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Introduction. By surfaces we mean non-singular algebraic surfaces de-

fined over the field of complex numbers C. A logarithmic K3 surface S is by

definition a surface S with pg(S)=l, κ(S)=g(S)=Q, in which fβ(S) is the
logarithmic geometric genus, κ(S) is the logarithmic Kodaira dimension, and

(7(5) is the logarithmic irregularity. These notions will be explained in § 1.
Let S be a completion of S with ordinary boundary D, i.e., S is a non-

singular complete surface and D is a divisor with normal crossings on S such that

S=S—D. We write D as a sum of irreducible components: D=C1+ + C'ί
Logarithmic K3 surfaces are classified into the following three types:

Type I) pg(S)=ly Then S is a K3 surface and D consists of non-singular
rational curves Ci with negative-definite intersection matrix [(C,-, C )].

Type Πa) ρg(S)=Q and a component CΊ of D is a non-singular elliptic curve;

Then S is a rational surface and the graph of D has no cycles.

Type Πb) pg(S)=0 and D consists of rational curves C .\ Then S is a rational

surface and the graph of D has one cycle.

We define A-boundary DA and B-boundary DB of (S, D) as follows: 1) If

S is of type I, then DA=φ and DB=D. 2) If S is of type Πa, then DA=Cί

(a non-singular elliptic curve) and DB=C2-\ \-Cs. 3) If S is of type Πb, then

DA=Cι+ +Cr that is a circular boundary (for definition, see §1 v)) and

DB=Cr+ι 4- + Cs.

Theorem 1. If S—DA has no exceptional curves of the first kind, then
K(S)+DA~Q.

Next, consider the case where S—DA has exceptional curves. Let p:

S->S* be a contraction of exceptional curves of the first kind on S—DA, i.e.,

S* is a complete surface and p is biregular around DA such that S*—ρ(DA) has

no exceptional curves of the first kind. By Theorem 1, K(S*)-\-p(DA)~Q.

Theorem 2. p(DB) is a divisor with simple normal crossings. Let 2>ί9 •• >Z>U

be the connected components of p(DB). Then 1) if S?f ΓΊ p (AO Φ φ, 2>t is an

exceptional curve of the first kind such that (2»i9 p(DA))=l. 2) If Z{ (Ί p(DA)=φ,
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then 2>f is a curve of Dynkin type ADE on S—ρ(DA). In case S is of type II,

Zi is a curve of Dynkin type A.

For definition of curves of Dynkin type ADE, see § 1. iv).

Theorem 3. Suppose that K(S)-\-DA~Q and DB is a curve of Dynkin type
ADE. // S i* of type Πa, then (S, D) is obtained from one of 4 classes in Table IIa

by l/2-poίnt attachments. If S is of type Πb, then (S, D) is obtained from one of
15 classes in TABLE IIb by canonical blowing ups and attaching several l/2-points.

Theorem 4. Let (S, D) be a d-surafce of which interior S satisfies that
fc(S)=pg(S)=Q andpg(S)=l. Suppose that a component CΊ of D is not rational.
Then q(S)=Q. Next, assume that D consists of rational curves. If <7(S)=0,
then there exists an open subset Sl of S such that ^(5Ί)=0 and g(Sι)=l. Fur-
thermore, if q(S)=l, then there exists an open subset S2 of S such that fc(S2)=Q
andq(S2)=2.

Theorem 5. Let S be a surface with z(S)=pg(S)=Q andρg(S)=\. Then
there exists an algebraic pencil {Cu} on S whose general member Cu is isomorphic

to C*. Hence, S is not measure-hyperbolic. Moreover, the connected component

of Aut (S) is {1} or C* or C*2. Further,

Theorem 6. Let (S, D) be a d-suiface whose interior S satisfies that κ(S)=Q
and fg(S)=l. Then, there exists a proper bhational morphism p: S->S* such
that i) S* is relatively minimal, ii) Pm(S* — p*(D))=l for any m^l, iii) ρ*(D)=
Δ+F has only normal crossings with K(S*)-\-Δ~Q, Y being a curve of Dynkin
type.

(S#, P*Φ)) might be called a supermodel of S (or of (S, D)). In the study
of non-complete surfaces, minimal model (and even 3-minimal model) is not
helpful. Instead, supermodel will play the important role. For full discussion
of the classification theory of surfaces of non-complete surfaces, see Kawa-
mata's recent article [18].

EXAMPLE 1. Let S be a non-singular cubic surface in P3. Let E be a
general hyperplane section on S. Then S — E is a logarithmic K3 surface of
type Πa and the fundamental group πι(S—E)^ {!}. Contracting exceptional
curves of the first kind, we obtain a proper birational morphism p: S— >S^ in

which S*=P2. E1=p(E) is a non-singular elliptic curve on P2. Then
and S-

EXAMPLE 2. Let φ(y) be a polynomial of degree n-\-\ such that 9>(0)ΦO.

Let Γ be the graph (cC2) of a rational function φ(y]\yn~m (0<m<ri). By
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C we denote the closure of Γ in P2. Then P2—Γ is a logarithmic K3 surface
of type Πb.

line

Figure 1.

EXAMPLE 3. Let Φ: C[x, y]-+C[x, y] be a C-automorphism. Put X(x, y)

= Φ(*) and Y(x,y) = Φ(y). Let F(x, y) = Y(x, y)»-mX(x, y)-φ(Y(x, y)), φ
being as in Example 3. Then the closure Cφ of F(F)=Spec k[x,y]/(F) in P2 is

a complement of a logarithmic K3 surface of type Πb if Cφ has an analytically
reducible (i.e., non-cusp) singular point.

For instance, let φ(y)=yz-{-l and Φ (#)=#, Φ(y)=y-{-x?. Then F —

(y+x*)x-(y+*?)*—l. Thus letting Γ be the closure of V(F) in P2, P2-Γ is
a logarithmic KZ surface of type IIb.

EXAMPLE 4. Let C=V((y— of)2— xy2) in C2. Denote by Γ the closure of
C in P2. Then S=P2—C has the following numerical characters: ^=0,
P2=l, κ=

1. Basic notions, notations and conventions

i) d-mantfold and Ij2-point attachment. A pair (F, D) consisting of a
complete non-singular algebraic variety V and a divisor D with normal cros-

sings on V is called a d -manifold. The dimension of (F, D) is understood as
the dimension of V. A 2-dimensional 3-manifold is called a d-surface. We
have a theory of minimal models for 3-manifolds (see [12]). Let (S, D) be a
3-surface. Then D is not a minimal boundary if and only if there is an ir-
reducible component E of D which is an exceptional curve of the first kind such
that (E, D')=\ or 2, D' being defined by D=D'+E. We say that (S, D) is
relatively d -minimal if S— D has no exceptional curves of the first kind and

if D is a minimal boundary.
Let (Pi, DI) and (F2, D2) be 3-manifolds. We say that a morphism

/: Pj— >F2 is a Q-morphίsm when/^DgCA Here/'1^) is the reduced divisor
ofthepuUback/*Z)2.

Let (S, D) be a 3-surface and take a point p<=D. By λ: S1=QP(S)-^S
denote the blowing up at p. Defining DL=\~1(D), we have a 3-morphism

λ: (S1, Dl)-*(S, D). If p is a double point of D, λ is called a canonical blowing
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up. Then we have the linear equivalence:

K(Sl)+Ί?~\*(K(S)+D) ,

where K(Sl) and (̂S) denote canonical divisors on S1 and S, respectively.

If p is a simple point of D, define D* by D1=λ"1(jp)+D*. S*=S1—D* contains

S as an open subset. S* is called a lβ-point attachment to S zip. Conversely,

S is called a l/2-point detachment from *S*. To make things clear, we may say
that (S*, D*) is obtained from (S, D) by attaching a 1/2-ρoint λ"1^)— Z)*([10]).
It is easy to check that

Hence, K(S)-\-D modulo linear equivalence is invariant under canonical blowing
ups and l/2-point attachments.

In general letting (S, D) be a 3-surface, we consider an irreducible curve
E on S satisfying that E is an exceptional curve of the first kind, EΦD, and
(E, D)=l. Such an E is called a D-ex' eptίonal curve of the first kind. Note
that E—D^A1, which is called a l/2-point. S — D is a 1/2-point attachment to

S-D-JE.
ii) logarithmic genera. Let F be an algebraic variety. Then there exists

a non-singular algebraic variety F* such that there exists a proper birational
morphism μ: V*-+V. Let (F*, D*) be a 9-manifold such that F*=F*— D*.

Then we say that F* w <z completion of V* with ordinary boundary D*. Ac-
cording to Deligne [3], we have a sheaf Ωx(log Z)*) of logarithmic 1-forms on
F*. We have the spaces of logarithmic forms:

Γ, (F*) = #°(F*, Ω'(logD*)) , l^i^n;

and

fl°(Γ*, (ΩΛ log/)*)") for w=l, 2, -,

where Ωί(logZ)*)=Λf(Ω1logZ)*) and w=dim F. These spaces depend only
on V. Hence, define

= dim

and

PM(V) = dim J/°(F*, (ΩΛ log D*)m) .

We call #, (F) the logarthmίc i-th irregularity of F and call Pm(F) the logarithmic

m-genus of F. Writing q(V)=-- q^V) 2^άfg(V)=qn(V)=Pl(V), we call them the
logarithmic irregularity and the logarithmetic geometric genus of F, respectively
(see [4], [5]).

iii) D-dίmensίon and logarithmic Kodaira dimension. In general, let F be

a normal complete algebraic variety and D a divisor on F. By Φm we denote
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the rational map associated with | mD \ under the assumption that | mD \ Φ φ.
We define

κ(Dy V) = max {dim ΦW(F) when | mD \ Φ φ} ,

which is said to be the D-dίmensίon of V. If \mD\ is empty for any wΞ>l,
we put κ(Dy F)— — oo. The following two facts ([6]) are very useful in the
study of varieties and divisors.

1) ///e(A> P)^0, — , κ(Dh F)^0, then for any <*!>(), •••, α/>0, we have

2) Let f : V—*W be a surjective morphism of V onto a normal complete variety
W. For a divisor D on W and an effective divisor E which is f-exceptional (i.e.,
codim/(£')^2), we have

K(f->D+E, F) = K(D, W) .

When F is non-singular, we denote by K(V) a canonical divisor on V.
The Kodaira dimension κ(V) of V is defined to be κ(K(V)y V).

Let (V, D) be a 3-manifold of dimension n. V=V — D is called the
interior of (F, D). We see that

Pm(V) = dim#°(F, 0(m(K(V)+D))) .

The logarithmic Kodaira dimension of V is defined to be

which does not depend on the choice of the smooth completion F of F with
ordinary boundary D.

iv) W2PB-equivalence. If there exists a proper birational morphism
/: F!->F2, then PW(F1)=POT(F2) and ̂ l (F1)=^ί(F2). A proper birational map is
by definition a composition of a proper birational morphism and an inverse of
a proper birational morphism. If there is a proper birational map /: F!-> F2,
then we say that Fj is proper bίrationally equivalent to F2. In this case,
Pjy^P^Vt] and ίί(F1)=?, (F2).

Moreover, when F is non-singular and F a closed subset of F of codim
^2, Pm(V— F)=Pm(V) and ?t (F— F)=gt.(F). In such a case, we say that i:
F— FC-+V is a tffπVrί open immersion.

A WPB-mapf: Vλ->V2 is by definition a birational map which is a composi-
tion of proper birational maps, strict open immersions, and inverses of strict
open immersions. If there exists a PFPjB-map /: Vl-^V2, we say that Vl is
WPB-equivalent to F2.
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Now define (W={f: Vλ-+V2 birational morphism; there exist a morphism

g: V2-+VZ such that g f is a WPB-map or a morphism h: U-*VΊ such that

/•A is a WPB-map}. A birational map which is a composition fiffifa ft1,

fj^W, is called a W2PB-map. If there is a W2P£-map /: IV* ̂ 2, then we

say that V1 is W2PB-equίvalent to V2 and Pm(Vl)=Pm(V2\ &(Pi)=tf,(F2).

Recall that α surface S is W2PB-equivalent to a quasi-abelian surface if and only

ifϊc(S)=Q and q(S)=2 ([10]).

v) circular boundary. Let (S, D) be a 9-surface. We say that D is a

circular boundary if D is a rational curve with only one ordinary double point p

such that D— {p} is non-singular or if D is a sum of non-singular rational

curves Cl9 C2, •••, Cr such that when r=2, we have (CΊ, C2)=2 and when r^3,

we have (C, , C,)=l for /—y=±lmod r, and (Cf, C;.)=0 for ί—j =
modr.

c,
^— -̂cr

c

Figures 3.

vi) curve of Dynkin type. Let (S, Y) be a 3-surface. We sa> that Y is a

o/ Dynkin type ADE if Y is a sum of non-singular rational curves Y.

such that Y}=— 2 and the intersection matrix [(Y,, Y;.)] corresponds to a

direct sum of Dynkin diagrams Anί Dm, Et. Similarly, we can define a curve of

extended Dynkin type Aΰβ (, which are not necessarily reduced divisors).

2. Logarithmic K3 surfaces of type I

Let S be a logarithmic KZ surface, i.e., pg(S)=l. q(S)=fc(S)=Q. Let

(S, D) be a θ-surface of which interior is S. Then κ(S)^tc(S)=Qy j

pg(S)=l. Hence, ρg(S)=l_or 0.

First, assume that^(S)=l. Combining this with /e(S)^/e(S)=0,

q(S)=0, we see that S is a jfiΓ3 surface which may not be minimal. By con-

tracting exceptional curves of the first kind on S successively, we obtain a mini-

mal ^3 surface S* and a birational morphism μ: S->S#. If μ(D) is a finite set

of points, then, putting S0=S — μ~l(μ(D)) and S*=S*—μ(D), we have a proper

birational morphism μQ=μ\ S0: SQ-^>S*. We obtain the following commutative
diagram:
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c S c S

Figure 4.

Hence, by definition (see § 1 iv)) SQc:S and ScS are both ίPPS-morphisms.
Hence S is H^PJ3-equivalent to S*.

If μ(D) contains a curve, we lei:!)* be a purely 1 -dimensional part of μ(D).
Then by the previous argument, we see that S is ίF2P£-equivalent to
S—μ~1(D^ί) Π D. Thus we may assume D*=μ(D).

Lemma 1. Let V be a complete non-singular algebraic variety and D a
reduced divisor on V. Let μ: F*->F be a biratίonal morphism such that (F*,
μ~1(D)) is a d-manifold. Denote by Z)* the proper transform of D by μ'1. Sup-
pose that κ( V) ;> 0. Then

= *(K(V)+D, F) .

For a proof, see [6]. A generalization of this is the following Lemma 6, whose
proof will be given there. By the above lemma, we get

0 = χ(S) = κ(S-D) = *(S*— D*)

Proposition 1. Let S be a minimal K3 surface and Y a reduced divisor on
S stick that κ(Y, S) = 0. Then Y turns out to be a curve of Dynkin type ADE.
Moreover, pm(§—Y)=l for any m^l and q(S-Y)=Q. Hence S-Y is a
logarithmic KZ surface.

Proof. Let Σ^ be the irreducible decomposition of Y. Then for any
m^Q, we have K^^m.Y^ S)=0 by the fact 1) in § 1 iii). By making use of
Riemann Roch Theorem on S we have

0 =

except f or !»! = = iff, = 0. Hence

In particular, Y2j^—2. In view of the adjunction formula, we have
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Here π(Y) denotes the virtual genus of Y. Thus Y2j=—2 and τr(Yy)=0.

More generally, letting 0} be a connected reduced curve in Y, we have the

exact sequences

and

0 - H\0) -

> 0 .

From this, it follows that Hl(O(— ^))=0 and

-3/ = dim H

Hence Of =—2. In particular, if Yf φ Yy, we have (Y t , Yy)= 0 or 1. It is
easy to see that the intersection-matrix [(Yt , Y;.)] (Y,-^^) corresponds to the
Dynkin diagram of type An, Dm, Et. Eence, Y is a curve of Dynkin type ADE.

Therefore,

ϊc(S- Y) = κ(K(S)+ Y, S) = 0

and pg(S— Y) ̂  pg(S) = 1 . These imply that Pm(S - Y) = 1 for any m ̂  1 .
Since [(¥",•, Yj)] is negative-definite, YI, •••, Ys are linearly independent in

Pic (S). We make use of the following

Lemma 2. Let V be a non-singular complete algebraic variety with q(V)=Q

and Y a reduced divisor on F. Let Σ ;̂ &e the irreducible decomposition of Y.
Then, putting V= V— Y, we get

q(V] = dim Ker(0Q Y. -> Pic(F)®zQ) .

Proof. We have the exact sequence:

0 = H\V, Q) -> H\V9 Q) - ΘQ Y, i H\V, Q) .

Since q(P)= °> ^ follows that Im δcPic(F)®Qc#2(F, Q). Thus we obtain
£

5(F) = dim Ker(0Q Y. ̂  Pic(F)®Q) . Q.E.D.

We proceed with the proof of Proposition 1. By the lemma above we conclude

thaty(S-Y)=0. Q.E.D.

Thus we obtain the following

Theorem I. Let (S, D) be a d-surface whose interior is a logarithmic K3

surface S of type I. Then there exists a biratίonal morphίsm μ: S->S* such that
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S* is a minimal K3 surface and such that μ(D) is a union of a curve Y of Dynkin
type and a finite set F, and hence

In other words, S is W2PB-equivalent to S* — Y.

Note that D and Y may be empty.

Table I. S# being a minimal compact K3 surface

class

i)

i)*

D

Φ

curve of Dynkin type ADE

S*-D

compact

non-compact

3. Logarithmic K3 surfaces of type II. We begin by recalling the
elementary result, called pg-formula.

Lemma 3. Let (S, D) be a d-surface with q(S)=0. Let 2 C. he the
irreducible decomposition of D. Then

Pg(S-D) = *,(S)+Σ*(C,)+Λ(Γ(Z>)) ,

where Γ(D) is the (dual) graph of the intersection of D= Σ CJ9 h(T) is the cyclo-
tomic number of the graph Γ, and the g(C{) denote the genera of the Cs.

For a proof see ([7], the Appendix).

With the notation being in Lemma 3, we further assume that S is a logari-
thmic K3 surface of type II. Hence ̂ (S)=0 and fg(S)=l. By the formula in
Lemma 3, we have

Hence, there are the following two types;

Type II.; ĵ C,) = 1, g(C2) =. . = g(Cs) = 0 and h(T(D)) = 0 .

Type Πb; §(€,)) = g(C2) = = g(C.) = 0 and A(Γ(Z>)) - 1 .

Proposition 2. I f S is a logarithmic KZ surface of type II, then S is a ra-
tional surface.

First, assume κ(S) to be 0. Recalling ρg(S)=q(S) = Q, we see that S
is an Enriques surface. Hence, there exists an etale covering π: S-*S where
S is a .O surface. Let D=π~\D). Since S—D-+S—D is όtale, we have
?c(S— D) = fc(S— D) = 0 by Theorem 3 [5]. Hence, S— D is a logarithmic
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K3 surface of type I. By Theorem I, D consists of rational non-singular curves

whose intersection matrix is negative-definite. Hence D has the same pro-
perty as β. Thus h(Γ(D))=0. This contradicts the fact that S is of type II.
Therefore, it follows that fc(S)= — oo. Recalling Castelnuovo's criterion, Sis
a rational surface, because gf(S)=0. Q.E.D.

4. Logarithmic K3 surfaces of type IIa. Employing the notation in
§ 3, we assume S to be a logarithmic K3 surface of type Πa. Putting DA=Cl

and DB==C2-{ ----- hCs, we have D=DA+DB and g(DA)=l. Hence, pg(S— DA)
= 1, κ(S— DA)^fc(S— D)=Q, and g(S-DA)^q(S— DA)=0. These show that
S—DA is a logarithmic K3 surface of type Πa. Contracting exceptional curves
of the first kind in S — DA, successively, we have a birational morphism

μ: S->S# such that μ is isomorphic around DA^μ(DA) and S*—μ(DA) has no
exceptional curves of the first kind, i.e., (S*, μ(DA)) is a relatively 3-minimal
model of (S, DA).

Proposition 3. Let (S, C) be a relatively d-minimal d-surface such that C
is a non-singular elliptic curve with κ(S—C)=^q(S—C)=0. Then K(S)+C~Q.

Proof. By Proposition 2, S is a rational surface.

If K(S)+ C were linearly equivalent to an effective divisor Δ=Σ riΈi (ri > 0),
ί = l

we would derive a contradiction. Since #(Δ, S)=κ(S— C)=0, we know that
the intersection matrix [(£*,-, Ej)] is negative semi-definite. In particular £"y^0
for any ί^j^s. If E^C, then ίΓ(=jK:(S))~Δ— -Ey=Δ— C^O. This is a
contradiction. Therefore E^C, which implies (Δ, C)^0. Since Δ2^0, we
may assume that (Δ, £Ί)^0. Hence, (Ky £Ί)^— (C, ̂  )^0. By the adjunc-
tion formula,

Hence, π(E^~ 0 or 1. We shall examine various cases, separately.
1) If ^0=1, we have El=(K, Eί)=0.

Hence (C, £Ί)=0. Thus CftE^φ and (Δ, £Ί)=0.

2) If 7r(£Ί)=0 and (C, £Ί) ̂  1, it follows that (K, E^-l and —2=El+

(K, EJ^-I. Hence, α) El=(K, E,}=-\ or β) El=0 and (K, £1)=-2.

In the case of α), we have 1^(C, £Ί) = (Δ, Eλ)—(K9 E^ 1. Hence (Δ, J?ι)=0,

— (C, £Ί) = (ίΓ, £Ί) = — 1 . This implies that £Ί is a C-exceptional curve. Hence,

we can contract E^ Note that K+C is invariant under 1/2-point detachments

(see § 1 i)). Thus we may assume that this case does not occur.

In the case of β), we use the following

Lemma 4. Let S be a complete surface with ρg(S)=q(S)=Q and E a curve
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on § such that π(E)=0. Then

Proof. By Riemann Roch Theorem,

dim I E I ̂  (E, E-K)I2, K being K(S) .

On the other hand, (E, E+K)=2π(E)—2=—2. Hence, follows the assertion.
Q.E.D.

Therefore letting S=S—C,

Q=pg(S)-l - dim|Δ| ^diml^l ^1 .

Thus we have arrived at a contradiction.
3) If τr(£Ί)-:(C, ^0=0, then E\^-l and (K, E,)=-l or 0. Suppose

(K, £ΊH-1. We have E?= — 1 and ElnC=φ. This yields that Eλ is an
exceptional curve of the first kind on S — C. This contradicts the hypothesis.
Suppose that (K, Eχ)=0. We have El=—2. Thus £\ Π C=φ and (Δ, #0=0.

Consequently, after a finite succession of 1/2-point detachments, we have
(Δ, E.)=Q9 and i) Ej=Q, *(E^=\ or ii) E*=-2, w(£y)=0. Hence (K, Ey)=0
for any irreducible components E. of Δ. Thus letting <Dly •••>&)<. be the con-
nected components of Δ, we have Δ=Σ 3)j and Δ2=2 ̂ >=0. Since Δ2=0
and ̂ ^0 for any/, it follows that 3)l= — =g)2

e=Q. Recalling that (K, f̂ )=0,
for any i we have (K, ίDj)=Q. Therefore, the 3). are curves of extended
Dynkin type ADE.

Lemma 5. Let S be a complete surface with pg(S)=q(S)=Q. For an
effective divisor F (Φθ) on Sy we have

J-l^F, F+K)/2 .

Moreover, if dimH°(0F)=l9 then

Hl(O(F+K)) = 0, and so π(F) = dim Hl(OF) .

Hence,

Proof. From the exact sequence:

0 -> C = H\0) -> H\0F) -> H\O(-F)}

-* 0 = H\O) -> H1^) -> H\0(-F)) -> 0 =

follows the assertion. Q.B.D.

By this, we have
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= 0 .

But since P2(5)— l^dim|Δ+^| ̂ dim|^,.+^|, it follows that dim | .$,.
=0. Putting K(β)^=(3){-{ K) I 3)i, we get the following exact sequence:

0 = H\0(K)) -

-* H\O(K)) - Hl(O) = 0 .

Hence,

dim I K(S>,) I = dim IP(O(K(3)ίfί)- 1

Similarly, we have

dim 1 K(C) I = 0, where K(C) = (K+ C)\C ,

smcepg(S—C)—l=dim\K+C \ =0. Furthermore,

0 - fg(S-C)- 1 ̂  dim I K+C+&, \

^ dim 1 2Δ I = P2(S-C)- 1 = 0.

Hence, dim | K+C+£D( \ =0. Thus,

*) dim|iT(C+^)| = dim|i:+C+^i| = 0.

By the way, since C Π S)i=φ, it follows that

K(C+3){) = (K+C+3){)\(C+3)t)

Thus, dim\K(C+3)i)\ =dim| K(C)| +dim 1^(^)1+ 1=1. This contradicts *).
Q.E.D.

The following lemma is a generalization of Lemma 1.

Lemma 6. Let (V, D) be a Q-manifold and put V=V—D. Assun^e that
ίc(V)^0. Let Y be a reduced divisor on V and denote by Ϋ the closure of Y in
in V. Take a proper birational morphism p: V*-+V such that (V*, p-\Ϋ+D))
is a Q-manifold. μ=ρ\ V*: V*=V*—p~l(D)-+V is a proper birational morph-
ism. Then letting Y* be the proper transform of Y by μ~l, we obtain

τc(V*- Y*) = κ(V- Y) = κ(K(Γ)+D+Ϋ, V) .

Proof. Denoting by Z* the closure of Z in V*, we have (μ~
Y*-\-G,G being an effective divisor which is p-exceptional. Similarly,
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(μ*( Y))* = y*+2Γ, 3 being effective and ΞFted = 6 .

Recall the logarithmic ramification formula ([5]):

K(V*)+f>~\D) = P^(K(V)+D)+RV. ,

where Rμ. is the logarithmic ramification divisor for μ. By definition, we have

ic(V-Y) = Jc(V*-μ-\Y})^ϊc(V*-Y*)

= κ(K(Ϋ*)+p-\D)+ y*, F*)^

», F*)
», F*),

This follows from 7c(V)^0 by using 2) of § 1. iii). On the other hand,
Rlk\V* = Rμt and μ-1(Y)^Y*+NlRlί for some Λ^X). Hence, we have
(μ* Y)*^ Y*+N2(Rμ)* for some Λ^X). Choosing iV>0, we obtain

κ(p*(K(Γ)+D)+NR>+Y',

We note that

Hence,

(^*y)*, F*) = κ(p*(K(V)+D+Ϋ),

=

It is easily seen that

Thus we obtain the desired equality. Q.E.D.

We come back to the study of a logarithmic ^3 surface S of type Πa.
Writing DA=μ(DA) and Y=μ*(DB), we have by Lemma 6

-DA- Y) = /e(S-ΰ) = 0 .

Since K(S*)+DA~Q, we make use of the following proposition.

Proposition 4. With the notation being as in Proposition 3, let Y be a reduced
divisor on S which does not contain C. Suppose that fc(S—C—Y)=0. Then
κ(Y, S)=0. Moreover, letting <%, •••, % be the connected components lof Y, we
have the following assertions, separately.

1) J/"% Π CΦφ, then (0}J3 C)=\ and % is an exceptional curve of the first
kind in S.

2) If % Π C=φ, then % is a curve of Dynkin type ADE.
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Proof. Letting Y0= Y ΠS, S=S-C, we have Y0 (the closure of Y0 in S)
= Y. Take a proper birationa) morphism p: S*->S such that (S*, p~1(C+ Y))
is a 9-surface. By Lemma 6, we have

κ(K(S)+C+ Y, S) = *(S-C- Y) = 0 .

Recalling Proposition 3, we get κ(Y, S) = 0. Let Σ Yy be the irreducible
decomposition of Y and let %,•••,% be the connected components of Y.
By Lemma 5, letting QJ be a connected reduced divisor in Y, we have

0-

Hence, (C+Q/, <?/)^0. If C+3/ is connected,

0 = dim\K+C+<*}\ = (C+QJ, K+C+<Ϊ})I2

From this, it follows that 7r(Q/)=0 and (Γ, £2/)=l. If C+^y is not connecced,
chen

0 = di

On the other hand, (C, 4/)=0 yields (ίΓ, ^)=0, since ^+C~0. Hence, ̂ 2=
—2. In particular, if Yy ΠCφφ, then Y. is a C-exceptional curve, and if
yyΠC=φ, then F5=-2 and (K, Y.)=0.

For any w^O, define Z='ΣίmjYj^O. We write Z=2>1-] ----- h Z, where
Supp (Si), •••, Supρ(2t)) are the connected components of Supp Z. By
Lemma 5,

0 = dim|Z| = dim | Z+ C+^ | = dim ̂ (Oc+z)-l

= ((C, Z)+Z2)/2 .

If (C,Z)>0, then Z2^-l. Next, assume (C,Z) = 0. Then (C,
=(C, S,)=0. This implies (Jf, 31)=...=(,K, 2,)=0. Hence,

Thus dim7/1(0s, )=0. Recalling Riemann Roch Theorem on S, we have

(Zi9 Zi+K)l2 = dίmH^OzJ-dίmH^Oz^-l .

Since (Zi9 K)=Q, we have 3%^ —2. Hence Supp 55,. is a curve of Dynkin type
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and so the intersection matrix [(Ft , Yj)] is negative-definite. Thus we com-
plete the proof of Proposition 4.

Proposition 5. Let S be a complete surface and C a non-singular elliptic
curve on S. Suppose that q(S)=-Q and K(S)+C~Q. Then q(S—C)=Q, and
(S, C) is obtained from one of the following three d -surf aces by attaching l/2-points:
a-i) (P2, E) where E is a non-singular curve of degree 3,
a-i) (P1 x P1, E) where E is a non-singular curve of degree (2, 2),
a-iii) (Σ2, E) where ^2 ^ a Hirzebruch surface of degree 2 and E a rum-singular
elliptic curve such that

Proof. q(S— C)=0 follows from Lemma 2. First assume that S=P2

or Σo^P^P1 or Σ* (&^2), Λat is the Hirzebruch surface of degree b.

Lemma 7. A Hirzebruch surface ^b (b^l) is a non-trivial P1 -bundle over
P1 on which there exists one and only one irreducible curve Δ*, with negative self-
intersection number —b. Δoo is a section of Σft~* P1> whose fiber is denoted by F.
Any section CφΔoo is linearly equivalent to Δoo+aF (a^b). Then C2=2α— 6
and (C, Δoo) = a-b. The smallest C2 is b. Since dim | Δoo + bF\ = 1 + 6, we
have sections Δλ (λ being a point of C1+b), which satisfy Δ λ(ΊΔoo=φ and Δl = b.
Moreover, —

Proof. The verification is easy and omitted.
We continue the proof of Proposition 5. If S=Σί> and

Δλ+Δoo + 2F, then (E, Δoo)=— 6+2. By the way, £ φΔc«. Hence, (E, Δoo)^0,
which implies 6^2. We have to show that there exists a non-singular member
in \

Lemma 8. Let V=P1XP2. Then Σ*(6^1) w isomorphic to a non-
singular hypersurface of degree (b, I) of V.

Proof. Letting h be a line on P2, we put L=pxP2 and M=Plxh.
Then, by the adjunction formula,

Since 6L+M is very ample (6^1), a general member W of \bL-\-M\ is non-
singular and

-K(W)~(2L+3M-M-bL)\ W.

Hence K(W)2=$. Moreover, the projection π: V-^P1 induces the fibered
surface π'=π\ W: W-+P1, whose fiber is linearly equivalent to L\ W. Clearly,
(L| Wγ=Q and L\ W^P1. Hence, π\ W: W-+P1 is a ^-bundle. M \ Wis a
section which satisfies (M\ W)2—b. Hence ίF^Σ* Employing the notation
in Lemma 7, we see that Δoo~(M— 6L) | W and Δλ~M | W. Q.E.D.
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When b=2, -K(^2) is linearly equivalent to 2M \ W. (2M \ W)2=8 and

2M I W has no base points. Therefore a general member of | — K(^2) I is a

non-singular elliptic curve. A curve E on P2 or P1xPl which satisfies the

condition of Proposition 5 is a non-singular curve of degree 3 or degree (2, 2),

respectively.

Recalling that a relatively minimal rational surface S is isomorphic to

P2, P1 X P1 or 2ί) we have only to consider the case where there is an ex-

ceptional curve L of the first kind on S. Since LΦC and L2=(K(S), L)= — 1,

we have (C, L) =—(K(S), L)=l. Hence, L is a C-exceptional curve. Con-

tracting such L successively, we complete the proof.

With the notacion being as in Proposition 5, let Y be a curve of Dynkin

type in S=S—C. Corresponding to the 1/2-point attachments, we have a

proper birational morphism μ: S-̂ S*, S*=P2 or P1 XP1 or 22 By Lemma 6,

writing Z=μ*(Y), we have κ(S*-μ(C)-Z) = κ(S-C-Y) = κ(Y, S) = Q.

Hence, Z is a sum of exceptional curves and a curve of Dynkin type. Since S#

is relatively minimal, Z is a curve of Dynkin type such that Z |Ί μ(C)=φ. Thus,

Z=Δoo in 22- Accordingly, μ(Y) is a union of a finite set of points in μ(C)

Therefore, Y is a curve of Dynkin type A. Summarizing the argument

above, we obtain the following proposition.

Proposition 6. Let (S, D) be a relatively d-minimal surface such that

S=S— D is a logarithmic K3 surface. Suppose that (S, DA) is relatively d-minimal

and that there are no D-exceptional curves of the first kind on S. Then such 3-

surfaces (S, D) are classified into the following table. There, D— 2 Cf is the

irreducible decomposition and C1 is a non-singular elliptic irreducible curve.

Table IIa.

class

a-,)

a-ii)

a-iii)

a-iii)

S

p2

P'XP1

Σ2

D with the self-intersection numbers

Qcur 9

C, c~-8

clC

 8

£, 8 c, — 2

«l(S)

Z/(3)

Z/(2)

Zl(2)

?

5

affine

non-affine

We have the following

Theorem IIa. Let (S, D) be a d-surface whose interior S is a logarithmic
K3 surface of type Πa. Then there exists a birational morphism μ: S->S* such that



LOGARITHMIC K3 SURFACES 691

1) S*=P2 or PlxPl or Σ2 2) C=μ(DA) is a non-singular curve, 3) μ(DB) is

a finite set or a union of a finite set and Z=Δ00 on 22 The latter case occurs

only πken S*=J>12.

Structure of logarithmic K3 surfaces of type Πa is studied precisely by

examining each class of a-i) through a-iii)* separately. We use the following

notion: Let S be a surface and let μ be a proper birational morphism: S*-*S

such that there exists a dominant morphism/: *$*->/,/being a curve, whose
general fiber f~l(u) is C*. Then we say that S is a C*-fibered surface or S has

the structure of C*-flbered surface.

Proposition 7. Every surface of the class a-ii) or a-iii) has a structure of

C*-filer ed surface.

Proof is easy.

Proposition 8. Let S be a surface of the class a-i) or a-iii)*. Then S does

not admit the structure of C*-fibered surface.

Proof. First we let S be a surface of the class a-iii)*. Suppose that

there exist a proper birational morphism μ: S*-*S and a dominant morphism

/: *?*—>/, / being a complete curve, whose general fiber is C*. Choosing a

suitable completion 5* of *S* with smooth boundary Z)*, we assume that μ

defines a morphism -μ: S*-»Σ2 and D*=~μ~1(Cί+C2) and that/ defines a
morphism/: S*->J. By C* we denote the proper transform of CΊ by μΓ1,

which is a non-singular elliptic curve. Since a general fiber of/ is Pl, C* is

not contained in a fiber of/. Hence f(C^)=J. Since S* is rational, / is P1.

This implies that/I C*: Cf-^P1 is a two-sheeted covering. Hence, /(Cf) is

a point, because f~l(u) Π D* — {plt pz} for a general point u^J. Therefore,

g=f.-μ~l: ^2-+J tuins out to be a morphism. Moreover, g(C2) is a point a.

Hence, C2 is a part of the singular fiber g~l(a). Since C2=—2, there is another

component C3 ing"1^) such that Cl= — 1. This contradicts the fact that 2L

is a relatively minimal surface. It is easier to prove the same result for surfaces

of the class a-i). Q.E.D.

Proposition 9. There exists an algebraic pencil {Cu} on each surface of the

classes a-i) and a-iii)* whose general member Cu is C*.

Here, an algebraic pencil {Cu} on S is understood as follows: there exist

an algebraic surface S* and a proper birational morphism p: S*-> S in which

i/r: S*-*J is a fibered surface whose general fiber C*. {Cu=ρ(C^)} is the

algebraic pencil on S.

We omit the proof of Proposition 9.
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If there is a proper birational map /: Sι~^S2 then the existence of the

algebraic pencil {CJ, CU^C*, on Sl9 induces the existence of the same thing

on S2. Moreover, when Si is an open set of S2 with /c(S2)^®> the existence
of an algebraic pencil of CU^C* on Sλ implies the existence of the same thing
on S2 In fact, there are a proper birational morphism p: *Sf->SΊ and a mor-

phism ψ: Sf ->J with Cu=p(ψ-l(u))^C* for a general ί/e/. Let Γu be the
closure of Cu in S2. Then /e(Γj^O. If fc(Γu)= — <χ>, it would imply that
/e(S) = — oo ? a contradiction.

Accordingly we get

Proposition 10. There is an algebraic pencil {Cu} with the general member
Ctt<^C* on any logarithmic K3 surface of type IIa.

Corollary. A logarithmic K3 surface of type Πa is not measure-hyperbolic.

Proof follows from the fact that C* is not measure-hyperbolic.

Proposition 11. Let S be a surface in the TABLE Πa. Then, Aut (S) is
a finite group.

Proof. We give a proof for a surface of the class a-iii)*. Let φ^ Aut(*S).
Then φ extends to an isomorphism of S=Σ2> since g(C1)=l and C\=— 2:S
-2 ([12]). Thus Aut(S)cAutχΣ2)=teeAutΣ2; φ(D)=D}. Let π: Σ2-*
Pl be che P^bundle structure of ]Γ]2. We have the group extension:

1 -> Gl -> Aut (Σ2) -> PGL (1, ft) - Aut (P1) -> 1 .

It is well known that Gl is an algebraic group of dimension 4. Moreover, GI

is an affine group. Hence Aut (^a) is an affine algebraic giouj. And so is
Furthermore, we have the group homomorphism γ: Autz)(22)~>

which is the restriction, i.e., y(φ)= φ\C^ Therefore, Im 7 is finite,
since Aut (Cα) is a finite union of elliptic curves. Put G2=Ker 7, which turns
out to be a finite group. Thus Aut^ (^2) is finite and so is Aut (S). Q.E.D.

Proposition 12. Let S be a rational surface and C a non-singular elliptic
curve on S. Let Y be a reduced divisor on S such that /c(S—(C U Y))=0. Then

?(S— (Cljy))=0, i.e., S— (CU Y) is a logarithmic Jθ surface of type Πa.
A proof follows from the arguments in the proofs of Propositions 3 and

4. Actually, the intersection matrix of Y is negative-definite and hence we
can use Lemma 2.

Propostion 13. Let (S, D) be a d-surface whose interior S is a logarithmic
K3 surface of type IIa. Suppose that 1) (S, D) is relatively d -minimal f 2) S
has no l/2-poιnts, and 3) D is connected. Then (S, D) is <ne of a-i)~a-iii) in
Proposition 5.



LOGARITHMIC K3 SURFACES 693

Proof. At the beginning of §4 we have had the decomposition: D=
DA+DB. Suppose that there exists an irreducible exceptional curve E of the

first kind on S—DA. In view of Preposition 4, by contracting E we have a

proper birational 8-morphism λ: (S, £>)->(Sι, A) We have the following cases:
1) If EdDB or EΓ\DB=φ, this contradicts the hypothesis. 2) If EftDB^φ,
then λ: (S, D-fE1)— >(SΊ, Dλ) is a non-canonical blowing up. In fact if λ were

canonical, D would be disconnected. Thus E—DBdS is a 1/2-point. This is

also a contradiction. Accordingly, we conclude that S—DA is relatively minimal.

By Proposition 4, DB is a union of exceptional curves of the first kind. Hence

DB=φ. Since, there are no Z)-exceptional curves, it follows that S is a relatively

minimal surface. Q.E.D.

5. Logarithmic K3 surfaces of type Ilb In §5, let S be a logarithmic

O surface and let (S, D) be a 9-surface such that S=S-D. By C^ , Cs

we denote the irreducible components of D. Since A(Γ(Z)))=1, there is a
circular boundary DA=C1-\ ----- [-Cr^D. PA(S—DA)=1 induces that S— DA is
also a logarithmic KZ surface of type IIb. Contracting exceptional curves of
the first kind in S—DA successively, we have a non-singular complete surface

S* and a birational morphism μ: S-+S* such that μ is isomorphic around

DA^μ(DA) and such that S—μ(DA) has no exceptional curves of the first kind.

After choosing D to be a minimal boundary, we have a minimal boundary

DA=μ(DA). Then (S*, DA) is a relatively 3-minimal 9-surface.
We write D=DA-\-DB and Y=μ*(DB). By Lemma 6 we have

0 = ic(S-D) = 7c(S*-DA- Y) .

From the condition h(Γ(DA))=l, we infer readily that^S*— DA)=l. Hence,
Pi(S*-DA)=l for any ί^l. However,

Proposition 14. Let (S, D) be a circular d-surface (i.e., D is circular) πhich

ύ relatively d-mίnίmaL Suppose that ?c(S—D)=Q. Then K(S)+D~Q.

Proof. It is easy to check that S is a rational surface. Assuming that
\K(S)+D\ has a non-trivial member Δ='ΣίriEi (rt >0) we shall derive a

contradiction.

Now, 0=κ(S-D)=ιc(K(S)+D, S)=κ(\ S)=κ(ΣEh S) implies that the

intersection matrix [(E{ Ej)] is negative semi-definite. We assume (Δ, £Ί)^0

and Eλ<tD Then by the same reasoning as in the proof of Proposition 4, we

have the following cases:

Case 1: πr(£Ί)=l. Then E1f}D=φ and El=(K, £1)=0.

Case 2: ^)=0 and (D, E^l. Then El=(K, Eλ}=-\ and (Elt D)=l.
Hence £Ί is D-exceptional. By detaching 1/2-points, we may assume that this

case does not occur.
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Case 3 : τr(£1)=0 and (D, ^=0. Then Eλ |Ί D=φ and E\ = -2, (£, £Ί)
=0.
In all cases we have (Al5 £Ί)=0. If ^cZ) and r^2, we have D'+E^D,
E^P1 and (£>', £\)=2. Hence

On the other hand, | J^+fl' | 3^— l)E1+r2£2+ . This is a contradiction.

Thus, Δ2=Σrf (Δ,£ί)^0 Sίnce *(Δ, S)=0, we have Δ2=0. By the
similar argument to the proof of Proposition 4, we derive a contradiction. Q.E.D.

Proposition 15. With the notation being as in Proposition 14, let Y be a
reduced divisor on S which does not contain any components of D. Suppose that
?c(S—D— y)=0. Then κ(Y, S)=Q. By 0}ly •••, <%, we denote the connected com-
ponents of Y. If QJj πDΦφ, then (^jy D)=l andQJj is an exceptional cwve of
the first kind. If QJ. Π D=φ> then QJj is a curve of Dynkin type A.

The proof of Proposition 4 can be used again here.

Proposition 16. Let (S, D) be a circular d-mrface such that K(S)+D~Q.
Then (S, D) is obtained from one of the following d-surfaces by attaching several
l/2-points and canonical blowing ups.
b-i) S=P2> D=H1+H2+H3 where each H{ is a line on P2,
b-ii) S=P1XP\ D=H1+H2+G1+G2, where each Hi is a line of degree (1, 0)
and each G* is a line of degree (0, 1),
b-iii) S=Σβ, D=Δλ+Δ00+F1+F2y where each F is a fiber,
b-iv) S— P2, D=H+C, where H is a line and C is a conic,
b-v) S=P1XP1, D=Ci+C2 where each C{ is a curve of degree (1, 1),
b-vi) S=2j2> -O=Δ0+Δλ (λ=f=0), where the Δλ is a section which is different from

b-λάi)β S=2β> -D— -F+Δoo+Cg where C3 is a non-singular rational curve which
is linearly equivalent to Δ0+.F,
b-viii) S=P1XP\ Z?=fl1+G1+C, where H is a line of degree (1, 0), Glιsa
line of degree (0, 1), and C is a curve of degree (1, 1),
b-ix) S=P2, D=Cy where C is a cubic curve with one ordinary double point,
b-x) S=P2 -D— C, where C is a curve cf degree (2, 2) which has one ordinary
double point,
b-xi) S=^2, D=C, where C is a rational curve with only one ordinary double
point which is linearly equivalent to 2Δλ,
b-xii) S=P1XP1, D=G+Cy where G is a line of degree (0, 1) and C is a curve
of degree (2, 1),
b-xίii)β S=Σβ> β^Δoo+C, where C is a curve which is linearly equivalent to
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Proof is easy and left to the reader.

In the following Table IIb, we exhibit q and configurations of components
of D of 6-i)~b-xiii).

Proposition 17. Let (S, D) be a circular d-surface whose interior S is a

logarithmic K3 surface or a surface satisfying the following conditions: 1) § is ra-

tional, 2) /e(S)=0, 3) pg(S)=l, and 4) q(S)=l or 2. Suppose that i) (S, D)

is relatively d-minimal, ii) D is connected, and iii) S has no l/2-points. Then (S, D)

is one of b-i)~b-xiii)β in TABLE Πb.

Proof is similar to that of Proposition 13.

Table Πb of (S, D), S=S-D

class configuration of D

b-i)

b-ii) M
"

Z2 c*

b-iv)

b-v) P'XP1

b-vi)

b-\'ιΐ)β

b-viii)

z
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q

0

1

0

class

b-ix)

b-x)

b-xi)

b-xii)

(/3>2)

b-vi)*

b-xi)*

S

P2

P'XP1

Σ2

, XP.

a

a

configuration of Z)

-if

^

-̂&
A"

d^
<x--!

«i(S)

,,,3,

Z/(2)

Z/(2)

*,

'

'

'

5

Next we treat the 9-surface (5, D) whose boundary is not connected.
As in § 4, we have to look for a curve Z of Dynkin type on S—D where (S, D)
is one of b-i) through b-xiii)p. Such Z exists only in the cases b-vi) and b-xi).
Then Z turns out to be Δ«> of 22. We write b-vi)* or b-xi)* in the case of
disconnected boundaries. Therefore we obtain the following

Theorem Πb. Let (S, D) be a d-surface whose interior S is a logarithmic
K3 surface of type Πb. Then, there exists a birational mωphism μ: S-+S* such
that (S*, μ(DA)) is one of b-i) through b-xiii)β in TABLE IIb. Moreover, μ(DB)
is a finite set or a union of a finite set and Z=Δ00 on J£2- The latter case occurs
only when (S, μ*(D)—Z) is the class b-vi) or b-xi).

REMARK. In the above theorem the hypothesis that S is a logarithmic
K3 surface of type Πb is replaced by the following condition that 1) fg(S)==l
and /c(S)=Q, 2) § is rational, 3) D consists of rational curves.

In order to prove the generalized Theorem Πb, we have only to note that
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Propositions 14, 15 and 16 were proved without the logarithmic irregularity
condition to the effect <7=0.

6. Surfaces with κ=Q and pg=l. In general, let (S, D) be a 9-
surface such that the interior S satisfies pg(S)=l and 7c(S)=0. Then

Proposition 18. Ifpg(S)=Q, then κ(S)= — °°. Hence, S is a ruled surface.

Proof. In view of Proposition 2, it suffices to derive a contradiction from
the hypothesis that /c(S)=0, ^(S)=0, and q(S)^ί. Such a surface S is
birationally equivalent to a hyperelliptic surface, whose universal covering

surface is an abelian surface. Namely, contracting exceptional curves of the

first kind on S succssively, we get a hyperelliptic surface S* and a birational

morphism μ: S-+S*. Then by Lemma 1,

0 = *(S) = κ(K(S)+D, S) = κ(K(S*)+μ*(D)y S*)

= κ(μ*D, S) .

This implies that μ*D=Q. Thus

This contradicts pg(S)=dim H°(0(K(S)+D))=1. Q.E.D.

Consequently, we have the following cases to examine separately.

1) If p (S)=Q and q(S)=Q, then S is a rational surface. Hence, letting 2 C.
y=ι 3

be the irreducible decomposition of Z),

α) if 5(00=1, then put D^^Q,
/3) ifj5Γ(C1)= =5(C5)=0, then there is a circular boundary AI=C!+

_
2) If ̂ (S)=0 and g(S)^l, then S is a ruled surface of genus 1. Let/: S-+J
be the Albanese map of 5, / being an elliptic curve, since pg(S)=Q. For a
general point y^Jy f~l(y) turns out to be a non-singular rational curve. Define

Cy=f-l(y)—DΓ\f~l(y). Then by Kawamata's Theorem ([14]), we obtain

Hence, ϊc(Cy)=Q follows. This implies that Cys*C* and (D, f-\y)) = 2.
Hence, the horizontal component DA defined to be {Σ C*y;/(Cy)=/} satisfies
that (DA, f~\y))=2. Referring to the following lemma, we have

dim I K(S)+DA |=0, i.e., Pg(S-DA) = 1 .
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Lemma 9. Let V be a complete normal variety and let A, B be divisors on
F such that κ(A, F)^0, \A+B\ Φφ, β is effective, and κ(A+B, F)=0. Then

Proof. Choose i>0 such that | t4 |Φφ and take X^\A+B\ and

\iA\. Then Z+iB~iX. By κ(X, P)=0, we have Z+iB=^iX. Hence, Z=

i(X—B) is effective This implies that Jί— 5 is effective. Q.E.D.
3) Ifpg(S)=l, then put DA=Q.

In all cases above, we define DB by D=DA-\-DB

Theorem HI. With the notation being as above, we suppose that S — DA

has no exceptional curves of the first kind. Then K(S)-\-DA~Q.

Proof. Recalling Propositions 3 and 14, it suffices to prove under the
assumption that S is a ruled surface with q(S)=l. Take Δ^\K+DA\
and we shall derive a contradiction from the hypothesis ΔΦO. Let ^r E.
be the irreducible decomposition of Δ. [(£",-, Ej)] is negative semi-definite.
In particular, Ej<^Q. First assume that (Δ, £Ί)^0, since Δ2^0. If E^DA,
then, putting DA=El+D'9 we would have (f~l(y)y D')<^1. This would imply

Z>') = - oo while ϊc(S-D') = κ(K(S) + D', S) = κ(K(S) + DA-E19 S) =
E11S) = fc((r1—l)E1+ί"^S)==0. Therefore, E^.DA. Hence (DA,E^

Since (Δ,Eύ=(K,Eύ+(DA,Eύ^, we have £?^0 and (K, EJ^Q.
As in the pi oof of Proposition 3 we have the following cases to examine separa-

tely.
1) If El=-2, (K, El)=09 then ^(^)=0 and (DA, ^)=0.
2) If JEf=-l, (K, £ι)=-l, then (DA, £^=0 or 1. In this case, (DA, E^Q
contradicts the hypothesis that S—DA has no exceptional curves of the first
kind. In the case when (DA, E^=\, contracting El corresponds to a 1/2-point
detachment.

3) If £f=0, (K, ^)=-2, then (DA, E,)=2. Since ^0=0, /(E^p^J.
Hence, E^=f"l(p). Therefore, by Kawamata's^Theorem ([14]), jc(S—E^
ic(Cy)+κ(J-{ρ})=l. On the other hand, x(K(S)+DA+El9 S^^S-E^l.
Since E^ Δe | K(S)+DA \ , we have

K(K(S)+DA+E1,S) = Q.

This is a contradiction. Hence, we conclude that the case 3) does not occur.
4) If El=Q and (K, tfι)=0, then n(E^\ and (DA, £Ί)=0. In all cases,
we have (DA, £Ί)=0 and (Δ, JF1)=0. Therefore, (Δ, Ej)=0 for all , hence
Δ2=2ry(Δ, £y)=0. Letting ^j, •• ,5)M be the connected components of Δ,
we can easily see that these are curves of extended Dynkin type ADE. In

particular, 5)?=...=^2=0.
a) If .2)ι consists of one irreducible component, then 3)^ is an elliptic curve.
Hence f(3)ι)=J, and so (Q+D^ f-\y))^3. This implies ^(8-^)^1 by
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Kawamata's Theorem. By the way,

and

K(K(S)+DA+3)19 S) = *(Δ+£>ι, S) = 0 .

This is a contradiction.
β) If Ά \ has more than 1 irreducible components, f(3)\) is a point. Hence
<Dι is a reducible member of | /*(>>) |. This implies h(T(3)1))=Oy a con-
tradiction. Q.E.D.

Next, we shall consider the counterparts of Propositions 4 and 15 in the
case of q(S)=l.

Proposition 19. Let S be a ruled surface of q(S)=ί with the Albanese fibered

surface f : S->J. Let DA be a divisor with normal crossings consisting of horizontal

components such that K(S)-{-DA~Q. Suppose that a reduced divisor Y on S,

each component of which is not contained in DA, satisfies the condition that ϊc(S—

DA— Y)= 0. Then κ(Y, S)=--0. Moreover, letting Q)l9 •••,% be the connected

components, we see that if ^yΠO^Φφ, ;̂ is an exceptional curve of the first

kind such that (3/y, DA)=l and that if c^J Γ\DA=φ, then c^j is a curve of Dynkin

type A.

Proof. Let Σ^y be the irreducible decomposition of Y. If Y. is hori-
zontal with respect to/, then (Yj-^DAίf~

l(u))^3 for a general u^J. By Kawa-
mata's Theorem, we get

^S-Y^W-W-Yj-Dj+xV) = 1 ,

where S=S-DA.
This contradicts κ(S— F)=0. Hence, /(Y) is a finite set of points. For a con-
nected reduced curve 3/C Y, we have a point /)=/(cy), and so ^C/"1^).
In view of κ(S— ̂ )Φ1, we see that ^Φ/"1^)- Therefore, ̂  consists of non-
singular rational curves Y. with negative-definite intersection matrix [(F;, Fy)],
yf.Cθ/. If yyΠi)χ=φ, then (DA9 Fy)-0 and so (K, YS)=-(DA, Fy) = 0.
Combining this with Y ̂  - 1, we have Y]= -2 and π( Fy)=0. If Fy Π DA* φ,
then (Fy, DA)=— (Y., K)>0. Hence Fy is an exceptional curve of the first
kind and (Fy, DA)=1. Q.E.D.

Proposition 20. H^YA the same notation as in Proposition 19, we further

assume that S is relatively minimal. Then

c-i) S-P1 X/, Z^Λ X/+A X/,
or

c-ii) S->y ̂  α C*-bundle of degree 0 α M λ w noί P1 X J, ami D^=
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Γ0 and Γoo being sections with Γo=Γi=(Γ0, ΓΌo)=0. Note that Γ0 is cohomolo-
gcusly equivalent to Γoo.
Further,

c-iii) S-»/ is a C*-bundle of degree m>0 and D^Γo+ΓΌo, Γ0 and Γoo being
sections with Tl=m and Γi=—m.

In order to prove this, we need the following lemma.

Lemma 10. Let f: S->J be a Pl-bundle over an elliptic curve J. Then we
have the following table.

Table III

class

i)

»)

iii)

iv)

v)

ίK/

p'x/
C*-bundle of
degree 0

C*-bundle of
degree
m, m~2ι\

affine bundle
A

affine bundle
Λ_,

dim|-X(S)|

2

0

m

0

— oo

a member of | — K(S) \

DA=plXj+p2Xj

DA=Γ0+Γ»
(Γg=Γl=(Γ0, Γ.)=0)

DA=Tϋ+Γ»
(ΓS=«, Γl=-m, (Γ0, Γ.)=0)

2Γ»
(Γi=0)

Φ

V(S-DJ

2

2

1

DA does
not exist.

For the notation used above, we refer the reader to [2] and [18]. Explicit
constructions of S in [18] are used to compute dim | — K(S)\ and to find a
normal crossing divisor in | — ̂ (S)|. We omit the details.

Proposition 20 follows from the lemma above. In the case of the class
c-i) or c-ii), S—DA is a quasi-abelian surface. Attaching several 1/2-points to
S—DA at points of DA> we have surfaces with £=0 and q=q=l.

Proposition 21. Let (S, D) be a d-surface with the interior S. Suppose
that pg(S)=l, ic(S)=Q, and q(S)=l. Then S is a ruled surface of genus 1.
Moreover, D is disconnected. DA consists of two sections of the Albanese fibered
surface f: S-+J of S. In particular, S cannot be affine.

Proof. If κ(S)=Q, it would follow that pg(§)=0 from the classification
theory of projective surfaces. Combined with Proposition 18, this would
imply κ(S)= — oo, a contradiction. Thus, S turns out to be a ruled surface
of genus 1. In view of Lemma 6, by contracting exceptional curves of the
first kind on S—DA, we may assume that K(S)-\-DA~Q. Then we contract
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successively connected exceptional curves 3/ of the first kind ^DB such that
(3/, DA)=l. Thus we arrive at the situation that DBΓ\DA=φ. Detaching
several half-points in S—DA, we have a relatively minimal surface S* and a
proper birational map μ: S-»S#. By Lemma 6, /c(S—μ(DA)—μ*(DB), S)=0.
Hence μ*(DB)c:μ(DA). Thus we can apply Proposition 21. Especially D and
DA are disconnected. Q.E.D.

Proposition 22. Let (S, D) be a Q-surface whose interior S satisfies that
pg(S)=l, ϊc(S)=Q, pg(S)=Q, and ?(S)==1. Suppose that q(S) = 2. Thenjhere
are a relatively minimal ruled surface S* and a birational morphism μ: S-»S#
such that μ(DB) is a finite set and (S*, μ(DA)) is c-i) or c-ii) in Proposition 20.
Moreover, if μ(DB)c:μ(DA), S is proper bίrationally equivalent to a quasi-abelian
surface.

By these theorem and propositions, we have another proof of Theorem I
in [10].

Theorem IV. Let S be a logarithmic abelian surface, i.e., jc(S)=Q, q(S)=2.

Then S is W2PB-equivalent to a quasi-abelian surface.

Proof. Let a: S^>Jls be a quasi-Albanese map. Let/ be the closure of

a(S) in Jls. Then by Kawamata's Theorem, / turns out to be a surface <AS.
Hence, pg(S)^pg(^s)=l. Therefore, we can apply Theorem III and Pro-
positions 20, 22. We omit the details.

Corollary 1. Let S be an affme normal surface with jc(S)=Q and q(S)=2.

Then S is isomorphίc to C*2.

Corollary 2. Let S be a surface with fc(S)=q(S)=Q and q(S) = 2. Then

S is W2PB-equivalent to C*2.

The above two corollaries are found in [10].

Proposition 23. Let (S, D) be any d-surface in TABLE Hb. // £(S)=0,
then there is a reduced divisor R on S such that κ(S—R)=0 and q(S—R)=\.
Similarly, if q(S)=l, then there is Rr on S such that κ(S—R')=Q and q(S—R')

=2. Hence S-R'^C*2.

Proof. We use the notation in Proposition 16 and we shall look for R in

each case, separately.
i) If S is the class b-iv), take a line R on P2 such that R Π C= {p} and H Π C

= {p}. Then S-D-R^C*2.
ii) If S is the class b-v), take two curves C3 and C4 of degree (1, 0) such that,
denoting by {ply p2} the intersection CΊΓ^, C^pl and C^p2. Defining

t, we have S-R^C*2.
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iii) If S is the class b-vi), write CΊ Π C2= {plt p2} Take two fibres C3 and C4

of Σi-frP1 of such that C3^p1 and C43/>2 Then defining R=C3 + C4J we

have S-R=C*2.
iv) If S is the class b-vii)^, write C3Γ\^={p}. Take a fiber R passing

through/). Then S-R^C*2.
v) If S is the class b-viii), write Hl Π C= {p} . Take a curve R=G2of degree
(0, 1) passing through/). Then S-R=C*2.
vi) If S is the class b-ix), by p we denote the singular point of C. Take two
lines C1? C2 which are tangential to C at /). Putting R^d+C^ we have
S—R=C*2. Moreover, S— Cλ is a surface of the class b-vii)2.
vii) If S is the class b-x), by p we denote the singular point of C. Take two
curves C2 and C3 of degree (1, 0) and (0, 1), respectively, such that C2^p and
C33/). Then, putting R=C2+C3, we see S— R is a surface of the class b-iv).

viii) If S is the class b-xi), by p we denote the singular point of C. Take a

fiber C2 passing through/). Defining J?=C2+Δoo, we see S— R is a surface

of the class b-iv).
ix) If S is the class b-xii), take a curve R of degree (1,0) passing through a

point eGΠC. Then S— R is a surface of class b-iv).
x) If S is the class b-xiii)β, take a fiber R passing through a point e Δoo ΓΊ C.
Then 5— jf? is a surface of the class b-vii)β+1.
xi) If S is the class b-vi)*, take a fiber C4. Then S— C4= C*2.
xii) If S is the class b-xi)*, take a fiber C4 which passes through the singular
point of C. Then S— C4 is a surface of the class b-iv). Q.E.D.

Therefore, we establish the following

Proposition 24. Let S be a surface with κ(S) = Q, pg(S)=l and pg(S)=
q(S) = 0. Suppose that S is not a logarithmic K3 surface of type Πa. If £(S)=0,
then there is an open subset Sl of S such that /c(S1) = /c(S) = 0 and q(Sι)—l.
Moreover if <f(S)=l, then there is an open subset S2 of S such that /c(S2) = 0 and
g(S2}=2.

Corollary. Let S be a surface in Proposition 24. Then there is a surjective

morphism ψ: S^>J whose general fiber ψ~l(u)^C*. Here J=Pl or A1, ifq(S)=Q.
AndJ^C*, ifq(S)=l or 2.

A proof follows from the fact that S2 with κ(S2)=q(S2)=0 and q(S2)=2
is FF2P£-equtvalent to C*2.

EXAMPLE. Let C be an irreducible curve with a non-cuspidal singular point.
Then P2—C is a logarithmic K3 surface, i.e., κ(P2— C)=0 if and only if there
exist two irreducible curves Cλ and C2 such that P2— C— C1— C2

Proposition 25. Let C=V(φ), φ being an irreducible polynomial, be a
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curve on A2 and let S=A2—C. Suppose κ(S)==0. Then, choosing an appropriate
system of coordinates (x,y) of A2, φ is written as follows:

φ =

Proof. Since q(S)= 1 and ΐc(S)=09 it follows that pg(S)=l. Actually,
assume that pg(S)— 0. Then C (the closure of C in P2) is a rational curve whose
singularities are cuspidal. If C were singular, then a general member Cλ of
the fiber space φ: S-*C* would be of hyperbolic type, i.e., /c(Cλ)=l. Kawa-
mata's Theorem would assert that κ(S)^fc(Cλ)-}-/c(Gm)=l, a contradiction.
Thus C is non-singular and hence C^A1* By the imbedding theorem of A1

due to Abhyankar and Moh [1], we know that S^AlxGm, which implies that
"

Accordingly, we conclude that pg(S)=l and κ(S)=Q. Applying Pro-
position 24, we have an irreducible curve C3 such that P2— CΊU C2U C3^C*2,
where Cl=P2— A2 and C2— C. Since pg(S—C3)=ί, C2 or C3 has only cus-
pidal singularities. We may assume that C3 has only cuspidal singularities.
Hence, applying Kawamata's Theorem and Abhyankar and Moh Theorem, we
can assume that ^!2nC3 is V(x)y i.e., the jy-axis of the affine plane. Therefore

Spec k[x, yy x~l, φ'1] ^ C*2 .

From this it follows UiΆiy^k[x, y, x~l, φ~l'\^=k\xί φy x~l, φ'1]. Hence

where, m, n>0 and f(xy Y) is a polynomial. Then consider the j-derivative

8,= 8/8,. Thus,

= Qγf(x, φ)dyφ .

Hence,

d*φ* = dyφ{dγf(x, φ)—nχmφn~1} .

Since φ is irreducible, dyφ=axl for some αΦO, /^O. This yields that φ=

ψ(x)+axly, ty being a polynomial. We may assume a=l and hence

φ = dy-\-at\-a&-\ ----- \-asx
s . Q.E.D.

In the above, we may assume that α0—1 and #SΦO. We have the following

cases: 1) If /+1 ̂ s, then writing Cλ (Ί C2= {ply p2}, C2 has the cusp singularity
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at pi and CΊ+C2 has normal crossings at p2. 2) If 2+/5gs, then C2 has two
(analytically irreducible) branches zip, the singular point of C2. Hence P2—C2

is a logarithmic JO surface of type IIb.

Proposition 26. // S satisfies that κ(S)=Q, Pg(S)=l and ρg(S)=Q. Then
there exists an algebraic pencil {Cu} whose general member Cu is >C*. Hence S
is not measure-hyperbolic.

This follows from Corollary to Proposition 24 and Propositions 9, 21.

Proposition 27. Let (S, D) be a d-surface in the TABLE Πb. Define
Aut(S, D)= {^eAut(S); φD=D}. Then Aut(S, D) is a finite group ifq(S)=Q.

Proof. First assume that (S, D) is the class b-ix). A point/) of inflexion of
Z)(a nodal cubic curve), is characterized by the existence of a line L on P2 such

that L Π D= {p} . There are three such points. Hence φ& Aut(S, D) preserves
the set of points of inflexion. Therefore the image of the homomorphism
Aut(5, D)-»Aut(D) is a finite group. Using the similar argument to the

proof of Proposition 11, we complete the proof. We can check the finiteness of
Aut(S, D) for the other classes. Q.E.D.

From the above, we infer the following Proposition, whose proof is not
given here.

Proposition 28. Let S be a logarithmic K3 surface. Then, Aut(S) has
at most countably many elements.
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