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alla{_I—(ﬂlall_alZ)bl_'_alZaé—l_MzaleZ on T,.

Suppose that k,~¢€k, in V, for &=1 or —1. Since k,~0 on T,, one of the
following systems of equations holds.

{ﬂqau =0, {l”lall_alz =0,

an—paot = 0. pa0lyy = 0.

Using p,p,#+0, we can show that it is impossible. This completes the proof.

Now we return to the proof for Case 2. Without loss of generality, we
may assume that ¢,F, N F, contains ¢*. Suppose that there exists a curve of
type IV on ¢, F; in ¢, F;NF,;. Let ¢ be a simple closed curve of type IV on
@,F, which bounds a Mobius band B such that BN F,=cUc*. Since BNV,
is an annulus, it follows from Assertion B that ¢ is of type IV on F,. Hence ¢
bounds a Mobius band B’ on F,. Let Fj denote the surface obtained by de-
forming F,—B’U B slightly so that it is disjoint from B. Then, as is sim-
ilar to Case 1 [Fig. 4.1], @, F4N F4 contains fewer curves of type IV on ¢ F}
than @, F;NF,. Repeating these procedures, we can show that ¢, is equivalent
to @, such that @,F; N F; does not contain a curve of type IV on @,F, and F;.

Suppose that @,F,; N F, contains at least two curves of type III on ¢,F,.
Then there exists an annulus 4 on @,F; such that ANF,=0A4. Let A’ be
an annulus on F; which bounds 04. Deforming F;—A’'UA slightly until it
is disjoint from A, we obtain A’ such that @,F{NFj; has fewer components
than @,F;NF,. Hence we can find an involution ¢ which is equivalent to
@, such that @F; N F, consists of ¢* and at most one curve of type III on @F;,.
If @F,NF; contains a curve ¢ of type III, then ¢ is g-invariant. Since any
two-sided curve in @F; N F; is not g-invariant [12], the proof is completed.

Case 3. We will show that this case can not occur except for wu,u,=—2.

Assertion C. Suppose that p,u,+=—2. Let 1, and I, be disjoint simple closed
curves on T, such that =l, is of type I1 or V, and =nl, is of type 111 on F,. Then I,
is not homologous to &l,, for E=1 and —1,in V,.

Proof. Let p be an autohomeomorphism of F, such that pzl, coincides

oy o
with 8N(c,) or ¢, and prl,=b*. By[ e
Qg Oy
to p™. Then, by Lemma 3.2, [, is homologous to a,b,—a;b, and [, is homo-

logous to either

] we denote a matrix corresponding

E("a21af—l’f1a21b1_azzaé‘f‘(azr—ﬂzazz)bz)
or
E(0tna]+ (110 — Q)b+ 5+ pa0tih,), for € = 1 or —1,0n T;.
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and pc=0N(cu), u=1, 2 or 3. An annulus BNV, has the boundaries &, and
k; such that wky=c’ and wk=c. If we suppose that B'Dc’, then pc=0N(c,)
or ON(c;). Hence, in order to show that B'D¢’, it suffices to prove that k¢
Pl —P7les, ple; and —pT; in V,, where p denotes the lifting of p. Let

on a:j be a matrix in GL(2, Z) corresponding to the isotopy class of p~!. Then

Ay A
it follows from Lemma 3.2 that

pTIC~0atph —anbs, pTiC~— (azz‘l‘ a21)b1 + (a21+a11)b2
and
~—1

piCy~—aphtayb, in T,.

Since a0, —apo,=--1, it can be easily shown that k=p"1¢,xp™'¢,, —p~'Cy,
p'¢; and —p7ig; in V,. Let F} be the surface obtained by deforming F,—
B’ U B slightly keeping the exterior of N(B) fixed until it intersects B in ¢’ [Fig.
4.1].

l -/
1 ¢ is not @-invariant. 1 ¢’ is p-invariant. 1
o, F} o,y o F3
Fig. 4.1

Then ¢, F;NF4 has fewer components that ¢, F;NF;. Since we can deform
Fj onto F, by an ambient isotopy, we obtain an involution ¢, such that @,F; U F,
is isotopic to @, F5U F{ in L(2a, B). Repeating these procedures, we can show
that ¢, is equivalent to @ such that @F, N F, consists of three curves of type II
on ¢F; and F;.

Case 2. In this case each curve of ¢, F;NF; is of either type I, type III
or type IV.

Assertion B. Let k, and k, be simple closed curves on T, such that =k, is of
type I or IV, and nk, is of type 111.  Then k, is not homologous to Ek,, for E=1 and
—1,mnV,.

Proof. Let p be an autohomeomorphism of F; such that pzk, coincides

with ¢* or ON(c*), and prk,=a*. By T

2] we denote a matix in GL(2, Z)
Oa1 Oy

corresponding to the isotopy class of p~!. Then, by using Lemma 3.4, &, or
—k, is homologous to either

/’ ’
— 01— i Oyby — Q@+ (0t — p2012) b,
or
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Idxi: MxS(E®F)— Mx VNEBFDHA™)

induces a bundle embedding j: B'~>B. There is a one-to-one correspondence
between G-maps from M to VA(EPF@HA™ ) and cross sections of B, and
there is also a one-to-one correspondence between their homotopies. This
shows that the following two lemmas are equivalent:

Lemma 3. Let
f: M — VA EPFPA™T)
be a G-map, and let

P: M %[0, 1] - VAEDFHA™Y)

be a G-homotopy with Py=f|0M and P,(0M)Ci(S(E@F)). Then P exterds to
a G-homotopy

Q: Mx[0, 1] - VAEGFHA™)
with Qu=f and Q,(M)C j(S(E®F)).

Lemma 4. Let N==M|G. Let s: N—B be a cross section of B, and let P:
ON X [0, 11=>B|0N be a homotopy of cross section of B|ON with P,=s|0N and
P(ON)Cj(B'). Then P extends to a homotopy of cross section of B, Q: NX
[0, 1]—B, with Q,=s and Q,(N)Cj(B").

We give a proof of Lemma 4 making use of the obstruction theory. Refer
to [4; Part III] for the obstruction theory.

Proof of Lemma 4. Since N is a smooth manifold, we obtain a triangula-
tion of N. Let n=dim S(EGF). Then dim N<n, and S(EPF), which is
the fibre of B’, is (n—1)-connected. So the cross section j'P, of B’'|0N
extends to a cross section s;; N—>B’ of B". We see from Proposition 1 that
Va(E®F@A™™) is also (n—1)-connected. Let N"~! denote the (n— 1)-skeleton
of N, which contains dN. Then P extends to a homotopy of cross section,

R: N*1x[0, 1] - B|N*!,

with Ry=s|N"!and R,=js,|N*"'. So, if dim N<n, the lemma is proved.

Now let dim N=n. Let B(z,) and B'(r,) be the bundles of coefficients
associated with the bundles B and B’ by the n-th homotopy group, respectively.
Also let C"(N; B(r,)) and C"(N; B’(x,)) be the groups of n-cochains of N
with coefficients in B(z,) and B'(,), respectively. The bundle embedding
7: B’=>B induces a group homomorphism

jx: C'(N; B'(m,)) = C"(N; B(ry)) -

We see from Proposition 1 that 7 is an epimorphism. Let
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homotopy set.
Our result is

Theorem 2. Let E, F be representations of a compact Lie group G over
A. Let

Jx: [S(E), S(EDF)]e — [S(E), Va(EDFOA™ )]s
be the transformation induced from the G-map
J: SEEQF)— Va(EQFDA"™).

Then

(@) Jx %o surjective,

(b) jx 25 bijective in particalar in each case of the followings (1), (ii):

(i) A=R, dimgE¥ is odd for any HEWE, F)={H&WM,(E)|dimz F¥=0},
and

7= Iluewe,r rat [S(E), S(EOF)lc = Muene,n[S(E), S(E*OF)]
is i1jective,

(i) A=C or Q, and r is injective,

(c) #f dimg EC>2 then [S(E), V(EDFDA™Y)); has a group structure and
J % 15 a group homomorphism.

Note. The injectivity of 7 is studied by several authors, e.g., Hauschild [1;
Satz 4.5].

In the subsequent sections we prove Theorem 2. Section 2 is devoted to
preliminary lemmas. Section 3 is devoted to proving the surjectivity of jy,
and section 4 is devoted to proving the injectivity of j.. In section 5 we give
a group structure to [S(E), Va(EQF@A™ )], so that j, is a group homomor-
phism.

2. Preliminary lemmas

Let E, F be representations of a compact Lie group G over A, and let
M be a compact, smooth, free G-manifold with dim M <dim S(E@F). Con-
sider the fibre bundles

B=MX;Va(EQFOA™ ) — M|G
with fibre Vi(E®@F@®A™™"), and
B' = M X ;S(EQF)— M|G
with fibre S(E@F). The G-map
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d = d(s, R, js,)€C*(N; B(r,))

be the deformation n-cochain. (See [4; p 172].) There is d’€C*(N; B'(,))
with 7,(d")=d. By [4; 33.9] there is a cross section s, of B such that s, agrees
with 5, on N*™! and d(s,, s,)=—d’, where \d(s,, s;) is the difference n-cochain.
(Also see [4; p 172].) We see

d(.;sn .;sz) = f*(d(sn $)) = —d.
We define a homotopy of cross section of B|N*™,
S: N*1x[0, 1] - B|N",
by
R(x, 2t if 0<5t<1/2
S(x, t) _ { . (x ) 1 /
75(x) if 1/2<:<L1.
By [4; 33.7],
d(s, S, 7s;) = d(s, R, 7s,)+d(Js,, 75)
=d—d
=0.
By this and [4; 33.8], Sextends to a homotopy of cross section of B, T': N X
[0, 1B, with Ty=s and T,=js,. Let 9N x [0, 1]CN be a collar of 0N in N.
Then we define a homotopy @: N x [0, 1]—B as, for x&N and t€[0, 1],
Qx,t) = T(x,t) if x€N—ONXx][0,1),
Qx, t) = T(x, t|2—r)) if x=(y,r)€0NXx[0,1] and 2t4r<2,
Qx, t) = T(x, t+r—1)/r) if x=(y,r)€0Nx[0,1], 2t+r>2
and 7r=0.

@ is well-defined, and is an extension of P with the desired property.
Q.E.D.
3. The surjectivity of j,
Let E, F be representations of a compact Lie group G over A, and let
Jx: [S(E), S(E®F)ls — [S(E), Vai(ESFOA" )6
be the transformation induced from the G-map
J:S(E@F) — Va(EQFDA™).

The purpose of this section is to prove the surjectivity of j,. Since j is an em-
bedding, it suffices to prove the following fact:
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Lemma 5. Let
f: S(E) = Va(E®F®A™™)
be a G-map, and let N be a compact smooth G-submanifold of S(E) with dim N=
dim S(E). Let
T: Nx[0,1] » V/(E®FDA"™)

be a G-homotopy with T,=f|N and T\(N)Cj(S(EDF)). Then T extends to
a G-homotopy

R: S(E)x[0, 1] = Va(E®FDA"™)
with Ry=f and R(S(E))Ci(S(E®DF)).
Proof. MM(E) is a finite set. Let us number its elements
TYE) = {(H)), (Hy), -+, (Ho)}
in such a way that if <<k then (H,)d(H,). Consider the following Assertion:

ASSERTION. There are compact smooth G-submanifolds M,, M, -+, M, of
S(E) such that
dim M; = dim S(E) for ¢=0,1,--,a, M,DN, and
IntM,'DM,'_IUS(E)(H’,) for i= 1, 2’ ...,a‘

Furthermore there are G-homotopies R®, R®, -+, R® such that

R®: M;x[0, 1] > VAE®FOA™)  for i=0,1, -, a,
R’ =f|M; for i=0,1,-,a,

ROM)C(SEBF) for i=0,1,a,
ROINX[0,1]=T, and

RO|M,_,x[0,1] = R¢D  for i=1,2,-,a.

Lemma 5 follows from the Assertion since M,=S(E). In the following
we prove the Assertion.

N and T satisfy the conditions for M, and R, respectively. Suppose that
My, -+, M;_;, and RO, .-, R¢~D are constructed. Put

M = (S(E)—Int M;_)#: = S(E#)—Int M-, .

Then M is a compact smooth manifold with boundary 0M=MNoM,_,.
Moreover M is N(H;)-invariant, and all isotropy subgroups on M are H;. So
M becomes a free N(H;)/H;-manifold. Regard E#: and F¥: as representations
of N(H;)/H;. By Lemma 3 there is an N(H;)/H;-homotopy
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Q: Mx[0, 1] - VH(EHPFLPA™T)
such that
Qo =f|M ’
Q,(M)Ci(S(E#:pFH:)), and
QoM [0, 1] = RV [OM X [0, 1].

Since G(M)=G X y(up M, we may extend @ to a G-homotopy

Q": G(M)x[0, 1] - G(VH(EE:DFLPA ) C VAN EDFDA™ )
such that
Q =fIG(M),
QIG(M)Ci(S(EDF)),  and
Q' |dG(M) %[0, 1] = RV |3G(M) X [0, 1].
Applying [3; Lemma 1.1] to the G-manifold A=S(E)—Int M;_, and the sub-
manifold G(M) of 4, we obtain compact G-submanifolds K, L of A such that
(i) KUL=A,
(ii) 0L=LNK,
0K=0LU0A=0LUOJM,_,,
aM"_l n aL=¢,
(i) 0M;_,UG(M)CK, and
(iv) K is a mapping cylinder of some G-map

¥t 8L — OM,_,UG(M).

G(M)

NEda
% e

Put M;=M;_,UK in S(E). Then M, is a compact smooth G-submanifold of
S(E) with dim M;=dim S(E), and with Int M;DM;_,US(E)y,. According
to (iv), let us denote a point of K by the form [y, 5], where y€9dL and s€[0, 1].
Under this form [y, 1]=y and [y, 0]=+-(y). We define a G-homotopy

RO: M;x [0, 1] > VAEGFHA™Y)
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as the following: For (x, £)eM;x [0, 1],
RO(x, t) = R6"Y(x, t) if x&M,_,,
RO(x, t) = f([y, s—2t]) if x=[y,s]€eK and 2t<s,
RO(x, t) = RED(Y(y), (2t—9)/2—s) if x=[y,s]€K,
Y(y)eoM;_, and s<2t,
RO(x, ) = Q'(W(y), (2t—9)/2—9)) if x=[y,5]€K,
Y(y)EGM) and s<2t.

M; and R® constructed above satisfy the conditions in the Assertion.
Thus this completes the proof. Q.E.D.

Now let X, Y be G-spaces, and let x,= X¢, y,€Y°. Denote by

[(Xv xo)’ (Y’ yO)]G

the set of G-homotopy classes rel. x, of G-maps f: X—Y with f(x,)=y,.
The following Proposition is required in section 5.

Proposition 6. Let E, F be representations of G, and let x,&S(E°), y,€
S(EC@FC). Then
Ix: [(S(E), %), (S(ED®F), yo)lc = [(S(E), %), (Va(EDFDA™™), j(5o))]e
is surjective.
Proof. Let
f: S(E) = VA(EDFPA"™)

be a G-map with f(x)=j(y,). Let D be a G-invariant, top-dimensional, small
disc in S(E) with x, as its center. We may dzform f to a G-map f’ such that
f'(D)=j(»,) and f'=f rel. x,, By Lemma 5 there is a G-homotopy

R: S(E)x[0,1] > VA(EDFPHA"Y)
such that
Ry=f",
R(S(E)Cj(S(E®F)), and
R(D %[0, 1]) = j(5o) -

Then f’ is G-homotopic to R, rel. x,. This proves the Proposition. Q.E.D.

4. The injectivity of j,

Let E, F be representations of a compact Lie group G over A, and let
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Jxt [S(E), S(E@F)]s — [S(E), VM(ESFOA™ )],
be the transformation induced from the G-map

j: S(EDF)— VHEDFOA™).
The purpose of this section is to prove the injectivity of j, under the assump-
tion (i) or (ii) in Theorem 2.
For any closed subgroup H of G, let
72 =7|S(EFPF?): S(EEDF?) — Vu(EPDFIBA™Y).

The following diagram is commutative:

[S(E), S(EDF)], ELY [S(E), Va(E®FDA™ )]s
Ty rh

[S(E®), S(EFDF)] T [S(E®), Va(E*@F*OA™)]
*

where 7 and 7% are the transformations restricting to the fixed point set by H.
Now suppose

Jxlet) = j«(B)
for a, BE[S(E), S(EPF));. Then, by the commutativity of the above dia-

gram,
j¥ra(er) = jxra(B)

for any closed subgroup H of G. Proposition 1 implies that j§ is an isomor-
phism under the assumption (i) or (ii) in Theorem 2. Thus

7a(@) = 74(B)
for any H. Hence r(a)=r(B). By the assumption 7 is injective, hence a=/.
Thus j, is injective.
5. The group structure

Let E, F be representations of a compact Lie group G over A. Suppose
dimp E€>2. Then, according to [3; Section 6], [S(E), S(E@F)]; has a group
structure. In the similar way we may give a group structure to

[S(E), Va(EDFDA™ )¢
so that
jx¢ [S(E), S(EDF)]e — [S(E), Va(EDFOA™ )¢

is a group homomorphism. To show this is the purpose of this section.
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Lemma 7. Suppose dimp E°=2 and x,= S(E€). Let
w: [0,1] = S(EC)CS(E)
be a path with w(0)=w(1)=x,. Then there is a G-homotopy
H: S(E)x[0, 1] — S(E)
such that

H,=H, =Id, and
H(x,, t) = o(t) for any t<]0,1].

Proof. Choose a homotopy
J: S(E)x[0, 1] — S(E°)c S(E)
such that

Jo=J. = the inclusion, and
J(x, £) = o(t) fo:any t]0,1].

Denote by (E€)! the orthogonal complement of E€ in E, and denote a point of
E by the form x4y where x€E° and y(E®)t. Define

H: S(E)X[0, 1] > S(E)

as
H(x+y, t) = |l=llJ@/ll«ll, )+y if x+0, and
H(x+y, t)=y if x=0.
Then H is a G-homotopy with the desired property. Q.E.D.

Lemma 8. Suppose dimg E°>2, x,&S(E°) and y,&S(E°DF€). Then
the natural transformations

Yt [(S(E), %0), (S(EDF), y0)lc = [S(E), S(EDF)]¢
and
Vai [(S(E), %), (VA(EDFDOA™™), j(yo)]e = [S(E), VA(ESFOA™ )¢

are bijective.

Proof. Consider the commutative diagram:
v
[(S(E), %), (S(EDF), yo)lc —> [S(E), S(EBF)]

Jx I
[(S(E), %), (VR(EDFDA™), j(vo)e o [S(E), VAEDFHA™ Y],
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In [3; Section 6], 4, is already seen to be bijective. The two j, are surjective
by the arguments in section 3. So it follows that ), is surjective.
It only remains to show that +J, 1s injective. Suppose

o) = Yra(B)

for a, BE[(S(E), %), (Va(EBFDA™ ), j(¥,))]ec- Since j, is surjective, there
are G-maps

f g S(E) = S(E®F)

such that f(x,)=7y,, g(x,)=2,, and jf, jg are representatives of «, 3, respectively.
There also is a G-homotopy

K: S(E)yx[0,1] > VM EDFDA" )
with Ky=jf and K,=jg. Define a path
w: [0, 1] = VAH(ECPF°PA™T)
by w(t)=K(x,, t) for t€[0,1]. Then

o(0) = o(1) = j(3) -
By Proposition 1 there is a path

o’: [0, 1] — S(E°@FF®)
such that
o'(0) = o'(1) = y,, and
w=jo’ rel. {0, 1} .
Let D be a G-invariant, top-dimensional, small disc in S(E) with x, as its cen-
ter, and let D’=4D. By radius contraction we may deform K to a G-homo-
topy
K': S(E)x[0, 1] = VHEDFPA™Y)
such that K'(x, t)=jw'(t) for x&€D’ and t€][0,1]. Moreover, if we put f'=
K{ and g’'=XK]{, then
FSE)CISEDF)),
¢/(S(E) CH(SESF)),
and f’, g’ are G-homotopic to jf, jg rel. x,, respectively.
So, to show o=/ we must show that f* is G-homotopic to g’ rel. x,.
(i) Suppose dimg ESPF¢>2. By Proposition 1, jo' is homotopic to the
constant path at j(y,) rel. {0, 1}. From this we may deform K’ to a G-homotopy

K": S(E)x[0, 1] > VAEDFHA")
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such that
Ky=f, Ki’'=¢g, and
K" (x, t) = j(30) forany t€[0, 1].

Therefore f’ is G-homotopic to g’ rel. x,.
(i) Suppose dimp ES@FS=2. Define a path

o”: [0, 1] - S(ESPFC)

by o”’=(0')7}, i.e., 0”()=0'(1—%). Applying Lemma 7 to the path ”, there
is a G-homotopy
H: SESF)x [0, 1] - S(ESF)
such that
Hy—H —1Id, and
H(y, t)= o"(t)  forany t<][0,1].

Define a G-homotopy
L: S(E)x[0, 1] - VHNEDFBA"™)
as, for xS(E) and t€[0, 1],

L(x, t) = K'(x, 2t) if 0<t<1/2, and
L(x, t) = jH(j'g'(x), 2¢.—1) if 1/2<t<1.
Then
Ly=f, Li=¢, and
L(x, t) = jo'*jo”(t) for x&D’ and 1[0, 1]

jo'* jo' is homotopic to the constant path at j(y,) rel. {0,1}. So we may
deform L to a G-homotopy

L': S(E)x[0, 1] > VAEDFDA"")

such that
Li=f, Li=¢g, and
L'(% ) = () forany te[0, 1].
Therefore f’ is G-homotopic to g’ rel. x,. Q.E.D.

Now suppose dimg E¢>2, x,&S(E€) and y,&S(E°PFC€). Let A be the
real one-dimensional subspace of E spanned by x,, and let A be the orthogonal
complement of A\ in E. We may identify S(E) with a nonreduced suspension

SSOE) = [0, 11X SOL)/~ .
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Under this identification x,=[0, ¥] and —x,=[1, x] for x&S(A*). Let Y be
one of S(E@QF) and VHEPFPA™™?). Put 2=y, if Y is the former, and
2,=J(¥,) if Y is the latter. 'Then we may give a group structure to [S(E), Y],
as follows. Let [f], [¢]€[S(E), Y] By Lemma 8 we may choose f and g in
such a way that f(—x,)==, and g(x)=2,. Define A: S(E)—Y as, for [t, x]E€
2S(\)=S(E),

h([t, x]) = f([2t, x]) if 0<#<1/2, and

h([t, ®)] = g([2t—1, x]) if 1/2<t<1.

Define [f]+4[g]=[#]. This gives a group structure to [S(E), Y];, and the trans-
formation

Jxt [S(E), S(EDF)]e — [S(E), VA(EQFOA" )]s

becomes a group homomorphism. We note that this group structure does not
depend on the choice of x,&.S(E®) and y,& S(E°PFC).
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