Ikegami, T.
Osaka J. Math.
17 (1980), 177-186

REMARKS ON THE REGULARITY OF BOUNDARY
POINTS IN A RESOLUTIVE COMPACTIFICATION

Tervo IKEGAMI

(Received January 8, 1979)

Introduction. Let X be a strong harmonic space in the sense of Bauer [2]
and suppose that constant functions are harmonic. In the previous paper
[5], the author studied the regularity of boundary points in a resolutive com-
pactification of X and discussed characterization of regularity, existence of
regular points, sirong regularity and pseudo-sirong regularity, characterization
of harmonic boundary and consideration in the case of open subsets. In this
paper we shall use the same notations and definitions as in [5], and we shall
give some supplementary remarks. '

In §1, we recall the notations and terminologies used in [5]. We reform
characterization of the regularity in Theorem 1 of §2. Theorem 2 in §3 is
the exiremal characterization of pseudo-strong regularity in the case where X
is a Brelot space. The trace filters of neighborhoods of boundary points in
the Wiener compactification X% of X is of some interes:. Using this filters we
can construct in §4 a family of completely regular filters in a metrizable and
resolutive compactification X* of X. A regular boundary point x is said to
have a local property if x is regular for every U(x) N X, where U(x) is a neigh-
borhood of x. The main resul:s of this paper are in §5. It is shown that a
regular point x does not possess a local property in general and x has a local
property if and only if x is pseudo-strongly regular. Further the related pro-
blems are investigated. In the final section, we consider a relatively compact
open set G of a Brelot space and obtain the result, if G is minimally bounded,
then the set of all regular points is dense in the boundary 9G of G, which is a
generalization of a result of Bauer [1].

1. Preliminaries

Let X be a strong harmonic space in the sense of Bauer [2] on which constant
functions are harmonic, and X* be a resolutive compactification of X. On the
boundary A=X*\X we define the harmonic boundary I'={x€A; le_} p(a)=0

for every strictly positive potential p on X}. For feC(A), i.e., a continuous
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real valued function on A, the Dirichlet solution of f is denoted by H,. A
point xEA is termed to be regular if lim H(a)=f(x) for every f€C(A). A
a.yx

point xEA is called pseudo-strongly regular if lim p(a)=0 for every bounded

potential p harmonic in a neighborhood of x. Every pseudo-strongly regular
point is regular but the converse does not hold in general. We set

St = {v; superharmonic functions non-negative on X}

and
M,= {u; probability measures on A satisfying

Sy dp<u,(x)+p,(x) for every veS*},

where f (resp. f) is the lower (resp. upper) semicontinuous extension of f on A

and u, is the greatest harmonic minorant of v and p, is the potential part of .
The main results of our previous paper [5] are the following: a point x&T'
is regular if and only if H,= {€,}, where &, is the Dirac measure at x. As a
collorary we obtain: if
lim [lim R{\V®(a)] <1,
U(x) a—>x
then x is regular, where U(x) is a fundamental system of neighborhoods U(x)

of x. The harmonic boundary is the S*-Silov boundary. For an open subset
G of X, every regular point is pseudo-strongly regular, thus a regular point
has a local property in this case.

2. Characterization of the regularity
We reform characterization of the regularity (Theorem 1 in [5]) in a slightly
different form. Let
Mi= {u; probability measures on A satisfying
Sg du<u,(x) for every veS*} .

Clearly we have H;C M, and M;=M, if x&T. It is noteworthy that .}
may be empty whereas &, H,.

Theorem 1. x&A is regular if and only if M;={€,}.

Proof. If x is regular then x&T, and therefore .= M,={&} [5].
Next, suppose that H; is not empty and consists of a single measure &,, and
let {a,} be a net of points converging to ¥. Let w, be a harmonic measure at
a, i.e.,

gf dw, = H/(a,) for every fEC(A).
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, is a probability measure on A. There exists a subnet {w, } of {w} converg-
ing to a measure p vaguely. u is a probability measure on A. Further, p& ..
In fact, let f€C*(A) with f<lim v, where v&S*, then H,;<v and H,<u,.
Since S fdu— limS f o, =tim H,(a,) <fim,u, implies |(lim ©) du < Tim,u,, we

have p=§,, i.e., o, converges to &, and x is regular.

3. Extremal characterization of the pseudo-strong regularity in
Brelot spaces

In this section, we consider a resolutive compactification of a Brelot space X.
For xe A, we define

S¥ = {H,+p; feC*(A), p is a potential such that lim, p = 0}
and
M¥= {u; probability measures on A such that
Sg du<v(x) for every veS¥} .

Remark 1. pe H¥ if and only if SQ dp<lim, H, for every vE S¥, where
ReMARK 2. H¥={&,} implies M,={E,}; for M, CMF,ie., MF={E}

means that x is regular.
Theorem 2. xEA is pseudo-strongly regular if and only if M¥={E,}.

Proof. Suppose that x is pseudo-strongly regular and that there exists
pEMF such that p=+€,. Let yeSupp p\{x} and fe C*X*), f(y)>0,
f=0 on U(x), where U(x) is a neighborhood of x such that ye U(x). Putu=H,.
There exists a bounded potential p such that #4p> f outside a compact subset
of X. For, we may find a potential p’ such that u+4p’> f outside a compact
subset K of X since u=h, (for the definition of %/, see [6]). On X\K, f <min

(u+p’, 1 f1) <min(u, || fIl)+min(p’ || fI)=u+min(p’, || fl[)=u+p. Here p=
min(p’, ||f||) is a bounded potential. Set p,—=R¥\W®, By hypothesis, lim,p,—=0.
Since lim(#+p;)=>f>0 in a neighborhood of y, we have a contradiction that
0<[lim (ut-p,) dpu <lim, u—f(x)=0.

Next, we prove the converse. We show first that for every yEA, y=+x
there exists v,&S¥ such that lim,v,> m,vyzo. In fact, there is a function
vES¥ such that lim, v>lim, v=g(x), where v=H,+p (by Remark 2); for
otherwise we have &, M¥. Set f=max(g—g(x),0). Then H;+peS¥ and
im, (H,+p)>lim, (H,+p)—g(x)>0=lim, H,=lim, (H,+p), i.e., we may take
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v,=H,+p. Now, let U(x) be a neighborhood of x. For every yedU(x)N A

we associate with v, described above. Then there exists a triple (v,, U(y), §,)
such that

2,>8,>0 on U(y)NX and lim, v, = 0

A finite number of U(y), say {U(y;)}, covers 0U(x) N A. Set 8=min 3§, ,v=39,,
and V=UU(y;). Then v>8 on V' NX and lim, »=0. Since X is a Brelot

space we may also find o> 0 such that @v>1 on dU(x). Then lim, RF\W® =0,
i.e., x is pseudo-strongly regular.

4. The Wiener compaciification

The compactification on which every Wiener funcion is extended con-
tinuously and separates points is called the Wiener compactification and is denoted
by X% [6]. The harmonic boundary of X% is denoted by T'”.

Theorem 3. Every point of TV is pseudo-strongly regular.

Proof. Let U(x) be an open neighborhood of x&T'" in X¥. For a neigh-
borhood V(%) of x such that V(x)C U(x), v:k;’@?wﬁ) is a potential. In fact,
since V(%) N X N X\U(x) N A" =¢, g=min (RF\V®, RY®1%) is a potential ([6],
Th. 3.2.23) and v<gq. =R \Y® on V(x) N X and v has a limit at x ([6], Prop.
4.4). Thus lim, v=lim, v=0, i.e., lim, RF\W®=0,

Let X* be a metrizable and resolutive compactification of X. Then there
exists a family of completely regular filiers {F} each of which converges to a
point of A=X*\X and such that
A) if a superharmonic function v on X is bounded from below and lim infF
v >0 for every F, then v>0,

B) for every F, there exists a superharmonic function v on X such that
limg v=0 and inf {v; X\U(x)} >0 for every neighborhood U(x) of x,
where F converges to x.

Here, a filter &, converging to x, is called to be completely regular if lims
H ,=f(x) for every resolutive function f continuous at x.

In fact, consider the Wiener compactification X% of X. X* is a quotient
space of X%, i.e., there exists a continuous mapping = of X" onto X* fixing
each point of X. Let &5 be the trace filter of the filter of sections of neigh-
borhoods of 2T, i.e.,

Tz = {UZ)NX; U(Z) is a neighborhood of Z in X"} .

Sz converges to x=n(%). The family of filiers {Fz; XET"} is the desired
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one.

For, A) follows from the property of T ([6], Th.3.1.6). As for B) let
XeT”, n(%)=x, {U,x)} be a fundamental system of neighborhoods of x,
and let $=%;. Then v=73,(1/2%) RAw»® fulfills the requirement of B).
For, given £>0, there exists an integer N such that =3, (1/2")<<€/2. Since
% is pseudo-sirongly regular, lim; R¥VW*®=0 in X". Hence lim; v < &/2.
inf {v; X\U(x)} >0 is trivially seen. All that remains is to prove limg H =
f(x) for every resolutive function f continuous at x. We may suppose that
f=0 and f(x)=0. Let f=for. Since H, is a Wiener function, H, is exiended
continuously onto X”. We denote this extended function by F. f is resolutive
with respect to X%. For, since lim;s>lim 3 s, if s is non-negative super-
harmonic and lim s> f on A, then I'Lnszf on A%, which implies that Hfzﬁfg
and similarly HY >H s» where HY is the Dirichlet solution with respect to X¥.
Noting that H ;=h,, where & is the operator of Constantinescu-Conea([6], p. 26),
we have v >H% for every v>0 superharmonic and v>H 7 outside a compact
subset of X. Hence H,}_Hg and similarly Iingf. Thus, we have Hz=

H,=HY. Therefore S(i’— F)do” =0 andg |P—F|do” =0, i.e., F=F do” —ae.,

where " is the harmonic measure in A¥. We shall prove that F(x)=0. For
otherwise, since F' and f are coniinuous at ®, F&f in a neighborhood of %, but
this is impossible since this neighborhood is not of d"-harmonic measure zero

([6], Th. 3.2.19).

5. The local property of regular points

Let X* be a resolutive compactification of X. We consider G=X N U(x),
where U(x) is an open neighborhood of x&A. The closure G in X* is a com-
pactification. 'The boundary of G is denoted by A(G). A(G)=0G U35, where
0G=A(G)NX and 6=A(G)NA. Obviously we have x€34.

Proposition 1. G is a resolutive compactification.

Proof. Let feC*(A(G)) and f; be a finite continuous extension of f|§
onto A, where f|8 is the resiriction of f onto §. Denoting by s, (resp. s,) a
hyperharmonic function on G, bounded from below, lim s,>f--H; on 9G,
5;>0 outside a compact subset of X (resp. a hyperharmonic function on X,
bounded from below, lim s,> f; on A), we have

f—H;+H; =f ondG
fl :f on §

Hence, H} <Hf:%, +H,, and similarly ﬂfzﬂfﬁf{,{;}—H s, where Hf is the
Dirichlet solution with respect to G and for the definition of H7'* we refer to

liﬂ (51+32) >
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[6]. Thus we have Hf=H§{=H{-%, +H,, since Hj%, =H%%, ([6], Th.
1.2.7).

Proposition 2. If x is irregular for X* then x is trregular for G.

Proof. Suppose that x is regular for G. For a function f€C(A), let

f on 8
= {H, on 9G

It is easily seen that ¢ is resolutive and Hg=H, on G. From this we derive
lim, H; = lim, H] = ¢(x) = f(x)
which implies that x is regular for X*.

The following example shows that the converse does not hold in general.

ExampLE. Let X={|2|<<1}\{—1/2,1/2}. We identify the two points
—1/2 and 1/2, and denoe it by e. The Green function of {|z|<<1} with pole
at 1/2 is denoted by %,. We consider the compactification of X such that A=
{|2]=1} U {¢}, and the harmonic structure given by #,-harmonic functions, i.e.,
the quotient of usual harmonic functions by #,, The compactification X* is
resolutive and H,=f(e) (the constant function). Let G=X\K, where K==
{ty; v is real and |y| <1/2}. e is regular for X* but it is irregular for G.

A strictly positive superharmonic function v, on X satisfying lim, v,=0 is
called a weak barrier of x.

In a resolutive compactification of a Brelot space, if T' contains at least
two points every regular point has a weak barrier. In the above example e
has no weak barrier. We know an example of an irregular point with weak
barrier ([7], p. 253) If X is a Brelot space, the existence of a (strong) barrier
v, at x,i.e., U, is a positive superharmonic function satisfying lim, v,=0 and
inf {vy; X\U(x)} >0 for every open neighborhood U(x) of x, is equivalent to
lim, Rf\*=0 for every compact set K.

Theorem 4. Suppose that x has a weak barrier. Then x is regular for X*
if and only if x is regular for X\K for every compact subset K of X.

Proof. By Proposition 2, it is enough to prove the “only if”” part. Sup-
pose for a moment that x is irregular for G, where G=X\K. Then x<T.
We shall see that there exists f,eC={feC"(AUOK); f=0 on 8K} such
that lim, H <lim, Hf. In fact, if we have lim, Hi=f(x) for every f&C(,
then 1im, H§=g(x) for every g>0 continuous on AUSK. For, letting
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on A
g1={g

0 on 0K
and
_ {0 on A
£2= g on 0K

we have lim, H{ =g,(x)=g(x) and 0< HE,<||g,/|H], where 4 is the characteri-
stic function of 0K. From 1—+&C, it is derived that lim, H§ =0 and lim, H,
=0. Select a number ¢ such that

lim, HY, <y <lim, HY, and fy(x) % .
By the theorem of Hahn-Banach, there exists a probability measure on AU 0K
such that

v= Sf" dp and Sanl vdp<lim, u, for every vES*(G).

Obviously p=&,. Since Sl_lg v, dp< lim, v,=0, where v, is a weak barrier of
x, we have Supp uC A. Take a point y& Supp p\{x} and g&C*(A) such that
g(x)=0 and g>0 in a neighborhood of y. We have

HS = H

4

on G,
where

_{g on A
8= \m.  onok

4

We may find a potential on G with lim (H{ +p)>g on AUSK. Hence
flim (z15,+2) dn={e dn = | 2 du>o0.
On the other hand,
[tim (#16,+) dn<Tim, HE, = Tim, H, = g(») =0,
which is a contradiction.

Let x€A be regular for X*. If x is regular for every X N U(x), then «x is
said to have the local property.

Theorem 5. x has the local property if and only if x is pseudo-strongly regular.

Proof. We need to prove the “only if”” part. We shall prove lim, Rf\W®
=0 for every U(x). Let G=XNU(x) and f&C*(A(G)) such that f(x)=0
and f=1 on 0G. Consider a non-negative superharmonic function s with
lim s> f on A(G). We define
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! on X\U(x)
T {min(l,s) on U(x) .

§; is superharmonic on X and RY\VV® 5. Therefore RIVHO<HE in G, and
lim, H¢=f(x)=0 implies lim, Rf\W® =0,

Lemma. Suppose that x is regular for X* and lim, Rf\'®=0 for a
neighborhood U(x) of x. Let Uy(x) be a neighborhood of x with U,(x)C U(x),
and let $=U(x)NA, G=Ux)NX. If f,gcC(A(G)) and f=g on §, then
lim, Hf =1Iim, H§.

Proof. Since Hf —HS=H}_, it is sufficient to show that f & C(A(G)) and
f=0 on § implies lim, Hf=0. Let U,(x) be a neighborhood of x such that
U,(x)C Uy(x), and 8'=U,(x)NA. For a function p=C*(A) with o<||f]|
and @=||f|| on A\§ and @(x)=0, there exist a potential p and s&S*(G) such
that

lim (H,+6p) > on A

lim (RH®+&)>Ifll  on 0U(x)
for every €>0. Setting v=H,+||f||RF\Y®+&(p+s) we can readily seen that
v>H¢ and H,+||f||RF\Y®>H¢. Hence lim, Hf <lim, H,+||f|| lim, RF\Y®
=0.

Theorem 6. If x is regular for X* and lim, R\\V®) =0 then x is regular for
X NU(x).

Proof. Let G=XNU(x). Suppose that x is irregular for G. Then

there exists f€C"(A(G)) such that Supp fCé=Uy(x)NA, where U,(x)C
U(x) and lim, H¢=+lim, Hf. We may consiruct a probability measure p on
A(G) such that p=+¢, and

Sli_m vdu<lim,u, for every veS(G).

We assert that Supp uC3, for if g& C*(A(G)) and g=0 on & then 0< Sg dp<

lim, HS=0 by the above Lemma. There exis:s yeSupp p\{x}. Since ye3s

and 8 N (X*\U(x))=¢ we have y&0G. Hence we can find U(y) such that U(y)
cU(x). Let FeC*(X*) with F(y)>0 and F(x)=0, and let

P F on U(y)
T {hF on G\U(y)

There exiss a potential ¢ on X such that for every £€>0 we may find a com-
pact subset K, of X so that
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hy+E&q>F and h,—&<F on X\K,.

Since hp+€g>F, and hp—Eg<F, on G\(K.N U(y)), we have kp>h§ >h$ >hp,
i.e., hy=h§% . Thus we have a potential p on G such that hi +p>F, outside a
compact subset of G and, in particular, in a neighborhood of y. Hence we are
led to a coniradiction

0<{lim (8¢, +p)dn <Tm, b2, = T, hp = 0.

Let G° be the closure of G' in X% (the one-point compactification of X).
Then G° is a resolutive compactification [5]. The boundary of G® is 0G
U{A}. We denote the Dirichlet solution on G® by H?. If the boundary
function f on A(G) is resolutive for G and is constant @ on §=GNA then

= { f on 0G
e at A
is resolutive for G2, and conversely if f’ is resolutive for G2 then
fe { f on 0G
(A ons

is resolutive for G. In both cases H}=H}. x€0G is regular for G if and
only if it is regular for G2. Hence regular point x€0G for G is strongly re-
gular [5].

6. Relatively compact open sets

In this section, we shall assume that X is a Brelot space.

Let G be a relatively compact open subset of X. The outer boundary of
G is defined to be the boundary of G and is denoted by B(G). The harmonic
boundary of G and the set of regular points for G is denoted by T(G) and
R(G) respectively. G termed to be minimally bounded if the interior of G coin-
cides with G. G is minima.ly bounded if and only if 0G=B(G).

Theorem 7. B(G)CR(G)CT(G) ([1j, Satz 17)

Proof. It is sufficient to prove that for every x&B(G) and for every re-
gular region D containing x there exists y& R(G)ND. Since x&B(G) we may
find z€D\G. Consider a regular region V containing & and VCD\G.
The reduced function v=(R¥\?),\7 (the reduced function considered in the
harmonic space X\V) is continuous on G and a=inf {v; G} <inf {v; 0G\D}
=1. v—a is a weak barrier at any point of E={y€09G; v(y)=a}+¢ and all
points of E are regular.
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Corollary ([1], Korollar to Satz 17). If G is minimally bounded, then 0G=

R(G)=T(G).

ReMARK. We know that in a Bauer space T'(G) is the S*(G)—éilov boun-

dary [5], while if G is weakly dermining, R(G) is the (C(G)N S(G))-Svilov boun-
dary [3]. Itis also known that under the axiom of polarity dG\R(G) is polar

[4,, therefore R(G)=TI(G). However it is still an open question whether it is
true or not for an arbitrary relatively compact open subset G of a Brelot space.

(1]
(21
[31
(4]
[5]
(6]
[7]

References

H. Bauer: Silovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier 11
(1961), 89-136.

H. Bauer: Harmonische Riume und ihre Potentialtheorie (Lecture Notes in
Math. 22) Berlin-Heidelberg-New York, Springer, 1966.

N. Boboc and A. Cornea: Convex cones of lower semi-continuous functions on
compact spaces, Rev. Roumaine Math. Pures Appl. 12 (1967), 471-525.

C. Constantiescu and A. Cornea: Potential theory on harmonic spaces, (Grund-
lehren der math. Wissenschaften in Einzeldar. 158) 1972.

T. Tkegami: On the regularity of boundary points in a resolutive compactification of
a harmonic space, Osaka J. Math. 14 (1977), 271-289.

C. Megea: Compactifications des espaces harmoniques (Lecture Notes in
Math. 222) Berlin-Heidelberg-New York, Springer, 1971.

L. Naim: Sur le role de la frontiére de R.S. Martin dans la théories du potentiel,
Ann. Inst. Fourier 7 (1957), 183-281.

Department of Mathematics
Osaka City University
Sugimoto-cho, Sumiyoshi-ku
Osaka 558, Japan





