_k = \emptyset$ if $i \neq k$, and
- (4) there exists an ambient isotopy of ∂V which keeps ∂D_0^{n+1} fixed and carries u_i to the simple closed curve

$$\mathcal{F}(\alpha_i, \tilde{\alpha}_{i1}, \cdots, \tilde{\alpha}_{ir(i)}; \gamma_{i1}, \cdots, \gamma_{ir(i)})$$

for $1 \le i \le m$. (See Fig. 2.)

Fig. 2

Proof of Lemma 2.2. For n=1, the assertion is easily shown by the modification as in Fig. 3.

Fig.

Suppose $n \ge 2$. Let $F = \pi_1(\partial V - \partial D_0^{n+1})$, then F is the free group on z_0, z_1, \dots, z_m , where z_i is represented by α_i for $0 \le i \le m$. Let $w_i = w_i(z_0, z_1, \dots, z_m)$ be an element in F represented by u_i for $1 \le i \le m$. Then $w_i(1, z_1, \dots, z_m) = z_i$ for each i. By Lemma 2.1, there exist a word t_{ij} in F and an integer ε_{ij} for $1 \le i \le m$ and $1 \le j \le r(i)$ such that

$$w_i = (\prod_i (t_{ij} z_0 t_{ij}^{-1})^{\epsilon_{ij}}) z_i$$
.

We note that w_i is represented by a simple closed curve \tilde{u}_i on $\partial V - \partial D_0^{n+1}$ of the form

$$\mathcal{F}(\alpha_i, \tilde{\alpha}_{i1}, \cdots, \tilde{\alpha}_{ir(i)}; \gamma_{i1}, \cdots, \gamma_{ir(i)})$$

where $\tilde{\alpha}_{ij}$ and γ_{ij} satisfy the required conditions (1), (2) and (3). By 1.8, there exists an ambient isotopy of ∂V which keeps ∂D_0^{n+1} fixed and carries u_i to \tilde{u}_i for all i. This completes the proof.

Using Lemma 2.2, we have the following Proposition 2.3:

Proposition 2.3. For $n \ge 1$, an (n+1)-disk pair of S-type is of S^* -type. (The authors should like to thank Prof. F. Hosokawa for pointing out a simpler proof than their original one.)

Proof. Let (D^{n+3}, L^{n+1}) be an (n+1)-disk pair of S-type constructed in 1.5. We will use the notations D_0^{n+1} , V, α_i , u_i and h_i^2 in 1.5, and notation in Lemma 2.2. By Lemma 2.2, we may assume that the attaching sphere u_i of h_i^2 is

$$\mathcal{F}(\alpha_i, \tilde{\alpha}_{i1}, \cdots, \tilde{\alpha}_{ir(i)}; \gamma_{i1}, \cdots, \gamma_{ir(i)})$$

for $1 \le i \le m$. If r(i) = 1 for all i, then there is nothing to prove. Hence we assume $r(i) \ge 2$ for some i. The 2-handle h_i^2 can be regarded as an embedding of $B^2 \times B^{n+1}$ in D^{n+3} such that

$$h_i^2(B^2 \times B^{n+1}) \cap V = h_i^2(\partial B^2 \times B^{n+1}) = N(u_i; \partial V - \partial D_0^{n+1}).$$

For some $q \in \text{int } B^{n+1}$, we may assume $h_i^2(\partial B^2 \times q) = u_i$. Then we can define an embedding $g_i \colon B^2 \to D^{n+3}$ by $g_i(x) = h_i^2(x,q)$ for $x \in B^2$. The number of connected components of $\alpha_i - \bigcup \{\gamma_{ij}(B^1 \times \{1\}); 1 \leq j \leq r(i)\}$ is equal to r(i), and denote the connected components by $U_1, \cdots, U_{r(i)}$. We take a point P_j in ∂B^2 so that $g_i(P_j) \in U_j$ for $2 \leq j \leq r(i)$. Then there exist mutually disjoint proper simple arcs Γ_j in B^2 such that one end point of Γ_j is P_j and the other in $g_i^{-1}(U_1)$ for $2 \leq j \leq r(i)$.

(See Fig. 4.) Let $W_j = N(\Gamma_j; B^2)$ for $2 \le j \le r(i)$, then W_j is a 2-disk. We can regard $h_i^2(W_j \times B^{n+1})$ as a 1-handle on V whose core is $h_i^2(\Gamma_j \times q)$. Let \tilde{V} be obtained from V by attaching 1-handles $h_i^2(W_j \times B^{n+1})$ to V for $2 \le j \le r(i)$, then \tilde{V} is an (n+3)-disk with m+r(i)-1 1-handles. Obviously $\operatorname{cl}(B^2-\bigcup \{W_j; 2 \le j \le r(i)\})$ has r(i) connected components, say $\tilde{W}_1, \dots, \tilde{W}_{r(i)}$. (See Fig. 4.) Then

$$h_i^2(B^2 \times B^{n+1}) = \bigcup \{h_i^2(W_j \times B^{n+1}); 2 \leq j \leq r(i)\}$$

 $\cup \{h_i^2(\tilde{W}_k \times B^{n+1}); 1 \leq k \leq r(i)\}.$

Hence $h_i^2(\tilde{W}_k \times B^{n+1})$ can be regarded as a 2-handle on \tilde{V} , for $1 \le k \le r(i)$, whose core is $h_i^2(\tilde{W}_k \times q)$, thus the attaching sphere is $h_i^2(\partial \tilde{W}_k \times q)$. By choosing a system of standard curves $\{c_k\}$ on \tilde{V} suitably, it follows that $h_i^2(\partial \tilde{W}_k \times q)$ is $\mathcal{F}(c_k, \tilde{\alpha}_{ik}; \gamma_{ik})$ for $1 \le k \le r(i)$. (See Fig. 5.) For any i with $r(i) \ge 2$, repeat the above. Then it follows that (D^{n+3}, L^{n+1}) is of S^* -type, and this completes the proof.

Fig. 5

Theorem 2.4. Suppose $n \ge 1$. Then a ribbon (n+1)-disk pair is of S-type, and conversely an (n+1)-disk pair of S-type is a ribbon disk pair.

Proof. Suppose that (D^{n+3}, L^{n+1}) is a ribbon (n+1)-disk pair, for $n \ge 1$, constructed in 1.4. In order to prove that (D^{n+3}, L^{n+1}) is of S-type, it suffices to show that (D^{n+3}, L^{n+1}) is obtained from (V, D_0^{n+1}) , as in 1.5, by adding 2-handles on V. We will find V in D^{n+3} such that L^{n+1} is unknotted in V.

Let (D^{n+3}, L^{n+1}) be associated with a ribbon n-knot of type $(\beta_1, \dots, \beta_m)$. We

will use the notation in 1.2 and 1.4. Let Δ^{n+1} be an (n+1)-disk, then there exists an embedding $f_i: \Delta^{n+1} \times I \to D^{n+3}$, which is a collaring of D_i^{n+1} in D^{n+3} , i.e. $f_i(\Delta^{n+1} \times I) \cap L^{n+1} \subset f_i(\Delta^{n+1} \times 0) = D_i^{n+1}$, $f_i(\Delta^{n+1} \times I) \cap \partial D^{n+3} = f_i(\partial \Delta^{n+1} \times I)$ and $f_i(\Delta^{n+1} \times I) \cap \operatorname{Im} \overline{\beta}_j = \overline{\beta}_j(B^n \times 0 \times I)$ for $0 \le i \le m$, $1 \le j \le m$. Let N_i be a regular neighbourhood of $f_i(\Delta^{n+1} \times \{1\})$ in D^{n+3} for $0 \le i \le m$ such that $N_i \cap f_i(\Delta^{n+1} \times I) = f_i(\Delta^{n+1} \times [1/2, 1])$ and $N_i \cap \overline{\beta}_j(B^n \times I \times I) = \emptyset$ for $1 \le j \le m$. We note that there exists a homeomorphism $g_i: \Delta^{n+1} \times D^2 \to N_i$ for each i. Let $V = \operatorname{cl}(D^{n+3} - \bigcup \{N_i; 0 \le i \le m\})$, then V is homeomorphic to an (n+3)-disk with (m+1) 1-handles. Remark that $\{g_i(p \times \partial D^2); 0 \le i \le m\}$ is a system of standard curves on V, where $p \in \operatorname{int} D^{n+1}$. Then D^{n+3} is obtained from V by adding 2-handles $\{N_i\}$ with the attahcing spheres $\{g_i(p \times \partial D^2)\}$. Let $U = \bigcup \{f_i(\Delta^{n+1} \times [0,1/2]); 0 \le i \le m\} \cup \bigcup \{\overline{\beta}_j(B^n \times I \times I); 1 \le j \le m\}$, then U is an (n+2)-disk in V such that $L^{n+1} \subset \partial U$ and $\operatorname{cl}(\partial U - L^{n+1})$ is an (n+1)-disk in ∂V . This implies that L^{n+1} is unknotted in V, hence (D^{n+3}, L^{n+1}) is of S-type.

Let (D^{n+3}, L^{n+1}) be an (n+1)-disk pair of S-type. By Proposition 2.3, we may assume that (D^{n+3}, L^{n+1}) is of S^* -type. Suppose that (D^{n+3}, L^{n+1}) is constructed as in 1.5, and we will use the notation in 1.5, i.e. D^{n+3} is obtained from V by adding 2-handles with the attaching spheres $v_i = \mathcal{F}(\alpha_i, \alpha_{0i}; \gamma_i)$. Then we can "pull back" v_i along the band γ_i until v_i is deformed to coincide with α_i .

The 1-handle h_i^1 , as in 1.5, is homeomorphic to $B^{n+2} \times I$, and we write $h_i^1 = (B^{n+2} \times I)_i$ for convenience. We may assume that $h_i^1 \cap N(\alpha_i; V) = (B_+^{n+2} \times I)_i$ and $\alpha_i \cap (B_+^{n+2} \times \{1/2\})_i$ is one point for $1 \le i \le m$, where B_+^{n+2} is an (n+2)-disk in B^{n+2} . Without loss of generality, we can assume that the band γ_i attaches to α_i in a regular neighbourhood, in α_i , of $(B_+^{n+2} \times \{1/2\})_i \cap \alpha_i$, hence int $(\gamma_i(B^1 \times I) \cap \alpha_i) \supset (B_+^{n+2} \times \{1/2\})_i \cap \alpha_i$ for each i. Let $\theta_i : B^n \times I \times I \to V$ be an embedding such that $\theta_i(B^n \times I \times I) \cap \partial V = \theta_i(B^n \times I \times 0)$, $\theta_i(B^n \times I \times I) \cap D_0^{n+1} = \theta_i(B^n \times 0 \times I)$ and $\theta_i(B^n \times I \times I) \cap (B_+^{n+2} \times \{1/2\})_i = \theta_i(B^n \times \{1\} \times I) \subset (\partial B_+^{n+2} \times \{1/2\})_i$ for $1 \le i \le m$. Let $D_i^{n+1} = \operatorname{cl}((\partial B_+^{n+2} \times \{1/2\})_i \cap \operatorname{int} V)$ for $1 \le i \le m$. By choosing θ_i suitably, we can deform D_0^{n+1} by an ambient isotopy $\{\varphi_i\}$ of V, which is a "pull back" of v_i along the band γ_i , such that φ_0 is the identity map of V and $\varphi_1(D_0^{n+1})$ is

$$(\bigcup \{D_i^{n+1}; 0 \leq i \leq m\} - \bigcup \{\theta_j(B^n \times \partial I \times I); 1 \leq j \leq m\}) \cup \bigcup \{\theta_j(\partial B^n \times I \times I) \cup \theta_j(B^n \times I \times \{1\}; 1 \leq j \leq m\}.$$

Let $B_-^{n+2} = \operatorname{cl}(B^{n+2} - B_+^{n+2})$, then we can assume that $(B_-^{n+2} \times \{1/2\})_i$ does not intersect 2-handles $\{h_j^2\}$ in V, hence $D_1^{n+1}, \dots, D_m^{n+1}$ are unknotted in $D^{n+3} = V \cup h_1^2 \cup \dots \cup h_m^2$, thus $\varphi_1(D_0^{n+1})$ is a ribbon (n+1)-disk in D^{n+3} . This completes the proof.

A. Omae [9] proved that the boundary pair of a 3-disk pair of S-type is a ribbon 2-knot for a special case, and L.R. Hitt [1] announced that he proved that the boundary pair of an (n+1)-disk pair of some type is a ribbon n-knot and the converse.

By Proposition 1.7, Lemma 2.1, the proof of Lemma 2.2 and Theorem 2.4,

we have the following:

Corollary 2.5. Let (D^{n+3}, L^{n+1}) be a ribobn (n+1)-disk pair for $n \ge 1$, then $cl(D^{n+3}-N(L^{n+1}; D^{n+3}))$ collapses to a cell complex of S-type. Conversely, let C be a cell complex of S-type. Then there exists a ribbon (n+1)-disk pair (D^{n+3}, L^{n+1}) for $n \ge 1$ such that C is a spine of the exterior of L^{n+1} in D^{n+3} .

In [19], the third author proved the following Proposition 2.6, and we can give an alternative proof by using Theorem 2.4:

Proposition 2.6. For $n \ge 2$, every ribbon n-knot has an equatorial knot.

Proof. Let K^n be a ribbon n-knot, and (D^{n+3}, L^{n+1}) the ribbon (n+1)-disk pair associated with K^n . By Theorem 2.4, (D^{n+3}, L^{n+1}) is of S-type. Hence there exists an unknotted (n+1)-disk D_0^{n+1} in V, an (n+3)-disk with m 1-handle, such that (D^{n+3}, L^{n+1}) is obtained from (V, D_0^{n+1}) by attaching m 2-handles h_1^2, \dots, h_m^2 to $V - D_0^{n+1}$. (See 1.5.) We can realize V in R^{n+3} so that

- (1) V is a regular neighbourhood of W in R^{n+3} , where W is a bouquet of m 1-spheres in R_0^{n+2} , and $V \cap R_0^{n+2} = N(W; R_0^{n+2})$,
- (2) the pair (V, D_0^{n+1}) is symmetric with respect to R_0^{n+2} , and
- (3) $D_0^{n+1} \cap R_0^{n+2}$ is an n-disk, say \tilde{D}_0^n , and $D_0^{n+1} \cap R_{\epsilon}^{n+2}$ is an (n+1)-disk for $\epsilon = \pm$.

Let $V_0 = V \cap R_0^{n+2}$, then $\partial V_0 \subset \partial V$. Hence we can choose a system of standard curves $\{\alpha_i\}$ on ∂V_0 so that it is also standard on ∂V . A meridian α_0 of ∂D_0^n in ∂V_0 is a meridian of ∂D_0^{n+1} in ∂V . For the attaching sphere u_i of a 2-handle h_i^2 on V, let w_i be an element of $\pi_1(\partial V - \partial D_0^{n+1})$ represented by u_i for $1 \leq i \leq m$. Since $\pi_1(\partial V_0 - \partial D_0^n) \cong \pi_1(\partial V - \partial D_0^{n+1})$ by the isomorphism induced by the inclusion, we may regard $w_i \in \pi_1(\partial V_0 - \partial D_0^n)$. By Lemma 2.1 and the proof of Lemma 2.2, there exist mutually disjoint simple closed curves $\tilde{u}_1, \dots, \tilde{u}_m$ in $\partial V_0 - \partial D_0^n$ which represent w_1, \dots, w_m , and an ambient isotopy of V_0 which carries \tilde{u}_i to α_i for all i. By 1.8, \tilde{u}_i and u_i are ambient isotopic in $\partial V - \partial D_0^{n+1}$, because \tilde{u}_i and u_i represent the same element w_i in $\pi_1(\partial V - \partial D_0^{n+1})$. This means that we can choose the attaching sphere u_i of h_i^2 in $V_0 = V \cap R_0^{n+2}$. Then we can realize each 2-handle h_i^2 in R^{n+3} so that it is symmetric with respect to R_0^{n+2} . Hence it follows that $V \cup \{h_i^2; 1 \leq i \leq m\}$ is symmetric with respect to R_0^{n+2} and

$$(\partial(V^{\cup}\bigcup\{h_i^2;1\leq i\leq m\})\cap R_+^{n+3},\partial D_0^{n+1}\cap R_+^{n+3})=(D_+^{n+2},L_+^n)$$

is an *n*-disk pair of S-type. Then $(S^{n+2}, K^n) = \mathcal{D}(D_+^{n+2}, L_+^n)$ has the equatorial knot $\partial(D_+^{n+2}, L_+^n)$. This completes the proof.

3. Asphericity of ribbon disks

In this section, we will prove that the complement of a higher dimensional ribbon disk is aspherical which is an analogy to the case of classical knots [10].

- 3.1. Regarding S^4 as a one point compactification of R^4 , we may consider that a 2-knot is in R^4 . By Proposition 2.6, we can assume that a ribbon 2-knot K^2 satisfies the followings:
 - (1) K^2 is symmetric with respect to R_0^3 ,
 - (2) $K^2 \cap R^4_+$ has elliptic critical points only in R^3_2 , and
 - (3) $K^2 \cap R_+^4$ has hyperbolic critical points only in R_1^3 (Fig. 6).

Deforming the above description, it is easily seen that K^2 can be described as follows:

- (1) all elliptic critical points occur at R_2^3 or R_{-2}^3 , and
- (2) all hyperbolic critical points occur at R_0^3 (Fig. 7).

The latter description of a 2-knot is called a *splitting* by S.J. Lomonaco [7], then using this splitting, he has stated the following in the proof of Theorem 3.2 in [7]:

Proposition 3.2. Let K^2 be a ribbon 2-knot of type $(\beta_1, \dots, \beta_m)$, and d_i^3 a proper 3-disk in $N(\beta_i; S^4)$ such that the intersection of d_i^3 and $\beta_i(B^2 \times I)$ is $\beta_i(B^2 \times \{1/2\})$ and $\partial d_i^3 \subset S^4 - K^2$. Let * be a base point in $S^4 - K^2$, and l_i a simple arc in $S^4 - K^2$ which spans the base point * and ∂d_i^3 , then we denote by $[\partial d_i^3]$ the element of $\pi_2(S^4 - K^2) = \pi_2(S^4 - K^2, *)$ represented by $l_i \cup \partial d_i^3$. Then $\pi_2(S^4 - K^2)$ is generated by $[\partial d_i^3], \dots, [\partial d_m^3]$ as a $Z\pi_1$ -module, where $Z\pi_1$ is the integral group ring of $\pi_1 = \pi_1(S^4 - K^2)$. (See Fig. 8.)

The following Proposition 3.3 has been proved by the third author [20]:

Proposition 3.3. Let (D^{n+3}, L^{n+1}) be the ribbon (n+1)-disk pair associated with a ribbon n-knot K^n , and $(S^{n+3}, K^{n+1}) = \mathcal{D}(D^{n+3}, L^{n+1})$. If $n \ge 2$, then $\pi_1(S^{n+2} - K^n) \cong \pi_1(D^{n+3} - L^{n+1}) \cong \pi_1(S^{n+3} - K^{n+1})$.

Lemma 3.4. Let (D^{n+3}, L^{n+1}) be the ribbon (n+1)-disk pair associated with a ribbon n-knot K^n . If $n \ge 2$, then the inclusion from $S^{n+2} - K^n$ into $D^{n+3} - L^{n+1}$ induces an onto-homomorphism $\pi_2(S^{n+2} - K^n) \to \pi_2(D^{n+3} - L^{n+1})$ as $Z\pi_1$ -modules.

Proof. Let N, T be regular neighbourhoods of L^{n+1} in D^{n+3} and K^n in S^{n+2} respectively, then in order to prove Lemma 3.4 it suffices to show the surjectivity of $\pi_2(S^{n+2}$ —int $T) \rightarrow \pi_2(D^{n+3}$ —int N).

Let Σ^2 be a 2-dimensional polyhedron in D^{n+3} —int N. By Theorem 2.4, D^{n+3} —int N consists of 0-, 1- and 2-handles. By the general position arguments, we can assume that Σ^2 does not intersect the cores of 0-, 1- and 2-handles. This implies that Σ^2 is in the boundary collar of D^{n+3} —int N. Hence we can move Σ^2 homotopically into $\partial(D^{n+3}$ —int N), and we denote the image of Σ^2 in $\partial(D^{n+3}$ —int N) by the same symbol Σ^2 . Note that $\partial(D^{n+3}$ —int N)= $(S^{n+2}$ —int T) $\bigcup_f B^{n+1} \times S^1$, where f is an identifying map of $\partial(B^{n+1} \times S^1)$ and $\partial(S^{n+2}$ —int T)= ∂T . Again by the general position arguments, Σ^2 does not intersect $p \times S^1$ in $\partial(D^{n+3}$ —int N), where $p \in I$ int I interpolation 3.3 follow the required result. This completes the proof of Lemma 3.4.

Lemma 3.5. For a ribbon 3-disk pair (D^5, L^3) , we have $\pi_2(D^5-L^3)=0$.

Proof. Let (D^5, L^3) be associated with a ribbon 2-knot of type $(\beta_1, \dots, \beta_m)$. Then we will use the notation in 1.4 for n=2 and in Proposition 3.2. The 2-sphere ∂d_i^3 bounds the 3-disk $(\partial d_i^3 \times [0, 3/4]) \cup (d_i^3 \times \{3/4\})$ in $D^5 - L^3$ for each *i*. It follows from this and Lemma 3.4 that $\pi_2(D^5 - L^3) = 0$.

The following Theorem 3.6 is a generalization of [18]:

Theorem 3.6. Let (D^{n+3}, L^{n+1}) be a ribbon (n+1)-disk pair with $n \ge 1$, then $D^{n+3}-L^{n+1}$ is aspherical.

Proof. By Corollary 2.5, there exists a cell complex C of S-type such that $D^{n+3}-L^{n+1}$ is homotopy equivalent to C. Again by Corollary 2.5, there exists a ribbon 3-disk pair (D^5, L^3) such that D^5-L^3 is homotopy equivalent to C. It follows from Lemma 3.5 that $\pi_2(C)=0$. Let \tilde{C} be the universal covering space of C. Then $H_i(\tilde{C})=0$ for $i\geq 3$, since \tilde{C} is 2-dimensional. Thus, by Hurewicz theorem, \tilde{C} is aspherical, because $\pi_2(\tilde{C})\cong\pi_2(C)=0$. Therefore C is aspherical. This completes the proof.

- REMARK 3.7. A cell complex of S-type is a subcomplex of a contractible 2-complex, and it follows from the proof of Theorem 3.6 that a cell complex of S-type is aspherical. This gives a partial answer to a problem of J.H.C. Whitehead: Is any subcomplex of an aspherical 2-complex aspherical?
- Corollary 3.8. Let K^n be a ribbon n-knot for $n \ge 1$, then $\pi_1(S^{n+2} K^n)$ has no element of finite order.
- Proof. For n=1, the assertion is a special case of [10]. For $n \ge 2$, this is true by Proposition 3.3, Theorem 3.6 and a result due essentially to P.A. Smith (p. 216 in [3]), namely: The fundamental group of an aspherical polyhedron of finite dimension has no element of finite order.
- T. Yajima characterized the knot groups of ribbon 2-knots in [16], then by Colrollary 3.8 and [16] we have the following:
- **Corollary 3.9.** Let G be a finitely presented group having a Wirtinger presentation of deficiency 1 with $G/G' \cong Z$. Then G has no element of finite order.

4. Unknotting ribbon knots

Theorem 4.1. Let K^n be a ribbon n-knot for $n \ge 3$, then we have $\pi_i(S^{n+2} - K^n) = 0$ for $2 \le i \le n-1$.

Proof. By Proposition 2.6, there exists a ribbon n-disk pair (D^{n+2}, L^n) such that $\mathcal{D}(D^{n+2}, L^n) = (S^{n+2}, K^n)$. Let $(D_{\mathfrak{e}}^{n+2}, L_{\mathfrak{e}}^n)$ be a copy of (D^{n+2}, L^n) for $\mathcal{E} = \pm$, then $\mathcal{D}(D^{n+2}, L^n)$ is obtained from the disjoint union of $(D_{\mathfrak{e}}^{n+2}, L_{\mathfrak{e}}^n)$ and $(D_{\mathfrak{e}}^{n+2}, L_{\mathfrak{e}}^n)$ by identifying their boundaries via the identity map. Let $(S^{n+1}, K_0^{n-1}) = \partial(D_{\mathfrak{e}}^{n+2}, L_{\mathfrak{e}}^n)$, i.e. K_0^{n-1} is an equatorial knot of K^n . Let \tilde{X} be the universal covering space of $S^{n+2} - K^n$, $\tilde{X}_{\mathfrak{e}}$ the lift of $D_{\mathfrak{e}}^{n+2} - L_{\mathfrak{e}}^n$ in \tilde{X} for $\mathcal{E} = \pm$, and \tilde{X}_0 the lift of $S^{n+1} - K_0^{n-1}$ in \tilde{X} . By Proposition 3.3, all of \tilde{X}_+ , \tilde{X}_- and \tilde{X}_0 are also universal covering spaces. By the Mayer-Vietoris theorem, we have the following exact sequence:

$$\cdots \to H_j(\tilde{X}_+) \oplus H_j(\tilde{X}_-) \to H_j(\tilde{X}) \to H_{j-1}(\tilde{X}_0) \to H_{j-1}(\tilde{X}_+) \oplus H_{j-1}(\tilde{X}_-) \to \cdots.$$

By Theorem 3.6, $H_j(\tilde{X}_{\epsilon})=0$ for $j \ge 1$ and $\epsilon = \pm$. Therefore it follows that $H_j(\tilde{X}) \cong H_{j-1}(\tilde{X}_0)$ for $j \ge 2$.

Suppose n=3, then $\pi_2(S^5-K^3)\cong H_2(\tilde{X})\cong H_1(\tilde{X}_0)=0$. By induction on the dimension n, it is easily seen that the fact $H_j(\tilde{X})\cong H_{j-1}(\tilde{X}_0)$ and $H_1(\tilde{X}_0)=0$ implies $H_i(\tilde{X}_0)=0$ for $1\leq i\leq n-1$, and this implies the required result.

4.2. Addendum to Theorem 4.1. From the proof of Theorem 4.1, it follows that $\pi_n(S^{n+2}-K^n)\cong \pi_{n-1}(S^{n+1}-K_0^{n-1})$ for $n\geq 3$. Concerning $\pi_n(S^{n+2}-K^n)$ for a ribbon n-knot K^n with $n\geq 3$, we can conclude the similar result to that in Proposition 3.2.

The following Proposition 4.3 is due to A. Kawauchi ([4] or p. 331 in [14]):

Proposition 4.3. For a 2-knot K^2 , S^4-K^2 is homotopy equivalent to S^1 if and only if $\pi_1(S^4-K^2)\cong Z$.

Theorem 4.4. Let K^n be a ribbon n-knot for $n \ge 3$. If $\pi_1(S^{n+2} - K^n) \cong Z$, then K^n is unknotted.

Proof. We can use the notation in the proof of Theorem 4.1. Note that, in the proof of Theorem 4.1, we have $H_j(\tilde{X}) \cong H_{j-1}(\tilde{X}_0)$ for $j \geq 2$.

Suppose n=3 and $\pi_1(S^5-K^3)\cong Z$, then by Proposition 3.3 it follows that $\pi_1(S^4-K_0^2)\cong Z$, where K_0^2 is an equatorial knot of K^3 . By Proposition 4.3, we have $H_i(\tilde{X}_0)=0$ for all $i\geq 1$. It follows from this that $H_j(\tilde{X})=0$ for $j\geq 1$. Therefore S^5-K^3 is homotopy equivalent to S^1 , hence by [6], [12] and [15], K^3 is unknotted. Similarly, for $n\geq 4$, it is easy to see that the assertion is true by induction on the dimension n. This completes the proof.

Recently A. Kawauchi and T. Matumoto [5] have obtained independently the same result as Theorem 4.4.

The following is obtained by Proposition 3.3 and Theorem 4.4:

Corollary 4.5. Let K^n be a ribbon n-knot for $n \ge 4$, then any equatorial knot of K^n is unknotted if K^n is unknotted.

For n=2, Corollary 4.5 is false. For example, Kinoshita-Terasaka knot is an equatorial knot of the unknot [8]. The case n=3 still remains open.

FINAL REMARK. In 1.2, 1.4 and 1.5, we defined a ribbon knot, a ribbon disk pair and a disk pair of S-type. It is easy to generalize our definition of ribbon knots to the case of links, i.e. ribbon links. Then the same generalizations are possible for ribbon disk pairs and "of S-type". In this generalized case, Theorems 2.4 and 3.6 remain valid.

References

- [1] L.R. Hitt: Characterization of ribbon n-knots, Notices Amer. Math. Soc. 26 (1979), A-128.
- [2] J.F.P. Hudson and D.W. Sumners: Knotted ball pairs in unknotted sphere pairs, J. London Math. Soc. 41 (1966), 717-722.
- [3] W. Huerwicz: Beiträge zur Topologie der Defomationen IV, Proc. Akad. Amsterdam 39 (1936), 215-224.
- [4] A. Kawauchi: On partial Poincaré duality and higher dimensional knots with $\pi_1 = Z$, Master's thesis, Kobe Univ., 1974.
- [5] A. Kawauchi and T. Matumoto: An estimate of infinite cyclic coverings and

knot theory, preprint.

- [6] J. Levine: Unknotting spheres in codimension two, Topology 4 (1965), 9-16.
- [7] S.J. Lomonaco, Jr.: The homotopy groups of knots, II. A solution to Problem 36 of R.H. Fox, to appear.
- [8] Y. Marumoto: On ribbon 2-knots of 1-fusion, Math. Sem. Notes Kobe Univ. 5 (1977), 59-68.
- [9] A. Omae: A note on ribbon 2-knots, Proc. Japan Acad. 47 (1971), 850-853.
- [10] C.D. Papakyriakopoulos: On Dehn's lemma and asphericity of knots, Ann. of Math. 66 (1957), 1-26.
- [11] C. Rourke and B. Sanderson: Introduction to piecewise-linear topology, Ergeb. der Math. 69, Springer, 1972.
- [12] J.L. Shaneson: Embeddings of spheres in spheres of codimension two and h-cobordism of S¹×S³, Bull. Amer. Math. Soc. 74 (1968), 972-974.
- [13] D.W. Sumners: Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229-240.
- [14] S. Suzuki: Knotting problems of 2-spheres in 4-sphere, Math. Sem. Notes Kobe Univ. 4 (1976), 241-371.
- [15] C.T.C. Wall: Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge. Phil. Soc. 61 (1965), 659-664.
- [16] T. Yajima: On a characterization of knot groups of some spheres in R⁴, Osaka J. Math. 6 (1969), 435-446.
- [17] T. Yanagawa: On ribbon 2-knots, The 3-manifold bounded by the 2-knots., Osaka J. Math. 6 (1969), 447-464.
- [18] T. Yanagawa: On ribbon 2-knots II, The second homotopy group of the complementary domain, Osaka J. Math. 6 (1969), 465-473.
- [19] T. Yanagawa: On cross sections of higher dimensional ribbon-knots, Math. Sem. Notes Kobe Univ. 7 (1979), 609-628.
- [20] T. Yanagawa: Knot-groups of higher dimensional ribbon knots, to appear.

Kouhei Asano Faculty of General Education Kinki University Higashi-Osaka 577, Japan

Yoshihiko Marumoto Department of Mathematics Faculty of Education Saga University Honjo-machi, Saga 840 Japan

Takaaki Yanagawa College of General Education Kobe University Kobe 657, Japan