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on T2

Suppose that kl^^Sk2 in V2 for 6=1 or — 1 . Since &!~0 on Γ2, one of the
following systems of equations holds.

Using μ ^ Φ O , we can show that it is impossible. This completes the proof.

Now we return to the proof for Case 2. Without loss of generality, we
may assume that <PiF3Γ\F3 contains c*. Suppose that there exists a curve of
type IV on φλF3 in φλF3 ΓΊ F3. Let c be a simple closed curve of type IV on
φλF3 which bounds a Mϋbius band B such that Bf)F3=c{Jc*. Since Bf] V2

is an annulus, it follows from Assertion B that c is of type IV on JF3. Hence c
bounds a Mϋbius band Bf on F3. Let F3 denote the surface obtained by de-
forming F3—B'\JB slightly so that it is disjoint from B. Then, as is sim-
ilar to Case 1 [Fig. 4.1], φ^iΓϊFζ contains fewer curves of type IV on φ^F'z
than φj?3 Π F3. Repeating these procedures, we can show that φx is equivalent
to φ2 such that φ2F3 Π F3 does not contain a curve of type IV on φ2F3 and F3,

Suppose that φ2F3 Π F3 contains at least two curves of type III on φ2F3.
Then there exists an annulus A on φ2F3 such that Af}F3=dA. Let A' be
an annulus on F3 which bounds dA. Deforming F3—A'\JA slightly until it
is disjoint from A, we obtain A' such that φ2F3Γ\F3 has fewer components
than φ2F3[]F3. Hence we can find an involution φ which is equivalent to
φ2 such that φF3 Π F3 consists of c* and at most one curve of type III on φF3.
If φF3 Π F3 contains a curve c of type III, then c is (^-invariant. Since any
two-sided curve in φF3 Π F3 is not ^-invariant [12], the proof is completed.

Case 3. We will show that this case can not occur except for μ1μ2=—2.

Assertion C. Suppose that μφ^ —2. Let lλ and l2 be disjoint simple closed

curves on T2 such that πlλ is of type II or V, and πl2 is of type I II on F3. Then lλ

is not homologous to £l2, for £=l and —I, in V2.

Proof. Let p be an autohomeomorphism of F3 such that pπlλ coincides

fan al2

we denote a matrix corresponding
with dN(c^) or c1 and ρπl2=b*. By

to p"1. Then, by Lemma 3.2, lλ is homologous to a22bλ—aφ2 and l2 is homo-

logous to either

£ ( — a 2 ι a [ — μ i c c ^ — a 2 2 a f

2 + ( a 2 ι — μ 2 a 2 2 ) b 2 )

or

£{a2la[+{μιa2ι—a22)bι+a22a
f

2+μ2a22b^ for S = 1 or — 1 , on T2
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and pc=dN(cμ)y μ=l, 2 or 3. An annulus B[\V2 has the boundaries kx and

k2 such that πkλ=cf and πk=c. If we suppose that B'J)c'y then ρc=dN(c2)

or dN(c3). Hence, in order to show that BfZ)c'y it suffices to prove that kxoϋ

P~ιc2y — p~ιc3, ρ~ιc3 and —p~ιc3 in V2, where p denotes the lifting of p. Let

be a matrix in GL(2, Z) corresponding to the isotopy class of p" 1 . Then
1 aj

it follows from Lemma 3.2 that

p'^i^αzA—«2i*2, P~%^—(o

and

Since α n ^ - ^ 1 2 ^ 2 1 — ±1> it c a n be easily shown that ky=ρ~ιcλot>ρ~λc2, —p~ιc2y

p~ιc3 and —ρ~ιc3 in F 2 . Let F3 be the surface obtained by deforming F3—

Br[jB slightly keeping the exterior of N(B) fixed until it intersects B in c1 [Fig.

4.1].

ί c' is not ^-invariant.
ΨχF'3

Fig. 4.1

Then φjt'-z Π -F3 has fewer components that φλFz Π JP3. Since we can deform

F'z onto F3 by an ambient isotopy, we obtain an involution φ2 such that φ2Fz U .F3

is isotopic to φxFz^Fz in L(2a, β). Repeating these procedures, we can show

that φλ is equivalent to φ such that φFz Π F3 consists of three curves of type II

on φF3 and F3.

Case 2. In this case each curve of φλF3 Π F3 is of either type I, type III

or type IV.

Assertion B. Let kx and k2 be simple closed curves on T2 such that πkλ is of

type I or IV, and πk2 is of type I II . Then kx is not homologous to Sk2i for £= 1 and

-l,inV2.

Proof. Let p be an autohomeomorphism of F3 such that ρπkx coincides

with c* or dN(c*)> and ρπk2 = a*. By
an a12 we denote a matix in GL(2, Z)

corresponding to the isotopy class of p" 1 . Then, by using Lemma 3.4, k2 or

—k2 is homologous to either

—aλ2a2+(an—μ2a12)b2

or
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Idxi:

induces a bundle embedding j : B'-+B. There is a one-to-one correspondence
between G-maps from M to Vm(EφFφAm~1) and cross sections of B, and
there is also a one-to-one correspondence between their homotopies. This
shows that the following two lemmas are equivalent:

Lemma 3. Let

f: M->V

be a G-map, and let

P: dMx [0, 1]

be a G-homotopy with PQ=f\dM and P1(dM)ai(S(E®F)). Then P extends to
a G-homotopy

Q: Mx [0, 1] -> V%(E®F®Am-1)

with Q0=fand Q1{M)czj(S(E®F)).

Lemma 4. Let N=M/G. Let s: N-+B be a cross section of B, and let P:
dNx [0, l]-+B\dN be a homotopy of cross section of B\dN with P0=s\dN and
P1(dN)dj(Bf). Then P extends to a homotopy of cross section of By Q:Nx
[0, ΐ\-»B, with Q0=s and Q^N)c/(B')

We give a proof of Lemma 4 making use of the obstruction theory. Refer
to [4; Part III] for the obstruction theory.

Proof of Lemma 4. Since N is a smooth manifold, we obtain a triangula-
tion of N. Let n=dim S(E®F). Then dimiV<7z, and S(E@F), which is
the fibre of B', is (n— l)-connected. So the cross section j~ιPx of B'\dN
extends to a cross section sx; N->B' of B'. We see from Proposition 1 that
Vt{E@F®Km~ι) is also (n— l)-connected. Let iV*"1 denote the (n— l)-skeleton
of Ny which contains 9ΛΓ. Then P extends to a homotopy of cross section,

R: iV^xf), l]-^B\Nn-\

with R0=s\Nn~1 and R1=Js1\Nn~1. So, if dim N<n, the lemma is proved.
Now let dimiV^w. Let B(πn) and B'(πn) be the bundles of coefficients

associated with the bundles B and B' by the n-th. homotopy group, respectively.
Also let Cn(N; B(πn)) and Cn(N) B'(πu)) be the groups of n-cochains of N
with coefficients in B(πn) and B'(πH)> respectively. The bundle embedding
j : B'->B induces a group homomorphism

/*: C(N;B'(x.))-+C(NiB(xn)).

We see from Proposition 1 that j * is an epimorphism. Let
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homotopy set.
Our result is

Theorem 2. Let E, F be representations of a compact Lie group G over

Λ. Let

be the transformation induced from the G-map

Then

(a) j \ u surjective,
(b) j% is bijective in particular in each case of the fallowings (i), (ii):
(i) A=R, dimREHis odd for any H^<ίίl(E,F)={H^Ur{E)\dimRFH=O}i

and

rH: [S(E)> S(EφF)]G - Π ^ ( ^ W ) , S(E*eF*)]

is iujective,
(ii) A=C or Qy and r is injective,
(c) if dimΛEG>2 then [S{E), V^iEφFφA^1)^ has a group structure and

/* is a group homomorphism.

NOTE. The injectivity of r is studied by several authors, e.g., Hauschild [1
Satz 4.5].

In the subsequent sections we prove Theorem 2. Section 2 is devoted to
preliminary lemmas. Section 3 is devoted to proving the surjectivity of j * y

and section 4 is devoted to proving the injectivity of j * . In section 5 we give
a group structure to [S(E), F^(i?0F0Λw~1)]G so that j * is a group homomor-
phism.

2. Preliminary lemmas

Let E, F be representations of a compact Lie group G over Λ, and let
M be a compact, smooth, free G-manifold with dimM<dim ^(Z?®^). Con-
sider the fibre bundles

B = M X G ^ Θ F Θ Λ " 1 - 1 ) -* M\G

with fibre V^EφFφA^1), and

B1 = MxGS(E®F) -* M\G

with fibre S(E®F). The G-map
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be the deformation w-cochain. (See [4; p 172].) There is d'f=C(N;B'(πn))
with j*(d')=d. By [4; 33.9] there is a cross section s2 of B' such that s2 agrees
with ίj on N"'1 and d(s1,s2)=^—d', where d(slt s2) is the difference n-cochain.
(Also see [4; p 172].) We see

<*(/*» Jh) = J*(d(si, h)) = -d.

We define a homotopy of cross section of B | N"'1,

by

JΛ(*,2ί) if 0<*<l/2
{X' }~ Xjφ) if l / 2 < ί < l .

By [4; 33.7],

d(s, S, Js2) = d(s, R, jsj+difa, Js2)

= d-d

= 0.

By this and [4; 33.8], S extends to a homotopy of cross section of B, T: Nx
[0, l]^B, with T0=s and Γ I = / Ϊ 2 . Let 8iVx [0, l]ciV be a collar of 8ΛΓ in JV.
Then we define a homotopy Q: Nx [0, 1]->.B as, for Λ eiV and ίe[0,1],

Q(^ t) = T(x, t) if xeN-dNx [0, 1),

£(*, ί) = T(x, ί/(2-r)) if Ϊ = (y, r)<=dNx [0, 1] and 2 ί + r < 2 ,

Q(*, i)=?X*,(i+r-l)/r) if * = (y, r)e8ΛΓx[0, 1], 2 ί + r > 2

and rΦO.

Q is well-defined, and is an extension of P with the desired property.
Q.E.D.

3. The surjectivity of j *

Let E, F be representations of a compact Lie group G over Λ, and let

; * : [S(E), S(E®F)]G-»[S(E), V£(

be the transformation induced from the G-map

j:S(E®F) -

The purpose of this section is to prove the surjectivity of j * . Since j is an em-

bedding, it suffices to prove the following fact:
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Lemma 5. Let

f: S(E) —

be a G-map, and let N be a compact smooth G-submanifold of S(E) with dim N==
dim S(E). Let

T: JVx[O, 1] -

be a G-hσmotopy with T0=f\N and T1(N)(ZJ(S(E®F)). Then T extends to
a G-homotopy

R: S(E)x[0, 1] ->

with R0=f and R^E^d^EQF)).

Proof. 3Jl(£) is a finite set. Let us number its elements

in such a way that if i<k then (Hi)(t(Hk). Consider the following Assertion:

ASSERTION. There are compact smooth G-submanίfolds M0,Mu ,Ma of
S(E) such that

dim Mi = dim S(E) for i = 0,1, •••, a , M^N, and

IntM iDM^US(£)c*t.) /or i = l , 2 , - , α .

Furthermore there are G-homotopies R(0\ i? ( 1 ) , •••, R(a) such that

iX [0, 1] -^ F^EΘFΘΛ^- 1 ) for i = 0, 1, - , α ,

/or 1 = 0 , 1 , - , * ,

/or i = 0, 1, ..., a ,

RW\Nx[0, 1] = Γ, αwrf
1) for i = l , 2 , . . , α .

Lemma 5 follows from the Assertion since Ma=S(E). In the following
we prove the Assertion.

N and Γ satisfy the conditions for Mo and i?(0), respectively. Suppose that
Mo,—> M. .!, and R^°\ •-, R^ are constructed. Put

M = (S(E)-Int Mi^)Hi = S(Effi)-Int Mflλ.

Then M is a compact smooth manifold with boundary 8Λf=ΛfΠ9Mf _1.
Moreover M is iV(iϊf.)-invariant, and all isotropy subgroups on M are Hit So
M becomes a free iV^^/^-manifold. Regard 2?*/ and .F^ as representations
of N{Ht)IHi. By Lemma 3 there is an N(H^/Hr
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Q: Mx[0, 1] — V^{EHi®FHi®Km-1)

Qo=f\M,

Q1(M)di(S(EHi®FHή), and

Q\dMx[0, l] = Λ<ί-1M8Λfx[0> 1].

Since G(M)=Gx N(Hi) M, we may extend Q to a G-homotopy

QΊ G(M)x[0, 1] ^ G(V%(EHi(BFHi(BAm-1))c:V%(E(BF(BAm~1)

such that

OS=/|G(M),
Qί(G(M))czi(S(E®F)), and

Q' 19G(M) x [0, 1] = R«-» \ dG(M) X [0, 1].

Applying [3; Lemma 1.1] to the G-manifold A=S(E)—IntMi_1 and the sub-
manifold G(M) of Ay we obtain compact G-submanifolds K.t L of A such that

( i ) KUL=Ay
(ii) 9 L - L Π ^

dK=dL U 3̂ i = 3L U ΘΛf,-.!,
dMi_1Γ\dL=φ,

(iii) 3MI _1UG(M)cif, and
(iv) if is a mapping cylinder of some G-map

ilr! OL —

G(M)

Put M,=M,_ 1Ui^ in S(E). Then M, is a compact smooth G-submanifold of
S(E) with d i m M ^ d i m S ^ ) , and with IntΛf,θΛf,-_,US(£)(ffi.). According
to (iv), let us denote a point of i£ by the form [y, s], where y^dL and ίe[0,1].
Under this form [y, ί]=y and [y, O]=ψ(y). We define a G-homotopy

#«>: M,x[0, 1] -
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as the following: For (x, ί ) e M , X [0,1],

Wi\x>t) = R«-ι\x>t) if Λ G M M ,

Rϊ)(x} ή = f([y, s-2t\) if x = [y, s]EΞK and It<s ,

R«\x, t) = Λ ^ M y ) , (2ί-*)/(2-ί)) if *=[y,ί]€Ξ*:,

ψ^GSΛf^! and s<2/,

i?(ί)(*, t) = Q'(Ψ(y), (2t-s)l(2-s)) if x=[y,s]<=Kf

ψ(y)<=G(M) and ί < 2 ί .

M{ and i?(ί) constructed above satisfy the conditions in the Assertion.
Thus this completes the proof. Q.E.D.

Now let X, Y be G-spaces, and let xo^XG, yQ^ YG. Denote by

the set of G-homotopy classes rel. x0 of G-maps/: X-*Y with/(Λ;0)=j0.
The following Proposition is required in section 5.

Proposition 6. Let E, F be representations of G, and let xo^S(EG)}

S{EG®FG). Then

), x0), (S(EφF),yo)]G -

is surjective.

Proof. Let

/: S(E) ->

be a G-map with. f(xo)=j(yo). Let D be a G-invariant, top-dimensional, small
disc in S(E) with x0 as its center. We may deform / to a G-map / ' such that
f'(D)=j(y0) and f'—f rel. x0. By Lemma 5 there is a G-homotopy

R: S(E)x[0, 1] ->

such that

and

Then/' is G-homotopic to /?! rel. x0. This proves the Proposition. Q.E.D.

4. The injectivity of j *

Let £, F be representations of a compact Lie group G over Λ, and let
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/ „ : [S(E), S(E®F)]G -* [S(E)y V^

be the transformation induced from the G-map

j : S(E®F) ->

The purpose of this section is to prove the injectivity of j% under the assump-
tion (i) or (ii) in Theorem 2.

For any closed subgroup H of G, let

j * =j\S(EH®FH): S(EH®FH) -*

The following diagram is commutative:

[S(E)y S(EφF)]G-^ [S(E)y V%

rH\

[S(EH\ S{EH®FH)} - ^ >

where rH and r'H are the transformations restricting to the fixed point set by H.
Now suppose

i*(α) =./*(£)

for a, β^[S(E), S(E®F)]G. Then, by the commutativity of the above dia-
gram,

for any closed subgroup H of G. Proposition 1 implies that j % is an isomor-
phism under the assumption (i) or (ii) in Theorem 2. Thus

rH{a) = rH{β)

for any H. Hence r(a)=r(β). By the assumption r is injective, hence a=β.
Thusj j- is injective.

5. The group structure

Let Ey F be representations of a compact Lie group G over Λ. Suppose
dimΛ£;G>2. Then, according to [3; Section 6], [S(E), S(E®F)]G has a group
structure. In the similar way we may give a group structure to

[S(E)y V

so that

j * : [S(E), S(EφF)]G

is a group homomorphism. To show this is the purpose of this section.
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Lemma 7. Suppose ά\mREG=2 and xo^S(EG). Let

ω: [0,1]-* S(EG)dS(E)

be a path with ω(0)=ω(l)=#0. Then there is a G-homotopy

H: S(E)x[0y 1]-

such that

H0 = H1=Id9 and

H(xOί t) = ω(t) for any f e[0, 1] .

Proof. Choose a homotopy

J: S(EG)x[0yl]-*S(EG)c:S(E)

such that

Jo = Jλ = the inclusion, and

J(Xo,t) = ω(t) foiany /e[0, 1] .

Denote by (E0)1- the orthogonal complement of EG in E, and denote a point of
E by the form x+y where X G £ G and y G ^ ) 1 . Define

H: S(E)x[09l]->S(E)

as

H(x+y,t)=\\x\\J(xl\\x\\9t)+y if xΦO, and

H(x+y, t)=y if Λ = 0 .

Then H is a G-homotopy with the desired property. Q.E.D.

Lemma 8. Suppose dimREG>2, XQEΞS(EG) and yo(ΞS(EG®FG). Then
the natural transformations

), x0), {S(EφF), yo)]G - [S(E), S(EφF)]G

and

ψ2: [(S(E)y xo)y (VΪ(E®F®A--1),j(y0))]G -

are bijective.

Proof. Consider the commutative diagram:

, x0), (S(E®F), yo)]G - ^ [S(E), S(EφF)]G

, xB), (V%(E®F®A»'-1),j(y0))]c •
Ψ2
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In [3; Section 6], ψ1 is already seen to be bijective. The two 7* are surjective
by the arguments in section 3. So it follows that ψ2 is surjective.

It only remains to show that ψ2

 1 S injective. Suppose

for a, β<=Ξ[(S(E)yx0), (V%(E®F®Am-1),j(y0))]G. Since j * is surjective, there
are G-maps

f,g: S(E)-»S(EφF)

such that f(x0) =y0, £(#0)— Jo> andjf/, jg are representatives of a, β, respectively.
There also is a G-homotopy

K: S(E)x[0, 1] ->

with K0=jf and K1=jg. Define a path

ω: [0, 1] -^ F^

by ω(t)=K(x0, t) for / e [0, 1]. Then

ω(O) = ω(l)=j(yo).

By Proposition 1 there is a path

ω': [0, 1] -> S{EGφFG)

such that

ω'(0) = ω'(l)=;y0, and

ω—jω' rel. {0, 1} .

Let D be a G-invariant, top-dimensional, small disc in S(E) with #0 as its cen-
ter, and let D'=\D. By radius contraction we may deform K t o a G-homo-
topy

Kf: S(E)x[0, 1] -

such that K'(xft)=jω'(t) for ^ G ΰ ' and fe[0, 1]. Moreover, if we put / ' =
KΌ and g'=K{, then

and/', <§
f' are G-homotopic to jfyjg rel. Λ?0, respectively.

So, to show a—β we must show that/' is G-homotopic to gf rel. Λ0.
(i) Suppose d i m Λ £ G 0 F G > 2 . By Proposition 1, jω' is homotopic to the

constant path atj(y0) rel. {0, 1}. From this we may deform K' to a G-homotopy

K"\ S(E)x[0, 1] -
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such that

KΌ'=f, K['=g', and

K"(xo,t)=j(yo) for any ίe[0, 1].

Therefore / ' is G-homotopic to g' rel. x0.
(ii) Suppose dimREG(BFG=2. Define a path

ω": [0, 1] -> S(EG®FG)

by ω

/ / = ( ω

/ ) " 1 , i.e., ω"(t)=ω'(l—t). Applying Lemma 7 to the path ω", there
is a G-homotopy

H: S(E®F)x [0, 1] -> S(E®F)

such that

J/o = Hj = / J , and

H(yo,t) = ω"(t) for any *e[0, 1] .

Define a G-homotopy

L: S(E)x[0, 1] ->

L(Λ, ί) = ̂ ' (Λ, 2ί) if 0 < ί < l / 2 , and

L(^0=i^(ΓVW>2ί-l) if l/2<ί<l.

Then

L0=f, Lχ=g\ and

L(x,t)=jω'*jω"(t) for JC^Z)' and f(Ξ[0, 1] '

)ω'*jωf is homotopic to the constant path at j(y0) rel. {0, 1}. So we may
deform L to a G-homotopy

L': S{E)x[0, 1] ->

such that

L ί = / ' , L { = ^ ' , and

^ ' ( % O = i ( j o ) for any

Therefore / ' is G-homotopic to ̂ ' rel. Λ?0. Q.E.D.

Now suppose dim Λ £ G >2, XOΪΞS(EG) and ^ o e S ( £ c 0 F G ) . Let λ be the
real one-dimensional subspace of E spanned by x0, and let Xx be the orthogonal
complement of λ in E. We may identify S(E) with a nonreduced suspension

= [0, l]
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Under this identification xo=[O, x] and —χo=[lyχ] for x^S(X±). Let Y be

one of S(E®F) and F ^ e f θ Λ " 1 " 1 ) . Put zo=yo if Y is the former, and
zv=i{y^ if Y i s the latter. Then we may give a group structure to [S(E)} Y]G

as follows. Let [/], [ ^ ] G [ 5 ( £ ) , Y]G. By Lemma 8 we may choose/ and g in

such away that /(—xo)=zo

 a n d g(χo)=#o Define h: S(E)->Y as, for [£, # ] e

]) if 0 < * < l / 2 , and

Define [/] + [£]=[#]. This gives a group structure to [S(E), Y]G> and the trans-
formation

becomes a group homomorphism. We note that this group structure does not
depend on the choice of xo(=S(EG) and yo^S(EG(BFG).
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