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Introduction. In the study of submanifolds of a riemannian manifold,
the notion of an isotropic submanifold has been introduced by B. O'Neill [13]
as a generalization of a totally geodesic submanifold. On the other hand, as
another generalization of a totally geodesic submanifold, there is the notion of
a submanifold with parallel second fundamental form. It is interesting to
study submanifolds that belong to both classes, in particular, those which are
not totally geodesic, that is, to study nonzero isotropic submanifolds with para-
llel second fundamental forms. These submanifolds have the property that
every geodesic in the submanifold is a circle in the ambient riemannian mani-
fold (K. Nomizu [11]).

Now, as typical examples of such submanifolds, we have the following
two; an extrinsic sphere and a nonzero isotropic Ka'hler submanifold with
parallel second fundamental form. The former submanifold is totally um-
bilical and the latter is minimal.

When the ambient riemannian manifold is a symmetric space, extrinsic
spheres have been studied by B.Y. Chen ([2], [3], [4]). Moreover when the
ambient riemannian manifold is a complex projective space with Fubini-Study
metric, nonzero isotropic Kahler submanifolds with parallel second fundamen-
tal forms have been studied by K. Nomizu [11] and T. Itoh [8].

In this paper, we shall show the following two results:
I) If the ambient riemannian manifold is a symmetric space, a com-

plete extrinsic sphere of dimension ̂ 2 is isometric to a simply connected real
space form (Theorem 8).

II) If the ambient riemannian manifold is a Hermitian symmetric space,
a complete nonzero isotropic Kahler submanifold with parallel second fun-
damental form is the Veronese submanifold of degree 2 in some totally geodesic
complex projective space in the Hermitian symmetric space (Theorem 25).

The author wishes to express his hearty thanks to Professor M. Takeuchi
and Professor Y. Sakane for their useful comments during the preparation of
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the present paper.

1. Prelimίnares

Let Mm be an m-dimensional riemannian manifold furnished with a rie-
mannian metric < , > and Mn be an w-dimensional riemannian submanifold in
Mm. Denote by V (resp. V) the riemannian connection on M (resp. M) and
by R (resp. R) the riemannian curvature tensor for V (resp. V). Moreover
we denote by σ the second fundamental form of M, by D the normal connec-
tion on the normal bundle N(M) of M and by Rx the curvature tensor for D.
For a point p in Λf, the tangent space Tp(M) is orthogonally decomposed into
the direct sum of the tangent space Tp(M) and the normal space Np(M). For
a vector X^Tp(M), the normal component of X will be denoted by Xx. Put

Nι

p(M) = {<r(X, Y)eNt(M); X, YΪΞTP(M))* ,

where {*}# means the i?-span of *. It is called the first normal space of M.
Then we have the orthogonal decomposition

NP(M) = Nl{M)+{Nι

p(M))±,

where {Nlp{M))L is the orthogonal complement of N\{M) in NP(M). Note
that for a vector ζ in (iV^M))-1, the shape operator Aζ for ζ vanishes on Tp(M).
(Recall here that the shape operator Aζ for ζ^Np(M) is a symmetric endo-
morphism of Tp{M) satisfying <Aζ(X)y Y>=<σ(X, Y), 0 for all X, F(Ξ Γ,(M).
It is also characterized by that

Vxζ=-AζX+Dxζ

for a vector field X of M and a normal vector field f.)
Now we recall the following fundamental equations, called the equations

of Gauss, Codazzi-Mainardi, and Ricci respectively.

(l.i) <R(x,Y)z, wy = <R{x,Y)z,

-<MX,W

(1.2) {R(X,

for X,Y,Z,WeTp(M) and ζ,v<=Np(M). Here V* is the covariant deriva-
tion associated to the submanifold M(ZM, defined by

(Via) (Y,Z) = Dxσ(Y,Z)-σ{VxY,Z)-σ{Y, VXZ)

for vector fields X,Y,Z of M. The second fundamental form σ is said to be
parallel if V*σ=0. If σ is parallel, we have
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(1.4) Dx(σ(Y,Z)) = σ{VxY,Z)+σ{Y,VxZ),

(1.5) {R(X, Y)Z}± = 0 .

Moreover we have the following

Lemma 1. If σ is parallel,

R\T,S)σ{X, Y) = <τ(R(T,S)X, Y)+σ(X,R(T,S)Y)

for vector fields, T, S, X, Y of M.

Proof. By (1.4),

R±(T,S)σ(X,Y) = DτDsσ(X,Y)-DsDτσ(X,Y)-DlτsYτ(X,Y)

= <τ(VτVsX,Y)+σ(VsX,VτY)+<τ(VτX,VsY)

+σ(X,VΓVsY)-<r(VsVτX,Y)-σ(VτX,VsY)

-σ{VsX,VτY)-σ(X,VsVτY)-σ(Vlτ,s}X,Y)

-σ{X,VίTiS,Y)

= σ(R(T,S)X,Y)+σ(X,R(T,S)Y).
q.e.d.

For a given λ^O, a riemannian submanifold M in a riemannian manifold
M is called a X-isotropίc submanifold if | σp(X,X) | =X for any point p in M and
any unit tangent vector X in Tp(M). In particular, a 0-isotropic submanifold
is totally geodesic.

Now we study nonzero isotropic submanifold with parallel second fundamen-
tal form. At first, we recall the notion of circles in a riemannian manifold M.

A curve xt of M parameterized by arc length is called a circle, if there exists
a field of unit vectors Yt along the curve which satisfies, together with the unit
tangent vector Xt=Jtty the differential equations

VtXt = kYt and VtYt = -kXt,

where k is a positive constant, which is called the curvature of the circle xt. Let
p be an arbitrary point of M. For a pair of orthonormal vectors X and Y in
Tp(M) and for a given constant k>0, there exists a unique circle #,, defined for
t near 0, such that

*0 = p, Xo - X, and ( V A ) N = k Y.

If ilί is complete, #, is defined for — oo<ί<-f oo. Moreover, it is known
that a circle is characterized as a 1-dimensional submanifold immersed in M
which has nonzero parallel mean curvature vector (See [12]).

Now a nonzero isotropic submanifold with parallel second fundamental
form has the property as follows.
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Lemma 2 (K. Nomizu [11]). If M is a \(>0)-isotropic submanifold in
M with parallel second fundamental form, every geodesic in M is a circle with cur-
vature λ in M.

2. Extrinstic spheres in a symmetric space

A nonzero isotropic submanifold Mn with parallel second fundamental
form is called an extrinsic sphere in Mm if it is a totally umbilical submanifold in
Mm. If moreover n-\-l=m, it is called an extrinsic hyper sphere in Mm.

In this section, we study a complete extrinsic sphere Mn(n^2) in a sym-
metric space Mm. Since σ is parallel and Mm is a locally symmetric space, M
is a locally symmetric space. Moreover B.Y. Chen [2] has shown the following

Proposition 3. There exists a unique (n-\-\)-dimensίonal complete totally
geodesic submanifold Nn+ι of constant sectional curvature in Mm such that Mn is an
extrinsic hypersphere in Nn+1.

We see that N in the proposition is a symmetric submanifold of M since N
is complete totally geodesic in M. Now we know the following (cf. [6])

Lemma 4. If N is a symmetric space of constant sectional curvature, it is
isometric to one of the followings: a sphere, a real projective space, a real hyperbolic
space, and an abelian group with a bi-invariant metric.

We study an extrinsic hypersphere in each N of Lemma 4. The com-
plete totally umbilical hypersurfaces of simply connected real space forms are
well known (See [14], for example), and they aie all extrinsic hyperspheres.
Thus we have the following

Proposition 5. // N is a euclίdean space Rn+ι> M* is isomefric tυ a sphere
Sn. If N is a sphere Sn+1> Mn is isometric to a sphere Sn. If N is a real hyperbolic
space Hn+1(R), Mn is isometric to one of Sn, Rn, or Hn(R).

Proposition 6. If N is a real projective space Pn+1(R), Mn is isometric to Sn.

Proof. Let π: Sn+1-*Pn+\R) be the canonical covering map and choose
a point o in M. Since M is an extrinsic sphere in Pn+1(R), each geodesic in M
starting from o is a circle in Pn+1(R) with the mean curvature vector Ho at o.
Take a point p^Sn+1 so that π(p)=oy and consider the subset M = |J {Im xt}

of Sn+1, where xt runs over all circles in 5 n + 1 starting from p with initial tangent
vectors in π%p(T0(M)) and with the initial mean curvature vector π*p(H0).
Then we see that M is a small sphere in Sn+1 and that π maps M onto M. Now
we show that π\M is injective. If π(q)=π(r) for two distinct points q,r in
M9 q and r are antipodal in Sn+1. Let xt be a geodesic in M joining q and r.
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Then xt is a circle in 5n + 1, since M is a small sphere in Sn+1. This contradicts
the fact that q and r are antipodal in Sn+1. Hence π \ M is injective, and M
is a sphere. q.e.d.

Proposition 7. If N is an abelian group with a bi-invariant metric, Mn is
isometric to Sn.

Proof. Let π: Rn+1-+N be the riemannian covering map. Then the
covering transformations are parallel translations of i?n+1. As in the proof of
Proposition 6, we construct a sphere M in Rn+ι. Then π maps M onto M.
Now we show that π\M is injective. If π(q)=π(r) for two distinct points q, r
in iίf, there exists a covering transformation T such that τ(q)=r. Since 7r(M)
=Λf, there exist a neighbourhood [/ of q in i?n+1 and a neighbourhood F of
r in Rn+1 such that τ(f/ΓiΛΪ)==FnM. Since T is a nontrivial parallel transla-
tion of i?n+1 and M is a sphere in Rn+1> this does not occur. Hence π \M is in-
jective and thus ikf is a sphere. q.e.d.

Summing up our results, we have the following

Theorem 8. // Mm is a symmetric space and Mn(n^2) is a complete ex-
trinsic sphere in Mm, then Mn is isometric to a simply connected real space form.

REMARK 9. In [2] and [7], B.Y. Chen and C.S. Houh have shown that if
Mn(n^2) is a complete simply connected extrinsic sphere with flat normal con-
nection in a Hermitian symmetric space Mm, then dim Λf<rank M. Theroem
8 shows that the assumption of simply-connectedness of M may be omitted.

REMARK 10. On the classification of complete extrinsic spheres in a sym-
metric space, the classification of totally geodesic submanifolds N in Proposi-
tion 3 has been still left, but the maximum of dimensions of such N in an ir-
reducible symmetric space has been studied by B.Y. Chen and T. Nagano [5],

3. Isotropic Kahler submanifolds

Let M be a Kahler manifold furnished with an almost complex structure /
and a Kahler metric < , > and M be a Kahler submanifold in M. In this
case, both the tangent space Tp(M) and the normal space NP(M) are invariant
under the action of/. Since

σ{JX,Y) = σ(XJY)=J{<τ(X,Y))

for X,Ye.Tp{M) (cf. [10]), the first normal space N\(M) is also a /-invariant
subspace in Np(M). Recall (cf. [10]) that

R(JXJY) = R(X,Y) and JR(X,Y) = R(X,Y)J.
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The same holds also for R.
Let R (resp. H) denote the holomorphic curvature of M (resp. of M).

Since a Kahler imbedding preserves holomorphic planes, we can define the
holomorphic difference

A(X) = H(X)-H(X)

for a unit vector X in Tp(M). If M is a λ-isotropic Kahler submanifold in

My we have

(3.1) A(X) - 2λ2

for any unit vector X in Tp(M)y which is an easy consequence of the equation of
Gauss.

From now on we assume that M iis a λ-isotropic Kahler submanifold
withλ>0. Put

A(X,Y;ZΛW) = <σ{X,Z), σ{Y,W)>-<σ(X,W)9 σ{

for tangent vectors XyYsZyW of M. Then A is a curvaturelike tensor on M
with the holomorphic sectional curvature 2λ2 such that

A(JXJY;Z, W) = A(X,Y;Z, W).

By the theorem of F. Shur, we have

(3.2) A(X,Y;Z,W) = ^{<Y,Z> <X,W>+<JY,Z> <JX,W>-<X,Z> <YyW>

-<JX,Z><JY,W>+2<XJY><JZ, W>}

for tangent vectors X,Y,Z,W of M (cf. [10]). Now we have the following

Lemma 11. For tangent vectors X> Y,Z, W of M,

= ^ {<γyzy <x, W>+<X,Y> <z, wy

Proof. By the J-invariance property of σ> we have

A(JX,Y;JZ, W) = -<σ(X,Z), σ(Y, W)>-<σ(X, W), σ(Y,Z)> ,

and thus

<σ{X,Z), σ{Y, W)> = j {A(X,Y; Z, W)-A{JX,Y;JZ, W)} .

Now the required equality follows from (3.2). q.e.d.

Lemma 12. For tangent vectors X}Z,W of M the shape operator Aσ(zw)
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is given by

Aσl2,w)(X)=^ {<JV,X>Z+<Z,X>W+<ZJX>JW+<JX,W>JZ} .

Proof. For tangent vectors X,Y,Z, W of M, we have

<Aσlz_w)(X), y> = <σ(z, w), σ{x,Y)y.

Now the formula follows from Lemma 11. q.e.d.

4. Isotropic Kahler submanifolds in a Hermitian symmetric space

Throughout in this section, let Mm be a complex m-dimensional Hermitian
symmetric space and Mn be a complex z-dimensional λ(>0)-isotropic complete
Kahler submanifold in Mm with the parallel second fundamental form <r.

Now for a point p in M, set

Ol(M) = Tp(M)+Nl(M),

which is called the first osculating space at p. Note that dimensions of N\{M)
and Op(M) are constant on M, and hence N\M)= \jNftM) and O\M)=

U O\(M) are subbundles of T(M) \ M, the restriction to M of the tangent

bundle T{M) of M.
Now fix a point p in M. Let G be the identity component of the group of

isometries of M, and set

Let § and ϊ be the Lie algebras of G and it, and
let

be the associated Cartan decomposition. Then the tangent space Tp(M) is
identified with m, and hence Oι

p(M) is identified with a subspace of m. Then
we have the following

Lemma 13. The first osculating space O\(M) at p is a Lie triple system in
m, that is, [[Ol(M), 0\{M)l 0l

p(M)}a0l

p(M).

Proof. Since Rp(X,Y)Z=-ad[X,Y]Z for X,Y,Zem (cf. [6]), it is suffi-
cient to show the followings:

(1) Rp(Tp(M),Tp(M))Tf(M)aTp(M)<z0l(M),

(2) RP(TP(M), Tp{M))Nl{M)aN\{M)czOl{M),

(3) Rp(Tp(M), Nl(M))Tp(M)cNf(M)cO\(M),
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(4) Rp(Tp(M),Nl{M))Nl(M)ciOl(M),

(5) R,(Nι

t(M), Nl(M))Tp(M)czOl(M),

(6) Rp(Nl(M),Nl(M))Nl(M)czOl(M),

for each pointy of M.
(1) is seen by the equation (1.5) of Codazzi-Mainardi.
Now we shall prove (2). By the equation (1.3), we have

<R(X,Y)H,v> = <R\X,Y)H,v>-<[AH,Av]X,Y>

for X, Ye Tp(M), H^N\{M), and V(Ξ {N\(M))X. The equation (1.4) shows that
R\X,Y)H^Nι

p{M). Since Av=0, we get

<R(X,Y)H,v> = 0,

and thus R{X, Y)H(Ξ O\{M). But R(X, Y)H is orthogonal to Tp(M) by (1), thus
we have R{X,Y)H^Nι

p{M).
Next we shall prove (3). Since M is a locally symmetric space, we have

(VTR) (X,Y)Z=0 for tangent vector fields X,Y,Z, W on M, and thus

(4.1) VT(R(X,Y)Z) = R(VTX,Y)Z+R(X,VTY)Z+R(X,Y)ΨTZ.

Since R(X,Y)Z is a vector field on M by (1), by the equation of Gauss,

VTR(X,Y)Z = VΓ(^(X,F)Z)+σ(Γ^(X,y)Z).

Similarly, we have

R(VτX,Y)Z=R(VτX,Y)Z+R(σ(T,X)9Y)Z,

R(XiVτY)Z=R(X,VτY)Z+R(X,σ(T,Y))Zy

R(XyY)VτZ = R(X,Y)VτZ+R(X,Y)a(T,Y).

Here VT(R(X,Y)Z), R(VTX,Y)Z, R{X,VTY)Z, and R(X,Y)VTZ are tangent
vector fields on M by (1), and R{X}Y)σ(T,Y) is an iV^MJ-valued vector field
along M by (2), and moreover R(σ{T,X),Y)Z and R(Xfσ{T,Y))Z are normal
vector fields on M by (1) together with the symmetry property of the curvature
tensor R. Thus we have

(4.2) VT(R(X, Y)Z) = R(VTX, Y)Z+R(X, VΓ Y)+R(X, Y)VTZ,

(4.3) σ(T,R(X,Y)Z) = R(σ(T,X),Y)Z+R(X,σ(T,Y))Z+R(X,Y)σ(T,Z).

In particular, by (4.3) and (2)

(4.4) R(σ(T,X),Y)Z+R(X,σ(T,Y))Z(ΞN\M).

Since M is a Kahler submanifold in M, substituting JT (resp. JY) for T (resp.
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Y) in (4.4), we have

(4.5) R{σ{T,X), Y)Z-R(Xiσ{TyY))Z^N\M).

By (4.4) and (4.5), we have R(σ(TyX),Y)ZeΞN\M)y and thus R(Tp(M),Nι

p{M))
TP{M)CZN1

P(M) for each^xΞM.

We shall prove (4). Since M is a locally symmetric space, we have (Vτi?)
(X,Y)H=0 for tangent vector fields X,Y,T on M and iV^iWyvalued vector
field H along M, and thus

(4.6) Vτ(R(XyY)H) = R(VTX,Y)H+R(X,VTY)H+R(X,Y)VTH.

Since R(X,Y)H is an Λ/rl(M)-valued vector field along M by (2),

VT(R(X,Y)H) = -A-RiXtY)H(T)+Dτ(R(X,Y)H).

Similarly, we have

R(VTX,Y)H = R(VτX,Y)H+R(σ(T,X),Y)H,

R(X,VT Y)H = R(X, VΓ Y)H+ R(X, σ(T, Y))H,

R(X,Y)VTH = -R(X,Y)AH(T)+R(X,Y)DTH.

Here R(VTX,Y)H, R(X,VTY)H,DT(R{X,Y)H), <md_R(X,Y)DτH are N\M)-
valued vector field along M by (2) and (1.4), and R(X,Y)AH(T) is a tangent
vector on M by (1). Thus we have

(4.7) -ASlXΎ)B(T) = - R(X, Y)AH(T)+ {R(σiT,X), Y)H

+R(X,σ(T,Y)H}τ,

(4.8) DT{R{X,Y)H)= R{VTX,Y)H+R{X,VTY)H+R(X,Y)DTH

+ {R(σ(T,X), Y)H+R(X,σ(T,Y))H}±,

where {*}τ is the tangent component of *. In particular, by (4.8),

(4.9) R{σ[TJC), Y)H+R(X,σ(T,Y))H<Ξθ\M).

Since M is a Kahler submanifold in M, substituting JT (resp. JY) for T (resp.

Y) in (4.9), we have

(4.10) R{σ{T,X), Y)H-R{X,σ(T,Y))H€Ξθ\M).

By (4.9) and (4.10), we have R{σ(TyX\ Y)H^0\M)y and thus R(Tp(M),
N1

p(M))N1p(M)c:01

p(M) for each/>e;M.

Now we shall prove (5). Since M is a locally symmetric space, we have
(VTR) (X,H)Y=0 for tangent vector fields X,Y,T on M and an iV1(M)-valued
vector field H along M, and thus, as in the proof of (3) and (4),
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(4.11) VT(R(X,H)Y) = R(VrX9H)Y+R(

+ R(X>DτH)Y+R{X,H)VτY+R(X,H)σ{T,Y).

By (1), (3), (4) and (1.4), we have R(σ{T,X),H)Y£Ξθ\M)y and thus R(N\{M),
Nl{M))Tp(M)ClOι

p{M) for each/>EΞM.

At last we shall prove (6). Since M is a locally symmetric space, we have
(VTR)(X,H)H'=0 for tangent vector fields TyX on M and AT1(M)-valued
vector fields H,H' along M, and thus

(4.12)

+ R(X}DTH)H'-R{X>H)AH>{T)+R(X)H)DTH'.

By (2), (3), (4) and (1.4), we have R(σ(T,X),H)H'εΞθ\M), and thus R(Nl(M)y

Nι

p(M))Nι

p{M) c OJ(M) for each ̂ >e M. q.e.d.

REMARK 14. Lemma 13 holds for any Kahler submanifold M with parallel

second fundamental form in a locally Hermitian symmetric space M.

Now let N be the complete totally goedesic submanifold in M through p
with Tp(N)=0l(M) (cf. [6]). Since O\(M) is a/-invariant subspace in TP(M),
N is a Ka'hler sumbanifold in M. Now we have the following

Proposition 15. If M is a complete nonzero ίsotropic Kdhler submanifold

in M with parallel second fundamental form, there exists a unique complete totally

geodesic Kdhler submanifold N in M such that

(a) M is a Kdhler submanifold in N,

and

(b) O\(M) = Tq(N) for any point q in M.

Proof. Let iV be the totally geodesic Kshler submanifold in M defined
as above. Since M is complete, for any point q in M there exists a geodesic
yt in M such that 70=p and Ji=q. By Lemma 2, yt is a circle in M. Since
γ0 and (ψtΎt)t=o a r e vectors in Op(M)=Tp(N), there exists a unique circle j t

in N such^that %=p, 70=70^ and (Vί7ί)/=o:=:(Vί7/)ί=o S i n c e N ί s totally geo-
desic in My 7 is a circle in M with the same initial conditions. Thus we have
Ύt=yt by the uniqueness of circle, and consequently q^N. This shows the
assertion (a). The assertion (b) follows from that both O\M) and T(N)\M
are invariant under the parallel translation of M along a curve in M. q.e.d.

Now we shall calculate the curvature of the Ka"hler manifold M.

Lemma 16. For tangent vectors X,Y,Z, T of M,

R(XJσ(T,Y))JZ+R(X,<τ(T,Y))Z = 0.
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Proof. Substituting /Γ(resp./Z) for Γ(resp. Z) in the equation (4.3), we
have

(4.13) -σ(Γ, R{X,Y)Z) = R(MT,X),Y)JZ+R(XJ<τ(T,Y)JZ

-R(X,Y)σ(T,Z).

By (4.3) and (4.13), we have

(4.14) R(Jσ(T,X),Y)JZ+R(XJσ(T,Y))JZ+R{σ(T,X),Y)Z

+R(X,σ(T,Y))Z=0.

Substituting JT (resp. JX) for Γ(resp. X) in (4.14), we get the lemma, q.e.d.

Let K(A,B) denote the sectional curvature for the plane spanned by or-
thogonal vectors A, B of M.

Lemma 17. For a unit vector Z of M,

H{Z) = 4K(Z,σ{Z,Z)).

Proof Substituting JT (resp JX) for T (resp. X) in (4.3), we have

(4.15) σ(JT,R(JX,Y)Z)=-R{σ{T,X),Y)Z+R(X,σ(T,Y))Z

+ R(JX,Y)σ(JT,Z).

By (4.3) and (4.15), we have

(4.16) σ(T,R(X,Y)Z)+σ(JT,R(JX,Y)Z)

Setting T=X= Y=Z, we have

(4.17) σ(JZ,R(JZ,Z)Z) = 2R(Z,σ(Z,Z))Z+R(JZ,Z)<r(JZ,Z).

When Z is a unit vector of M, by Lemma 11,

(4.18) <σ(/Z,2?C/Z,Z)Z),σ(Z,Z)> = \\R{JZ,Z)JZ,Zy

= -\2R(Z).

By the Bianchi identity and Lemma 16,

(4.19) <R(JZ,Z)σ(JZ,Z),σ(Z,Z)y = -<R(ZJσ(Z,Z))JZMZ,Z)>

-<,R(σ(Z,Z),Z)Z,σ(Z,Z)>

= 2<R{Z,σ(Z,Z))Z,σ(Z,Z)>.

Thus, by (4.17), (4.18), and (4.19), we have

= 4<R(Z,σ(Z,Z))Z,σ(Z,Z)y.
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Since | σ{Z,Z) | =λ, R{Z)=\R[Z,σ{Z,Z)). q.e.d.

Lemma 18. For a unit vector Z of M,

2R{Z,σ(Z,Z)) = ~H(Z)+6X2.

Proof. Substituting JX (resp. JT) for X (resp. T) in the equation (4.7),

we have

(4.20) -A-RUX,Y)H{JT) = -R(JX,Y)AH(JT)

+ {-R(σ(T,X),Y)H+R(X,σ(T,Y))Hy.

By (4.7) and (4.20), we have

= -R{X,Y)AH{T)-R{JX,Y)AHUT)+2{R{X,σ{T,Y))Hy.

If we put X= Y= T=Z and H=σ(Z,Z), where Z is a unit vector of M, we have

(4.21) -AMZtZ)<r(ZtZ)(JZ) = -R(JZ,Z)Aσ(ZtZ)(JZ)

+2{R{Z,σ{Z,Z))σ{Z,Z)Y.

On the other hand, by Lemma 12,

[Aσ{z>z)Z = X2Z, AriZtZ)JZ = -X2JZ,

' U Z = X2JZ,

By (4.22), we have

(4.23)

By (4.22), (1.3), Lemma 1, and Lemma 11, we have

(4.24) <Ajυz,zMz,z)(JZ),Z>

= <R(JZ,Z)σ(Z,Z)MJZ,Z)>

= <R\JZ,Z)σ(Z,Z),σ(JZ,Z)>-<lAalZιΛ, Aσυz,z)]JZ,Z>

= 2<σ(R(JZ,Z)Z,Z),σ(JZ,Z)>-2\*

= 2λ2i7(Z)-2λ4.

Thus, by (4.21), (4.23), (4.24), and (3.1), we have

2K{Z,σ{Z,Z)) = -#(Z)+6λ 2 . q.e.d.

Combining Lemma 17 with Lemma 18, we have

(4.25) R(Z) = 4λ2 and H{Z) = 2λ2
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for any unit vector Z of M. Thus we have proved the following

Proposition 19. If M is \(>0)-isotropic Kdhler submanifold in M with
parallel second fundamental form, then M has constant holomorphic sectional cur-
vatures 2λ2.

Now we calculate the curvature of the totally geodesic Kahler submani-
fold N. The connection on N induced by V will be denoted by the same V
We define a tensor field F on N by

(4.26) <r(A,B)C,B> = \2{<B,C> <A,Dy+<JB,C> <JA,Dy-<A,C> <B,D>

-<JA, C> <JB,D>+2<AJB> <JC,D»

for tangent vectors A,B,C,Ώ of N. Then <F( , ) , > is a curvature-like tensor
with the holomorphic sectional curvatures 4λ2 such that <(?(JA}JB)C,D')=
<f(A,B)C,D> and W = 0 .

Lemma 20. For tangent vectors X, Y,Z of M,

R(X,Y)Z = F(X,Y)Z.

Proof. <R(X,Y)Z,W> and <f(X,Y)Z,W> are curvature-like tensors on
M such that <R(JX,JY)Z,W>=<R(X,Y)Z,W> and <?(JX,JY)Z,W>=
<(F(X,Y)Z,Wy. Since they have the same holomorphic sectional curvatures
4λ2 by (4.25), the theorem of F. Shur shows that

<R(X,Y)Z,W> = <F(X,Y)Z,W> .

Since R(X,Y)Z and f(X,Y)Z are tangent vectors of M, we have R(X,Y)Z
=Ψ{X,Y)Z. q.e.d.

Lemma 21. For tangent vectors T, S,X, Y of M,

R{T,S)σ{X,Y) = r(T,S)σ(X,Y).

Proof. By (i.25) and Shur's theorem,

(4.27) R(τ,s)x = ̂  {<s,xyτ+<js,xyjτ-<τ,xys-<jτ,xyjs

+2<τ,jsyjx}.

By (1.3), Lemma 1, Lemma 11, Lemma 12, and (4.27), we have

(4.28) <R(T,S)σ(X,Y),σ(Z>W)y

= <σ(R(τ, s)x, Y),
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= 2\κτjs>{<z,x> <JY,W>+<JY,Z> <X,W>+<Y,Z> <jx,wy
+<ZJX><Y,W>}.

On the other hand, by (4.26) and Lemma 11, we have

(4.29) <r(T,S)σ(X,Y),<r(Z,W)>

= 2\κτjs>{<z,x> <jγ,wy+<jγ,zy <X,W>+<Y,Z> <JX,W>

+<ZJX><Y,W>}.

Thus we have

= <r(τ,s)σ{X,Y),σ{z,w)>.

Since R(T,S)σ(X,Y)_and ?{T,S)σ{X,Y) are normal vectors by Lemma 13, (2),
and (4.26), we have R{T,S)σ(X,Y)=7{T,S)σ{X,Y). q.e.d.

Lemma 22. For tangent vectors X,Y,Z,T of M,

R{X,σ(T,Y))Z = 7{X,σ{T,Y))Z.

Proof. Note that the equation (4.16) was derived from only V-^=0.
Thus, by W = 0 , we have

(4.30) <r(T,?(X,Y)Z)+cr(JT,r(JX,Y)Z)

By (4.16), Lemma 20, and Lemma 21, we have

(4.31) σ{Ty?{X}Y)Z)+σ{JT3?{JX,Y)Z)

Thus we have R(X,σ(T,Y))Z=r(X,σ(T,Y))Z by (4.30) and (4.31). q.e.d.

Similarly, by (4.6), (4.11), and (4.12), we have the following

Lemma 23. For I G Tp{M) and HQyHuH2<=Nι

p{M), with ρ<=M, we have

R{HQyHx)X = r(HOyHi)X,

R(H0,H1)H2=

Summing up Lemma 20, Lemma 21, and Lemma 22, we have R=f on
N. Thus we have proved the following

Proposition 24. The complete totally geodesic Kdhler submanίfold N in
M is holomorphically isometric to a complex projective space with constant holo-
morphic sectional curvatures 4λ2.
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By Propositions 15, 19, and 24, M is a complete Kahler submanifold in
the complex projective space N with constant holomorphic sectional curvatures
4λ2 such that

(1) M has constant holomorphic sectional curvatures — (4λ2);

(2) M is not contained in any proper complete totally geodesic Kahler
submanifold of M.
It is known (E. Calabi [1]) that such a submanifold M is the Veronese sub-
manifold of degree 2 in N, up to holomorphic isometries of N. Thus we have
the following

Theorem 25. Let M be a Hermitian symmetric space. If M is a complete
\(>0)-isotropic Kahler submanifold in M with parallel second fundamental form,
then there exists a unique complete totally geodesic Kahler submanifold N in M such
that

(a) N is holomorphically isometric to a complex projective space with constant
holomorphic curvatures 4λ2,

and
(b) M is the Veronese submanifold of degree 2 in N.

Corollary 26. If M is a Hermitian symmetric space whose holomorpnic
sectional curvature is non positive for any holomorphic plane, then there exists no
nonzero isotropic Kahler submanifold in M with parallel second fundamental form,

REMARK 27. On the classification of complete nonzero isotropic Kahler
submanifolds with parallel second fundamental form in Hermitian symmetric
space, the classification of totally geodesic Kahler submanifolds N in Theorem 25
has been still left, but the maximum complex dimension n(M) of such N in an
irreducible compact Hermitian symmetric space M is calculated easily by using
the result of S. Ihara [9]. The value of n(M) is; q for M=SU(p+q)IS(U(p)X

£pύq);p-1 for M=SO(2p)IU(p)(p^5) or Sp(p)IU(p)(p^2);[^\

for M=SO(p+2)IS{O(p)xO{2)) (p^5); 5 for M=£6/Spin(10) Γ; 6 for M=
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