UNIT-REGULAR RINGS AND SIMPLE SELF-INJECTIVE RINGS

JIRO KADO*)

(Received October 8, 1979)

Unit-regular algebras over a field are investigated from the point of view of a directed abelian group with order-unit.

In the section 1 we show that if $(K_0(R), [R])$ is an ultrasimplicial abelian group for a unit-regular algebra R over a field F, then R has a subalgebra T such that T is an ultramatricial F-algebra and R is generated as a ring by T and units of R.

In the section 2 we discuss a simple left and right self-injective ring R which is not artinian. Let F be the center of R and F_{∞} be the completion of a ring which is a direct limit of $M_2(F) \rightarrow M_2(F) \rightarrow \cdots$, where homomorphisms are diagonal maps. We show that there exists a subalgebra S of R such that S is isomorphic to F_{∞} as a F-algebra and that every idempotent of R is conjugate to an idempotent of S and that every element of S has the form S where S are units in S and S is an idempotent of S.

We take most of our terminologies and notations from Goodearl's recent book [3], and rely as well on this work for statements of known results.

Throughout this paper a ring is an associative ring with identity and modules are unitary

1. Unit-regular algebras

DEFINITION [2]. A ring R is unit-regular if for each $x \in R$ there is some unit (i.e. invertible element) $u \in R$ such that xux = x.

DEFINITION [3, p. 200]. For any ring R the Grothendieck group $K_0(R)$ is an abelian group with generators [A], where A is any finitely generated projective right R-modules, and with relations [A]+[B]=[C] whenever $A \oplus B \cong C$. Two generators [A], [B] equal in $K_0(R)$ if and only if $A \oplus R^n \cong B \oplus R^n$ for some positive integer n. Every element of $K_0(R)$ has the form [A]-[B] for suitable modules A, B.

^{*)} Supported by Grant-in-Aid for Scientific Research, No. 454017

56 J. Kado

DEFINITION. For modules A, B, $A \leq B$ implies that A is isomorphic to a submodule of B.

The following Lemma is a fundamental result for a unit-regular ring.

Lemma 1 [5, Props. 2.1 and 2.2]. Let R be a unit-regular ring and let A, B, C and D be finitely generated projective right R-modules. We define [A]- $[B] \leq [C]$ -[D] if and only if $A \oplus D \lesssim B \oplus C$. Then we have following results:

- (1) $(K_0(R), \leq)$ is a directed abelian group.
- (2) [A] > 0 for all non-zero finitely generated projective right R-modules.
- (3) $K_0(R)^+$ consists of all elements of $K_0(R)$ of the form [A].
- (4) If $R \neq 0$, then [R] is an order-unit in $K_0(R)$.
- (5) [A]-[B]=[C]-[D] in $K_0(R)$ if and only if $A \oplus D \cong B \oplus C$.

We note that $(K_0(-), [-])$ is a functor which preserves direct limits from the category of all unit-regular rings to the category of all partially ordered abelian groups with order-unit ([3, Prop. 15.11]).

DEFINITION [3, pp. 216 and 219]. A simplicial directed abelian group G is a directed abelian group whose positive cone G^+ has the form $\mathbf{Z}^+x_1 + \cdots + \mathbf{Z}^+x_n$ for some linearly independent elements (over \mathbf{Z}) x_1, \dots, x_n . An ultrasimplicial directed abelian group G is isomorphic to a direct limit of a sequence $(G_1, u_1) \rightarrow (G_2, u_2) \rightarrow$ of simplicial directed abelian groups with order-unit.

DEFINITION [3, pp. 217 and 219]. Given a field F, we define a matricial F-algebra to be any F-algebra of the form $M_{p(1)}(F) \times \cdots \times M_{p(n)}(F)$ for any positive integers $p(1), \dots, p(n)$. An F-algebra R is called ultramatricial if R is isomorphic to a direct limit (in the category of F-algebras) of a sequence $R_1 \rightarrow R_2 \rightarrow \cdots$ of matricial F-algebras.

Lemma 2 [3, Th. 15.24]. For an ultramatricial F-algebra R, $(K_0(R), [R])$ is an ultrasimplicial directed abelian group with order-unit. Conversely for an ultrasimplicial directed abelian group with order-unit (G, u), there exists an ultramatricial F-algebra R such that $(K_0(R), [R]) \simeq (G, u)$.

The following lemma is a generalization of [3, (a) of Lemma 15.23].

Lemma 3. Let F be a field and R be an ultramatricial F-algebra and S be a unit-regular F-algebra. If a morphism $f: (K_0(R), [R]) \rightarrow (K_0(S), [S])$ is given, there exists a F-algebra homomorphism $\varphi: R \rightarrow S$ such that $K_0(\varphi) = f$.

Proof. Let R be the direct limit of a sequence $R_1 \xrightarrow{\pi_1} R_2 \xrightarrow{\pi_2} \cdots$ of matricial F-algebras. Let $\theta_n \colon R_n \to R$ be natural homomorphisms for all n. Then $(K_0(R), [R])$ is the direct limit of direct system $\{(K_0(R_n), [R_n]), K_0(\pi_n)\}$ and $K_0(\theta_n)$ are natural homomorphisms. Put $f_n = fK_0(\theta_n)$ for all n. Then by [3, Lemma 15.23], there exist F-algebra homomorphisms $\psi_n \colon R_n \to S$ such that $K_0(\psi_n) = f_n$ for all n. We shall construct F-algebra homomorphisms $\varphi_n \colon R_n \to S$ for $n=1, 2, \cdots$ such that $K_0(\varphi_n) = f_n$ and $\varphi_{n+1}\pi_n = \varphi_n$ for all n. Put $\varphi_1 = \psi_1$, and assume that we have φ_k for all $k \le n$. Two algebra homomorphisms φ_n , $\psi_{n+1}\pi_n \colon R_n \to S$ satisfy $K_0(\varphi_n) = K_0(\psi_{n+1}\pi_n)$. Thus we can choose an inner automorphism g of S such that $\varphi_n = g\psi_{n+1}\pi_n$ by [3, Lemma 15.23]. Put $\varphi_{n+1} = g\psi_{n+1}$. Noting that $K_0(g)$ is an identity map on $K_0(S)$, we have $K_0(\varphi_{n+1}) = f_{n+1}$. For a sequence $\varphi_1, \varphi_2, \cdots$, there exists a unique F-algebra homomorphism $\varphi \colon R \to S$ such that $\varphi \theta_n = \varphi_n$ for all n. We have $K_0(\varphi)K_0(\theta_n) = K_0(\varphi_n) = f_n = fK_0(\theta_n)$ for all n. Then we can conclude $K_0(\varphi) = f$ by the uniqueness.

Lemma 4. Let F be a field and R be a unit-regular F-algebra. For any ultrasimplicial directed subgroup G with order-unit [R] of $(K_0(R), [R])$, there exists a subalgebra T of R such that T is an ultramatricial F-algebra and that $K_0(i)$: $(K_0(T), [T]) \cong (G, [R])$, where i is the inclusion map.

Proof. By Lemma 2, there exists an ultramatricial F-algebra T' such that $(K_0(T'), [T']) \cong (G, [R])$. Let $f: (K_0(T'), [T']) \to (G, [R])$ be an order-preserving group isomorphism such that f([T']) = [R]. Then we can choose an F-algebra homomorphism $\varphi: T' \to R$ such that $K_0(\varphi) = f$ by Lemma 3. For any $x \in Ker \varphi$, $0 = [\varphi(x)R] = K_0(\varphi)[xT'] = f([xT'])$. Therefore [xT'] = 0, and hence we have xT' = 0 by Lemma 1. Since φ is monomorphism, we have a desired algebra $T = \varphi(T')$.

Theorem 1. Let R be a unit-regular algebra over a field F, and assume that $(K_0(R), [R])$ is ultrasimplicial. Then there exists a subalgebra T of R such that

- (a) T is an ultramatricial F-algebra
- (b) every idempotent of R is cojuagte to an idempotet of T.
- (c) every element of R is a product of a unit and a conjugate of an idempotent of T, i.e. every element of R has the form uev, where u, v, are units of R and e is an idempotent of T.

58 J. Kado

Proof. By Lemma 4, there exists an ultramatricial F-algebra T of R such that $K_0(i): (K_0(T), [T] \cong (K_0(R), [R])$, where $i: T \to R$ is the inclusion. Let e be any idempotent of R. There exist finitely generated projective right T-modules A, B such that $[eR] = K_0(i)[A]$, $[(1-e)R] = K_0(i)[B]$. Since $K_0(i)([T]) = K_0(i)([A \oplus B])$, then $[T] = [A \oplus B]$. We have $T \cong A \oplus B$ by Lemma 1. We choose an idempotent f of T such that $fT \cong A$. Since $[eR] = K_0(i)([fT]) = [fR]$, then $eR \cong fR$ by Lemma 1. Therefore we have $e = u^{-1}fu$ for some unit u of R by [T, Th. 2]. For every $x \in R$, there exists a unit u of R such that xu is an idempotent. Then (c) is a immediate consequence by (b).

REMARK. The example R given in [3, Example 15.28] is a unit-regular algebra and $(K_0(R), [R])$ is an ultrasimplicial directed abelian group but is not ultramatricial.

2. Simple self-injective rings

DEFINITION [3, p. 80]. A regular ring R satisfies the *comparability axiom* if we have either $J \lesssim K$ or $K \lesssim J$ for any two principal right ideals J, K. A ring R is directly finite if xy=1 implies yx=1 for x, $y \in R$.

DEFINITION [3, p. 226]. A rank function of a regular ring R is a map $N: R \rightarrow [0, 1]$ such that

- (a) N(1)=1
- (b) $N(xy) \le \min \{N(x), N(y)\}\$ for all $x, y, \in R$
- (c) N(e+f)=N(e)+N(f) for all orthogonal idempotents $e, f \in R$
- (d) N(x) > 0 for all non-zero $x \in R$.

Let R be any simple unit-regular ring which satisfies the comparability axiom. By [3, Cor. 18.12 and Th. 18.17], R has a unique rank function N which is determined by the rule: $N(x)=\sup\{kn^{-1}; k, n\in \mathbb{Z}, k\geqslant 0, n>0, (R_R)^k\lesssim (xR)^n\}$. If a regular ring R has a rank function N, N induces a metric δ on R by the rule $\delta(x,y)=N(x-y)$ for all $x,y\in R$ ([3, p. 282]). We call this metric a rank-metric induced by N or N-metric. Moreover the completion \bar{R} of R with respect to N-metric is a unit-regular left and right self-injective ring ([3, Th. 19.7]). We call \bar{R} the N-completion of R.

DEFINITION [1]. A factor sequence $\mu = (p(1), p(2), \cdots)$ is a infinite sequence of positive integers such that p(n)|p(n+1) for all n and $p(n) \rightarrow \infty$ when $n \rightarrow \infty$.

Let F be a field. For a factor sequence μ , F_{μ} denotes the ultramatricial F-algebra determined by a direct system $\{M_{p(n)}(F), f_n\}$, where $f_n: M_{p(n)}(F) \rightarrow M_{p(n+1)}(F)$ is a block diagonal homomorphism. F_{μ} is a simple unit regular ring

which satisfies the comparability axiom. Then F_{μ} has a unique rank function N. The N-completion \bar{F}_{μ} of F_{μ} is a simple unit-regular left and right self-injective ring which is not artinian and its center is isomorphic to F ([4, Th. 2.8]). Since $\bar{F}_{\mu} \simeq \bar{F}_{\nu}$ as F-algebra by [10] for any two factor sequences μ , ν , then we denote the completion of F_{μ} by F_{∞} instead of \bar{F}_{μ} .

Let R be a simple left and right self-injective ring which is not artinian. R has a unique rank function N and it is complete with respect to N-metric ([3, Cor. 21.14]). The center F of R is a field ([3, Cor. 1.15]). Now we investigate the relation between R, F_{μ} and F_{∞} . We note that the additive group R of all real numbers is considered as partially ordered abelian group with normal order.

Theorem 2. Let R be a simple left and right self-injective ring which is not artinian and let F be the center of R. Then the following results hold:

- (1) For any factor sequence μ , there exist a subalgebra T of R which is isomorphic to F_{μ} as F-algebra.
- (2) For every non-zero idempotent e of R, there exists a (single or infinite) sequence $\{e_1, e_2, \dots\}$ of orthogonal non-zero idempotents in a subalgebra conjugate to T such that $\bigoplus_n Re_n$ is essential in Re and also $\bigoplus_n e_n R$ is essential in eR.
 - (3) There exists a subalgebra S of R such that
 - (a) S is isomorphic to F_{∞} as F-algebra
 - (b) every idempotent of R is conjugate to an idempotent of S.
- (c) every element of R is a product of a unit of R and a conjugate of an idempotent of S.
- Proof. (1) Since R is a simple (unit-) regular right self-injective ring of "Type II_f " (See [3, pp. 102, 113 and 120]), then $(K_0(R), [R]) \simeq (R, 1)$ by [3, Th. 15.8]. Put $\mu = (p(1), p(2), \cdots)$ and N be the unique rank function of F_{μ} . For $x \in F_{\mu}$, we know $N(x) = p(n)^{-1} rank(x)$, where $x \in M_{p(n)}(F)$. A morphism $\theta \colon K_0(F_{\mu}) \to R$ induced by the rule $\theta([xF_{\mu}]) = N(x)$ for all $x \in F_{\mu}$ is a order-preserving group isomorphism such that $\theta([F_{\mu}]) = 1$ by [3, Cor. 16, 15]. We have $Image \theta = \bigcup_n \mathbf{Z} \cdot p(n)^{-1}$ by easy caluculation. This is an ultrasimplicial directed abelian group. Then there exists an ultramatricial F-algebra T of R such that $(K_0(T), [T]) \simeq (Image \theta, 1)$ by Lemma 3. By [3, Th. 15.26], we have $T \simeq F_{\mu}$ as F-algebra.
- (2) Again N denote the rank function of T. We define D(xT)=N(x) for all $x \in T$. Then D is a unique dimension function on the set of all finitely generated projective right T-modules ([3, Prop. 16.8]). Moreover D is extended to a function on all projective right T-modules ([9]). Then we may assume that D is this extended function. A morphism induced by the rule: $[A] \rightarrow D(A)$ is equal to θ . Let N' be the unique rank function of R. We note that the restrictive map of N' to T is equal to N by the uniqueness. Now let

60 J. Kado

e be any non-zero idempotent of R. First we assume that $N'(e) \in Image \theta$. We choose a finitely generated projective T-module A such that $N'(e) = \theta([A])$. Since $\theta([A]) = D(A) \le 1$, then $A \le T_T$ by [9, Lemma 2.2]. There exists an idempotent f in T such that N'(e)=N'(f). Since $eR \cong fR$ by [3, Cor. 16.15], then there exists a unit $u \in R$ such that $e = u^{-1} f u$ by [7, Th. 2]. Next we assume that $N'(e) \in Image \ \theta$. Since $Image \ \theta = \bigcup_{n} \mathbf{Z} p(n)^{-1}$ is dense in the space of all real numbers with respect to the normal metric, then there exists an infinite sequence x_1, x_2, \cdots of positive real numbers in Image θ such that $N'(e) = \sum_n x_n$. We choose finitely generated right T-modules A_n such that $D(A_n)=x_n$ for each n. Let $A = \bigoplus_n A_n$ be an outer direct sum. Since $D(A) = \sum_n D(A_n) = N'(e) \le 1$ ([9, p. 406]), then $A \lesssim T_T$ by [9, Lemma 2.3]. Hence we may assume that there exists a countably generated right ideal A of T such that D(A)=N'(e). By [3, Prop. 2.14], there exists an infinite sequence g_1, g_2, \cdots of orthogonal non-zero idempotents in T such that $A = \bigoplus_{n} g_{n}T$. Since R is left and right self-injective, then there exists an idempotent $g \in R$ such that $\bigoplus_n Rg_n$ is essential in Rg and also $\bigoplus_{n} g_{n}R$ is essential in gR by [11, Th. 6.4]. Hence we have N'(g) = $\sum_{n} N'(g_n)$ by [3, Th. 21.11 and 21.13]. We see that a directed sequence $\{g_1 + g_n\}$ $\cdots + g_n$; $n=1, 2, \cdots$ of idempotents is convergent to g with respect to N'metric. We write $g = \sum_{n} g_{n}$. Let S be the closure of T in R. Since (T, N)metric) is a subspace of (R, N'-metric), then we have $S \cong F_{\infty}$. We have N'(g) = $\sum_{n} N(g_n) = \sum_{n} D(g_n T) = D(A) = N'(e)$. Since $gR \approx eR$ by [3, Cor. 16.15], then we have $e=u^{-1}gu$ for some unit $u \in R$ by [7, Th. 2]. A sequence $\{u^{-1}g_nu; n=1, 2, \dots, n=1, 2,$ \cdots } is a family of orthogonal nonzero idempotents in a subalgebra $u^{-1}Tu$. Put $e_n = u^{-1}g_nu$ for all n. Since $g = \sum_n g_n$, then $e = u^{-1}gu = \sum_n e_n$. Therefore we conclude $\bigoplus_n Re_n$ is essential in Re and also $\bigoplus_n e_n R$ in eR by [8, Prop. 3].

(3) We have already shown that the closure S of T is a desired algebra which satisfies (a) and (b). For every element $x \in R$, there exists a unit $u \in R$ such that xu is an idempotent. Applying (2) to xu, we can conclude (c).

REMARK. The (a) of Theorem 2 was proved in the case $\mu = (2, 2^2, 2^3, \cdots)$ by D. Handelman ([6, Remark (1) of Prof. 9]).

Acknowledgment. I would like to thank Prof. K.R. Goodearl for his useful suggestions.

References

- [1] B.P. Dawkins and I. Halperin: The isomorphism of certain continuous rings, Canad. J. Math. 18 (1966), 1333-1344.
- [2] G. Ehrlich: Unit-regular rings, Portugal Math. 27 (1968), 209-212.
- [3] K.R. Goodearl: Von Neumann regular rings, Pitman, 1979.
- [4] K.R. Goodearl: Centers of regular self-injective rings, Pacific J. Math. 76 (1978),

- 381-389.
- [5] K.R. Goodearl and D. Handelman: Rank functions and K₀ of regular rings, J. Pure Appl. Algebra 7 (1976), 195-216.
- [6] D. Handelman: Simple regular rings with a uniquerank function, J. Algebra 42 (1976), 60-80.
- [7] D. Handelman: Perspectivity and cancellation in regular rings, J. Algebra 48 (1977), 1-16.
- [8] D. Handelman and R. Raphael: Regular Schur rings, Arch. Math. 31 (1978), 332–338.
- [9] J. Kado: Projective modules over simple regular rings, Osaka J. Math. 16 (1979), 405-412.
- [10] Von Neumann: Independence of F_{∞} from the sequence ν , Collected Works of John Von Neumann, Vol. IV.
- [11] Y. Utumi: On continuous rings and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158-173.

Department of Mathematics Osaka City University Osaka 558, Japan