litaka, S. Osaka J. Math. 16 (1979), 675-705

ON LOGARITHMIC K3 SURFACES

Shigeru IITAKA

(Received August 22, 1978) (Revised October 27, 1978)

Introduction. By surfaces we mean non-singular algebraic surfaces defined over the field of complex numbers C. A logarithmic K3 surface S is by definition a surface S with $\overline{p}_g(S)=1$, $\overline{\kappa}(S)=\overline{q}(S)=0$, in which $\overline{p}_g(S)$ is the logarithmic geometric genus, $\overline{\kappa}(S)$ is the logarithmic Kodaira dimension, and $\overline{q}(S)$ is the logarithmic irregularity. These notions will be explained in §1.

Let \overline{S} be a completion of S with ordinary boundary D, i.e., \overline{S} is a nonsingular complete surface and D is a divisor with normal crossings on \overline{S} such that $S=\overline{S}-D$. We write D as a sum of irreducible components: $D=C_1+\cdots+C_s$.

Logarithmic K3 surfaces are classified into the following three types: Type I) $p_{g}(\bar{S})=1$; Then \bar{S} is a K3 surface and D consists of non-singular rational curves C_{i} with negative-definite intersection matrix $[(C_{i}, C_{j})]$. Type II) $\phi(\bar{S})=0$ and a component C_{i} of D is a non-singular elliptic curves

Type II_a) $p_g(\bar{S})=0$ and a component C_1 of D is a non-singular elliptic curve; Then \bar{S} is a rational surface and the graph of D has no cycles.

Type II_b) $p_g(\bar{S})=0$ and D consists of rational curves C_j ; Then \bar{S} is a rational surface and the graph of D has one cycle.

We define A-boundary D_A and B-boundary D_B of (\overline{S}, D) as follows: 1) If S is of type I, then $D_A = \phi$ and $D_B = D$. 2) If S is of type II_a, then $D_A = C_1$ (a non-singular elliptic curve) and $D_B = C_2 + \cdots + C_s$. 3) If S is of type II_b, then $D_A = C_1 + \cdots + C_r$ that is a *circular boundary* (for definition, see §1 v)) and $D_B = C_{r+1} + \cdots + C_s$.

Theorem 1. If $\overline{S}-D_A$ has no exceptional curves of the first kind, then $K(\overline{S})+D_A \sim 0$.

Next, consider the case where $\bar{S}-D_A$ has exceptional curves. Let ρ : $\bar{S}\rightarrow \bar{S}_*$ be a contraction of exceptional curves of the first kind on $\bar{S}-D_A$, *i.e.*, \bar{S}_* is a complete surface and ρ is biregular around D_A such that $\bar{S}_*-\rho(D_A)$ has no exceptional curves of the first kind. By Theorem 1, $K(\bar{S}_*)+\rho(D_A)\sim 0$.

Theorem 2. $\rho(D_B)$ is a divisor with simple normal crossings. Let $\mathbb{Z}_1, \dots, \mathbb{Z}_u$ be the connected components of $\rho(D_B)$. Then 1) if $\mathbb{Z}_i \cap \rho(D_A) \neq \phi$, \mathbb{Z}_i is an exceptional curve of the first kind such that $(\mathbb{Z}_i, \rho(D_A))=1$. 2) If $\mathbb{Z}_i \cap \rho(D_A)=\phi$,

then \mathbb{Z}_i is a curve of Dynkin type ADE on $\overline{S} - \rho(D_A)$. In case S is of type II, \mathbb{Z}_i is a curve of Dynkin type A.

For definition of curves of Dynkin type ADE, see §1. iv).

Theorem 3. Suppose that $K(\bar{S})+D_A \sim 0$ and D_B is a curve of Dynkin type ADE. If S is of type II_a, then (\bar{S}, D) is obtained from one of 4 classes in Table II_a by 1/2-point attachments. If S is of type II_b, then (\bar{S}, D) is obtained from one of 15 classes in TABLE II_b by canonical blowing ups and attaching several 1/2-points.

Theorem 4. Let (\bar{S}, D) be a ∂ -surafce of which interior S satisfies that $\bar{\kappa}(S) = p_g(\bar{S}) = 0$ and $\bar{p}_g(S) = 1$. Suppose that a component C_1 of D is not rational. Then $\bar{q}(S) = 0$. Next, assume that D consists of rational curves. If $\bar{q}(S) = 0$, then there exists an open subset S_1 of S such that $\bar{\kappa}(S_1) = 0$ and $\bar{q}(S_1) = 1$. Furthermore, if $\bar{q}(S) = 1$, then there exists an open subset S_2 of S such that $\bar{\kappa}(S_2) = 0$ and $\bar{q}(S_2) = 2$.

Theorem 5. Let S be a surface with $\overline{\kappa}(S) = p_g(\overline{S}) = 0$ and $\overline{p}_g(S) = 1$. Then there exists an algebraic pencil $\{C_u\}$ on S whose general member C_u is isomorphic to C^{*}. Hence, S is not measure-hyperbolic. Moreover, the connected component of Aut (S) is $\{1\}$ or C^{*} or C^{*2}. Further,

$$\dim \operatorname{Aut}(S)^{\mathfrak{o}} \leq \overline{q}(S) \,.$$

Theorem 6. Let (\overline{S}, D) be a ∂ -surface whose interior S satisfies that $\overline{\kappa}(S)=0$ and $\overline{P}_g(S)=1$. Then, there exists a proper birational morphism $\rho: \overline{S} \to \overline{S}_*$ such that i) \overline{S}_* is relatively minimal, ii) $P_m(\overline{S}_* - \rho_*(D))=1$ for any $m \ge 1$, iii) $\rho_*(D)=$ $\Delta + Y$ has only normal crossings with $K(\overline{S}_*)+\Delta \sim 0$, Y being a curve of Dynkin type.

 $(\bar{S}_*, \rho_*(D))$ might be called a *supermodel* of S (or of (\bar{S}, D)). In the study of non-complete surfaces, minimal model (and even ∂ -minimal model) is not helpful. Instead, supermodel will play the important role. For full discussion of the classification theory of surfaces of non-complete surfaces, see Kawamata's recent article [18].

EXAMPLE 1. Let \overline{S} be a non-singular cubic surface in \mathbf{P}^3 . Let E be a general hyperplane section on \overline{S} . Then $\overline{S}-E$ is a logarithmic K3 surface of type II_a and the fundamental group $\pi_1(\overline{S}-E) \cong \{1\}$. Contracting exceptional curves of the first kind, we obtain a proper birational morphism $\rho: \overline{S} \to \overline{S}_*$ in which $\overline{S}_* = \mathbf{P}^2$. $E_1 = \rho(E)$ is a non-singular elliptic curve on \mathbf{P}^2 . Then $\pi_1(\overline{S}_*-E_1) \cong \mathbf{Z}/(3)$ and $\overline{S}-E \supset \overline{S}_*-E_1$.

EXAMPLE 2. Let $\varphi(y)$ be a polynomial of degree n+1 such that $\varphi(0) \neq 0$. Let Γ be the graph $(\subset \mathbb{C}^2)$ of a rational function $\varphi(y)/y^{n-m}$ (0 < m < n). By C we denote the closure of Γ in P^2 . Then $P^2 - \Gamma$ is a logarithmic K3 surface of type II_b.

Figure 1.

EXAMPLE 3. Let $\Phi: \mathbb{C}[x, y] \to \mathbb{C}[x, y]$ be a *C*-automorphism. Put $X(x, y) = \Phi(x)$ and $Y(x, y) = \Phi(y)$. Let $F(x, y) = Y(x, y)^{n-m}X(x, y) - \varphi(Y(x, y))$, φ being as in Example 3. Then the closure C_{Φ} of V(F) = Spec k[x, y]/(F) in \mathbb{P}^2 is a complement of a logarithmic K3 surface of type II_b if C_{Φ} has an analytically reducible (i.e., non-cusp) singular point.

For instance, let $\varphi(y)=y^3+1$ and $\Phi(x)=x$, $\Phi(y)=y+x^2$. Then $F=(y+x^2)x-(y+x^2)^3-1$. Thus letting Γ be the closure of V(F) in P^2 , $P^2-\Gamma$ is a logarithmic K3 surface of type II_b.

EXAMPLE 4. Let $C = V((y-x^2)^2 - xy^2)$ in C^2 . Denote by Γ the closure of C in P^2 . Then $S = P^2 - C$ has the following numerical characters: $\bar{p}_g = 0$, $\bar{P}_2 = 1$, $\bar{\kappa} = 1$, and $\bar{q} = 0$.

1. Basic notions, notations and conventions

i) ∂ -manifold and 1/2-point attachment. A pair (\overline{V}, D) consisting of a complete non-singular algebraic variety \overline{V} and a divisor D with normal crossings on \overline{V} is called a ∂ -manifold. The dimension of (\overline{V}, D) is understood as the dimension of \overline{V} . A 2-dimensional ∂ -manifold is called a ∂ -surface. We have a theory of minimal models for ∂ -manifolds (see [12]). Let (\overline{S}, D) be a ∂ -surface. Then D is not a minimal boundary if and only if there is an irreducible component E of D which is an exceptional curve of the first kind such that (E, D')=1 or 2, D' being defined by D=D'+E. We say that (\overline{S}, D) is relatively ∂ -minimal if S-D has no exceptional curves of the first kind and if D is a minimal boundary.

Let (\vec{V}_1, D_1) and (\vec{V}_2, D_2) be ∂ -manifolds. We say that a morphism $f: \vec{V}_1 \rightarrow \vec{V}_2$ is a ∂ -morphism when $f^{-1}D_2 \subset D_1$. Here $f^{-1}(D_2)$ is the reduced divisor of the pull back f^*D_2 .

Let (\bar{S}, D) be a ∂ -surface and take a point $p \in D$. By $\lambda: \bar{S}^1 = Q_p(\bar{S}) \to \bar{S}$ denote the blowing up at p. Defining $D^1 = \lambda^{-1}(D)$, we have a ∂ -morphism $\lambda: (\bar{S}^1, D^1) \to (\bar{S}, D)$. If p is a double point of D, λ is called a *canonical blowing*

up. Then we have the linear equivalence:

$$K(\overline{S}^1)+D^1\sim\lambda^*(K(\overline{S})+D)$$
,

where $K(\bar{S}^1)$ and $K(\bar{S})$ denote canonical divisors on \bar{S}^1 and \bar{S} , respectively. If p is a simple point of D, define D^* by $D^1 = \lambda^{-1}(p) + D^*$. $S^* = \bar{S}^1 - D^*$ contains S as an open subset. S^* is called a 1/2-point attachment to S at p. Conversely, S is called a 1/2-point detachment from S^* . To make things clear, we may say that (\bar{S}^*, D^*) is obtained from (\bar{S}, D) by attaching a 1/2-point $\lambda^{-1}(p) - D^*([10])$. It is easy to check that

$$K(ar{S^1}) {+} D^* {\sim} \lambda^* (K(ar{S}) {+} D)$$
 .

Hence, $K(\overline{S})+D$ modulo linear equivalence is invariant under canonical blowing ups and 1/2-point attachments.

In general letting (\overline{S}, D) be a ∂ -surface, we consider an irreducible curve E on \overline{S} satisfying that E is an exceptional curve of the first kind, $E \oplus D$, and (E, D)=1. Such an E is called a *D*-exceptional curve of the first kind. Note that $E-D \cong A^1$, which is called a 1/2-point. S-D is a 1/2-point attachment to $\overline{S}-D-E$.

ii) logarithmic genera. Let V be an algebraic variety. Then there exists a non-singular algebraic variety V^* such that there exists a proper birational morphism $\mu: V^* \rightarrow V$. Let (\overline{V}^*, D^*) be a ∂ -manifold such that $V^* = \overline{V}^* - D^*$. Then we say that \overline{V}^* is a completion of V^* with ordinary boundary D^* . According to Deligne [3], we have a sheaf $\Omega^1(\log D^*)$ of logarithmic 1-forms on \overline{V}^* . We have the spaces of logarithmic forms:

$$T_i(V^*) = H^0(\bar{V}^*, \Omega^i(\log D^*)), \qquad 1 \leq i \leq n;$$

and

$$H^{0}(\bar{V}^{*}, (\Omega^{n} \log D^{*})^{m}) \quad \text{for } m=1, 2, \cdots,$$

where $\Omega^{i}(\log D^{*}) = \wedge^{i}(\Omega^{1} \log D^{*})$ and $n = \dim V$. These spaces depend only on V. Hence, define

$$\bar{q}_i(V) = \dim T_i(V^*)$$

and

$$\bar{P}_m(V) = \dim H^0(\bar{V}^*, (\Omega^n \log D^*)^m).$$

We call $\bar{q}_i(V)$ the logarithmic *i*-th irregularity of V and call $\bar{P}_m(V)$ the logarithmic *m*-genus of V. Writing $\bar{q}(V) = \bar{q}_1(V)$ and $\bar{p}_g(V) = \bar{q}_n(V) = \bar{P}_1(V)$, we call them the logarithmic irregularity and the logarithmetic geometric genus of V, respectively (see [4], [5]).

iii) D-dimension and logarithmic Kodaira dimension. In general, let \overline{V} be a normal complete algebraic variety and D a divisor on \overline{V} . By Φ_m we denote

the rational map associated with |mD| under the assumption that $|mD| \neq \phi$. We define

$$\kappa(D, \, \overline{V}) = \max \{ \dim \Phi_m(\overline{V}); \, \text{when} \, |mD| \neq \phi \} \,,$$

which is said to be the *D*-dimension of \vec{V} . If |mD| is empty for any $m \ge 1$, we put $\kappa(D, \vec{V}) = -\infty$. The following two facts ([6]) are very useful in the study of varieties and divisors.

1) If $\kappa(D_1, \vec{V}) \ge 0, \dots, \kappa(D_l, \vec{V}) \ge 0$, then for any $\alpha_1 > 0, \dots, \alpha_l > 0$, we have

$$\kappa(\sum D_j, \, \bar{V}) = \kappa(\sum \alpha_j D_j, \, \bar{V}) \, .$$

2) Let $f: \overline{V} \to W$ be a surjective morphism of \overline{V} onto a normal complete variety W. For a divisor D on W and an effective divisor E which is f-exceptional (i.e., $\operatorname{codim} f(E) \ge 2$), we have

$$\kappa(f^{-1}D+E, \overline{V}) = \kappa(D, W).$$

When \overline{V} is non-singular, we denote by $K(\overline{V})$ a canonical divisor on \overline{V} . The Kodaira dimension $\kappa(\overline{V})$ of \overline{V} is defined to be $\kappa(K(\overline{V}), \overline{V})$.

Let (\overline{V}, D) be a ∂ -manifold of dimension *n*. $V = \overline{V} - D$ is called the *interior* of (\overline{V}, D) . We see that

$$\bar{P}_{m}(V) = \dim H^{0}(\bar{V}, \mathcal{O}(m(K(\bar{V})+D))).$$

The logarithmic Kodaira dimension of V is defined to be

$$\overline{\kappa}(V) = \kappa(K(\overline{V}) + D, \overline{V}),$$

which does not depend on the choice of the smooth completion \overline{V} of V with ordinary boundary D.

iv) W^2PB -equivalence. If there exists a proper birational morphism $f: V_1 \rightarrow V_2$, then $\bar{P}_m(V_1) = \bar{P}_m(V_2)$ and $\bar{q}_i(V_1) = \bar{q}_i(V_2)$. A proper birational map is by definition a composition of a proper birational morphism and an inverse of a proper birational morphism. If there is a proper birational map $f: V_1 \rightarrow V_2$, then we say that V_1 is proper birationally equivalent to V_2 . In this case, $\bar{P}_m(V_1) = \bar{P}_m(V_2)$ and $\bar{q}_i(V_1) = \bar{q}_i(V_2)$.

Moreover, when V is non-singular and F a closed subset of V of codim ≥ 2 , $\bar{P}_m(V-F) = \bar{P}_m(V)$ and $\bar{q}_i(V-F) = \bar{q}_i(V)$. In such a case, we say that i: $V-F \hookrightarrow V$ is a strict open immersion.

A WPB-map $f: V_1 \rightarrow V_2$ is by definition a birational map which is a composition of proper birational maps, strict open immersions, and inverses of strict open immersions. If there exists a WPB-map $f: V_1 \rightarrow V_2$, we say that V_1 is WPB-equivalent to V_2 .

Now define $\mathcal{W} = \{f: V_1 \rightarrow V_2 \text{ birational morphism; there exist a morphism } g: V_2 \rightarrow V_3 \text{ such that } g \cdot f \text{ is a } WPB\text{-map or a morphism } h: U \rightarrow V_1 \text{ such that } f \cdot h \text{ is a } WPB\text{-map} \}$. A birational map which is a composition $f_1 f_2^{-1} f_3 \cdots f_i^{\pm 1}, f_j \in \mathcal{W}$, is called a $W^2 PB\text{-map}$. If there is a $W^2 PB\text{-map } f: V_1 \rightarrow V_2$, then we say that V_1 is $W^2 PB\text{-equivalent to } V_2$ and $\bar{P}_m(V_1) = \bar{P}_m(V_2), \bar{q}_i(V_1) = \bar{q}_i(V_2)$. Recall that a surface S is $W^2 PB\text{-equivalent to a quasi-abelian surface if and only if <math>\bar{\kappa}(S) = 0$ and $\bar{q}(S) = 2$ ([10]).

v) circular boundary. Let (\overline{S}, D) be a ∂ -surface. We say that D is a circular boundary if D is a rational curve with only one ordinary double point p such that $D - \{p\}$ is non-singular or if D is a sum of non-singular rational curves C_1, C_2, \dots, C_r such that when r=2, we have $(C_1, C_2)=2$ and when $r\geq 3$, we have $(C_i, C_j)=1$ for $i-j\equiv \pm 1 \mod r$, and $(C_i, C_j)=0$ for $i-j\equiv 0, \pm \pm 1 \mod r$.

Figures 3.

vi) curve of Dynkin type. Let (\bar{S}, Y) be a ∂ -surface. We say that Y is a curve of Dynkin type ADE if Y is a sum of non-singular rational curves Y_j such that $Y_j^2 = -2$ and the intersection matrix $[(Y_i, Y_j)]$ corresponds to a direct sum of Dynkin diagrams A_n , D_m , E_i . Similarly, we can define a curve of extended Dynkin type $\tilde{A}\tilde{D}\tilde{E}$ (, which are not necessarily reduced divisors).

2. Logarithmic K3 surfaces of type I

Let S be a logarithmic K3 surface, *i.e.*, $\bar{p}_g(S)=1$, $\bar{q}(S)=\bar{\kappa}(S)=0$. Let (\bar{S}, D) be a ∂ -surface of which interior is S. Then $\kappa(\bar{S}) \leq \bar{\kappa}(S)=0$, $p_g(\bar{S}) \leq \bar{p}_g(S)=1$. Hence, $p_g(\bar{S})=1$ or 0.

First, assume that $p_g(\bar{S})=1$. Combining this with $\kappa(\bar{S}) \leq \bar{\kappa}(S)=0$, $\bar{q}(\bar{S}) \leq q(\bar{S})=0$, we see that \bar{S} is a K3 surface which may not be minimal. By contracting exceptional curves of the first kind on \bar{S} successively, we obtain a minimal K3 surface \bar{S}_* and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_*$. If $\mu(D)$ is a finite set of points, then, putting $\bar{S}_0 = \bar{S} - \mu^{-1}(\mu(D))$ and $S_* = \bar{S}_* - \mu(D)$, we have a proper birational morphism $\mu_0 = \mu | S_0: S_0 \rightarrow S_*$. We obtain the following commutative diagram:

LOGARITHMIC K3 SURFACES

Hence, by definition (see § 1 iv)) $S_0 \subset S$ and $S \subset \overline{S}$ are both W^2PB -morphisms. Hence S is W^2PB -equivalent to \overline{S}_* .

If $\mu(D)$ contains a curve, we let D_* be a purely 1-dimensional part of $\mu(D)$. Then by the previous argument, we see that S is W^2PB -equivalent to $\overline{S}-\mu^{-1}(D_*)\cap D$. Thus we may assume $D_*=\mu(D)$.

Lemma 1. Let \overline{V} be a complete non-singular algebraic variety and D a reduced divisor on \overline{V} . Let $\mu: \overline{V}^* \to \overline{V}$ be a birational morphism such that $(\overline{V}^*, \mu^{-1}(D))$ is a ∂ -manifold. Denote by D^* the proper transform of D by μ^{-1} . Suppose that $\kappa(\overline{V}) \geq 0$. Then

$$\overline{\kappa}(\overline{V}^* - D^*) = \overline{\kappa}(\overline{V}^* - \mu^{-1}(D)) = \overline{\kappa}(\overline{V} - D)$$
$$= \kappa(K(\overline{V}) + D, \overline{V}).$$

For a proof, see [6]. A generalization of this is the following Lemma 6, whose proof will be given there. By the above lemma, we get

$$0 = \bar{\kappa}(S) = \bar{\kappa}(\bar{S}-D) = \bar{\kappa}(\bar{S}_*-D_*) \\ = \kappa(K(\bar{S}_*)+D_*, \bar{S}_*) = \kappa(D_*, S_*).$$

Proposition 1. Let \overline{S} be a minimal K3 surface and Y a reduced divisor on \overline{S} such that $\kappa(Y, \overline{S})=0$. Then Y turns out to be a curve of Dynkin type ADE. Moreover, $\overline{P}_m(\overline{S}-Y)=1$ for any $m \ge 1$ and $\overline{q}(S-Y)=0$. Hence $\overline{S}-Y$ is a logarithmic K3 surface.

Proof. Let $\sum Y_j$ be the irreducible decomposition of Y. Then for any $m_j \ge 0$, we have $\kappa(\sum m_j Y_j, \overline{S}) = 0$ by the fact 1) in §1 iii). By making use of Riemann Roch Theorem on \overline{S} we have

$$0 = \dim |(\sum m_j Y_j)| \ge (\sum m_j Y_j)^2/2 + 1$$

except for $m_1 = \cdots = m_s = 0$. Hence

$$(\sum m_j Y_j)^2 \leq -2$$
 .

In particular, $Y_j^2 \leq -2$. In view of the adjunction formula, we have

$$-2 \leq 2\pi (Y_j) - 2 = Y_j^2$$
.

Here $\pi(Y)$ denotes the virtual genus of Y. Thus $Y_j^2 = -2$ and $\pi(Y_j) = 0$. More generally, letting Q be a connected reduced curve in Y, we have the exact sequences

$$0 \to \mathcal{O}(-\mathcal{Y}) \to \mathcal{O} \to \mathcal{O}\mathcal{Y} \to 0$$

and

$$\begin{split} 0 &\to H^{0}(\mathcal{O}) \to H^{0}(\mathcal{O}_{\mathcal{V}}) \to H^{1}(\mathcal{O}(-\mathcal{Q})) \to H^{1}(\mathcal{O}) \\ &\to H^{1}(\mathcal{O}_{\mathcal{V}}) \to H^{2}(\mathcal{O}(-\mathcal{Q})) \to H^{2}(\mathcal{O}) \to 0 \;. \end{split}$$

From this, it follows that $H^1(\mathcal{O}(-\mathcal{Y}))=0$ and

$$\dim H^{0}(\mathcal{O}(\mathcal{Q})) = \dim H^{2}(\mathcal{O}(-\mathcal{Q})) = \dim H^{1}(\mathcal{O}\mathcal{Q}) + 1$$
$$= \pi(\mathcal{Q}) + 1 = \mathcal{Q}^{2}/2 + 2.$$

Hence $\mathcal{Q}^2 = -2$. In particular, if $Y_i \neq Y_j$, we have $(Y_i, Y_j) = 0$ or 1. It is easy to see that the intersection-matrix $[(Y_i, Y_j)]$ $(Y_i \leq \mathcal{Q})$ corresponds to the Dynkin diagram of type A_n , D_m , E_i . Eence, Y is a curve of Dynkin type ADE. Therefore,

$$\bar{\kappa}(\bar{S}-Y) = \kappa(K(\bar{S})+Y,\,\bar{S}) = 0$$

and $\bar{p}_{g}(\bar{S}-Y) \ge p_{g}(\bar{S})=1$. These imply that $\bar{P}_{m}(\bar{S}-Y)=1$ for any $m \ge 1$.

Since $[(Y_i, Y_j)]$ is negative-definite, Y_1, \dots, Y_s are linearly independent in Pic (\overline{S}) . We make use of the following

Lemma 2. Let \vec{V} be a non-singular complete algebraic variety with $q(\vec{V})=0$ and Y a reduced divisor on \vec{V} . Let $\sum Y_j$ be the irreducible decomposition of Y. Then, putting $V=\vec{V}-Y$, we get

$$\bar{q}(V) = \dim \operatorname{Ker}(\bigoplus_{i} Q Y_{i} \to \operatorname{Pic}(\bar{V}) \otimes_{Z} Q).$$

Proof. We have the exact sequence:

$$0 = H^1(\vec{V}, \mathbf{Q}) \to H^1(V, \mathbf{Q}) \to \bigoplus \mathbf{Q} Y_j \xrightarrow{\delta} H^2(\vec{V}, \mathbf{Q}) \,.$$

Since $q(\bar{V})=0$, it follows that Im $\delta \subset \operatorname{Pic}(\bar{V}) \otimes Q \subset H^2(\bar{V}, Q)$. Thus we obtain

$$\overline{q}(V) = \dim \operatorname{Ker}(\oplus \boldsymbol{Q}Y_j \xrightarrow{\delta} \operatorname{Pic}(\overline{V}) \otimes \boldsymbol{Q}).$$
 Q.E.D.

We proceed with the proof of Proposition 1. By the lemma above we conclude that $\bar{q}(\bar{S}-Y)=0$. Q.E.D.

Thus we obtain the following

Theorem I. Let (\overline{S}, D) be a ∂ -surface whose interior is a logarithmic K3 surface S of type I. Then there exists a birational morphism $\mu: \overline{S} \rightarrow \overline{S}_*$ such that

 \overline{S}_* is a minimal K3 surface and such that $\mu(D)$ is a union of a curve Y of Dynkin type and a finite set F, and hence

$$S_0 = \bar{S} - \mu^{-1}(Y) - \mu^{-1}(F) \subset S \subset \bar{S}.$$

In other words, S is W^2PB -equivalent to $\overline{S}_* - Y$.

Note that D and Y may be empty.

class	D	$\bar{S}_* - D$
i)	φ	compact
i)*	curve of Dynkin type ADE	non-compact

Table I. \overline{S}_* being a minimal compact K3 surface

3. Logarithmic K3 surfaces of type II. We begin by recalling the elementary result, called \overline{p}_g -formula.

Lemma 3. Let (\overline{S}, D) be a ∂ -surface with $q(\overline{S})=0$. Let $\sum_{j=1}^{s} C_{j}$ be the irreducible decomposition of D. Then

$$\bar{p}_{g}(\bar{S}-D) = p_{g}(\bar{S}) + \sum g(C_{j}) + h(\Gamma(D)),$$

where $\Gamma(D)$ is the (dual) graph of the intersection of $D = \sum C_j$, $h(\Gamma)$ is the cyclotomic number of the graph Γ , and the $g(C_i)$ denote the genera of the C_i .

For a proof see ([7], the Appendix).

With the notation being in Lemma 3, we further assume that S is a logarithmic K3 surface of type II. Hence $p_g(\bar{S})=0$ and $\bar{p}_g(S)=1$. By the formula in Lemma 3, we have

 $1 = \overline{p}_g(S) = \sum g(C_i) + h(\Gamma(D)).$

Hence, there are the following two types;

Type II_a;
$$g(C_1) = 1$$
, $g(C_2) = \dots = g(C_s) = 0$ and $h(\Gamma(D)) = 0$.
Type II_b; $g(C_1) = g(C_2) = \dots = g(C_s) = 0$ and $h(\Gamma(D)) = 1$.

Proposition 2. If S is a logarithmic K3 surface of type II, then S is a rational surface.

First, assume $\kappa(\bar{S})$ to be 0. Recalling $p_{g}(\bar{S})=q(\bar{S})=0$, we see that \bar{S} is an Enriques surface. Hence, there exists an étale covering $\pi: \tilde{S} \to \bar{S}$ where \tilde{S} is a K3 surface. Let $\tilde{D}=\pi^{-1}(D)$. Since $\tilde{S}-\tilde{D}\to\bar{S}-D$ is étale, we have $\bar{\kappa}(\tilde{S}-\tilde{D})=\bar{\kappa}(\bar{S}-D)=0$ by Theorem 3 [5]. Hence, $\tilde{S}-\tilde{D}$ is a logarithmic

K3 surface of type I. By Theorem I, \tilde{D} consists of rational non-singular curves whose intersection matrix is negative-definite. Hence D has the same property as \tilde{D} . Thus $h(\Gamma(D))=0$. This contradicts the fact that S is of type II. Therefore, it follows that $\kappa(\bar{S})=-\infty$. Recalling Castelnuovo's criterion, \bar{S} is a rational surface, because $q(\bar{S})=0$. Q.E.D.

4. Logarithmic K3 surfaces of type II_a. Employing the notation in §3, we assume S to be a logarithmic K3 surface of type II_a. Putting $D_A = C_1$ and $D_B = C_2 + \cdots + C_s$, we have $D = D_A + D_B$ and $g(D_A) = 1$. Hence, $\overline{p}_g(S - D_A) = 1$, $\overline{\kappa}(\overline{S} - D_A) \leq \overline{\kappa}(\overline{S} - D) = 0$, and $\overline{q}(\overline{S} - D_A) \leq \overline{q}(\overline{S} - D_A) = 0$. These show that $\overline{S} - D_A$ is a logarithmic K3 surface of type II_a. Contracting exceptional curves of the first kind in $\overline{S} - D_A$, successively, we have a birational morphism $\mu: \overline{S} \rightarrow \overline{S}_*$ such that μ is isomorphic around $D_A \simeq \mu(D_A)$ and $\overline{S}_* - \mu(D_A)$ has no exceptional curves of the first kind, i.e., $(\overline{S}_*, \mu(D_A))$ is a relatively ∂ -minimal model of (\overline{S}, D_A) .

Proposition 3. Let (\bar{S}, C) be a relatively ∂ -minimal ∂ -surface such that C is a non-singular elliptic curve with $\bar{\kappa}(\bar{S}-C)=\bar{q}(\bar{S}-C)=0$. Then $K(\bar{S})+C\sim 0$.

Proof. By Proposition 2, \overline{S} is a rational surface.

If $K(\bar{S})+C$ were linearly equivalent to an effective divisor $\Delta = \sum_{i=1}^{s} r_i E_i$ $(r_i > 0)$, we would derive a contradiction. Since $\kappa(\Delta, \bar{S}) = \bar{\kappa}(\bar{S}-C) = 0$, we know that the intersection matrix $[(E_i, E_j)]$ is negative semi-definite. In particular $E_j^2 \leq 0$ for any $1 \leq j \leq s$. If $E_j = C$, then $K(=K(\bar{S})) \sim \Delta - E_j = \Delta - C_1 \geq 0$. This is a contradiction. Therefore $E_j \neq C$, which implies $(\Delta, C) \geq 0$. Since $\Delta^2 \leq 0$, we may assume that $(\Delta, E_1) \leq 0$. Hence, $(K, E_1) \leq -(C, E_j) \leq 0$. By the adjunction formula,

$$-2 \leq 2\pi(E_1) - 2 = E_1^2 + (K, E_1) \leq 0.$$

Hence, $\pi(E_1)=0$ or 1. We shall examine various cases, separately.

1) If $\pi(E_1)=1$, we have $E_1^2=(K, E_1)=0$.

Hence $(C, E_1)=0$. Thus $C \cap E_1=\phi$ and $(\Delta, E_1)=0$.

2) If $\pi(E_1)=0$ and $(C, E_1)\geq 1$, it follows that $(K, E_1)\leq -1$ and $-2=E_1^2+(K, E_1)\leq -1$. Hence, α) $E_1^2=(K, E_1)=-1$ or β) $E_1^2=0$ and $(K, E_1)=-2$. In the case of α), we have $1\leq (C, E_1)=(\Delta, E_1)-(K, E_1)\leq 1$. Hence $(\Delta, E_1)=0$, $-(C, E_1)=(K, E_1)=-1$. This implies that E_1 is a C-exceptional curve. Hence, we can contract E_1 . Note that K+C is invariant under 1/2-point detachments (see § 1 i)). Thus we may assume that this case does not occur.

In the case of β), we use the following

Lemma 4. Let \overline{S} be a complete surface with $p_{g}(\overline{S}) = q(\overline{S}) = 0$ and E a curve

on \overline{S} such that $\pi(E)=0$. Then

$$\dim |E| \ge 1 + E^2.$$

Proof. By Riemann Roch Theorem,

$$\dim |E| \ge (E, E-K)/2, K \text{ being } K(S).$$

On the other hand, $(E, E+K)=2\pi(E)-2=-2$. Hence, follows the assertion. Q.E.D.

Therefore letting $S = \overline{S} - C$,

$$0 = \overline{p}_{g}(S) - 1 = \dim |\Delta| \ge \dim |E_1| \ge 1.$$

Thus we have arrived at a contradiction.

3) If $\pi(E_1)=(C, E_1)=0$, then $E_1^2 \leq -1$ and $(K, E_1)=-1$ or 0. Suppose $(K, E_1)=-1$. We have $E_1^2=-1$ and $E_1 \cap C=\phi$. This yields that E_1 is an exceptional curve of the first kind on $\overline{S}-C$. This contradicts the hypothesis. Suppose that $(K, E_1)=0$. We have $E_1^2=-2$. Thus $E_1 \cap C=\phi$ and $(\Delta, E_1)=0$.

Consequently, after a finite succession of 1/2-point detachments, we have $(\Delta, E_j)=0$, and i) $E_j^2=0$, $\pi(E_j)=1$ or ii) $E_j^2=-2$, $\pi(E_j)=0$. Hence $(K, E_j)=0$ for any irreducible components E_j of Δ . Thus letting $\mathcal{D}_1, \dots, \mathcal{D}_c$ be the connected components of Δ , we have $\Delta=\sum \mathcal{D}_j$ and $\Delta^2=\sum \mathcal{D}_j^2=0$. Since $\Delta^2=0$ and $\mathcal{D}_j^2\leq 0$ for any j, it follows that $\mathcal{D}_1^2=\dots=\mathcal{D}_c^2=0$. Recalling that $(K, E_i)=0$, for any i we have $(K, \mathcal{D}_j)=0$. Therefore, the \mathcal{D}_j are curves of extended Dynkin type $\tilde{A}\tilde{D}\tilde{E}$.

Lemma 5. Let \overline{S} be a complete surface with $p_g(\overline{S}) = q(\overline{S}) = 0$. For an effective divisor $F (\pm 0)$ on S, we have

$$\dim |F+K| = \dim H^1(\mathcal{O}_F) - 1 \ge (F, F+K)/2.$$

Moreover, if dim $H^0(\mathcal{O}_F)=1$, then

$$H^1(\mathcal{O}(F+K))=0$$
, and so $\pi(F)=\dim H^1(\mathcal{O}_F)$.

Hence,

$$\dim |F+K| = (F, F+K)/2$$
.

Proof. From the exact sequence:

$$0 \to \mathbf{C} = H^0(\mathcal{O}) \to H^0(\mathcal{O}_F) \to H^1(\mathcal{O}(-F))$$

$$\to 0 = H^1(\mathcal{O}) \to H^1(\mathcal{O}_F) \to H^1(\mathcal{O}(-F)) \to 0 = H^2(\mathcal{O})$$

follows the assertion.

By this, we have

685

Q.E.D.

$$\dim |\mathcal{D}_i + K| \ge (\mathcal{D}_i, \mathcal{D}_i + K)/2 = 0.$$

But since $\overline{P}_2(S) - 1 \ge \dim |\Delta + K| \ge \dim |\mathcal{D}_i + K|$, it follows that $\dim |\mathcal{D}_i + K| = 0$. Putting $K(\mathcal{D}_i) = (\mathcal{D}_i + K) |\mathcal{D}_i$, we get the following exact sequence:

$$0 = H^{0}(\mathcal{O}(K)) \to H^{0}(\mathcal{O}(K + \mathcal{D}_{i})) \to H^{0}(\mathcal{O}(K(\mathcal{D}_{i})))$$
$$\to H^{1}(\mathcal{O}(K)) = H^{1}(\mathcal{O}) = 0.$$

Hence,

$$\dim |K(\mathcal{D}_i)| = \dim H^0(\mathcal{O}(K(\mathcal{D}_i))) - 1$$

= dim H⁰(\mathcal{O}(K+\mathcal{D}_i)) - 1
= dim |K+\mathcal{D}_i| = 0.

Similarly, we have

$$\dim |K(C)| = 0$$
, where $K(C) = (K+C)|C$,

since $\bar{p}_{g}(\bar{S}-C)-1=\dim |K+C|=0$. Furthermore,

$$0 = \overline{p}_{g}(\overline{S}-C) - 1 \leq \dim |K+C+\mathcal{D}_{i}|$$

$$\leq \dim |2\Delta| = \overline{P}_{2}(\overline{S}-C) - 1 = 0.$$

Hence, dim $|K+C+\mathcal{D}_i|=0$. Thus,

*)
$$\dim |K(C+\mathcal{D}_i)| = \dim |K+C+\mathcal{D}_i| = 0.$$

By the way, since $C \cap \mathcal{D}_i = \phi$, it follows that

$$egin{aligned} &K(C + \mathcal{D}_i) = (K + C + \mathcal{D}_i) \mid (C + \mathcal{D}_i) \ &= (K + C) \mid C \oplus (K + \mathcal{D}_i) \mid \mathcal{D}_i \ &= K(C) \oplus K(\mathcal{D}_i) \,. \end{aligned}$$

Thus, dim $|K(C+\mathcal{D}_i)| = \dim |K(C)| + \dim |K(\mathcal{D}_i)| + 1 = 1$. This contradicts *). Q.E.D.

The following lemma is a generalization of Lemma 1.

Lemma 6. Let (\overline{V}, D) be a ∂ -manifold and put $V = \overline{V} - D$. Assume that $\overline{\kappa}(V) \geq 0$. Let Y be a reduced divisor on V and denote by \overline{Y} the closure of Y in in \overline{V} . Take a proper birational morphism $\rho: \overline{V}^* \rightarrow \overline{V}$ such that $(V^*, \rho^{-1}(\overline{Y} + D))$ is a ∂ -manifold. $\mu = \rho | V^*: V^* = \overline{V}^* - \rho^{-1}(D) \rightarrow V$ is a proper birational morphism. Then letting Y^* be the proper transform of Y by μ^{-1} , we obtain

$$ar{\kappa}(V^*-Y^*) = ar{\kappa}(V-Y) = \kappa(K(ar{V})+D+ar{Y},ar{V})$$

Proof. Denoting by Z^{\sharp} the closure of Z in \overline{V}^{*} , we have $(\mu^{-1}(Y))^{\sharp} = Y^{\sharp} + \mathcal{E}, \mathcal{E}$ being an effective divisor which is ρ -exceptional. Similarly,

LOGARITHMIC K3 SURFACES

$$(\mu^*(Y))^* = Y^* + \mathcal{F}, \mathcal{F}$$
 being effective and $\mathcal{F}_{red} = \mathcal{E}$.

Recall the logarithmic ramification formula ([5]):

$$K(ar{V}^*)\!+\!
ho^{-1}\!(D)=
ho^*\!(K(ar{V})\!+\!D)\!+\!ar{R}_{\mu}$$
 ,

where \bar{R}_{μ} is the logarithmic ramification divisor for μ . By definition, we have

$$\begin{split} \bar{\kappa}(V-Y) &= \bar{\kappa}(V^* - \mu^{-1}(Y)) \geq \bar{\kappa}(V^* - Y^*) \\ &= \kappa(K(\bar{V}^*) + \rho^{-1}(D) + Y^{\ddagger}, \bar{V}^*) \\ &= \kappa(\rho^*(K(\bar{V}) + D) + \bar{R}_{\mu} + Y^{\ddagger}, \bar{V}^*) \\ &= \kappa(\rho^*(K(\bar{V}) + D) + N\bar{R}_{\mu} + Y^{\ddagger}, \bar{V}^*), N \gg 0 \,. \end{split}$$

This follows from $\bar{\kappa}(V) \ge 0$ by using 2) of §1. iii). On the other hand, $\bar{R}_{\mu} | V^* = R_{\mu}$ and $\mu^{-1}(Y) \le Y^* + N_1 R_{\mu}$ for some $N_1 > 0$. Hence, we have $(\mu^* Y)^{\sharp} \le Y^{\sharp} + N_2 (R_{\mu})^{\sharp}$ for some $N_2 > 0$. Choosing $N \gg 0$, we obtain

$$\kappa(\rho^*(K(\vec{V})+D)+N\bar{R}_{\mu}+Y^*,\vec{V}^*) \geq \kappa(\rho^*(K(\vec{V})+D)+(\mu^*Y)^*,\vec{V}^*).$$

We note that

$$\rho^{*}(D) + (\mu^{*}Y)^{*} = \rho^{*}(D + \overline{Y})$$

Hence,

$$\begin{split} \kappa(\rho^*(K(\bar{V})+D)+(\mu^*Y)^*,\,\bar{V}^*) &= \kappa(\rho^*(K(\bar{V})+D+\bar{Y}),\,\bar{V}^*) \\ &= \kappa(K(\bar{V})+D+\bar{Y},\,\bar{V}^*). \end{split}$$

It is easily seen that

$$\kappa(K(\bar{V})+D+\bar{Y}, \bar{V}^*) \geq \bar{\kappa}(V-Y) \geq \bar{\kappa}(V^*-Y^*)$$

Thus we obtain the desired equality.

Q.E.D.

We come back to the study of a logarithmic K3 surface S of type II_a. Writing $D_A = \mu(D_A)$ and $Y = \mu_*(D_B)$, we have by Lemma 6

$$\bar{\kappa}(\bar{S}_* - D_A - Y) = \bar{\kappa}(\bar{S} - D) = 0.$$

Since $K(\bar{S}_*) + D_A \sim 0$, we make use of the following proposition.

Proposition 4. With the notation being as in Proposition 3, let Y be a reduced divisor on \overline{S} which does not contain C. Suppose that $\overline{\kappa}(\overline{S}-C-Y)=0$. Then $\kappa(Y, \overline{S})=0$. Moreover, letting $\mathcal{Y}_1, \dots, \mathcal{Y}_u$ be the connected components of Y, we have the following assertions, separately.

1) If $\mathcal{Q}_j \cap C \neq \phi$, then $(\mathcal{Q}_j, C) = 1$ and \mathcal{Q}_j is an exceptional curve of the first kind in \overline{S} .

2) If $\mathcal{Y}_i \cap C = \phi$, then \mathcal{Y}_i is a curve of Dynkin type ADE.

Proof. Letting $Y_0 = Y \cap S$, $S = \overline{S} - C$, we have \overline{Y}_0 (the closure of Y_0 in \overline{S}) = Y. Take a proper birational morphism $\rho: \overline{S}^* \to S$ such that $(\overline{S}^*, \rho^{-1}(C+Y))$ is a ∂ -surface. By Lemma 6, we have

$$\kappa(K(\bar{S})+C+Y,\,\bar{S})=\bar{\kappa}(\bar{S}-C-Y)=0\,.$$

Recalling Proposition 3, we get $\kappa(Y, \overline{S}) = 0$. Let $\sum Y_j$ be the irreducible decomposition of Y and let $\mathcal{Q}_1, \dots, \mathcal{Q}_u$ be the connected components of Y. By Lemma 5, letting \mathcal{Q} be a connected reduced divisor in Y, we have

$$0 = \dim |\mathcal{Y}| = \dim |K + C + \mathcal{Y}|$$

= dim H¹(O_C+Q) -1 \ge (C+Q, K+C+Q)/2.

Hence, $(C+\mathcal{Y}, \mathcal{Y}) \leq 0$. If $C+\mathcal{Y}$ is connected,

$$0 = \dim |K+C+\mathcal{Q}| = (C+\mathcal{Q}, K+C+\mathcal{Q})/2$$

= $\pi(C+\mathcal{Q})-1 = \pi(C)+\pi(\mathcal{Q})+(C, \mathcal{Q})-2$
= $\pi(\mathcal{Q})+(C, \mathcal{Q})-1 \ge \pi(\mathcal{Q}).$

From this, it follows that $\pi(\mathcal{Y})=0$ and $(C, \mathcal{Y})=1$. If $C+\mathcal{Y}$ is not connected, then

$$0 = \dim |K+C+\mathcal{Y}| = \dim H^1(\mathcal{O}_{C+\mathcal{Y}}) - 1$$

= dim H¹(\mathcal{O}_{C}) + dim H¹(\mathcal{O}_{Q}) - 1
= dim H¹(\mathcal{O}_{Q}) = \pi(\mathcal{Y}) = (\mathcal{Y}, K+\mathcal{Y})/2 + 1.

On the other hand, $(C, \mathcal{Q})=0$ yields $(K, \mathcal{Q})=0$, since $K+C\sim 0$. Hence, $\mathcal{Q}^2=-2$. In particular, if $Y_j \cap C \neq \phi$, then Y_j is a C-exceptional curve, and if $Y_j \cap C = \phi$, then $Y_j^2 = -2$ and $(K, Y_j)=0$.

For any $m_j \ge 0$, define $Z = \sum m_j Y_j \ne 0$. We write $Z = \mathbb{Z}_1 + \cdots + \mathbb{Z}_v$ where Supp $(\mathbb{Z}_1), \cdots, \text{Supp}(\mathbb{Z}_v)$ are the connected components of Supp Z. By Lemma 5,

$$0 = \dim |Z| = \dim |Z + C + K| = \dim H^{1}(\mathcal{O}_{C+Z}) - 1$$

$$\geq (C + Z, C + K + Z)/2 = ((C, Z) + Z^{2})/2.$$

If (C, Z) > 0, then $Z^2 \leq -1$. Next, assume (C, Z) = 0. Then $(C, \mathbb{Z}_1) = \cdots = (C, \mathbb{Z}_p) = 0$. This implies $(K, \mathbb{Z}_1) = \cdots = (K, \mathbb{Z}_p) = 0$. Hence,

$$1 = \dim H^1(\mathcal{O}_{c+z}) = \dim H^1(\mathcal{O}_c) + \sum \dim H^1(\mathcal{O}_{z_i}).$$

Thus dim $H^1(\mathcal{O}_{\mathbb{Z}_i})=0$. Recalling Riemann Roch Theorem on \overline{S} , we have

$$(\mathcal{Z}_i, \mathcal{Z}_i + K)/2 = \dim H^1(\mathcal{O}_{\mathcal{Z}_i}) - \dim H^0(\mathcal{O}_{\mathcal{Z}_i}) \leq -1$$

Since $(\mathbb{Z}_i, K) = 0$, we have $\mathbb{Z}_i^2 \leq -2$. Hence Supp \mathbb{Z}_i is a curve of Dynkin type

and so the intersection matrix $[(Y_i, Y_j)]$ is negative-definite. Thus we complete the proof of Proposition 4.

Proposition 5. Let \overline{S} be a complete surface and C a non-singular elliptic curve on \overline{S} . Suppose that $q(\overline{S})=0$ and $K(\overline{S})+C\sim0$. Then $\overline{q}(\overline{S}-C)=0$, and (\overline{S}, C) is obtained from one of the following three ∂ -surfaces by attaching 1/2-points: a-i) (\mathbf{P}^2 , E) where E is a non-singular curve of degree 3,

a-i) $(\mathbf{P}^1 \times \mathbf{P}^1, E)$ where E is a non-singular curve of degree (2, 2),

a-iii) (\sum_2, E) where \sum_2 is a Hirzebruch surface of degree 2 and E a non-singular elliptic curve such that $K(\sum_2)+E\sim 0$.

Proof. $\bar{q}(\bar{S}-C)=0$ follows from Lemma 2. First assume that $\bar{S}=P^2$ or $\sum_{0}=P^1 \times P^1$ or $\sum_{b} (b \ge 2)$, that is the Hirzebruch surface of degree b.

Lemma 7. A Hirzebruch surface $\sum_{b} (b \ge 1)$ is a non-trivial \mathbf{P}^{1} -bundle over \mathbf{P}^{1} on which there exists one and only one irreducible curve Δ_{∞} with negative selfintersection number -b. Δ_{∞} is a section of $\sum_{b} \rightarrow \mathbf{P}^{1}$, whose fiber is denoted by F. Any section $C \neq \Delta_{\infty}$ is linearly equivalent to $\Delta_{\infty} + \alpha F$ ($\alpha \ge b$). Then $C^{2} = 2\alpha - b$ and $(C, \Delta_{\infty}) = \alpha - b$. The smallest C^{2} is b. Since dim $|\Delta_{\infty} + bF| = 1 + b$, we have sections Δ_{λ} (λ being a point of \mathbf{C}^{1+b}), which satisfy $\Delta_{\lambda} \cap \Delta_{\infty} = \phi$ and $\Delta_{\lambda}^{2} = b$. Moreover, $-K(\sum_{b}) \sim \Delta_{\infty} + \Delta_{\lambda} + 2F$.

Proof. The verification is easy and omitted.

We continue the proof of Proposition 5. If $\overline{S} = \sum_{b}$, and $E \sim -K(\sum_{b}) \sim \Delta_{\lambda} + \Delta_{\infty} + 2F$, then $(E, \Delta_{\infty}) = -b+2$. By the way, $E \neq \Delta_{\infty}$. Hence, $(E, \Delta_{\infty}) \ge 0$, which implies $b \le 2$. We have to show that there exists a non-singular member in $|-K(\sum_{a})|$.

Lemma 8. Let $V = \mathbf{P}^1 \times \mathbf{P}^2$. Then $\sum_b (b \ge 1)$ is isomorphic to a nonsingular hypersurface of degree (b, 1) of V.

Proof. Letting h be a line on P^2 , we put $L=p\times P^2$ and $M=P^1\times h$. Then, by the adjunction formula,

$$-K(V) \sim 2L + 3M$$
.

Since bL+M is very ample ($b \ge 1$), a general member W of |bL+M| is non-singular and

$$-K(W) \sim (2L + 3M - M - bL) | W.$$

Hence $K(W)^2 = 8$. Moreover, the projection $\pi: V \to \mathbf{P}^1$ induces the fibered surface $\pi' = \pi | W: W \to \mathbf{P}^1$, whose fiber is linearly equivalent to L | W. Clearly, $(L|W)^2 = 0$ and $L|W \cong \mathbf{P}^1$. Hence, $\pi | W: W \to \mathbf{P}^1$ is a \mathbf{P}^1 -bundle. M | W is a section which satisfies $(M | W)^2 = b$. Hence $W \cong \sum_b$. Employing the notation in Lemma 7, we see that $\Delta_{\infty} \sim (M-bL) | W$ and $\Delta_{\lambda} \sim M | W$. Q.E.D.

When b=2, $-K(\sum_2)$ is linearly equivalent to 2M | W. $(2M | W)^2=8$ and 2M | W has no base points. Therefore a general member of $|-K(\sum_2)|$ is a non-singular elliptic curve. A curve E on P^2 or $P^1 \times P^1$ which satisfies the condition of Proposition 5 is a non-singular curve of degree 3 or degree (2, 2), respectively.

Recalling that a relatively minimal rational surface \overline{S} is isomorphic to P^2 , $P^1 \times P^1$ or \sum_b , we have only to consider the case where there is an exceptional curve L of the first kind on \overline{S} . Since $L \neq C$ and $L^2 = (K(\overline{S}), L) = -1$, we have $(C, L) = -(K(\overline{S}), L) = 1$. Hence, L is a C-exceptional curve. Contracting such L successively, we complete the proof.

With the notation being as in Proposition 5, let Y be a curve of Dynkin type in $S = \overline{S} - C$. Corresponding to the 1/2-point attachments, we have a proper birational morphism $\mu: \overline{S} \to \overline{S}_*, \overline{S}_* = \mathbf{P}^2$ or $\mathbf{P}^1 \times \mathbf{P}^1$ or \sum_2 . By Lemma 6, writing $Z = \mu_*(Y)$, we have $\overline{\kappa}(\overline{S}_* - \mu(C) - Z) = \overline{\kappa}(\overline{S} - C - Y) = \kappa(Y, \overline{S}) = 0$. Hence, Z is a sum of exceptional curves and a curve of Dynkin type. Since \overline{S}_* is relatively minimal, Z is a curve of Dynkin type such that $Z \cap \mu(C) = \phi$. Thus, $Z = \Delta_{\infty}$ in \sum_2 . Accordingly, $\mu(Y)$ is a union of a finite set of points in $\mu(C)$ and $\Delta_{\infty} \subset \overline{S}_* = \sum_2$.

Therefore, Y is a curve of Dynkin type A. Summarizing the argument above, we obtain the following proposition.

Proposition 6. Let (\overline{S}, D) be a relatively ∂ -minimal surface such that $S = \overline{S} - D$ is a logarithmic K3 surface. Suppose that (\overline{S}, D_A) is relatively ∂ -minimal and that there are no D-exceptional curves of the first kind on \overline{S} . Then such ∂ -surfaces (\overline{S}, D) are classified into the following table. There, $D = \sum C_i$ is the irreducible decomposition and C_1 is a non-singular elliptic irreducible curve.

class	\bar{S}	\overline{S} D with the self-intersection numbers		S	
a-1)	P^2	C1,9	Z/(3)	ст.	
a-ii)	$P^1 \times P^1$	C, 8	Z /(2)	affine	
a-iii)		C8	Z /(2)	۲.	
a-iii)	2نگ	$C_1 \underbrace{8 C_2 -2}$?	non-amne	

Table II_a.

We have the following

Theorem II_a. Let (\overline{S}, D) be a ∂ -surface whose interior S is a logarithmic K3 surface of type II_a. Then there exists a birational morphism $\mu: \overline{S} \to \overline{S}_*$ such that

1) $\bar{S}_* = P^2$ or $P^1 \times P^1$ or $\sum_2 2$) $C = \mu(D_A)$ is a non-singular curve, 3) $\mu(D_B)$ is a finite set or a union of a finite set and $Z = \Delta_{\infty}$ on \sum_2 . The latter case occurs only when $\bar{S}_* = \sum_2$.

Structure of logarithmic K3 surfaces of type II_a is studied precisely by examining each class of a-i) through a-iii)* separately. We use the following notion: Let S be a surface and let μ be a proper birational morphism: $S^* \rightarrow S$ such that there exists a dominant morphism $f: S^* \rightarrow J, J$ being a curve, whose general fiber $f^{-1}(u)$ is C^* . Then we say that S is a C^* -fibered surface or S has the structure of C^* -fibered surface.

Proposition 7. Every surface of the class a-ii) or a-iii) has a structure of C^* -fibered surface.

Proof is easy.

Proposition 8. Let S be a surface of the class a-i) or a-iii)*. Then S does not admit the structure of C^* -fibered surface.

Proof. First we let S be a surface of the class a-iii)*. Suppose that there exist a proper birational morphism $\mu: S^* \rightarrow S$ and a dominant morphism f: $S^* \rightarrow J$, J being a complete curve, whose general fiber is C^* . Choosing a suitable completion S^* of S^* with smooth boundary D^* , we assume that μ defines a morphism $\overline{\mu}: \overline{S}^* \to \sum_2$ and $D^* = \overline{\mu}^{-1}(C_1 + C_2)$ and that f defines a morphism $f: \bar{S}^* \to J$. By C_1^* we denote the proper transform of C_1 by μ^{-1} , which is a non-singular elliptic curve. Since a general fiber of f is P^1 , C_1^* is not contained in a fiber of \overline{f} . Hence $\overline{f}(C_1^*)=J$. Since \overline{S}^* is rational, J is P^1 . This implies that $f|C_1^*: C_1^* \rightarrow P^1$ is a two-sheeted covering. Hence, $f(C_2^*)$ is a point, because $f^{-1}(u) \cap D^* = \{p_1, p_2\}$ for a general point $u \in J$. Therefore, $g = f \cdot \overline{\mu}^{-1}$: $\sum_{2} \to J$ turns out to be a morphism. Moreover, $g(C_2)$ is a point a. Hence, C_2 is a part of the singular fiber $g^{-1}(a)$. Since $C_2^2 = -2$, there is another component C_3 in $g^{-1}(a)$ such that $C_3^2 = -1$. This contradicts the fact that \sum_2 is a relatively minimal surface. It is easier to prove the same result for surfaces of the class a-i). Q.E.D.

Proposition 9. There exists an algebraic pencil $\{C_u\}$ on each surface of the classes a-i) and a-iii)* whose general member C_u is C^* .

Here, an algebraic pencil $\{C_u\}$ on S is understood as follows: there exist an algebraic surface S^* and a proper birational morphism $\rho: S^* \to S$ in which $\psi: S^* \to J$ is a fibered surface whose general fiber C_u^* . $\{C_u = \rho(C_u^*)\}$ is the algebraic pencil on S.

We omit the proof of Proposition 9.

If there is a proper birational map $f: S_1 \rightarrow S_2$ then the existence of the algebraic pencil $\{C_u\}, C_u \cong C^*$, on S_1 , induces the existence of the same thing on S_2 . Moreover, when S_1 is an open set of S_2 with $\overline{\kappa}(S_2) \ge 0$, the existence of an algebraic pencil of $C_u \cong C^*$ on S_1 implies the existence of the same thing on S_2 . In fact, there are a proper birational morphism $\rho: S_1^* \rightarrow S_1$ and a morphism $\psi: S_1^* \rightarrow J$ with $C_u = \rho(\psi^{-1}(u)) \cong C^*$ for a general $u \in J$. Let Γ_u be the closure of C_u in S_2 . Then $\overline{\kappa}(\Gamma_u) \ge 0$. If $\overline{\kappa}(\Gamma_u) = -\infty$, it would imply that $\overline{\kappa}(S) = -\infty$, a contradiction.

Accordingly we get

Proposition 10. There is an algebraic pencil $\{C_u\}$ with the general member $C_u \cong C^*$ on any logarithmic K3 surface of type II_a.

Corollary. A logarithmic K3 surface of type II_a is not measure-hyperbolic.

Proof follows from the fact that C^* is not measure-hyperbolic.

Proposition 11. Let S be a surface in the TABLE II_a. Then, Aut (S) is a finite group.

Proof. We give a proof for a surface of the class a-iii)*. Let $\varphi \in \operatorname{Aut}(S)$. Then φ extends to an isomorphism of $\overline{S} = \sum_2$, since $g(C_1) = 1$ and $C_2^2 = -2 \leq -2$ ([12]). Thus $\operatorname{Aut}(S) \subset \operatorname{Aut}_D(\sum_2) = \{\varphi \in \operatorname{Aut} \sum_2; \varphi(D) = D\}$. Let $\pi: \sum_2 \rightarrow \mathbf{P}^1$ be the \mathbf{P}^1 -bundle structure of \sum_2 . We have the group extension:

$$1 \rightarrow G_1 \rightarrow \operatorname{Aut}(\sum_2) \rightarrow PGL(1, k) = \operatorname{Aut}(\mathbf{P}^1) \rightarrow 1$$
.

It is well known that G_1 is an algebraic group of dimension 4. Moreover, G_1 is an affine group. Hence Aut (\sum_2) is an affine algebraic group. And so is Aut_D (\sum_2) . Furthermore, we have the group homomorphism $\gamma: \operatorname{Aut}_D(\sum_2) \rightarrow \operatorname{Aut}(C_1)$ which is the restriction, i.e., $\gamma(\varphi) = \varphi | C_1$. Therefore, Im γ is finite, since Aut (C_1) is a finite union of elliptic curves. Put $G_2 = \operatorname{Ker} \gamma$, which turns out to be a finite group. Thus Aut_D (\sum_2) is finite and so is Aut(S). Q.E.D.

Proposition 12. Let \overline{S} be a rational surface and C a non-singular elliptic curve on \overline{S} . Let Y be a reduced divisor on S such that $\overline{\kappa}(\overline{S}-(C\cup Y))=0$. Then $\overline{q}(\overline{S}-(C\cup Y))=0$, i.e., $\overline{S}-(C\cup Y)$ is a logarithmic K3 surface of type II_a.

A proof follows from the arguments in the proofs of Propositions 3 and 4. Actually, the intersection matrix of Y is negative-definite and hence we can use Lemma 2.

Proposition 13. Let (\overline{S}, D) be a ∂ -surface whose interior S is a logarithmic K3 surface of type II_a. Suppose that 1) (\overline{S}, D) is relatively ∂ -minimal, 2) S has no 1/2-points, and 3) D is connected. Then (\overline{S}, D) is one of a-i) \sim a-iii) in Proposition 5.

Proof. At the beginning of §4 we have had the decomposition: $D = D_A + D_B$. Suppose that there exists an irreducible exceptional curve E of the first kind on $\overline{S} - D_A$. In view of Preposition 4, by contracting E we have a proper birational ∂ -morphism $\lambda: (\overline{S}, D) \rightarrow (\overline{S}_1, D_1)$. We have the following cases: 1) If $E \subset D_B$ or $E \cap D_B = \phi$, this contradicts the hypothesis. 2) If $E \cap D_B \neq \phi$, then $\lambda: (\overline{S}, D + E) \rightarrow (S_1, D_1)$ is a non-canonical blowing up. In fact if λ were canonical, D would be disconnected. Thus $E - D_B \subset S$ is a 1/2-point. This is also a contradiction. Accordingly, we conclude that $\overline{S} - D_A$ is relatively minimal. By Proposition 4, D_B is a union of exceptional curves of the first kind. Hence $D_B = \phi$. Since, there are no D-exceptional curves, it follows that \overline{S} is a relatively minimal surface. Q.E.D.

5. Logarithmic K3 surfaces of type II_b. In §5, let S be a logarithmic K3 surface and let (\bar{S}, D) be a ∂ -surface such that $S = \bar{S} - D$. By C_1, \dots, C_s we denote the irreducible components of D. Since $h(\Gamma(D))=1$, there is a circular boundary $D_A = C_1 + \dots + C_r \leq D$. $\bar{p}_A(\bar{S} - D_A) = 1$ induces that $\bar{S} - D_A$ is also a logarithmic K3 surface of type II_b. Contracting exceptional curves of the first kind in $\bar{S} - D_A$ successively, we have a non-singular complete surface \bar{S}_* and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_*$ such that μ is isomorphic around $D_A \simeq \mu(D_A)$ and such that $\bar{S} - \mu(D_A)$ has no exceptional curves of the first kind. After choosing D to be a minimal boundary, we have a minimal boundary $D_A = \mu(D_A)$. Then (\bar{S}_*, D_A) is a relatively ∂ -minimal ∂ -surface.

We write $D=D_A+D_B$ and $Y=\mu_*(D_B)$. By Lemma 6 we have

$$0 = \bar{\kappa}(\bar{S}-D) = \bar{\kappa}(\bar{S}_*-D_A-Y).$$

From the condition $h(\Gamma(D_A))=1$, we infer readily that $\overline{p}_g(\overline{S}_*-D_A)=1$. Hence, $\overline{P}_i(\overline{S}_*-D_A)=1$ for any $i\geq 1$. However, $\overline{q}(\overline{S}_*-D_A)\geq 0$.

Proposition 14. Let (\overline{S}, D) be a circular ∂ -surface (i.e., D is circular) which is relatively ∂ -minimal. Suppose that $\overline{\kappa}(\overline{S}-D)=0$. Then $K(S)+D\sim 0$.

Proof. It is easy to check that \overline{S} is a rational surface. Assuming that $|K(\overline{S})+D|$ has a non-trivial member $\Delta = \sum r_i E_i$ $(r_i > 0)$ we shall derive a contradiction.

Now, $0 = \kappa(\bar{S} - D) = \kappa(K(\bar{S}) + D, \bar{S}) = \kappa(\Delta, \bar{S}) = \kappa(\sum E_i, \bar{S})$ implies that the intersection matrix $[(E_i E_j)]$ is negative semi-definite. We assume $(\Delta, E_1) \leq 0$ and $E_1 \subset D$ Then by the same reasoning as in the proof of Proposition 4, we have the following cases:

Case 1: $\pi(E_1) = 1$. Then $E_1 \cap D = \phi$ and $E_1^2 = (K, E_1) = 0$.

Case 2: $\pi(E_1)=0$ and $(D, E_1)\geq 1$. Then $E_1^2=(K, E_1)=-1$ and $(E_1, D)=1$. Hence E_1 is *D*-exceptional. By detaching 1/2-points, we may assume that this case does not occur. Case 3: $\pi(E_1)=0$ and $(D, E_1)=0$. Then $E_1 \cap D = \phi$ and $E_1^2 = -2$, $(K, E_1) = 0$.

In all cases we have $(\Delta_1, E_1)=0$. If $E_1 \subset D$ and $r \ge 2$, we have $D'+E_1=D$, $E_1=P^1$ and $(D', E_1)=2$. Hence

dim
$$|K+D'| = p_g(\bar{S}-D') - 1 = h(\Gamma(D')) - 1$$
.

On the other hand, $|K+D'| \ni (r_1-1)E_1+r_2E_2+\cdots$. This is a contradiction.

Thus, $\Delta^2 = \sum r_i(\Delta, E_i) \ge 0$. Since $\kappa(\Delta, \overline{S}) = 0$, we have $\Delta^2 = 0$. By the similar argument to the proof of Proposition 4, we derive a contradiction. Q.E.D.

Proposition 15. With the notation being as in Proposition 14, let Y be a reduced divisor on \overline{S} which does not contain any components of D. Suppose that $\overline{\kappa}(\overline{S}-D-Y)=0$. Then $\kappa(Y,\overline{S})=0$. By $\mathcal{Y}_1, \dots, \mathcal{Y}_u$, we denote the connected components of Y. If $\mathcal{Y}_j \cap D \neq \phi$, then $(\mathcal{Y}_j, D)=1$ and \mathcal{Y}_j is an exceptional curve of the first kind. If $\mathcal{Y}_j \cap D = \phi$, then \mathcal{Y}_j is a curve of Dynkin type A.

The proof of Proposition 4 can be used again here.

Proposition 16. Let (\overline{S}, D) be a circular ∂ -surface such that $K(\overline{S})+D\sim 0$. Then (\overline{S}, D) is obtained from one of the following ∂ -surfaces by attaching several 1/2-points and canonical blowing ups.

b-i) $\bar{S}=P^2$, $D=H_1+H_2+H_3$ where each H_i is a line on P^2 ,

b-ii) $\overline{S} = \mathbf{P}^1 \times \mathbf{P}^1$, $D = H_1 + H_2 + G_1 + G_2$, where each H_i is a line of degree (1, 0) and each G_i is a line of degree (0, 1),

b-iii) $\bar{S} = \sum_{\beta} D = \Delta_{\lambda} + \Delta_{\infty} + F_1 + F_2$, where each F is a fiber,

b-iv) $\bar{S} = P^2$, D = H + C, where H is a line and C is a conic,

b-v) $\bar{S} = P^1 \times P^1$, $D = C_1 + C_2$ where each C_i is a curve of degree (1, 1),

b-vi) $\bar{S} = \sum_2$, $D = \Delta_0 + \Delta_\lambda$ ($\lambda \neq 0$), where the Δ_λ is a section which is different from Δ_∞ ,

b-vii)_{β} $\bar{S} = \sum_{\beta}, D = F + \Delta_{\infty} + C_3$ where C_3 is a non-singular rational curve which is linearly equivalent to $\Delta_0 + F$,

b-viii) $\overline{S} = \mathbf{P}^1 \times \mathbf{P}^1$, $D = H_1 + G_1 + C$, where H is a line of degree (1, 0), G_1 is a line of degree (0, 1), and C is a curve of degree (1, 1),

b-ix) $\bar{S}=P^2$, D=C, where C is a cubic curve with one ordinary double point,

b-x) $\bar{S} = P^2 D = C$, where C is a curve of degree (2, 2) which has one ordinary double point,

b-xi) $\overline{S} = \sum_{2}$, D = C, where C is a rational curve with only one ordinary double point which is linearly equivalent to $2\Delta_{\lambda}$,

b-xii) $\overline{S} = \mathbf{P}^1 \times \mathbf{P}^1$, D = G + C, where G is a line of degree (0, 1) and C is a curve of degree (2, 1),

b-xiii)_{β} $\bar{S}=\sum_{\beta}$, $D=\Delta_{\infty}+C$, where C is a curve which is linearly equivalent to Δ_0+2F .

Proof is easy and left to the reader.

In the following Table II_b, we exhibit \bar{q} and configurations of components of D of b-i)~b-xiii).

Proposition 17. Let (\bar{S}, D) be a circular ∂ -surface whose interior S is a logarithmic K3 surface or a surface satisfying the following conditions: 1) \bar{S} is rational, 2) $\bar{\kappa}(S)=0$, 3) $\bar{p}_g(S)=1$, and 4) $\bar{q}(S)=1$ or 2. Suppose that i) (\bar{S}, D) is relatively ∂ -minimal, ii) D is connected, and iii) S has no 1/2-points. Then (\bar{S}, D) is one of b-i)~b-xiii)_{β} in TABLE II_b.

Proof is similar to that of Proposition 13.

\overline{q}	class	\bar{S}	configuration of D	$\pi_1(S)$	S
2	b-i)	$I\!\!P^2$		Z^2	
	b-ii)	$P^1 \times P^1$		Z^2	C *
	b-iii) _β (β≧2)	Σβ	$-\frac{10}{2}\beta$	Z^2	
1	b-iv)	P ²		Z	
	b-v)	$P^1 imes P^1$		Z	
	b-vi)	\sum_{2}	$\int d^2 2$	Z	
	b-vii) _β (β≧2)	Σβ	$0 \xrightarrow{2+\beta} -\beta$	Z	
	b-viii)	$P^1 \times P^1$	0 2 0	Z	

Table II_b of (\bar{S}, D) , $S = \bar{S} - D$

S. IITAKA

$ar{q}$	class	\bar{S}	configuration of D	$\pi_1(S)$	S
0	b-ix)	P^2	-C°	Z /(3)	
	b-x)	$P^1 imes P^1$	-68	Z /(2)	
	b-xi)	\sum_{2}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z /(2)	
	b-xii)	$P^1 imes P^1$	$- \bigcap_{i=1}^{4}$	Z /(2)	
	b-xiii) _β (β≧2)	\sum_{eta}	$ + \beta \\ -\beta $?	
1	b-vi)*	\sum_{2}	$\int_{2}^{2} \Delta_{m} - 2$?	
0	b-xi)*		$\sim \frac{\Delta_{\infty}^{-2}}{8}$?	

Next we treat the ∂ -surface (S, D) whose boundary is not connected. As in §4, we have to look for a curve Z of Dynkin type on $\overline{S}-D$ where (\overline{S}, D) is one of b-i) through b-xiii)_{β}. Such Z exists only in the cases b-vi) and b-xi). Then Z turns out to be Δ_{∞} of \sum_{2} . We write b-vi)* or b-xi)* in the case of disconnected boundaries. Therefore we obtain the following

Theorem II_b. Let (\overline{S}, D) be a ∂ -surface whose interior S is a logarithmic K3 surface of type II_b. Then, there exists a birational morphism $\mu: \overline{S} \to \overline{S}_*$ such that $(\overline{S}_*, \mu(D_A))$ is one of b-i) through b-xiii)_B in TABLE II_b. Moreover, $\mu(D_B)$ is a finite set or a union of a finite set and $Z = \Delta_{\infty}$ on \sum_{2} . The latter case occurs only when $(\overline{S}, \mu_*(D) - Z)$ is the class b-vi) or b-xi).

REMARK. In the above theorem the hypothesis that S is a logarithmic K3 surface of type II_b is replaced by the following condition that 1) $\overline{p}_{g}(S)=1$ and $\overline{\kappa}(S)=0, 2) \overline{S}$ is rational, 3) D consists of rational curves.

In order to prove the generalized Theorem II_b, we have only to note that

Propositions 14, 15 and 16 were proved without the logarithmic irregularity condition to the effect $\bar{q}=0$.

6. Surfaces with $\bar{\kappa}=0$ and $\bar{p}_g=1$. In general, let (\bar{S}, D) be a ∂ -surface such that the interior S satisfies $\bar{p}_g(S)=1$ and $\bar{\kappa}(S)=0$. Then $p_g(\bar{S})\leq 1$ and $\kappa(\bar{S})\leq 0$.

Proposition 18. If $p_{e}(\overline{S})=0$, then $\kappa(\overline{S})=-\infty$. Hence, \overline{S} is a ruled surface.

Proof. In view of Proposition 2, it suffices to derive a contradiction from the hypothesis that $\kappa(\bar{S})=0$, $p_g(\bar{S})=0$, and $q(\bar{S})\geq 1$. Such a surface \bar{S} is birationally equivalent to a hyperelliptic surface, whose universal covering surface is an abelian surface. Namely, contracting exceptional curves of the first kind on \bar{S} successively, we get a hyperelliptic surface \bar{S}_* and a birational morphism $\mu: \bar{S} \to \bar{S}_*$. Then by Lemma 1,

$$egin{aligned} 0 &= ar{\kappa}(S) = \kappa(K(ar{S}) + D, \, ar{S}) = \kappa(K(ar{S}_*) + \mu_*(D), \, ar{S}_*) \ &= \kappa(\mu_*D, \, ar{S}) \,. \end{aligned}$$

This implies that $\mu_*D=0$. Thus

$$H^{0}(\mathcal{O}(K(\bar{S})+D)) = H^{0}(\mathcal{O}(\mu^{*}(K(\bar{S}_{*}))+R_{\mu}+D))$$

$$\cong H^{0}(\mathcal{O}(K(\bar{S}_{*}))) = 0.$$

This contradicts $\overline{P}_{g}(S) = \dim H^{0}(\mathcal{O}(K(\overline{S})+D)) = 1.$

Consequently, we have the following cases to examine separately.

1) If $p_g(\bar{S})=0$ and $q(\bar{S})=0$, then \bar{S} is a rational surface. Hence, letting $\sum_{j=1}^{s} C_j$ be the irreducible decomposition of D,

 α) if $g(C_1)=1$, then put $D_A=C_1$,

 β) if $g(C_1) = \cdots = g(C_s) = 0$, then there is a circular boundary $D_A = C_1 + \cdots + C_r \subset D$.

2) If $p_g(\bar{S})=0$ and $q(\bar{S})\geq 1$, then \bar{S} is a ruled surface of genus 1. Let $f: \bar{S} \rightarrow J$ be the Albanese map of S, J being an elliptic curve, since $p_g(\bar{S})=0$. For a general point $y \in J$, $f^{-1}(y)$ turns out to be a non-singular rational curve. Define $C_y=f^{-1}(y)-D\cap f^{-1}(y)$. Then by Kawamata's Theorem ([14]), we obtain

$$0 = \bar{\kappa}(S) \geq \bar{\kappa}(C_y) + \bar{\kappa}(J) = \bar{\kappa}(C_y) + \bar{\kappa}(S_y) = \bar{\kappa}(S_y) + \bar{\kappa}$$

Hence, $\bar{\kappa}(C_y)=0$ follows. This implies that $C_y \simeq C^*$ and $(D, f^{-1}(y))=2$. Hence, the horizontal component D_A defined to be $\{\sum C_j; f(C_j)=J\}$ satisfies that $(D_A, f^{-1}(y))=2$. Referring to the following lemma, we have

$$\dim |K(\bar{S}) + D_A| = 0, \quad \text{i.e., } \bar{p}_g(\bar{S} - D_A) = 1.$$

Q.E.D.

Lemma 9. Let \overline{V} be a complete normal variety and let A, B be divisors on \overline{V} such that $\kappa(A, \overline{V}) \ge 0$, $|A+B| = \phi$, B is effective, and $\kappa(A+B, \overline{V})=0$. Then $|A| = \phi$.

Proof. Choose i>0 such that $|iA| \neq \phi$ and take $X \in |A+B|$ and $Z \in |iA|$. Then $Z+iB\sim iX$. By $\kappa(X, \vec{V})=0$, we have Z+iB=iX. Hence, Z=i(X-B) is effective. This implies that X-B is effective. Q.E.D. 3) If $p_{\varepsilon}(\vec{S})=1$, then put $D_{A}=0$.

In all cases above, we define D_B by $D=D_A+D_B$

Theorem III. With the notation being as above, we suppose that $\overline{S}-D_A$ has no exceptional curves of the first kind. Then $K(\overline{S})+D_A \sim 0$.

Proof. Recalling Propositions 3 and 14, it suffices to prove under the assumption that \overline{S} is a ruled surface with $q(\overline{S})=1$. Take $\Delta \in |K+D_A|$ and we shall derive a contradiction from the hypothesis $\Delta \neq 0$. Let $\sum r_i E_i$ be the irreducible decomposition of Δ . $[(E_i, E_i)]$ is negative semi-definite. In particular, $E_i^2 \leq 0$. First assume that $(\Delta, E_1) \leq 0$, since $\Delta^2 \leq 0$. If $E_1 \subset D_A$, then, putting $D_A = E_1 + D'$, we would have $(f^{-1}(y), D') \leq 1$. This would imply $\overline{\kappa}(\overline{S}-D') = -\infty$ while $\overline{\kappa}(S-D') = \kappa(K(\overline{S})+D', \overline{S}) = \kappa(K(\overline{S})+D_A-E_1, \overline{S}) = \kappa(\Delta-E_1, \overline{S}) = \kappa((r_1-1)E_1+, \cdots, \overline{S}) = 0$. Therefore, $E_1 \in D_A$. Hence $(D_A, E_1) \geq 0$. Since $(\Delta, E_1) = (K, E_1) + (D_A, E_1) \leq 0$, we have $E_1^2 \leq 0$ and $(K, E_1) \leq 0$. As in the proof of Proposition 3 we have the following cases to examine separately.

1) If $E_1^2 = -2$, $(K, E_1) = 0$, then $\pi(E_1) = 0$ and $(D_A, E_1) = 0$.

2) If $E_1^2 = -1$, $(K, E_1) = -1$, then $(D_A, E_1) = 0$ or 1. In this case, $(D_A, E_1) = 0$ contradicts the hypothesis that $\overline{S} - D_A$ has no exceptional curves of the first kind. In the case when $(D_A, E_1) = 1$, contracting E_1 corresponds to a 1/2-point detachment.

3) If $E_1^2=0$, $(K, E_1)=-2$, then $(D_A, E_1)=2$. Since $\pi(E_1)=0$, $f(E_1)=p\in J$. Hence, $E_1=f^{-1}(p)$. Therefore, by Kawamata's Theorem ([14]), $\bar{\pi}(S-E_1)\geq \bar{\pi}(C_y)+\bar{\pi}(J-\{p\})=1$. On the other hand, $\kappa(K(\bar{S})+D_A+E_1,\bar{S})\geq \bar{\pi}(S-E_1)\geq 1$. Since $E_1\leq \Delta \in |K(\bar{S})+D_A|$, we have

$$\kappa(K(\overline{S})+D_A+E_1,\,\overline{S})=0\,.$$

This is a contradiction. Hence, we conclude that the case 3) does not occur. 4) If $E_1^2=0$ and $(K, E_1)=0$, then $\pi(E_1)=1$ and $(D_A, E_1)=0$. In all cases, we have $(D_A, E_1)=0$ and $(\Delta, E_1)=0$. Therefore, $(\Delta, E_j)=0$ for all j, hence $\Delta^2 = \sum r_j(\Delta, E_j)=0$. Letting $\mathcal{D}_1, \dots, \mathcal{D}_u$ be the connected components of Δ , we can easily see that these are curves of extended Dynkin type $\tilde{A}\tilde{D}\tilde{E}$. In particular, $\mathcal{D}_1^2 = \dots = \mathcal{D}_u^2 = 0$.

α) If \mathcal{D}_1 consists of one irreducible component, then \mathcal{D}_1 is an elliptic curve. Hence $f(\mathcal{D}_1)=J$, and so $(\mathcal{D}_1+D_A, f^{-1}(y))\geq 3$. This implies $\bar{\kappa}(\bar{S}-\mathcal{D}_1)\geq 1$ by

Kawamata's Theorem. By the way,

$$\kappa(K(\bar{S})+D_A+\mathcal{D}_1,\bar{S})\geq \bar{\kappa}(\bar{S}-\mathcal{D}_1)\geq 1$$

and

$$\kappa(K(\bar{S})+D_A+\mathcal{D}_1,\,\bar{S})=\kappa(\Delta+\mathcal{D}_1,\,\bar{S})=0$$

This is a contradiction.

β) If \mathcal{D}_1 has more than 1 irreducible components, $f(\mathcal{D}_1)$ is a point. Hence \mathcal{D}_1 is a reducible member of $|f^*(y)|$. This implies $h(\Gamma(\mathcal{D}_1))=0$, a contradiction. Q.E.D.

Next, we shall consider the counterparts of Propositions 4 and 15 in the case of $q(\bar{S})=1$.

Proposition 19. Let \overline{S} be a ruled surface of $q(\overline{S})=1$ with the Albanese fibered surface $f: \overline{S} \rightarrow J$. Let D_A be a divisor with normal crossings consisting of horizontal components such that $K(\overline{S})+D_A\sim 0$. Suppose that a reduced divisor Y on \overline{S} , each component of which is not contained in D_A , satisfies the condition that $\overline{\kappa}(\overline{S}-D_A-Y)=0$. Then $\kappa(Y, \overline{S})=0$. Moreover, letting $\mathcal{Y}_1, \dots, \mathcal{Y}_u$ be the connected components, we see that if $\mathcal{Y}_j \cap D_A \neq \phi$, \mathcal{Y}_j is an exceptional curve of the first kind such that $(\mathcal{Y}_j, D_A)=1$ and that if $\mathcal{Y}_j \cap D_A = \phi$, then \mathcal{Y}_j is a curve of Dynkin type A.

Proof. Let $\sum Y_j$ be the irreducible decomposition of Y. If Y_j is horizontal with respect to f, then $(Y_j + D_A, f^{-1}(u)) \ge 3$ for a general $u \in J$. By Kawamata's Theorem, we get

$$\bar{\kappa}(S-Y_j) \geq \bar{\kappa}(f^{-1}(u)-Y_j-D_A) + \bar{\kappa}(J) = 1,$$

where $S = \overline{S} - D_A$.

This contradicts $\overline{\kappa}(S-Y)=0$. Hence, f(Y) is a finite set of points. For a connected reduced curve $\mathcal{Y} \subset Y$, we have a point $p=f(\mathcal{Y})$, and so $\mathcal{Y} \subset f^{-1}(p)$. In view of $\overline{\kappa}(S-\mathcal{Y}) \neq 1$, we see that $\mathcal{Y} \neq f^{-1}(p)$. Therefore, \mathcal{Y} consists of nonsingular rational curves Y_j with negative-definite intersection matrix $[(Y_i, Y_j)]$, $Y_i \subset \mathcal{Y}$. If $Y_j \cap D_A = \phi$, then $(D_A, Y_j) = 0$ and so $(K, Y_j) = -(D_A, Y_j) = 0$. Combining this with $Y_j^2 \leq -1$, we have $Y_j^2 = -2$ and $\pi(Y_j) = 0$. If $Y_j \cap D_A \neq \phi$, then $(Y_j, D_A) = -(Y_j, K) > 0$. Hence Y_j is an exceptional curve of the first kind and $(Y_j, D_A) = 1$. Q.E.D.

Proposition 20. With the same notation as in Proposition 19, we further assume that \overline{S} is relatively minimal. Then

c-i)
$$\bar{S}=P^1\times J, D_A=p_1\times J+p_2\times J,$$

or

c-ii) $\overline{S} \to J$ is a C^* -bundle of degree 0 which is not $P^1 \times J$, and $D_A = \Gamma_0 + \Gamma_{\infty}$,

 Γ_0 and Γ_{∞} being sections with $\Gamma_0^2 = \Gamma_{\infty}^2 = (\Gamma_0, \Gamma_{\infty}) = 0$. Note that Γ_0 is cohomologously equivalent to Γ_{∞} .

Further,

c-iii) $\bar{S} \rightarrow J$ is a \mathbb{C}^* -bundle of degree m > 0 and $D_A = \Gamma_0 + \Gamma_\infty$, Γ_0 and Γ_∞ being sections with $\Gamma_0^2 = m$ and $\Gamma_\infty^2 = -m$.

In order to prove this, we need the following lemma.

Lemma 10. Let $f: \overline{S} \to J$ be a \mathbb{P}^1 -bundle over an elliptic curve J. Then we have the following table.

class	$\bar{S} \rightarrow J$	$\dim -K(\overline{S}) $	a member of $ -K(\bar{S}) $	$\bar{q}(\bar{S}-D_A)$		
i)	$P^1 \times J$	2	$D_A = p_1 \times J + p_2 \times J$	2		
ii)	C*-bundle of degree 0	0	$D_A = \Gamma_0 + \Gamma_\infty$ $(\Gamma_0^2 = \Gamma_\infty^2 = (\Gamma_0, \Gamma_\infty) = 0)$	2		
iii)	$\begin{array}{c} C^* \text{-bundle of} \\ \text{degree} \\ m, m \geq 1 \end{array}$	m	$D_{A} = \Gamma_{0} + \Gamma_{\infty}$ ($\Gamma_{0}^{2} = m, \Gamma_{\infty}^{2} = -m, (\Gamma_{0}, \Gamma_{\infty}) = 0$)	1		
iv)	affine bundle A_0	0	$2\Gamma_{\infty}^{2}=0)^{2}$	D_{\perp} does		
v)	affine bundle A_{-1}	- ∞	φ	not exist		
	1	1	1	1		

Table III

For the notation used above, we refer the reader to [2] and [18]. Explicit constructions of \overline{S} in [18] are used to compute dim $|-K(\overline{S})|$ and to find a normal crossing divisor in $|-K(\overline{S})|$. We omit the details.

Proposition 20 follows from the lemma above. In the case of the class c-i) or c-ii), $\bar{S}-D_A$ is a quasi-abelian surface. Attaching several 1/2-points to $\bar{S}-D_A$ at points of D_A , we have surfaces with $\bar{\kappa}=0$ and $q=\bar{q}=1$.

Proposition 21. Let (\bar{S}, D) be a ∂ -surface with the interior S. Suppose that $\bar{p}_{g}(S)=1$, $\bar{\kappa}(S)=0$, and $q(\bar{S})=1$. Then \bar{S} is a ruled surface of genus 1. Moreover, D is disconnected. D_{A} consists of two sections of the Albanese fibered surface $f: \bar{S} \rightarrow J$ of \bar{S} . In particular, S cannot be affine.

Proof. If $\kappa(S)=0$, it would follow that $p_{\varepsilon}(\bar{S})=0$ from the classification theory of projective surfaces. Combined with Proposition 18, this would imply $\kappa(\bar{S})=-\infty$, a contradiction. Thus, \bar{S} turns out to be a ruled surface of genus 1. In view of Lemma 6, by contracting exceptional curves of the first kind on $\bar{S}-D_A$, we may assume that $K(\bar{S})+D_A\sim 0$. Then we contract

successively connected exceptional curves Q of the first kind $\leq D_B$ such that $(Q, D_A)=1$. Thus we arrive at the situation that $D_B \cap D_A = \phi$. Detaching several half-points in $\overline{S}-D_A$, we have a relatively minimal surface \overline{S}_* and a proper birational map $\mu: \overline{S} \to \overline{S}_*$. By Lemma 6, $\overline{\kappa}(\overline{S}-\mu(D_A)-\mu_*(D_B), S)=0$. Hence $\mu_*(D_B) \subset \mu(D_A)$. Thus we can apply Proposition 21. Especially D and D_A are disconnected. Q.E.D.

Proposition 22. Let (\overline{S}, D) be a ∂ -surface whose interior S satisfies that $\overline{p}_g(S)=1$, $\overline{\kappa}(S)=0$, $p_g(\overline{S})=0$, and $q(\overline{S})=1$. Suppose that $\overline{q}(S)=2$. Then there are a relatively minimal ruled surface \overline{S}_* and a birational morphism $\mu: \overline{S} \rightarrow \overline{S}_*$ such that $\mu(D_B)$ is a finite set and $(\overline{S}_*, \mu(D_A))$ is c-i) or c-ii) in Proposition 20. Moreover, if $\mu(D_B) \subset \mu(D_A)$, S is proper birationally equivalent to a quasi-abelian surface.

By these theorem and propositions, we have another proof of Theorem I in [10].

Theorem IV. Let S be a logarithmic abelian surface, i.e., $\bar{\kappa}(S)=0$, $\bar{q}(S)=2$. Then S is W²PB-equivalent to a quasi-abelian surface.

Proof. Let $\alpha: S \to \mathcal{A}_s$ be a quasi-Albanese map. Let J be the closure of $\alpha(S)$ in \mathcal{A}_s . Then by Kawamata's Theorem, J turns out to be a surface \mathcal{A}_s . Hence, $\overline{p}_g(S) \ge \overline{p}_g(\mathcal{A}_s) = 1$. Therefore, we can apply Theorem III and Propositions 20, 22. We omit the details.

Corollary 1. Let S be an affine normal surface with $\bar{\kappa}(S)=0$ and $\bar{q}(S)=2$. Then S is isomorphic to C^{*2} .

Corollary 2. Let S be a surface with $\bar{\kappa}(S) = q(S) = 0$ and $\bar{q}(S) = 2$. Then S is W²PB-equivalent to C^{*2} .

The above two corollaries are found in [10].

Proposition 23. Let (\overline{S}, D) be any ∂ -surface in TABLE II_b. If $\overline{q}(S)=0$, then there is a reduced divisor R on S such that $\overline{\kappa}(S-R)=0$ and $\overline{q}(S-R)=1$. Similarly, if $\overline{q}(S)=1$, then there is R' on S such that $\overline{\kappa}(S-R')=0$ and $\overline{q}(S-R')=2$. Hence $S-R'\simeq C^{*2}$.

Proof. We use the notation in Proposition 16 and we shall look for R in each case, separately.

i) If S is the class b-iv), take a line \overline{R} on P^2 such that $\overline{R} \cap C = \{p\}$ and $H \cap C = \{p\}$. Then $\overline{S} - D - \overline{R} \cong C^{*2}$.

ii) If S is the class b-v), take two curves C_3 and C_4 of degree (1, 0) such that, denoting by $\{p_1, p_2\}$ the intersection $C_1 \cap C_2$, $C_3 \ni p_1$ and $C_4 \ni p_2$. Defining $\bar{R} = C_3 + C_4$, we have $S - \bar{R} \simeq C^{*2}$.

iii) If S is the class b-vi), write $C_1 \cap C_2 = \{p_1, p_2\}$. Take two fibres C_3 and C_4 of $\sum_2 \rightarrow \mathbf{P}^1$ of such that $C_3 \ni p_1$ and $C_4 \ni p_2$. Then defining $\overline{R} = C_3 + C_4$, we have $S - \overline{R} = C^{*2}$.

iv) If S is the class b-vii)_{β}, write $C_3 \cap \Delta_{\infty} = \{p\}$. Take a fiber \overline{R} passing through p. Then $\overline{S} - \overline{R} \cong C^{*2}$.

v) If S is the class b-viii), write $H_1 \cap C = \{p\}$. Take a curve $\overline{R} = G_2$ of degree (0, 1) passing through p. Then $S - \overline{R} = C^{*2}$.

vi) If S is the class b-ix), by p we denote the singular point of C. Take two lines C_1 , C_2 which are tangential to C at p. Putting $\overline{R} = C_1 + C_2$, we have $S - \overline{R} = C^{*2}$. Moreover, $S - C_1$ is a surface of the class b-vii)₂.

vii) If S is the class b-x), by p we denote the singular point of C. Take two curves C_2 and C_3 of degree (1, 0) and (0, 1), respectively, such that $C_2 \ni p$ and $C_3 \ni p$. Then, putting $\overline{R} = C_2 + C_3$, we see $S - \overline{R}$ is a surface of the class b-iv). viii) If S is the class b-xi), by p we denote the singular point of C. Take a fiber C_2 passing through p. Defining $\overline{R} = C_2 + \Delta_{\infty}$, we see $S - \overline{R}$ is a surface of the class b-iv).

ix) If S is the class b-xii), take a curve \overline{R} of degree (1, 0) passing through a point $\in G \cap C$. Then $S - \overline{R}$ is a surface of class b-iv).

x) If S is the class b-xiii)_{β}, take a fiber \overline{R} passing through a point $\in \Delta_{\infty} \cap C$. Then $S - \overline{R}$ is a surface of the class b-vii)_{$\beta+1$}.

xi) If S is the class b-vi)*, take a fiber C_4 . Then $S-C_4=C^{*2}$.

xii) If S is the class b-xi)*, take a fiber C_4 which passes through the singular point of C. Then $S-C_4$ is a surface of the class b-iv). Q.E.D.

Therefore, we establish the following

Proposition 24. Let S be a surface with $\bar{\kappa}(S)=0$, $\bar{p}_{g}(S)=1$ and $p_{g}(\bar{S})=q(\bar{S})=0$. Suppose that S is not a logarithmic K3 surface of type II_a. If $\bar{q}(S)=0$, then there is an open subset S_{1} of S such that $\bar{\kappa}(S_{1})=\bar{\kappa}(S)=0$ and $\bar{q}(S_{1})=1$. Moreover if $\bar{q}(S)=1$, then there is an open subset S_{2} of S such that $\bar{\kappa}(S_{2})=0$ and $\bar{q}(S_{2})=0$.

Corollary. Let S be a surface in Proposition 24. Then there is a surjective morphism $\psi: S \to J$ whose general fiber $\psi^{-1}(u) \cong C^*$. Here $J \cong P^1$ or A^1 , if $\bar{q}(S) = 0$. And $J \cong C^*$, if $\bar{q}(S) = 1$ or 2.

A proof follows from the fact that S_2 with $\bar{\kappa}(S_2) = q(S_2) = 0$ and $\bar{q}(S_2) = 2$ is W^2PB -equivalent to C^{*2} .

EXAMPLE. Let C be an irreducible curve with a non-cuspidal singular point. Then P^2-C is a logarithmic K3 surface, i.e., $\bar{\kappa}(P^2-C)=0$ if and only if there exist two irreducible curves C_1 and C_2 such that $P^2-C-C_1-C_2 \cong C^{*2}$.

Proposition 25. Let $C = V(\varphi)$, φ being an irreducible polynomial, be a

curve on A^2 and let $S = A^2 - C$. Suppose $\overline{\kappa}(S) = 0$. Then, choosing an appropriate system of coordinates (x, y) of A^2 , φ is written as follows:

$$\varphi = x^{\prime}y + a_0 + a_1x + \dots + a_sx^s.$$

Proof. Since $\bar{q}(S)=1$ and $\bar{\kappa}(S)=0$, it follows that $\bar{p}_{g}(S)=1$. Actually, assume that $\bar{p}_{g}(S)=0$. Then \bar{C} (the closure of C in P^{2}) is a rational curve whose singularities are cuspidal. If C were singular, then a general member C_{λ} of the fiber space $\varphi: S \rightarrow C^{*}$ would be of hyperbolic type, i.e., $\bar{\kappa}(C_{\lambda})=1$. Kawamata's Theorem would assert that $\bar{\kappa}(S) \geq \bar{\kappa}(C_{\lambda}) + \bar{\kappa}(G_{m})=1$, a contradiction. Thus C is non-singular and hence $C \cong A^{1}$. By the imbedding theorem of A^{1} due to Abhyankar and Moh [1], we know that $S \cong A^{1} \times G_{m}$, which implies that $\bar{\kappa}(S)=-\infty$.

Accordingly, we conclude that $\overline{p}_g(S)=1$ and $\overline{e}(S)=0$. Applying Proposition 24, we have an irreducible curve C_3 such that $P^2-C_1\cup C_2\cup C_3\cong C^{*2}$, where $C_1=P^2-A^2$ and $C_2=\overline{C}$. Since $\overline{p}_g(S-C_3)=1$, C_2 or C_3 has only cuspidal singularities. We may assume that C_3 has only cuspidal singularities. Hence, applying Kawamata's Theorem and Abhyankar and Moh Theorem, we can assume that $A^2\cap C_3$ is V(x), i.e., the y-axis of the affine plane. Therefore

Spec
$$k[x, y, x^{-1}, \varphi^{-1}] \cong C^{*2}$$
.

From this it follows that $y \in k[x, y, x^{-1}, \varphi^{-1}] = k[x, \varphi, x^{-1}, \varphi^{-1}]$. Hence

 $y = f(x, \varphi)/x^m \varphi^n$

where, *m*, n > 0 and f(x, Y) is a polynomial. Then consider the y-derivative $\partial_y = \partial/\partial_y$. Thus,

$$x^{m} \varphi^{n} + n x^{m} \varphi^{n-1} \partial_{y} \varphi = \partial_{Y} f(x, \varphi) \partial_{y} \varphi.$$

Hence,

$$x^{m}\varphi^{n} = \partial_{y}\varphi \left\{ \partial_{Y}f(x,\varphi) - nx^{m}\varphi^{n-1} \right\} \,.$$

Since φ is irreducible, $\partial_y \varphi = \alpha x^l$ for some $\alpha \neq 0$, $l \ge 0$. This yields that $\varphi = \psi(x) + \alpha x^l y$, ψ being a polynomial. We may assume $\alpha = 1$ and hence

$$\varphi = x^{l}y + a_{0} + a_{1}x + \dots + a_{s}x^{s}. \qquad \text{Q.E.D.}$$

In the above, we may assume that $a_0=1$ and $a_s \neq 0$. We have the following cases: 1) If $l+1 \ge s$, then writing $C_1 \cap C_2 = \{p_1, p_2\}$, C_2 has the cusp singularity

at p_1 and C_1+C_2 has normal crossings at p_2 . 2) If $2+l \leq s$, then C_2 has two (analytically irreducible) branches at p, the singular point of C_2 . Hence P^2-C_2 is a logarithmic K3 surface of type II_b.

Proposition 26. If S satisfies that $\bar{\kappa}(S)=0$, $\bar{p}_g(S)=1$ and $p_g(\bar{S})=0$. Then there exists an algebraic pencil $\{C_u\}$ whose general member C_u is C^* . Hence S is not measure-hyperbolic.

This follows from Corollary to Proposition 24 and Propositions 9, 21.

Proposition 27. Let (\overline{S}, D) be a ∂ -surface in the TABLE II_b. Define $\operatorname{Aut}(\overline{S}, D) = \{\varphi \in \operatorname{Aut}(\overline{S}); \varphi D = D\}$. Then $\operatorname{Aut}(\overline{S}, D)$ is a finite group if $\overline{q}(S) = 0$.

Proof. First assume that (\overline{S}, D) is the class b-ix). A point p of inflexion of D(a nodal cubic curve), is characterized by the existence of a line L on P^2 such that $L \cap D = \{p\}$. There are three such points. Hence $\varphi \in \operatorname{Aut}(\overline{S}, D)$ preserves the set of points of inflexion. Therefore the image of the homomorphism $\operatorname{Aut}(S, D) \to \operatorname{Aut}(D)$ is a finite group. Using the similar argument to the proof of Proposition 11, we complete the proof. We can check the finiteness of $\operatorname{Aut}(\overline{S}, D)$ for the other classes. Q.E.D.

From the above, we infer the following Proposition, whose proof is not given here.

Proposition 28. Let S be a logarithmic K3 surface. Then, Aut(S) has at most countably many elements.

UNIVERSITY OF TOKYO

References

- [1] S. Abhyankar and T.T. Moh: *Embedding of the line in the plane*, J. Reine Angew. Math. **276** (1975), 148–166.
- [2] M.F. Atiyah: Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (27) (1957), 414-452.
- [3] P. Deligne: Théorie de Hodge II. Publ. Math. I.H.E.S. 40 (1971), 5-57.
- [4] S. Iitaka: Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo 23 (1976), 525-544.
- [5] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, (1977), 175-189.
- [7] —: On the Diophantine equation $\varphi(X, Y) = \varphi(x, y)$, J. Reine Angew. Math. 298 (1978), 43-52.

LOGARITHMIC K3 SURFACES

- [9] ————: Classification of algebraic varieties, Proc. Japan Acad. 53 (1977), 103– 105.
- [10] ———: A numerical characterization of quasi-abelian surfaces, Nagoya J. Math. 73 (1973), 99-115.
- [11] ------: Structure of logarithmic K3 surfaces, Proc. Japan Acad. 54 (1978), 49-51.

- [14] -----: On Kodaira dimension of graphs, Proc. Japan Acad. 54 (1978), 128-132.
- [16] Y. Kawamata: Addition theorem of logarithmic Kodiara dimension for morphisms of relative dimension one, Proc. Int. Symp. Algebraic Geometry, Kyoto, 1977.
- [17] ———: Deformations of compact compactifiable manifolds, Math. Ann. 235 (1978), 247-265.
- [18] ———: Classification of non-complete algebraic surfaces, Proc. Japan Acad. 54 (1978), 133–135.
- [19] F. Sakai: Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, (1977), 239-257.
- [21] T. Suwa: On ruled surfaces of genus 1, J. Math. Soc. Japan 21 (1969), 293-311.
- [22] I. Wakabayashi: On logarithmic Kodaira dimension of a complement of a curve in P², Proc. Japan Acad. 54 (1978), 157–162.