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Unit-regular algebras over a field are investigated from the point of view
of a directed abelian group with order-unit.

In the section 1 we show that if (Ky(R), [R]) is an ultrasimplicial abelian
group for a unit-regular algebra R over a field F, then R has a subalgebra T
such that T is an ultramatricial F-algebra and R is generated as a ring by T
and units of R.

In the section 2 we discuss a simple left and right self-injective ring R
which is not artinian. Let F be the center of R and F., be the completion of a
ring which is a direct limic of My(F)—My(F)—-:+, where homomorphisms
are diagonal maps. We show that there exists a subalgebra S of R such that
S is isomorphic to F., as a F-algebra and that every idempotent of R is con-
jugate to an idempotent of S and that every element of R has the form uev,
where u, v are units in R and e is an idempotent of S.

We take most of our terminologies and notations from Goodearl’s recent
book [3], and rely as well on this work for statements of known results.

Throughout this paper a ring is an associative ring with identity and modules
are unitary

1. Unit-regular algebras

DerFINITION [2]. A ring R is unit-regular if for each xR there is some
unit (i.e. invertible element) #E R such that xux=x.

DerINITION [3, p. 200]. For any ring R the Grothendieck group K(R) is
an abelian group with generators [A], where A is any finitely generated pro-
jective right R-modules, and with relations [4]4-[B]=[C] whenever A@B==C.
Two generators [A4], [B] equal in Ky(R) if and only if APR"=B@R" for some
positive integer n. Every element of K (R) has the form [A]-[B] for suitable
modules A4, B.
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DerFINITION [3, p. 202). A partially ordered abelian group is an abelian
group G equiped with a partial order < which is translation invariant (i.e.
x¥<y implies x+2<y+=2). The positive cone of G is the set G*={x=G; x>0}.
If the partial order on G is directed (upward or downward), then G is called
a directed abelian group. An order-umit in G is an element #>0 such that for
any xE G, there exists a positive integer n for which x<<mu. We denote by a
pair (G, u) a partially ordered abelian group G with order-unit . We always
consider a morphism f: (G, u)—(G’, u') as a order-preserving group homomor-
phism such that f(u)=u'.

DeriNiTION.  For modules 4, B, A<B implies that A4 is isomorphic to a
submodule of B.

The following Lemma is a fundamental result for a unit-regular ring.

Lemma 1 [5, Props. 2.1 and 2.2]. Let R be a unit-regular ring and let A,
B, C and D be finitely generated projective right R-modules. We define [A]-[B]<
[C]-[D] if and only if ABD<B®C. Then we have following results:

(1) (Ky(R), <) is a directed abelian group.

(2) [A]1>0 for all non-zero finitely generated projective right R-modules.

(3) Ky (R)* consists of all elements of Ky(R) of the form [A].

(4) If R0, then [R] is an order-unit in K\(R).

(5) [4]-[B]=[C]-[D] in K«(R) if and only if ADD=BDC.

We note that (K,(—), [—]) is a functor which preserves direct limits from
the category of all unit-regular rings to the category of all partially ordered
abelian groups with order-unit ([3, Prop. 15.11]).

DerFINITION [3, pp. 216 and 219]. A simplicial directed abelian group G
is a directed abelian group whose positive cone G* has the form Z*x,+---+Z"x,
for some linearly independent elements (over Z) x,, **-, ®,. An wultrasimplicial
directed abelian group G is isomorphic to a direct limit of a sequence (G, #;)—
(Ga, uy)— of simplicial directed abelian groups with order-unit.

DerINITION [3, pp. 217 and 219]. Given a field F, we define a matricial
F-algebra to be any F-algebra of the form M,)(F) X ++- X M ,(F) for any positive
integers p(1), «++, p(n). An F-algebra R is called wltramatricial if R is isomorphic
to a direct limit (in the category of F-algebras) of a sequence R,—R,—> -+ of
matricial F-algebras.

Lemma 2 [3, Th. 15.24]. For an ultramatricial F-algebra R, (K,(R), [R])
is an ultrasimplicial directed abelian group with order-unit. Conversely for an
ultrasimplicial directed abelian group with order-unit (G, u), there exists an ultra-
matricial F-algebra R such that (K (R), [R])==(G, u).
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The following lemma is a generalization of [3, (a) of Lemma 15.23].

Lemma 3. Let F be a field and R be an ultramatricial F-algebra and S be
a unit-regular F-algebra. If a morphism f: (K\(R), [R])—(K(S), [S]) is given,
there exists a F-algebra homomorphism @: R—S such that K(p)=f.

Proof. Let R be the direct limit of a sequence RlﬂRzﬂ--- of matricial
F-algebras. Let 6,:R,—R be natural homomorphisms for all n. Then
(Ky(R), [R]) is the direct limit of direct system {(Ky(R,), [R.]), Ki(=,)} and
K(0,) are natural homomorphisms. Put f,=fK(8,) for all n. Then by [3,
Lemma 15.23], there exist F-algebra homomorphisms +r,: R,—S such that
Ky, )=f, for all n. We shall construct F-algebra homomorphisms ¢,: R,—
S for n=1, 2, .-+ such that K(p,)=f, and @,.,7,=@, for all n. Put @,=+n,
and assume that we have ¢, for all k<n. Two algebra homomorphisms ¢,,
Yoyt R,—S satisfy K(p,)=K|(Vr,+17,). Thus we can choose an inner
automorphism g of .S such that ¢,=gr,.,7, by [3, Lemma 15.23]. Put @,,,=
2Yr,+1-  Noting that K(g) is an identity map on K(S), we have Ky(@yt1)=fp+1-
For a sequence @,, @, -+, there exists a unique F-algebra homomorphism
@: R— S such that pf,=@, for alln. We have K(@)K(0,)=Ky(,)=f,=K(0,)
for all n. Then we can conclude K (@)=f by the uniqueness.

Lemma 4. Let F be a field and R be a unit-regular F-algebra. For any
ultrasimplicial directed subgroup G with order-unit [R)] of (Ky(R), [R)]), there exists
a subalgebra T of R such that T is an ultramatricial F-algebra and that K(7):
(KT, [T])=(G, [R]), where i is the inclusion map.

Proof. By Lemma 2, there exists an ultramatricial F-algebra 7' such
that (Ky(T"), [T'])==(G, [R]). Let f: (K(T"), [T'])— (G, [R]) be an order-
preserving group isomorphism such that f([7'])=[R]. Then we can choose an
F-algebra homomorphism @: 7'—R such that Ki(@)=f by Lemma 3. For any
xeKer ¢, 0=[p(x)R]=K(@)[xT'|=f([xT']). Therefore [xT']=0, and hence
we have x7'=0 by Lemma 1. Since @ is monomorphism, we have a desired
algebra T=o(T").

Theorem 1. Let R be a unit-regular algebra over a field F, and assume
that (Ky(R), [R]) is ultrasimplicial. Then there exists a subalgebra T of R such
that

(@) T is an ultramatricial F-algebra

(b) every idempotent of R is cojuagte to an idempotet of T.

(c) every element of R is a product of a unit and a conjugate of an idempotent
of T, i.e. every element of R has the form uev, where u, v, are units of R and e is
an idempotent of T.
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Proof. By Lemma 4, there exists an ultramatricial F-algebra T of R
such that K(3): (Ky(T), [T]==2(K,(R), [R]), where i: T—R is the inclusion. Let
e be any idempotent of R. There exist finitely generated projective right 7-
modules 4, B such that [eR]=K\(5)[4], [(1—e)R]=K,(Z)[B]. Since K ()([T])=
Ky#)([ADB]), then [T]=[APB]. We have T=APB by Lemma 1. We
choose an idempotent f of T such that fT=4. Since [eR]=K,(2)([fT])=[fR],
then eR=fR by Lemma 1. Therefore we have e=u"!fu for some unit u of R
by [7, Th. 2]. TFor every x&R, there exists a unit # of R such that xu is an
idempotent. Then (c) is a immediate consequence by (b).

ReMARK. The example R given in [3, Example 15.28] is a unit-regular
algebra and (K(R), [R]) is an ultrasimplicial directed abelian group but is not
ultramatricial.

2. Simple self-injective rings

DEFINITION [3, p. 80]. A regular ring R satisfies the comparability axiom if
we have either /<K or K] for any two principal right ideals J, K. A ring R
is directly finite if xy=1 implies yx=1 for x, yER.

DEFINITION [3, p. 226]. A rank function of a regular ring R is a map N: R—
[0, 1] such that

(@) N()=1

(b) N(xy)<min {N(x), N(y)} for all x, y, ER

(c) N(e+f)=N(e)+N(f) for all orthogonal idempotents e, f ER

(d) N(x)>0 for all non-zero xER.

Let R be any simple unit-regular ring which satisfies the comparability
axiom. By [3, Cor. 18.12 and Th. 18.17], R has a unique rank function NV which
is determined by the rule: N(x)=sup {kn™'; k, nZ, k>0, n>0, (Rg)*<(*R)"}.
If a regular ring R has a rank function NN, IV induces a metric 8 on R by the rule
3(x, y)=N(x—y) for all x, yER ([3, p. 282]). We call this metric a rank-
metric induced by N or N-metric. Moreover the completion R of R with respect
to N-metric is a unit-regular left and right self-injective ring ([3, Th. 19.7]).
We call R the N-completion of R.

DEerINITION [1]. A factor sequence p=(p(1), p(2), -+-) is a infinite sequence
of positive integers such that p(n)|p(n-+1) for all # and p(n)—>co when n—>oo.

Let F be a field. For a factor sequence u, F. denotes the ultramatricial
F-algebra determined by a direct system {M,(,(F), f,}, where f,: M,\(F)—
M,+1(F) is a block diagonal homomorphism. F is a simple unit regular ring
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which satisfies the comparability axiom. Then F, has a unique rank function
N. The N-completion F, of F, is a simple unit-regular left and right self-
injective ring which is not artinian and its center is isomorphic to F ([4, Th.
2.8]). Since F.=F, as F-algebra by [10] for any two factor sequences p, v,
then we denote the completion of Fy by F., instead of F,.

Let R be a simple left and right self-injective ring which is not artinian.
R has a unique rank function N and it is complete with respect to N-metric
([3, Cor. 21.14]). The center F of R is a field ([3, Cor. 1.15]). Now we in-
vestigate the relation between R, F,. and F... We note that the additive group R
of all real numbers is considered as partially ordered abelian group with normal
order.

Theorem 2. Let R be a simple left and right self-injective ring which is
not artinian and let F be the center of R. Then the following results hold:

(1) For any factor sequence w, there exist a subalgebra T of R which is iso-
morphic to F,. as F-algebra.

(2) For every non-zero idempotent e of R, there exists a (single or infinite)
sequence {e,, e,, -} of orthogonal non-zero idempotents in a subalgebra conjugate to
T such that D, Re, is essential in Re and also @, e, R is essential in eR.

(3) There exists a subalgebra S of R such that

(a) S is isomorphic to F., as F-algebra

(b) every idempotent of R is conjugate to an idempotent of S.

(c) every element of R is a product of a unit of R and a conjugate of an
idempotent of S.

Proof. (1) Since R is a simple (unit-) regular right self-injective ring of
“Type II;/” (See [3, pp. 102, 113 and 120]), then (K, (R), [R])=(R, 1) by [3,
Th. 15.8]. Put p=(p(1), #(2), -=*) and N be the unique rank function of F\.
For x€F,, we know N(x)=p(n) 'rank(x), where xEM,,)(F). A morphism
0: Ky(Fu)— R induced by the rule 0([xF.])=N(x) for all x&F, is a order-
preserving group isomorphism such that 8([F.])=1 by [3, Cor. 16,15]. We have
ImageO@= U, Z-p(n)™! by easy caluculation. This is an ultrasimplicial directed
abelian group. Then there exists an ultramatricial F-algebra T of R such
that (Ky(T), [T])=<(Image, 1) by Lemma 3. By [3, Th. 15.26], we have T'=F,
as F-algebra.

(2) Again N denote the rank function of T. We define D(xT)=N(x)
for all x&T. Then D is a unique dimension function on the set of all finitely
generated projective right 7T-modules ([3, Prop. 16.8]). Moreover D is ex-
tended to a function on all projective right 7-modules ([9]). Then we may
assume that D is this extended function. A morphism induced by the rule:
[A]—=D(A) is equal to 8. Let N’ be the unique rank function of R. We
note that the resrtictive map of N’ to T is equal to N by the uniqueness. Now let
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e be any non-zero idempotent of R. First we assume that N'(e)EImage §. We
choose a finitely generated projective T-module A such that N'(e)= 0([4)).
Since 6([4])=D(A4)<1, then A<T; by [9, Lemma 2.2]. There exists an
idempotent f in T such that N’'(e)=N’(f). Since eR=fR by [3, Cor. 16.15],
then there exists a unit #€ R such that e=u""fu by [7, Th. 2]. Next we assume
that N'(e)&Image 0. Since Image 0= U, Zp(n)™" is dense in the space of all
real numbers with respect to the normal metric, then there exists an infinite
sequence X, ¥y, -+ of positive real numbers in Image § such that N'(e)=23), «,.
We choose finitely generated right T-modules 4, such that D(A4,)=x, for each
n. Let A=@®, A, be an outer direct sum. Since D(4)=3>], D(4,)=N"(e)<1
([9, p. 406]), then A<T; by [9, Lemma 2.3]. Hence we may assume that there
exists a countably generated right ideal 4 of T such that D(4)=N'(e¢). By
[3, Prop. 2.14], there exists an infinite sequence g, g,, **- of orthogonal non-zero
idempotents in T such that A=, g,T. Since R is left and right self-injective,
then there exists an idempotent gER such that @, Rg, is essential in Rg and
also @,g,R is essential in gR by [11, Th. 6.4]. Hence we have N'(g)=
2. N'(g,) by [3, Th. 21.11 and 21.13]. We see that a directed sequence {g,~+
etg,; n=1,2, -} of idempotents is convergent to g with respect to N'-
metric. We write g=21,g,. Let S be the closure of T in R. Since (7, N-
metric) is a subspace of (R, N’'-metric), then we have S=F,. We have N'(g)=
. N(g.)=22, D(g,T)=D(A)=N'(e). Since gR==eR by [3, Cor. 16.15], then we
have e=u""gu for some unit uR by [7, Th.2]. A sequence {u 'gu; n=1,2,
-} is a family of orthogonal nonzero idempotents in a subalgebra % 'Tu.
Put e,=u"'g,u for all n. Since g=>7,g,, then e=u"'gu=3",e,. Therefore we
conclude @, Re, is essential in Re and also @, ¢,R in eR by [8, Prop. 3].

(3) We have already shown that the closure S of T is a desired algebra
which satisfies (a) and (b). For every element xER, there exists a unit #ER
such that xu is an idempotent. Applying (2) to xu, we can conclude (c).

RemARk. The (a) of Theorem 2 was proved in the case p=(2, 2% 2, --+) by
D. Handelman ([6, Remark (1) of Prof. 9]).
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