$$
\alpha_{11} a_{1}^{\prime}+\left(\mu_{1} \alpha_{11}-\alpha_{12}\right) b_{1}+\alpha_{12} a_{2}^{\prime}+\mu_{2} \alpha_{12} b_{2} \text { on } T_{2} .
$$

Suppose that $k_{1} \sim \varepsilon k_{2}$ in V_{2} for $\varepsilon=1$ or -1 . Since $k_{1} \sim 0$ on T_{2}, one of the following systems of equations holds.

$$
\left\{\begin{array} { l }
{ \mu _ { 1 } \alpha _ { 1 1 } = 0 , } \\
{ \alpha _ { 1 1 } - \mu _ { 2 } \alpha _ { 1 2 } = 0 . }
\end{array} \quad \left\{\begin{array}{l}
\mu_{1} \alpha_{11}-\alpha_{12}=0 \\
\mu_{2} \alpha_{12}=0
\end{array}\right.\right.
$$

Using $\mu_{1} \mu_{2} \neq 0$, we can show that it is impossible. This completes the proof.
Now we return to the proof for Case 2. Without loss of generality, we may assume that $\varphi_{1} F_{3} \cap F_{3}$ contains c^{*}. Suppose that there exists a curve of type IV on $\varphi_{1} F_{3}$ in $\varphi_{1} F_{3} \cap F_{3}$. Let c be a simple closed curve of type IV on $\varphi_{1} F_{3}$ which bounds a Möbius band B such that $B \cap F_{3}=c \cup c^{*}$. Since $B \cap V_{2}$ is an annulus, it follows from Assertion B that c is of type IV on F_{3}. Hence c bounds a Möbius band B^{\prime} on F_{3}. Let F_{3}^{\prime} denote the surface obtained by deforming $F_{3}-B^{\prime} \cup B$ slightly so that it is disjoint from B. Then, as is similar to Case 1 [Fig. 4.1], $\varphi_{1} F_{3}^{\prime} \cap F_{3}^{\prime}$ contains fewer curves of type IV on $\varphi_{1} F_{3}^{\prime}$ than $\varphi_{1} F_{3} \cap F_{3}$. Repeating these procedures, we can show that φ_{1} is equivalent to φ_{2} such that $\varphi_{2} F_{3} \cap F_{3}$ does not contain a curve of type IV on $\varphi_{2} F_{3}$ and F_{3}.

Suppose that $\varphi_{2} F_{3} \cap F_{3}$ contains at least two curves of type III on $\varphi_{2} F_{3}$. Then there exists an annulus A on $\varphi_{2} F_{3}$ such that $A \cap F_{3}=\partial A$. Let A^{\prime} be an annulus on F_{3} which bounds ∂A. Deforming $F_{3}-A^{\prime} \cup A$ slightly until it is disjoint from A, we obtain A^{\prime} such that $\varphi_{2} F_{3}^{\prime} \cap F_{3}^{\prime}$ has fewer components than $\varphi_{2} F_{3} \cap F_{3}$. Hence we can find an involution φ which is equivalent to φ_{2} such that $\varphi F_{3} \cap F_{3}$ consists of c^{*} and at most one curve of type III on φF_{3}. If $\varphi F_{3} \cap F_{3}$ contains a curve c of type III, then c is φ-invariant. Since any two-sided curve in $\varphi F_{3} \cap F_{3}$ is not φ-invariant [12], the proof is completed.

Case 3. We will show that this case can not occur except for $\mu_{1} \mu_{2}=-2$.
Assertion C. Suppose that $\mu_{1} \mu_{2} \neq-2$. Let l_{1} and l_{2} be disjoint simple closed curves on T_{2} such that πl_{1} is of type II or V , and πl_{2} is of type III on F_{3}. Then l_{1} is not homologous to εl_{2}, for $\varepsilon=1$ and -1 , in V_{2}.

Proof. Let ρ be an autohomeomorphism of F_{3} such that $\rho \pi l_{1}$ coincides with $\partial N\left(c_{1}\right)$ or c_{1} and $\rho \pi l_{2}=b^{*}$. By $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ we denote a matrix corresponding to ρ^{-1}. Then, by Lemma 3.2, l_{1} is homologous to $\alpha_{22} b_{1}-\alpha_{21} b_{2}$ and l_{2} is homologous to either

$$
\varepsilon\left(-\alpha_{21} a_{1}^{\prime}-\mu_{1} \alpha_{21} b_{1}-\alpha_{22} a_{2}^{\prime}+\left(\alpha_{21}-\mu_{2} \alpha_{22}\right) b_{2}\right)
$$

or

$$
\varepsilon\left(\alpha_{21} a_{1}^{\prime}+\left(\mu_{1} \alpha_{21}-\alpha_{22}\right) b_{1}+\alpha_{22} a_{2}^{\prime}+\mu_{2} \alpha_{22} b_{2}\right), \text { for } \varepsilon=1 \text { or }-1, \text { on } T_{2}
$$

and $\rho c=\partial N\left(c_{\mu}\right), \mu=1,2$ or 3. An annulus $B \cap V_{2}$ has the boundaries k_{1} and k_{2} such that $\pi k_{1}=c^{\prime}$ and $\pi k=c$. If we suppose that $B^{\prime} ゅ c^{\prime}$, then $\rho c=\partial N\left(c_{2}\right)$ or $\partial N\left(c_{3}\right)$. Hence, in order to show that $B^{\prime} \supset c^{\prime}$, it suffices to prove that $k_{1} \nsim$ $\tilde{\rho}^{-1} c_{2},-\tilde{\rho}^{-1} c_{3}, \tilde{\rho}^{-1} c_{3}$ and $-\tilde{\rho}^{-1} c_{3}$ in V_{2}, where $\tilde{\rho}$ denotes the lifting of ρ. Let $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ be a matrix in $G L(2, Z)$ corresponding to the isotopy class of ρ^{-1}. Then it follows from Lemma 3.2 that

$$
\tilde{\rho}^{-1} \tilde{c}_{1} \sim \alpha_{22} b_{1}-\alpha_{21} b_{2}, \tilde{\rho}^{-1} \widetilde{c}_{2} \sim-\left(\alpha_{22}+\alpha_{21}\right) b_{1}+\left(\alpha_{21}+\alpha_{11}\right) b_{2}
$$

and

$$
\tilde{\rho}^{-1} \tilde{c}_{3} \sim-\alpha_{12} b_{1}+\alpha_{11} b_{2} \text { in } T_{2} .
$$

Since $\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}= \pm 1$, it can be easily shown that $k_{1}=\tilde{\rho}^{-1} \tilde{c}_{1} \nsim \tilde{\rho}^{-1} \widetilde{c}_{2},-\tilde{\rho}^{-1} \widetilde{c}_{2}$, $\tilde{\rho}^{-1} \widetilde{c}_{3}$ and $-\tilde{\rho}^{-1} \widetilde{c}_{3}$ in V_{2}. Let F_{3}^{\prime} be the surface obtained by deforming $F_{3}-$ $B^{\prime} \cup B$ slightly keeping the exterior of $N(B)$ fixed until it intersects B in $c^{\prime}[$ Fig. 4.1].

Fig. 4.1
Then $\varphi_{1} F_{3}^{\prime} \cap F_{3}^{\prime}$ has fewer components that $\varphi_{1} F_{3} \cap F_{3}$. Since we can deform F_{3}^{\prime} onto F_{3} by an ambient isotopy, we obtain an involution φ_{2} such that $\varphi_{2} F_{3} \cup F_{3}$ is isotopic to $\varphi_{1} F_{3}^{\prime} \cup F_{3}^{\prime}$ in $L(2 \alpha, \beta)$. Repeating these procedures, we can show that φ_{1} is equivalent to φ such that $\varphi F_{3} \cap F_{3}$ consists of three curves of type II on φF_{3} and F_{3}.

Case 2. In this case each curve of $\varphi_{1} F_{3} \cap F_{3}$ is of either type I, type III or type IV.

Assertion B. Let k_{1} and k_{2} be simple closed curves on T_{2} such that πk_{1} is of type I or IV, and πk_{2} is of type III. Then k_{1} is not homologous to εk_{2}, for $\varepsilon=1$ and -1 , in V_{2}.

Proof. Let ρ be an autohomeomorphism of F_{3} such that $\rho \pi k_{1}$ coincides with c^{*} or $\partial N\left(c^{*}\right)$, and $\rho \pi k_{2}=a^{*}$. By $\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)$ we denote a matix in $G L(2, Z)$ corresponding to the isotopy class of ρ^{-1}. Then, by using Lemma $3.4, k_{2}$ or $-k_{2}$ is homologous to either

$$
-\alpha_{11} a_{1}^{\prime}-\mu_{1} \alpha_{11} b_{1}-\alpha_{12} a_{2}^{\prime}+\left(\alpha_{11}-\mu_{2} \alpha_{12}\right) b_{2}
$$

or

$$
I d \times i: M \times S(E \oplus F) \rightarrow M \times V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

induces a bundle embedding $\tilde{j}: B^{\prime} \rightarrow B$. There is a one-to-one correspondence between G-maps from M to $V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)$ and cross sections of B, and there is also a one-to-one correspondence between their homotopies. This shows that the following two lemmas are equivalent:

Lemma 3. Let

$$
f: M \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

be a G-map, and let

$$
P: \partial M \times[0,1] \rightarrow V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

be a G-homotopy with $P_{0}=f \mid \partial M$ and $P_{1}(\partial M) \subset i(S(E \oplus F))$. Then P extel:ds to a G-homotopy

$$
Q: M \times[0,1] \rightarrow V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

with $Q_{0}=f$ and $Q_{1}(M) \subset j(S(E \oplus F))$.
Lemma 4. Let $N=M / G$. Let $s: N \rightarrow B$ be a cross section of B, and let P : $\partial N \times[0,1] \rightarrow B \mid \partial N$ be a homotopy of cross section of $B \mid \partial N$ with $P_{0}=s \mid \partial N$ and $P_{1}(\partial N) \subset \tilde{j}\left(B^{\prime}\right)$. Then P extends to a homotopy of cross section of $B, Q: N \times$ $[0,1] \rightarrow B$, with $Q_{0}=s$ and $Q_{1}(N) \subset \tilde{j}\left(B^{\prime}\right)$.

We give a proof of Lemma 4 making use of the obstruction theory. Refer to $[4 ;$ Part III] for the obstruction theory.

Proof of Lemma 4. Since N is a smooth manifold, we obtain a triangulation of N. Let $n=\operatorname{dim} S(E \oplus F)$. Then $\operatorname{dim} N \leq n$, and $S(E \oplus F)$, which is the fibre of B^{\prime}, is $(n-1)$-connected. So the cross section $\tilde{j}^{-1} P_{1}$ of $B^{\prime} \mid \partial N$ extends to a cross section $s_{1} ; N \rightarrow B^{\prime}$ of B^{\prime}. We see from Proposition 1 that $V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)$ is also $(n-1)$-connected. Let N^{n-1} denote the ($n-1$)-skeleton of N, which contains ∂N. Then P extends to a homotopy of cross section,

$$
R: N^{n-1} \times[0,1] \rightarrow B \mid N^{n-1}
$$

with $R_{0}=s \mid N^{n-1}$ and $R_{1}=\tilde{j} s_{1} \mid N^{n-1}$. So, if $\operatorname{dim} N<n$, the lemma is proved.
Now let $\operatorname{dim} N=n$. Let $B\left(\pi_{n}\right)$ and $B^{\prime}\left(\pi_{n}\right)$ be the bundles of coefficients associated with the bundles B and B^{\prime} by the n-th homotopy group, respectively. Also let $C^{n}\left(N ; B\left(\pi_{n}\right)\right)$ and $C^{n}\left(N ; B^{\prime}\left(\pi_{n}\right)\right)$ be the groups of n-cochains of N with coefficients in $B\left(\pi_{n}\right)$ and $B^{\prime}\left(\pi_{n}\right)$, respectively. The bundle embedding $\tilde{j}: B^{\prime} \rightarrow B$ induces a group homomorphism

$$
\tilde{j}_{*}: C^{n}\left(N ; B^{\prime}\left(\pi_{n}\right)\right) \rightarrow C^{n}\left(N ; B\left(\pi_{n}\right)\right) .
$$

We see from Proposition 1 that \tilde{j}_{*} is an epimorphism. Let
homotopy set.
Our result is
Theorem 2. Let E, F be representations of a compact Lie group G over人. Let

$$
j_{*}:[S(E), S(E \oplus F)]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

be the transformation induced from the G-map

$$
j: S(E \oplus F) \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

Then
(a) $j_{*} i_{0}$ surjective,
(b) j_{*} is bijective in particslar in each case of the followings (i), (ii):
(i) $\Lambda=\boldsymbol{R}, \operatorname{dim}_{R} E^{H}$ is odd for any $H \in \mathfrak{R}(E, F)=\left\{H \in \mathfrak{M}_{r}(E) \mid \operatorname{dim}_{R} F^{H}=0\right\}$, and

$$
r=\Pi_{H \in \Re(E, F)} r_{H}:[S(E), S(E \oplus F)]_{G} \rightarrow \Pi_{H \in \Re(E, F)}\left[S\left(E^{H}\right), S\left(E^{H} \oplus F^{H}\right)\right]
$$

is ì.jective,
(ii) $\Lambda=\boldsymbol{C}$ or \boldsymbol{Q}, and r is injective,
(c) if $\operatorname{dim}_{R} E^{G} \geq 2$ then $\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}$ has a group structure and j_{*} is a group homomorphism.

Note. The injectivity of r is studied by several authors, e.g., Hauschild [1; Satz 4.5].

In the subsequent sections we prove Theorem 2. Section 2 is devoted to preliminary lemmas. Section 3 is devoted to proving the surjectivity of j_{*}, and section 4 is devoted to proving the injectivity of j_{*}. In section 5 we give a group structure to $\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}$ so that j_{*} is a group homomorphism.

2. Preliminary lemmas

Let E, F be representations of a compact Lie group G over Λ, and let M be a compact, smooth, free G-manifold with $\operatorname{dim} M \leq \operatorname{dim} S(E \oplus F)$. Consider the fibre bundles

$$
B=M \times{ }_{G} V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right) \rightarrow M / G
$$

with fibre $V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)$, and

$$
B^{\prime}=M \times{ }_{G} S(E \oplus F) \rightarrow M / G
$$

with fibre $S(E \oplus F)$. The G-map

$$
d=d\left(s, R, \tilde{j} s_{1}\right) \in C^{n}\left(N ; B\left(\pi_{n}\right)\right)
$$

be the deformation n-cochain. (See [4; p 172].) There is $d^{\prime} \in C^{n}\left(N ; B^{\prime}\left(\pi_{n}\right)\right)$ with $\tilde{j}_{*}\left(d^{\prime}\right)=d$. By $[4 ; 33.9]$ there is a cross section s_{2} of B^{\prime} such that s_{2} agrees with s_{1} on N^{n-1} and $d\left(s_{1}, s_{2}\right)=-d^{\prime}$, where $d\left(s_{1}, s_{2}\right)$ is the difference n-cochain. (Also see [4; p 172].) We see

$$
d\left(\tilde{j}_{1}, \tilde{j} s_{2}\right)=\tilde{j}_{*}\left(d\left(s_{1}, s_{2}\right)\right)=-d
$$

We define a homotopy of cross section of $B \mid N^{n-1}$,

$$
S: N^{n-1} \times[0,1] \rightarrow B \mid N^{n-1}
$$

by

$$
S(x, t)=\left\{\begin{array}{lll}
R(x, 2 t) & \text { if } & 0 \leq t \leq 1 / 2 \\
\tilde{j} s_{2}(x) & \text { if } & 1 / 2 \leq t \leq 1
\end{array}\right.
$$

By [4; 33.7],

$$
\begin{aligned}
d\left(s, S, \tilde{j} s_{2}\right) & =d\left(s, R, \tilde{j} s_{1}\right)+d\left(\tilde{j} s_{1}, \tilde{j} s_{2}\right) \\
& =d-d \\
& =0
\end{aligned}
$$

By this and $[4 ; 33.8], S$ extends to a homotopy of cross section of $B, T: N \times$ $[0,1] \rightarrow B$, with $T_{0}=s$ and $T_{1}=\tilde{j}_{2}$. Let $\partial N \times[0,1] \subset N$ be a collar of ∂N in N. Then we define a homotopy $Q: N \times[0,1] \rightarrow B$ as, for $x \in N$ and $t \in[0,1]$,

$$
\begin{aligned}
& Q(x, t)=T(x, t) \quad \text { if } \quad x \in N-\partial N \times[0,1), \\
& Q(x, t)=T(x, t /(2-r)) \text { if } x=(y, r) \in \partial N \times[0,1] \text { and } 2 t+r \leq 2, \\
& Q(x, t)=T(x,(t+r-1) / r) \quad \text { if } \quad x=(y, r) \in \partial N \times[0,1], \quad 2 t+r \geq 2 \\
& \text { and } \quad r \neq 0 .
\end{aligned}
$$

Q is well-defined, and is an extension of P with the desired property.
Q.E.D.

3. The surjectivity of \boldsymbol{j}_{*}

Let E, F be representations of a compact Lie group G over Λ, and let

$$
j_{*}:[S(E), S(E \oplus F)]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

be the transformation induced from the G-map

$$
j: S(E \oplus F) \rightarrow V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

The purpose of this section is to prove the surjectivity of j_{*}. Since j is an embedding, it suffices to prove the following fact:

Lemma 5. Let

$$
f: S(E) \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

be a G-map, and let N be a compact smooth G-submanifold of $S(E)$ with $\operatorname{dim} N=$ $\operatorname{dim} S(E)$. Let

$$
T: N \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

be a G-homotopy with $T_{0}=f \mid N$ and $T_{1}(N) \subset j(S(E \oplus F))$. Then T extends to a G-homotopy

$$
R: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

with $R_{0}=f$ and $R_{1}(S(E)) \subset i(S(E \oplus F))$.
Proof. $\mathfrak{M}(E)$ is a finite set. Let us number its elements

$$
\mathfrak{M}(E)=\left\{\left(H_{1}\right),\left(H_{2}\right), \cdots,\left(H_{a}\right)\right\}
$$

in such a way that if $i<k$ then $\left(H_{i}\right) \nsubseteq\left(H_{k}\right)$. Consider the following Assertion:
AsSERTION. There are compact smooth G-submanifolds $M_{0}, M_{1}, \cdots, M_{a}$ of $S(E)$ such that

$$
\begin{aligned}
& \operatorname{dim} M_{i}=\operatorname{dim} S(E) \quad \text { for } \quad i=0,1, \cdots, a, \quad M_{0} \supset N, \quad \text { and } \\
& \text { Int } M_{i} \supset M_{i-1} \cup S(E)_{\left(H_{i}\right)} \quad \text { for } \quad i=1,2, \cdots, a .
\end{aligned}
$$

Furthermore there are G-homotopies $R^{(0)}, R^{(1)}, \cdots, R^{(a)}$ such that

$$
\begin{aligned}
& R^{(i)}: M_{i} \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right) \quad \text { for } \quad i=0,1, \cdots, a, \\
& R_{0}^{(i)}=f \mid M_{i} \quad \text { for } \quad i=0,1, \cdots, a, \\
& R_{1}^{(i)}\left(M_{i}\right) \subset j(S(E \oplus F)) \quad \text { for } \quad i=0,1, \cdots, a, \\
& R^{(0)} \mid N \times[0,1]=T, \quad \text { and } \\
& R^{(i)} \mid M_{i-1} \times[0,1]=R^{(i-1)} \quad \text { for } \quad i=1,2, \cdots, a .
\end{aligned}
$$

Lemma 5 follows from the Assertion since $M_{a}=S(E)$. In the following we prove the Assertion.
N and T satisfy the conditions for M_{0} and $R^{(0)}$, respectively. Suppose that M_{0}, \cdots, M_{i-1}, and $R^{(0)}, \cdots, R^{(i-1)}$ are constructed. Put

$$
M=\left(S(E)-\operatorname{Int} M_{i-1}\right)^{H_{i}}=S\left(E^{H_{i}}\right)-\operatorname{Int} M_{i-1}^{H_{i}}
$$

Then M is a compact smooth manifold with boundary $\partial M=M \cap \partial M_{i-1}$. Moreover M is $N\left(H_{i}\right)$-invariant, and all isotropy subgroups on M are H_{i}. So M becomes a free $N\left(H_{i}\right) / H_{i}$-manifold. Regard $E^{H_{i}}$ and $F^{H_{i}}$ as representations of $N\left(H_{i}\right) / H_{i}$. By Lemma 3 there is an $N\left(H_{i}\right) / H_{i}$-homotopy

$$
Q: M \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E^{H_{i}} \oplus F^{H_{i}} \oplus \Lambda^{m-1}\right)
$$

such that

$$
\begin{aligned}
& Q_{0}=f \mid M, \\
& Q_{1}(M) \subset i\left(S\left(E^{H_{i}} \oplus F^{H_{i}}\right)\right), \quad \text { and } \\
& Q\left|\partial M \times[0,1]=R^{(i-1)}\right| \partial M \times[0,1] .
\end{aligned}
$$

Since $G(M)=G \times_{N\left(H_{i}\right)} M$, we may extend Q to a G-homotopy

$$
Q^{\prime}: G(M) \times[0,1] \rightarrow G\left(V_{m}^{\Lambda}\left(E^{H_{i}} \oplus F^{H_{i}} \oplus \Lambda^{m-1}\right)\right) \subset V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

such that

$$
\begin{aligned}
& Q_{0}^{\prime}=f \mid G(M), \\
& Q_{1}^{\prime}(G(M)) \subset i(S(E \oplus F)), \quad \text { and } \\
& Q^{\prime}\left|\partial G(M) \times[0,1]=R^{(i-1)}\right| \partial G(M) \times[0,1] .
\end{aligned}
$$

Applying [3; Lemma 1.1] to the G-manifold $A=S(E)-\operatorname{Int} M_{i-1}$ and the submanifold $G(M)$ of A, we obtain compact G-submanifolds K, L of A such that
(i) $K \cup L=A$,
(ii) $\partial L=L \cap K$,
$\partial K=\partial L \cup \partial A=\partial L \cup \partial M_{i-1}$,
$\partial M_{i-1} \cap \partial L=\phi$,
(iii) $\partial M_{i-1} \cup G(M) \subset K$, and
(iv) K is a mapping cylinder of some G-map

$$
\psi: \partial L \rightarrow \partial M_{i-1} \cup G(M) .
$$

Put $M_{i}=M_{i-1} \cup K$ in $S(E)$. Then M_{i} is a compact smooth G-submanifold of $S(E)$ with $\operatorname{dim} M_{i}=\operatorname{dim} S(E)$, and with Int $M_{i} \supset M_{i-1} \cup S(E)_{\left(H_{i}\right)}$. According to (iv), let us denote a point of K by the form [$y, s]$, where $y \in \partial L$ and $s \in[0,1]$. Under this form $[y, 1]=y$ and $[y, 0]=\psi(y)$. We define a G-homotopy

$$
R^{(i)}: M_{i} \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

as the following: For $(x, t) \in M_{i} \times[0,1]$,

$$
\begin{aligned}
& R^{(i)}(x, t)=R^{(i-1)}(x, t) \quad \text { if } \quad x \in M_{i-1}, \\
& R^{(i)}(x, t)=f([y, s-2 t]) \quad \text { if } \quad x=[y, s] \in K \quad \text { and } \quad 2 t \leq s, \\
& R^{(i)}(x, t)=R^{(i-1)}(\psi(y),(2 t-s) /(2-s)) \quad \text { if } \quad x=[y, s] \in K, \\
& \psi(y) \in \partial M_{i-1} \text { and } s \leq 2 t, \\
& R^{(i)}(x, t)=Q^{\prime}(\psi(y), \quad(2 t-s) /(2-s)) \quad \text { if } \quad x=[y, s] \in K, \\
& \psi(y) \in G(M) \text { and } s \leq 2 t .
\end{aligned}
$$

M_{i} and $R^{(i)}$ constructed above satisfy the conditions in the Assertion. Thus this completes the proof.
Q.E.D.

Now let X, Y be G-spaces, and let $x_{0} \in X^{G}, y_{0} \in Y^{G}$. Denote by

$$
\left[\left(X, x_{0}\right),\left(Y, y_{0}\right)\right]_{G}
$$

the set of G-homotopy classes rel. x_{0} of G-maps $f: X \rightarrow Y$ with $f\left(x_{0}\right)=y_{0}$.
The following Proposition is required in section 5.
Proposition 6. Let E, F be representations of G, and let $x_{0} \in S\left(E^{G}\right), y_{0} \in$ $S\left(E^{G} \oplus F^{G}\right)$. Then

$$
j_{*}:\left[\left(S(E), x_{0}\right),\left(S(E \oplus F), y_{0}\right)\right]_{G} \rightarrow\left[\left(S(E), x_{0}\right),\left(V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right), j\left(y_{0}\right)\right)\right]_{G}
$$

is surjective.
Proof. Let

$$
f: S(E) \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

be a G-map with $f\left(x_{0}\right)=j\left(y_{0}\right)$. Let D be a G-invariant, top-dimensional, small disc in $S(E)$ with x_{0} as its center. We may deform f to a G-map f^{\prime} such that $f^{\prime}(D)=j\left(y_{0}\right)$ and $f^{\prime} \simeq f$ rel. x_{0}. By Lemma 5 there is a G-homotopy

$$
R: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

such that

$$
\begin{aligned}
& R_{0}=f^{\prime}, \\
& R_{1}(S(E)) \subset j(S(E \oplus F)), \quad \text { and } \\
& R(D \times[0,1])=j\left(y_{0}\right) .
\end{aligned}
$$

Then f^{\prime} is G-homotopic to R_{1} rel. x_{0}. This proves the Proposition. Q.E.D.

4. The injectivity of $\boldsymbol{j}_{\boldsymbol{*}}$

Let E, F be representations of a compact Lie group G over Λ, and let

$$
j_{*}:[S(E), S(E \oplus F)]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

be the transformation induced from the G-map

$$
j: S(E \oplus F) \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right) .
$$

The purpose of this section is to prove the injectivity of j_{*} under the assumption (i) or (ii) in Theorem 2.

For any closed subgroup H of G, let

$$
j^{H}=j \mid S\left(E^{H} \oplus F^{H}\right): S\left(E^{H} \oplus F^{H}\right) \rightarrow V_{m}^{\Lambda}\left(E^{H} \oplus F^{H} \oplus \Lambda^{m-1}\right) .
$$

The following diagram is commutative:

where r_{H} and r_{H}^{\prime} are the transformations restricting to the fixed point set by H.
Now suppose

$$
j_{*}(\alpha)=j_{*}(\beta)
$$

for $\alpha, \beta \in[S(E), S(E \oplus F)]_{G}$. Then, by the commutativity of the above diagram,

$$
j_{*}^{H} r_{H}(\alpha)=j_{*}^{H} r_{H}(\beta)
$$

for any closed subgroup H of G. Proposition 1 implies that j_{*}^{H} is an isomorphism under the assumption (i) or (ii) in Theorem 2. Thus

$$
r_{H}(\alpha)=r_{H}(\beta)
$$

for any H. Hence $r(\alpha)=r(\beta)$. By the assumption r is injective, hence $\alpha=\beta$. Thus j_{*} is injective.

5. The group structure

Let E, F be representations of a compact Lie group G over Λ. Suppose $\operatorname{dim}_{R} E^{G} \geq 2$. Then, according to [3; Section 6], $[S(E), S(E \oplus F)]_{G}$ has a group structure. In the similar way we may give a group structure to

$$
\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

so that

$$
j_{*}:[S(E), S(E \oplus F)]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

is a group homomorphism. To show this is the purpose of this section.

Lemma 7. Suppose $\operatorname{dim}_{R} E^{G}=2$ and $x_{0} \in S\left(E^{G}\right)$. Let

$$
\omega:[0,1] \rightarrow S\left(E^{G}\right) \subset S(E)
$$

be a path with $\omega(0)=\omega(1)=x_{0}$. Then there is a G-homotopy

$$
H: S(E) \times[0,1] \rightarrow S(E)
$$

such that

$$
\begin{aligned}
& H_{0}=H_{1}=I d, \quad \text { and } \\
& H\left(x_{0}, t\right)=\omega(t) \quad \text { for any } \quad t \in[0,1] .
\end{aligned}
$$

Proof. Choose a homotopy

$$
J: S\left(E^{G}\right) \times[0,1] \rightarrow S\left(E^{G}\right) \subset S(E)
$$

such that

$$
\begin{aligned}
& J_{0}=J_{1}=\text { the inclusion, and } \\
& J\left(x_{0}, t\right)=\omega(t) \text { fo any } t \in[0,1] .
\end{aligned}
$$

Denote by $\left(E^{G}\right)^{\perp}$ the orthogonal complement of E^{G} in E, and denote a point of E by the form $x+y$ where $x \in E^{G}$ and $y \in\left(E^{G}\right)^{\perp}$. Define

$$
H: S(E) \times[0,1] \rightarrow S(E)
$$

as

$$
\begin{aligned}
& H(x+y, t)=\|x\| J(x /\|x\|, t)+y \quad \text { if } \quad x \neq 0, \quad \text { and } \\
& H(x+y, t)=y \quad \text { if } \quad x=0
\end{aligned}
$$

Then H is a G-homotopy with the desired property.
Q.E.D.

Lemma 8. Suppose $\operatorname{dim}_{R} E^{G} \geq 2, x_{0} \in S\left(E^{G}\right)$ and $y_{0} \in S\left(E^{G} \oplus F^{G}\right)$. Then the natural transformations

$$
\psi_{1}:\left[\left(S(E), x_{0}\right),\left(S(E \oplus F), y_{0}\right)\right]_{G} \rightarrow[S(E), S(E \oplus F)]_{G}
$$

and

$$
\psi_{2}:\left[\left(S(E), x_{0}\right),\left(V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right), j\left(y_{0}\right)\right)\right]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

are bijective.
Proof. Consider the commutative diagram:

$$
\begin{aligned}
{\left[\left(S(E), x_{0}\right),\left(S(E \oplus F), y_{0}\right)\right]_{G} } & \xrightarrow{\psi_{1}}[S(E), S(E \oplus F)]_{G} \\
j_{*} \mid & j_{*} \\
{\left[\left(S(E), x_{0}\right),\left(V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right), j\left(y_{0}\right)\right)\right]_{G} } & \xrightarrow[\psi_{2}]{\longrightarrow}\left[S(E), V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
\end{aligned}
$$

In [3; Section 6], ψ_{1} is already seen to be bijective. The two j_{*} are surjective by the arguments in section 3 . So it follows that ψ_{2} is surjective.

It only remains to show that ψ_{2} is injective. Suppose

$$
\psi_{2}(\alpha)=\psi_{2}(\beta)
$$

for $\alpha, \beta \in\left[\left(S(E), x_{0}\right),\left(V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right), j\left(y_{0}\right)\right)\right]_{c}$. Since j_{*} is surjective, there are G-maps

$$
f, g: S(E) \rightarrow S(E \oplus F)
$$

such that $f\left(x_{0}\right)=y_{0}, g\left(x_{0}\right)=y_{0}$, and $j f, j g$ are representatives of α, β, respectively. There also is a G-homotopy

$$
K: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

with $K_{0}=j f$ and $K_{1}=j g$. Define a path

$$
\omega:[0,1] \rightarrow V_{m}^{\Lambda}\left(E^{G} \oplus F^{G} \oplus \Lambda^{m-1}\right)
$$

by $\omega(t)=K\left(x_{0}, t\right)$ for $t \in[0,1]$. Then

$$
\omega(0)=\omega(1)=j\left(y_{0}\right) .
$$

By Proposition 1 there is a path

$$
\omega^{\prime}:[0,1] \rightarrow S\left(E^{G} \oplus F^{G}\right)
$$

such that

$$
\begin{aligned}
& \omega^{\prime}(0)=\omega^{\prime}(1)=y_{0}, \quad \text { and } \\
& \omega \simeq j \omega^{\prime} \text { rel. }\{0,1\} .
\end{aligned}
$$

Let D be a G-invariant, top-dimensional, small disc in $S(E)$ with x_{0} as its center, and let $D^{\prime}=\frac{1}{2} D$. By radius contraction we may deform K to a G-homotopy

$$
K^{\prime}: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

such that $K^{\prime}(x, t)=j \omega^{\prime}(t)$ for $x \in D^{\prime}$ and $t \in[0,1]$. Moreover, if we put $f^{\prime}=$ K_{0}^{\prime} and $g^{\prime}=K_{1}^{\prime}$, then

$$
\begin{aligned}
& f^{\prime}(S(E)) \subset i(S(E \oplus F)) \\
& g^{\prime}(S(E)) \subset i(S(E \oplus F))
\end{aligned}
$$

and f^{\prime}, g^{\prime} are G-homotopic to $j f, j g$ rel. x_{0}, respectively.
So, to show $\alpha=\beta$ we must show that f^{\prime} is G-homotopic to g^{\prime} rel. x_{0}.
(i) Suppose $\operatorname{dim}_{R} E^{G} \oplus F^{G}>2$. By Proposition 1, $j \omega^{\prime}$ is homotopic to the constant path at $j\left(y_{0}\right)$ rel. $\{0,1\}$. From this we may deform K^{\prime} to a G-homotopy

$$
K^{\prime \prime}: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

such that

$$
\begin{aligned}
& K_{0}^{\prime \prime}=f^{\prime}, \quad K_{1}^{\prime \prime}=g^{\prime}, \quad \text { and } \\
& K^{\prime \prime}\left(x_{0}, t\right)=j\left(y_{0}\right) \quad \text { for any } \quad t \in[0,1]
\end{aligned}
$$

Therefore f^{\prime} is G-homotopic to g^{\prime} rel. x_{0}.
(ii) Suppose $\operatorname{dim}_{R} E^{G} \oplus F^{G}=2$. Define a path

$$
\omega^{\prime \prime}:[0,1] \rightarrow S\left(E^{G} \oplus F^{G}\right)
$$

by $\omega^{\prime \prime}=\left(\omega^{\prime}\right)^{-1}$, i.e., $\omega^{\prime \prime}(t)=\omega^{\prime}(1-t)$. Applying Lemma 7 to the path $\omega^{\prime \prime}$, there is a G-homotopy

$$
H: S(E \oplus F) \times[0,1] \rightarrow S(E \oplus F)
$$

such that

$$
\begin{aligned}
& H_{0}=H_{1}=I d, \quad \text { and } \\
& H\left(y_{0}, t\right)=\omega^{\prime \prime}(t) \quad \text { for any } \quad t \in[0,1] .
\end{aligned}
$$

Define a G-homotopy

$$
L: S(E) \times[0,1] \rightarrow V_{m}^{\wedge}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

as, for $x \in S(E)$ and $t \in[0,1]$,

$$
\begin{aligned}
& L(x, t)=K^{\prime}(x, 2 t) \quad \text { if } \quad 0 \leq t \leq 1 / 2, \quad \text { and } \\
& L(x, t)=j H\left(j^{-1} g^{\prime}(x), 2 t-1\right) \quad \text { if } \quad 1 / 2 \leq t \leq 1
\end{aligned}
$$

Then

$$
\begin{aligned}
& L_{0}=f^{\prime}, \quad L_{1}=g^{\prime}, \quad \text { and } \\
& L(x, t)=j \omega^{\prime} * j \omega^{\prime \prime}(t) \text { for } \quad x \in D^{\prime} \quad \text { and } t \in[0,1] .
\end{aligned}
$$

$j \omega^{\prime} * j \omega^{\prime \prime}$ is homotopic to the constant path at $j\left(y_{0}\right)$ rel. $\{0,1\}$. So we may deform L to a G-homotopy

$$
L^{\prime}: S(E) \times[0,1] \rightarrow V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)
$$

such that

$$
\begin{aligned}
& L_{0}^{\prime}=f^{\prime}, \quad L_{1}^{\prime}=g^{\prime}, \quad \text { and } \\
& L^{\prime}\left(x_{0}, t\right)=j\left(y_{0}\right) \text { for any } t \in[0,1]
\end{aligned}
$$

Therefore f^{\prime} is G-homotopic to g^{\prime} rel. x_{0}.
Q.E.D.

Now suppose $\operatorname{dim}_{R} E^{G} \geq 2, x_{0} \in S\left(E^{G}\right)$ and $y_{0} \in S\left(E^{G} \oplus F^{G}\right)$. Let λ be the real one-dimensional subspace of E spanned by x_{0}, and let λ^{\perp} be the orthogonal complement of λ in E. We may identify $S(E)$ with a nonreduced suspension

$$
\Sigma S\left(\lambda^{\perp}\right)=[0,1] \times S\left(\lambda^{\perp}\right) / \sim
$$

Under this identification $x_{0}=[0, x]$ and $-x_{0}=[1, x]$ for $x \in S\left(\lambda^{\perp}\right)$. Let Y be one of $S(E \oplus F)$ and $V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)$. Put $z_{0}=y_{0}$ if Y is the former, and $z_{0}=j\left(y_{0}\right)$ if Y is the latter. Then we may give a group structure to $[S(E), Y]_{G}$ as follows. Let $[f],[g] \in[S(E), Y]_{G}$. By Lemma 8 we may choose f and g in such a way that $f\left(-x_{0}\right)=z_{0}$ and $g\left(x_{0}\right)=z_{0}$. Define $h: S(E) \rightarrow Y$ as, for $[t, x] \in$ $\Sigma S\left(\lambda^{\perp}\right)=S(E)$,

$$
\begin{aligned}
& h([t, x])=f([2 t, x]) \quad \text { if } \quad 0 \leq t \leq 1 / 2, \quad \text { and } \\
& h([t, x)]=g([2 t-1, x]) \quad \text { if } \quad 1 / 2 \leq t \leq 1
\end{aligned}
$$

Define $[f]+[g]=[h]$. This gives a group structure to $[S(E), Y]_{G}$, and the transformation

$$
j_{*}:[S(E), S(E \oplus F)]_{G} \rightarrow\left[S(E), V_{m}^{\Lambda}\left(E \oplus F \oplus \Lambda^{m-1}\right)\right]_{G}
$$

becomes a group homomorphism. We note that this group structure does not depend on the choice of $x_{0} \in S\left(E^{G}\right)$ and $y_{0} \in S\left(E^{G} \oplus F^{G}\right)$.

References

[1] H. Hauschild: Zerspaltung äquivarianter Homotopiemengen, Math. Ann. 230 (1977), 279-292.
[2] D. Husemoller: Fibre bundles (second edition), Springer-Verlag, New York-Heidelberg-Berlin, 1975.
[3] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Math. (Rozprawy Mat.), 134 (1976).
[4] N. Steenrod: The topology of fibre bundles, Princeton University Press, Princeton, 1951.

