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Introduction. By surfaces we mean non-singular algebraic surfaces de-
fined over the field of complex numbers C. A logarithmic K3 surface S is by
definition a surface S with p,(S)=1, #(S)=g(S)=0, in which 5,(S) is the
logarithmic geometric genus, =(S) is the logarithmic Kodaira dimension, and
g(S) is the logarithmic irregularity. These notions will be explained in §1.

Let S be a completion of S with ordinary boundary D, i.e., S is a non-
singular complete surface and D is a divisor with normal crossings on S such that
S=S—D. We write D as a sum of irreducible components: D=C}+-:-+C..

Logarithmic K3 surfaces are classified into the following three types:
Type I) p,(S)=1; Then S is a K3 surface and D consists of non-singular
rational curves C; with negative-definite intersection matrix [(C;, C))].

Type I1,) p,(S)=0 and a component C, of D is a non-singular elliptic curve;
Then S is a rational surface and the graph of D has no cycles.

Type II,) p,(S)=0 and D consists of rational curves C ;> Then S is a rational
surface and the graph of D has one cycle.

We define A-boundary D, and B-boundary Dj of (S, D) as follows: 1) If
S'is of type I, then D,=¢ and Dy=D. 2) If S is of type II,, then D,=C,
(a non-singular elliptic curve) and Dz=C,+-+-+C,. 3) If S is of type II,, then
D,=C,+-++C, that is a circular boundary (for definition, see §1 v)) and
DB=Cr+l+ et Cs'

_Theorem 1. If S—D, has no exceptional curves of the first kind, then
K(S)+D,~A0.

Next, consider the case where S—D, has exceptional curves. Let p:
S-S, be a contraction of exceptional curves of the first kind on S—D,, i.e.,
Sy is a complete surface and p is biregular around D, such that Sx—p(D,) has
no exceptional curves of the first kind. By Theorem 1, K(Sy)+p(D,)~0.

Theorem 2. p(Dj) is a divisor with simple normal crossings. Let %,, -+, %,
be the commected components of p(Dy). Then 1) if Z,Np(Dy) =+, 2, is an
exceptional curve of the first kind such that (Z;, p(D,))=1. 2)If Z;Np(Ds)=¢,
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then &; is a curve of Dynkin type ADE on S—p(D,). In case S is of type 11,
Z; is a curve of Dynkin type A.

For definition of curves of Dynkin type ADE, see § 1. iv).

Theorem 3. Suppose that K(S)+D,~0 arnd Dy is a curve of Dynkin type
ADE. If S'is of type 11,, then (S, D) is obtained from one of 4 classes in Table 11,
by 1/2-point attachments. If S is of type 11,, then (S, D) is obtained from ome of
15 classes in TABLE 11, by canonical blowing ups and attaching several 1/2-points.

Theorem 4. Let (S, D) be a 0-surafce of which interior S satisfies that
#(S)=p,S)=0 and p(S)=1. Suppose that a component C, of D is not rational.
Then g(S)=0. Next, assume that D consists of rational curves. If g(S)=0,
then there exists an open subset S, of S such that =(S;)=0 and g(S,)=1. Fur-
thermore, if g(S)=1, then there exists an open subset S, of S such that =(S;)=0
and g(S,)=2.

Theorem 5. Let S be a surface with #(S)=p,(S)=0 and p,(S)=1. Then
there exists an algebraic pencil {C,} on S whose general member C, is isomorphic
to C*. Hence, S is not measure-hyperbolic. Moreover, the connected component
of Aut (S) is {1} or C* or C*2. Further,

dim Aut(S)°’<g(S) .

Theorem 6. Let (S, D) be a 0-sui face whose interior S satisfies that #(S)=0
and B,(S)=1. Then, there exists a proper birational morphism p: S —Sy such
that i) Sy is relatively minimal, ii) P,(Sx— p+(D))=1 for any m=1, iii) px(D)=
A+Y has only normal crossings with K(Sx)+A~0, Y being a curve of Dynkin
type.

(S« p«(D)) might be called a supermodel of S (or of (S, D)). In the study
of non-complete surfaces, minimal model (and even 9-minimal model) is not
helpful. Instead, supermodel will play the important role. For full discussion
of the classification theory of surfaces of non-complete surfaces, see Kawa-
mata’s recent article [18].

ExampLE 1. Let S be a non-singular cubic surface in P3. Let E be a
general hyperplane section on S. Then S—E is a logarithmic K3 surface of
type II, and the fundamental group =,(S—E)=={1}. Conlracting exceptional
curves of the first kind, we obtain a proper birational morphism p: S—Sy in
which Sy=P? E,=p(E) is a ncn-singular elliptic curve on P2 Then
m(Sx—E)=Z|(3) and S—EDS,—E,.

ExampLE 2. Let @(y) be a polynomial of degree n-+1 such that ¢(0)==0.
Let T' be the graph (CC?) of a rational function @(y)/y"™" (0<m<n). By
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C we denote the closure of T"in P2 Then P?—T is a logarithmic K3 surface
of type II,.

Figure 1.

ExampLE 3. Let ®@: C[x, y]—C|[x, y] be a C-automorphism. Put X(x, y)
—®(x) and Y(x,5)=®(y). Let Flx,y)=Y(x, )" "X(x »)—p(¥(x, ), ¢
being as in Example 3. Then the closure C,, of V(F)=Spec k[x, y]/(F) in P? is
a complement of a logarithmic K3 surface of type II, if C, has an analytically
reducible (i.e., non-cusp) singular point.

For instance, let @(y)=3*+1 and ®(x)=x, ®(y)=y+a®. Then F=
(y+#%)x—(y+%)*—1. Thus letting T be the closure of V(F)in P?, P2—T is
a logarithmic K3 surface of type II,.

ExamrLE 4. Let C=V((y—#?*—xy*) in C%. Denote by T the closure of
C in P%. Then S=P?—C has the following numerical characters: $,=0,
P,=1, #=1, and g=0.

1. Basic notions, notations and conventions

i) 0-manifold and 1/2-point attachment. A pair (V, D) consisting of a
complete non-singular algebraic variety ¥ and a divisor D with normal cros-
sings on V is called a 8-manifold. The dimension of (¥, D) is understood as
the dimension of V. A 2-dimensional d-manifold is called a 9-surface. We
have a theory of minimal models for 9-manifolds (see [12]). Let (S, D) be a
d-surface. Then D is not a minimal boundary if and only if there is an ir-
reducible component E of D which is an exceptional curve of the first kind such
that (E, D’)=1 or 2, D’ being defined by D=D’+E. We say that (S, D) is
relatively d-minimal if S—D has no exceptional curves of the first kind and
if D is a minimal boundary.

Let (V,, D)) and (V,, D,) be 9-manifolds. We say that a morphism
f: V1=V, is a 8-morphism when f'D,CD,. Here f~}(I),) is the reduced divisor
of the pull back f*D,. _

Let (S, D) be a d-surface and take a point p&D. By a: §'=0,(S)—S
denote the blowing up at p. Defining D'=\"}(D), we have a 0-morphism
A: (SY, DY—(S, D). If p is a double point of D, \ is called a canomical blowing
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up. Then we have the linear equivalence:
K(S)+D'~A¥K(S)+-D),

where K(S') and K(S) denote canonical divisors on S' and S, respectively.
If p is a simple point of D, define D* by D'=\"Y(p)+-D*. S*=S'—D* contains
S as an open subset. S* is called a 1/2-point attachment to S at p. Conversely,
S is called a 1/2-point detachment from S*. To make things clear, we may say
that (S*, D¥)is obtained from (S, D) by attaching a 1/2-point A~Y(p)—D*([10]).
It is easy to check that

K(S)+D*~A*K(S)+D).

Hence, K(S)+D modulo linear equivalence is invariant under canonical blowing
ups and 1/2~point aitachments.

In general letting (S, D) be a 0-surface, we consider an irreducible curve
E on § satisfying that E is an exceptional curve of the first kind, E«D, and
(E, D)=1. Such an E is called a D-ex-eptional curve of the first kind. Note
that E—D=<A", which is called a 1/2-point. S—D is a 1/2-point attachment to
S—-D-E.

i) logarithmic genera. Let V be an algebraic variety. Then there exists
a non-singular algebraic variety V* such that there exists a proper birational
morphism p: V*—V. Let (V*, D*) be a 0-manifold such that V*=F*—D*,
Then we say that V* is a completion of V* with ordinary boundary D*. Ac-
cording to Deligne [3], we have a sheaf Q!(log D*) of logarithmic 1-forms on
V*. We have the spaces of logarithmic forms:

and

HY(V*, (Q*log D¥)")  for m==1, 2, -,

where Qi(log D¥*)= A’(Q!log D*) and n=dim V. These spaces depend only
on V. Hence, define
g(V) = dim T,(V'%)
and
P, (V)= dim H (V*, (Q" log D*)").
We call g(V) the logarthmic i-th irregularity of V and call P, (V) the logarithmic
m-genus of V. Writing g(V)=g(V) and p (V)=g,(V)=Py(V), we call them the

logarithmic irregularity and the logarithmetic geometric genus of V, respectively

(see [4], [5])-
iii) D-dimension and logarithmic Kodaira dimension. In general, let V be
a normal complete algebraic variety and D a divisor on V. By @, we denote
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the rational map associated with |mD| under the assumption that |mD|=¢.
We define

«(D, V) = max{dim ®,(V); when |mD| = ¢} ,

which is said to be the D-dimension of V. If |mD| is empty for any m=1,
we put k(D, V)=—co. The following two facts ([6]) are very useful in the
study of varieties and divisors.

1) If k(Dy, V)20, -+, (D,, V) =0, then for any a,>0, -+, at,>0, we have

WD, V)= XD a,D, V).

2) Let f: V—W be a surjective morphism of V onto a normal complete variety
W. For a divisor D on W and an effective divisor E which is f-exceptional (i.e.,
codim f(E)=2), we have

#(f'D+E, V)= «(D, W).

When ¥ is non-singular, we denote by K(V) a canonical divisor on V.
The Kodaira dimension x(V) of V is defined to be x(K(V), V).

Let (V, D) be a 9-manifold of dimension n. V=V—D is called the
interior of (V, D). We see that

PV) = dim HY(V, Om(K(V)+D))).
The logarithmic Kodaira dimension of V is definea to be

®V) = «(K(V)+D, V),

which does not depend on the choice of the smooth completion ¥ of ¥ with
ordinary boundary D.

iv) W?PB-equivalence. 1If there exists a proper birational morphism
f: Vi=V,, then P, (V))=P,(V;) and g,(V\)=gi(V,). A proper birational map is
by definition a composition of a proper birational morpbism and an inverse of
a proper birational morphism. If there is a proper birational map f: V,—V,,
then we say that V, is proper birationally equivalent to V, 1In this case,
P,(V)=P,(V,) and g(V))=q,(V>).

Moreover, when V' is non-singular and F a closed subset of V' of codim
=2, P, (V—F)=P,(V) and g,(V—F)=g(V). In such a case, we say that i:
V—F<V is a strict open immersion.

A WPB-map f: V,—V, is by definition a birational map which is a composi-
tion of proper birational maps, strict open immersions, and inverses of strict
open immersions. If there exists a WPB-map f: V,—V,, we say that V, is
WPB-equivalent to V,.
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Now define 9= {f: V,—V, birational morphism; there exist a morphism
g: V,—>V, such that g-f is a WPB-map or a morphism %: U—V, such that
f+h is a WPB-map}. A birational map which is a composition f,f7f;- fi,
f,EW, is called a W*PB-map. 1If there is a W?PB-map f: V,—V,, then we
say that V, is W?PB-equivalent to V, and P,(V))=P,(V,), .(V)=a.V,).
Recall that a surface S is W?PB-equivalent to a quasi-abelian surface if and only
if #(S)=0 and g(S)=2 ([10]).

v) circular boundary. Let (S, D) be a 0-surface. We say that D is a
circular boundary if D is a rational curve with only one ordinary double point p
such that D— {p} is non-singular or if D is a sum of non-singular rational
curves Cy, Gy, -+, C, such that when r=2, we have (C,, C;)=2 and when r=3,
we have (C;, C)=1 for i—j=41mod 7, and (C;, C;))=0 for i—j=0, =41

mod 7.
C,
o} c, c,
P
>. : é, c,
c, C

Figures 3.

vi) curve of Dynkin type. Let (S, V) be a 9-surface. We say that Yis a
curve of Dynkin type ADE if Y is a sum of non-singular rational curves Y
such that Y3=—2 and the intersection matrix [(Y;, Y,)] corresponds to a
direct sum of Dynkin diagrams 4,, D,, E,. Similarly, we can define a curve of

extended Dynkin type ADE {, which are not necessarily reduced divisors).

2. Logarithmic K3 surfaces of type I

Let S be a logarithmic K3 surface, t.e., 5,(S)=1. g(S)=#(S)=0. Let
(S, D) be a d-surface of which interior is S. Then «(S)<#=(S)=0, 2,5)=
P(S)=1. Hence, p,(S)=1 or 0.

First, assume that p,(S)=1. Combining this with (S)<#(S)=0, g(S)<
¢(S)=0, we see that S is a K3 surface which may not be minimal. By con-
tracting exceptional curves of the first kind on S successively, we obtain a mini-
mal K3 surface Sy and a birational morphism p: S—Sy. If u(D)is a finite set
of points, then, putting Sy=S— p"((D)) and Sx=S4—u(D), we have a proper
birational morphism py=p|S,: S;—=>Sx. We obtain the following commutative
diagram:
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S, «C S c S
Ho \ /J
S S«
Figure 4.

Hence, by definition (see § 1 iv)) S,CS and SCS are both W2PB-morphisms.
Hence S is W?PB-equivalent to S,.

If (D) contains a curve, we le: Dy be a purely 1-dimensional part of u(D).
Then by the previous argument, we see that S is W?2PB-equivalent to
S—uY(D4)ND. Thus we may assume Dy= (D).

Lemma 1. Let V be a complete non-singular algebraic variety and D a
reduced divisor on V. Let yu: V*—V be a birational morphism such that (V*,
p~Y(D)) is a 0-manifold. Denote by D* the proper transform of D by p™. Sup-
pose that k(V)=0. Then

H(V*—D¥) = &(V*— (D)) = (V—D)
— (K(P)+D, 7).

For a proof, see [6]. A generalization of this is the following Lemma 6, whose
proof will be given there. By the above lemma, we get

0 = &(S) = &(S—D) = &(Sx—Dx)
= 1(K(Sx)+Dy, Sg) = #(Ds, S).

Proposition 1. Let S be a minimal K3 surface and Y a reduced divisor on
S such that (Y, S)=0. Then Y turns out to be a curve of Dynkin type ADE.
Moreover, P, (S—Y)=1 for any m=1 and g(S—Y)=0. Hence S—Y is a
logarithmic K3 surface.

Proof. Let 1Y, be the irreducible decomposition of Y. Then for any
m,; =0, we have M(Z‘,m S) 0 by the fact 1) in §1 iii). By making use of
Riemann Roch Theorem on S we have

0= dim| (X m,¥)| =(Xm, ¥ ¥[2+1
except for my=--+=m,=0. Hence
XEmY)yp<=-2.
In particular, Y3<—2. In view of the adjunction formula, we have

—2<22(Y))—2=Y?.
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Here #(Y) denotes the virtual gemus of Y. Thus Y?=-—2 and »(Y,)=0.
More generally, letting ¢ be a connected reduced curve in Y, we have the
exact sequences

0-0(—Y)—-O0—-0y—0
and
0 — HYO) — H(Oy) —~ H(O(—¥Y)) — H(O)
— H(O%) - H(O(—%Y)) - HO0) — 0.

From this, it follows that H(O(—%))=0 and
dim HY(O(Y)) = dim H¥(O(—Y)) = dim H'(Og)+1
= 2(Y)+1 = GP[2+2.

Hence 4*=—2. In particular, if Y;+Y, we have (¥;, Y)=0or 1. Itis
easy to see that the intersection-matrix [(Y;, Y,)] (Y;=%) corresponds to the
Dynkin diagram of type 4,, D, E;. Eence, Y is a curve of Dynkin type ADE.
Therefore,

#(S—Y) = x(K(S)+Y,5) =0

and §,(S—Y)=p,(S)=1. These imply that P,(S—Y)=1 for any m=1.
Since [(Y;, Y,)] is negative-definite, Y, -+, Y are linearly independent in
Pic (S). We make use of the following

Lemma 2. Let V be a non-singular complete algebs aic variety with ¢(V)=0
and Y a reduced divisor on V. Let 1Y, be the irreducible decomposition of Y.
Then, putting V=V —Y, we get

g(V) = dim Ker (PQY; — Pic(V)®2Q) -
Proof. We have the exact sequence:
)
0=H'V,Q)— HY(V,Q)— ®QY, - H(V, Q).
Since ¢(V)=0, it follows that Im § CPic(V)QQC H*V, Q). 'Thus we obtain

8
g(V) = dim Ker(©QY,; — Pic(V)®Q) . Q.E.D.
We proceed with the proof of Proposition 1. By the lemma above we conclude
that g(S—Y)=0. Q.E.D.

Thus we obtain the following

Theorem 1. Let (S, D) be a 0-surface whose interior is a logarithmic K3
surface S of type I. Theu there exists a birational morphism p: S—Sy such that
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Sy is a minimal K3 surface and such that u(D) is a union of a curve Y of Dynkin
type and a finite set F, and hence

Sy =S—p(Y)—p(F)cScS.
In other words, S is W*PB-equivalent to Si—Y.

Note that D and Y may be empty.

Table I. Sx being a minimal compact K3 surface

class D S. * —D
i) ¢ compact
1)* curve of Dynkin type ADE | non-compact

3. Logarithmic K3 surfaces of type II. We begin by recalling the
elementary result, called p,-formula.

Lemma 3. Let (S, D) be a 9-surface with ¢(S)=0. Let 2CJ. be the
trreducible decomposition of D. Then

BS—D) = p(S)+Xg(C,)+hT(D)),

where T'(D) is the (dual) graph of the intersection of D=3 C;, I(T') is the cyclo-
tomic number of the graph T', and the g(C;) denote the genera of the C;.
For a proof see ([7], the Appendix).

With the notation being in Lemma 3, we further assume that Sis a logari-
thmic K3 surface of type II. Hence p,(S)==0and p,(S)=1. By the formulain
Lemma 3, we have

1 =5,(S) = 228(C,)+KT(D)) .
Hence, there are the following two types;
Type I1,; g(C)) = 1, g(C;) =++-= g(C,) = 0 and A(T'(D)) = 0.
Type IL,; g(Cy)) = g(C;) == g(C,) = 0 and K(T'\(D)) = 1.
Proposition 2. If S is a logarithmic K3 surface of type 11, then S is a ra-

tional sutface.

First, assume #(S) to be 0. Recalling p,(S)=¢(S)=0, we see that S
is an Enriques surface. Hence, there exists an étale covering z: S—S where
S is a K3 surface. Let D=z"(D). Since S—D—>S—D is étale, we have
#(S—D)=#%S—D)=0 by Theorem 3 [5]. Hence, S—D is a logarithmic
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K3 surface of type I. By Theorem I, D consists of rational non-singular curves
whose intersection matrix is negative-definite. Hence D has the same pro-
perty as D. Thus A(T'(D))=0. This contradicts the fact that .S is of type II.
Therefore, it follows that x(S)=—oo. Recalling Castelnuovo’s criterion, S is
a rational surface, because ¢(S)=0. Q.E.D.

4. Logarithmic K3 surfaces of type II,. Employing the notation in
§ 3, we assume S to be a logarithmic K3 surface of type II,. Putting D,=C,
and Dy=C,+---+C,, we have D=D,+D;, and g(D,)=1. Hence, p,(S—D,)
=1, ®(S—D,)<#S—D)=0, and g(S—D,)<g(S—D,)=0. These show that
S—D, is a logarithmic K3 surface of type II,. Contracting exceptional curves
of the first kind in S—D,, successively, we have a birational morphism
w: S—Sy such that 4 is isomorphic around D,=~pu(D,) and Sx—pu(D,) has no
exceptional curves of the first kind, i.e., (S, u(D,)) is a relatively 9-minimal
model of (S, D,).

Proposition 3. Let (S, C) be a relatively 0-minimal 0-surface such that C
is a non-singular elliptic curve with ©(S—C)=g(S—C)=0. Then K(S)+C~0.

Proof. By Proposition 2, S is a rational surface.
If K(S)+C were linearly equivalent to an effective divisor A=2 r.E; (r;>0),

we would derive a contradiction. Since (A, S)=#(S—C)=0, we know that
the intersection matrix [(E;, E,)] is negative semi-definite. In particular E5<0
for any 1<j<s. If E,=C, then K(=K(S))~A—E,=A—C,=0. This is a
contradiction. Therefore E;#C, which implies (A, C)=0. Since A*’<0, we
may assume that (A, E;)<0. Hence, (K, E;)=<—(C, E;)<0. By the adjunc-
tion formula,

—2<2n(E;)—2 = E*+(K, E))<0.

Hence, z(E;)==0 or 1. We shall examine various cases, separately.

1) If =(E,))=1, we have E{=(K, E,)=0.
Hence (C, E,)=0. Thus CNE;=¢ and (A, E,)=0.

2) If z(E))=0 and (C, Ey)=1, it follows that (K, E\)< —1 and —2=E?%+
(K, E;)=—1. Hence, a) Ei=(K, E))=—1 or 8) E{=0 and (K, E,)=—2.
In the case of a), we have 1=<(C, E,)=(A, E)—(K, E;)=<1. Hence (A, E,)=0,
—(C, E))=(K, E;)=—1. Thisimplies that E, is a C-exceptional curve. Hence,
we can contract E;. Note that K+C is invariant under 1/2-point detachments
(see §11)). Thus we may assume that this case does not occur.

In the case of B), we use the following

Lemmad4. LetS be a complete surface with 2,5)=4¢(S)=0 and E a curve
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on S such that n(E)=0. Then
dim|E| =14 E2.
Proof. By Riemann Roch Theorem,
dim|E | =(E, E—K)/2, K being K(S).

On the other hand, (E, E4-K)=2#z(E)—2=—2. Hence, follows the assertion.
_ Q.E.D.
Therefore letting S=S—C,

0=75,(S)—1=dim|A|=dim|E| =1.

Thus we have arrived at a contradiction.

3) If =(E,)=(C, E,)=0, then Ei<—1 and (K, E;)=—1 or 0. Suppose
(K, E\)=—1. We have E{=—1 and E,NC=¢. This yields that E, is an
exceptional curve of the first kind on S—C. This contradicts the hypothesis.
Suppose that (K, E;)=0. Wehave E{=—2. Thus E;NC=¢ and (A, E,)=0.

Consequently, after a finite succession of 1/2-point detachments, we have
(A, E;)=0, and i) E%=0, =(E,)=1 or ii) E}=—2, n(E,)=0. Hence (K, E;)=0
for any irreducible components E; of A. Thus letting 9, -+, 9, be the con-
nected components of A, we have A=31 9, and A’=31 9?=0. Since A’=0
and 9%<0 for any j, it follows that Di=---=9?=0. Recalling that (K, E;)=0,
for any 7 we have (K, 9;)=0. Therefore, the 9, are curves of extended
Dynkin type ADE.

Lemma 5. Let S be a complete surface with p,(S)=q(S)=0. For an
effective divisor F (#0) on S, we have

dim|F+K|= dim H(Op)—1=(F, F+K)/2.
Moreover, if dim H(O)=1, then
HYO(F+K)) = 0, and so n(F) = dim HY(Oy) .
Hence,
dim | F4+-K |= (F, F+K)/2.
Proof. From the exact sequence:

0 € = HYO) - HYOy) > H{(O(—F))
-0 = HYO) » H{(OF) — H{(O(—F)) — 0 = H*(0),

follows the assertion. Q.E.D.

By this, we have
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dim|9D+K|=(9D;, D:+K)[2=0.
But since P,(S)—1=dim|A+K | =dim| 9;+K |, it follows that dim| ;4K |
=0. Putting K(9,)=(9D;+K)| 9D;, we get the following exact sequence:
0 = H(O(K)) = H(O(K+9;)) = H(O(K(D;)))
— HY(O(K)) == H(O)=0.
Hence,
dim| K(9;)| = dim HY(O(K(9;)))—1
= dim HY(O(K+ 9;))—1
= dim|K+9;|=0.
Similarly, we have
dim|K(C)| = 0, where K(C) = (K+C)|C,
since ﬁg(S— —C)—1=dim|K+C|=0. Furthermore,
0=5,5—C)—1=<dim|K+C+9,|
<dim|2A]|= P,(S—C)—1=0.
Hence, dim|K+C+9,;| =0. Thus,
*) dim |K(C+9;)| = dim| K+ C+9;| = 0.
By the way, since C N 9;=4, it follows that
K(C+9)) = (K+C+9D)|(C+9))
— (K+C)| COHEK+D)| D,
= K(C)PK(9;) .
Thus, dim|K(C+9;)| =dim| K(C)| +dim|K(D;)| +1=1. This contradicts *).

Q.E.D.
The following lemma is a generalization of Lemma 1.

Lemma 6. Let (V, D) be a 9-manifold and put V=V —D. Assume that
#(V)=0. Let Y be a reduced divisor on V and denote by Y the closwre of Y in
in V. Take a proper birational morphism p: V¥~V such that (V*, p~'(Y+D))
is a 0-manifold. p=p|V*: V*=V*—p=Y(D)—V is a proper birational morph-
tsm. Then letting Y* be the proper transform of Y by p™', we obtain

BV*—Y*) = &(V—Y) = (K(V)+D+7, 7).

Proof. Denoting by Z* the closure of Z in V*, we have (u™(Y))=
Y*4-&,& being an effective divisor which is p-exceptional. Similarly,
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(p¥(Y))} = Y4 F, F being effective and F,oq = €.
Recall the logarithmic ramification formula ([5]):
K(P¥)+p7(D) = p*(K(V)+ D)+ R,
where R, is the logarithmic ramification divisor for . By definition, we have
#WV—Y)=r(V*—p (V) Zr(V*—Y¥)
= k(K(V*)+p YD)+ Y¥, V%)
= k(p*(K(V)+D)+R,+Y?, 7¥)
= k(p*(K(V)+D)+NR,+Y?, V*), N>0.
This follows from =(V)=0 by using 2) of §1.iii). On the other hand,
R.\V*=R, and p(Y)<Y*+N,R, for some N,>0. Hence, we have
(u*YP< YELNy(R,) for some N,>0. Choosing N >0, we obtain
K(p*(K(P)+D)+ NRu+ Y*, T¥)
= e(pH(K(P)+D)+(u* T, 7%).
We note that
pHD)+(u* V) = p*(D+ ).
Hence,
(p*K(V)+D)+(u* V), V*) = w(p¥(K(V)+D+Y), P*)
= K(K(")+D+Y, V*).
It is easily seen that
K(K(V)+D+Y, V¥)Zr(V—Y)=r(V*—Y*).
Thus we obtain the desired equality. | Q.E.D.
We come back to the study of a logarithmic K3 surface S of type IIL,.
Writing D,=u(D,) and Y=p«(Dj), we have by Lemma 6
#(Sx—Dy—Y)=x(S—D)=0.
Since K(Sy)+D,~0, we make use of the following proposition.
Proposition 4. With the notation being as in Proposition 3, let Y be a reduced

divisor on S which does not contain C. Suppose that w(S—C— Y)=0. Then
©(Y, §)=O. Moreover, letting Y,, -+, Y, be the connected components lof Y, we
have the following assertions, separately.

1) IfY,0\C=*a¢, then (Y;, C)=1 and Y, is an exceptional curve of the first
kind in S.

2) If Y;NC=¢, then Y, is a curve of Dynkin type ADE.
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Proof. Letting Y,=Y NS, S=5—C, we have Y, (the closure of Y in S)
=Y. Take a proper birational morphism p: S*—S such that (S*, p7}(C+Y))
is a 0-surface. By I.emma 6, we have

#(K(S)+C+Y, S)=#(S—C—Y)=0.

Recalling Proposition 3, we get #(Y, S)=0. Let 31V, be the irreducible
decomposition of Y and let @, -+, Y, be the connected components of Y.
By Lemma 5, letting 4} be a connected reduced divisor in Y, we have

0 = dim| Y| = dim|K+C+Y|
= dim H(Oc+4y)—1=(C+Y, K+C+%)/2.
Hence, (C+%Y, 4)=<0. If C+%Y is connected,

0 = dim|K-+C+| = (C+, K+C+)2

= 7(C+Y)—1 = »(C)+»(Y)+(C, Y)—2

= m(Y)+(C, Y)—1=2=(Y).
From this, it follows that z(%)=0 and (C, Y¥)=1. If C4% is not connecied,
cken

0 = dim|K+C+Y| = dim H(Oc+9)—1

= dim H(Oc)+dim H(Oy)—1

=dim H'(O%) = »n(Y) = (Y, K+Y)[2+1.
On the other hand, (C, Y)=0 yields (K, Y)=0, since K4 C~0. Hence, Y?=
—2. In particular, if Y;NC=+¢, then Y, is a C-exceptional curve, and if
Y;NC=¢, then Y3=—2and (K, Y;)=0.

For any m; =0, define Z=3>m;Y,;+0. We write Z=2Z,+---+ 2, where
Supp (%), ***, Supp (&,) are the connected components of Supp Z. By
Lemma 5,

0=dim|Z| = dim|Z4-C+K | = dim H(O¢+z)—1
=(C+Z, C+K+2)2 = ((C, Z)+Z%)2.

If (C,Z2)>0, then Z*<—1. Next, assume (C, Z)=0. Then (C, &)=
=(C, %,)=0. This implies (K, &,)="---=(K, Z,)=0. Hence,

1 = dim H'(O¢+7) = dim HY(O¢)+>) dim H{(Og,) .
Thus dim H(Og;)=0. Recalling Riemann Roch Theorem on S, we have
(Zi, Z,4+K)/2 = dim H'(Og,)—dim H°(Og,)<—1.
Since (Z;, K)=0, we have Z!< —2. Hence Supp Z; is a curve of Dynkin type
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and so the intersection matrix [(Y;, Y;)] is negative-definite. Thus we com-
plete the proof of Proposition 4.

Proposition 5. Let S be a complete surface and C a non-singular elliptic
curve on S.  Suppose that ¢(S)=0 and K(S)+C~0. Then g(S—C)=0, and
(S, C) is obtained from one of the following three 0-surfaces by attaching 1/2-points:
a-i) (P? E) where E is a non-singular curve of degree 3,

a-1) (P'X P!, E) where E is a non-singular curve of degree (2, 2),
a-iii) (X3, E) where 33, is a Hirzebruch surface of degree 2 and E a non-singular
elliptic curve such that K(3,)-+E~A0.

Proof. g(S—C)=0 follows from Lemma 2. First assume that S=P?
or X=P'X P! or ), (b=2), that is the Hirzebruch surface of degree b.

Lemma 7. A Hirzebruch swiface >3, (b=1) is a non-trivial P'-bundle over
P! on which there exists one and only ome irreducible curve A. with negative self-
intersection number —b. A. is a section of >,— P, whose fiber is denoted by F.
Any section C %A is lLinearly equivalent to A.+aF (@=b). Then C*=2a—b
and (C, A.)=oa—b. The smallest C? is b. Since dim|A.+bF|=1+b, we
have sections A, (A being a point of C'*?), which satisfy A\NA.=¢ and A;=Dh.
Moreover, —K(3},)~A.+A\+2F.

Proof. The verification is easy and omitted.

We continue the proof of Proposition 5. If S=373, and E~—K(3})~
A\+A.+2F, then (E, A)=--b+2. By the way, Es=A... Hence, (E, A.)=0,
which implies 5<2. We have to show that there exists a non-singular member

in | —K(23)-

Lemma 8. Let V=P'XP? Then X\, (b=1) is isomorphic to a non-
singular hypersurface of degree (b, 1) of V.

Proof. Letting 2 be a line on P? we put L=pXxP? and M=P'xh.
Then, by the adjunction formula,

—K(V)~2L+3M.

Since bL+M is very ample (5=1), a general member W of |bL+-M | is non-
singular and
—K(W)~(2L+3M—M—bL)| W .

Hence K(W)?=8. Moreover, the projection z: V— P! induces the fibered
surface #/=n | W: W— P!, whose fiber is linearly equivalent to L| W. Clearly,
(L|W)*=0and L| W= P'. Hence, | W: W—P'is a P-bundle. M |Wis a
section which satisfies (M | W)?==b. Hence W= 3>3},. Employing the notation
in Lemma 7, we see that A.~(M—bL)| W and A\~M | W. Q.E.D.
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When b=2, —K(3Y,) is linearly equivalent to 2M |W. (2M|W)*=8 and
2M |W has no base points. Therefore a general member of | —K(3),)| is a
non-singular elliptic curve. A curve £ on P? or P'X P! which satisfies the
condition of Proposition 5 is a non-singular curve of degree 3 or degree (2, 2),
respectively.

Recalling that a relatively minimal rational surface S is isomorphic to
P? P'X P! or Y, we have only to consider the case where there is an ex-
ceptional curve L of the first kind on S. Since L#C and L?=(K(S), L)=—1,
we have (C, L)=—(K(S), L)=1. Hence, L is a C-exceptional curve. Con-
tracting such L successively, we complete the proof.

With the notadon being as in Proposition 5, let Y be a curve of Dynkin
type in S=S—C. Corresponding to the 1/2-point attachments, we have a
proper birational morphism x: S—Sy, Sx=P? or P!XP' or 3),. By Lemma 6,
writing Z=p4(Y), we have #(Sx—u(C)—Z)=r(S—C—Y)=«(Y, S)=0.
Hence, Z is a sum of exceptional curves and a curve of Dynkin type. Since Sy
is relatively minimal, Z is a curve of Dynkin type such that Z N u(C)=¢. Thus,
Z=A.in Y. Accordingly, x(Y) is a union of a finite set of points in u(C)
and ANC§*=ZZ'

Therefore, Y is a curve of Dynkin type A. Summarizing the argument
above, we obtain the following proposition.

Proposition 6. Let (S, D) be a relatively 0-minimal surface such that
S=S8—D is a logarithmic K3 surface. Suppose that (S, D ,) is relatively 9-minimal
and that there are no D-exceptional curves of the first kind on S. Then such 9-
surfaces (S, D) are classified intc the following table. There, D=3\ C; is the
trreducible decomposition and C, is a non-singular elliptic irreducible curve.

Table IIa.
class S D with the self-intersection numbers | 7z,(.S) S
a-1) P? o g Z|(3)
affine

a-ii) | P'XP! " Z|(2)

a-iii) P Z/(2)

2% non-affine

a-iii) o) 8 ¢ =2 ?

We have the following

Theorem II,. Let (S, D) be a 0-surface whose interior S is a_logarithmic
K3 surface of type I1,. Then there exists a birational morphism p: S — Sy such that
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1) Sx=P? or P'xP' or 33, 2) C=u(D,) is a non-singular curve, 3) p(Dy) is
a finite set or a union of a finite set and Z=A. on 3, The latter case occurs
only wken Sx=2).

Structure of logarithmic K3 surfaces of type II, is studied precisely Ly
examining each class of a-i) through a-iii)* separately. We use the following
notion: Let S be a surface and let 1 be a proper birational morphism: S*—S
such that there exists a dominani morphism f: S*— J, J being a curve, whose
general fiber f!(u) is C*. Then we say that S is a C*-fibered surface or £ has
the structure of C*-fibered surface.

Proposition 7. Every surface of the class a-ii) or a-iii) has a structure of
C*-fitered surface.

Proof is easy.

Proposition 8. Let S be a surface of the class a-i) or a-iii)*. Then S does
not admit the structure of C*-fibered surface.

Proof. First we let S be a surface of the class a-iii)*. Suppose that
there exist a proper birational morphism p: S*—S and a dominant morphism
f: S*—], J being a complete curve, whose general fiber is C*. Choosing a
suitable completion S* of S* with smooth boundary D*, we assume that p
defines a morphism 7: S*—3Y), and D*¥*=5"(C,+C,) and that f defines a
morphism f: S*¥—J. By C¥ we denote the proper transform of C, by p7,
which is a non-singular elliptic curve. Since a general fiber of f is P!, C¥ is
not contained in a fiber of f. Hence f(C¥)=]. Since S* is rational, J is P
This implies that f|C¥: C¥—P! is a two-sheeted covering. Hence, f(C¥) is
a point, because f(u) N D*= {p,, p,} for a general point u& J. Therefore,
g=f-m': 3),—J tuins out to be a morphism. Moreover, g(C,) is a point a.
Hence, C, is a part of the singular fiber g7'(a). Since C;=—2, there is another
component C, in g7Y(a) such that C3=—1. This contradicts the fact that >},
is a relatively minimal surface. It is easier to prove the same result for surfaces

of the class a-i). Q.E.D.

Proposition 9. There exists an algebraic pencil {C,} on each surface of the
classes a-i) and a-iii)* whose general member C, is C*.

Here, an algebraic pencil {C,} on S is understood as follows: there exist
an algebraic surface S* and a proper birational morphism p: S*— .S in which
Y: S*— ] is a fibered surface whose general fiber C¥. {C,=p(C¥)} is the
algebraic pencil on S.

We omit the proof of Proposition 9.
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If there is a proper birational map f: S,—S, then the existence of the
algebraic pencil {C,}, C,=C*, on S,, induces the existence of the same thing
on S,. Moreover, when S; is an open set of S, with #(5,)=0, the existence
of an algebraic pencil of C,=C* on £, implies the existence of the same thing
on S,. In fact, there are a proper birational morphism p: S¥—S§; and a mor-
phism +r: S¥—J with C,=p(\r"}(u))=C* for a general uc J. Let T', be the
closure of C, in S,. Then #T,)<0. If #T,)=—0c0, it would imply that
7(S)=— o0, a contradiction.

Accordingly we get

Proposition 10. There is an algebraic pencil {C,} with the general member
C,=C* on any logarithmic K3 surface of type 1I,.

Corollary. A lsgarithmic K3 surface of type 11, is not measure-hyperbolic.
Proof follows from the fact that C* is not measure-hyperbolic.

Proposition 11. Let S be a surface in the TABLE 1la. Then, Aut (S) is
a finite group.

Proof. We give a proof for a surface of the class a-iii)*. Let @& Aut(S).
Then @ extends to an isomorphism of S=31, since g(C})=1 and C}=—2<
—2([12]). Thus Aut(S)CAut,(3h)={psAut>Y,; p(D)=D}. Let z: 3%
P? be ¢he P'-bundle structure of >, We have the group ex:ension:

1 - G, > Aut (3Y) » PGL (1, k) = Aut(P?) — 1.

It is well known that G, is an algebraic group of dimension 4. Moreover, G,
is an affine group. Hence Aut (3},) is an affine algebraic gioup. And so is
Aut, (33). Furthermore, we have the group homomorphism v: Aut,(2),)—
Aut(C,) which is the restriction, i.e., ¥(@)=¢|C,. Therefore, Im 7 is finite,
since Aut (C,) is a finite union of elliptic curves. Put G,=Ker 7, which turns
out to be a finite group. Thus Aut, (373) is finite and so is Aut (.S). Q.E.D.

Proposition 12. Let S be a rational surface and C a non-singular elliptic
curve on S. Let Y be a reduced divisor on S such that &(S—(C U Y))=0. Then
g(S—(CUY)=0, i.e., S—(CUY) is a logarithmic K3 surface of type II,.

A proof follows from the arguments in the proofs of Propositions 3 and
4. Actually, the intersection matrix of Y is negative-definite and hence we
can use Lemma 2.

Propostion 13. Let (S, D) be a 0-surface whose interior S is a logarithmic
K3 surface of type 11,. Suppose that 1) (S, D) is relatively 0-minimal, 2) S
has no 1/2-pownts, and 3) D is connected. Then (S, D) is (ne of a-i)~a-iii) in
Proposition 5.



LocariTHMmIC K3 SURFACES 693

Proof. At the beginning of §4 we have had the decomposition: D=
D,+Djy. Suppose that there exists an irreducible exceptional curve E of the
first kind on S—D,. In view of Preposition 4, by contracting E we have a
proper birational 8-morphism \: (S, D)—(S,, D,). We have the following cases:
1) If ECDg or ENDz=¢, this contradicts the hypothesis. 2) If ENDy=¢,
then A: (§, D-+E)—(S,, D)) is a non-canonical blowing up. In fact if A were
canonical, D would be disconnected. Thus E—DyzC.S is a 1/2-point. This is
also a contradiction. Accordingly, we conclude that S—D, is relatively minimal.
By Proposition 4, Dy is a union of exceptional curves of the first kind. Hence
Dy=¢. Since, there are no D-exceptional curves, it follows that S is a relatively
minimal surface. Q.E.D.

5. Logarithmic K3 surfaces of type II,. In §5, let S be a logarithmic
K3 surface and let (S, D) be a d-surface such that S=S—D. By Cy, -, C,
we denote the irreducible compenents of D. Since A(T'(D))=1, there is a
circular boundary D,=C,++++C,<D. 5,S—D,)=1 induces that S—D, is
also a logarithmic K3 surface of type II,. Contracting exceptional curves of
the first kind in S—D,, successively, we have a non-singular complete surface
S4 and a birational morphism p: S—Sx such that p is isomorphic around
D,~u(D,) and such that S—pu(D,) has no exceptional curves of the first kind.
After choosing D to be a minimal boundary, we have a minimal boundary
D,=p(D,). Then (S, D,) is a relatively 8-minimal d-surface.

We write D=D,+Djp and Y=p4(D;). By Lemma 6 we have

0 = #(S—D) = #(Sx—D,—Y).

From the condition A(T'(D,))=1, we infer readily that $,(Sx—D,)=1. Hence,
P(Sx—D,)=1 for any i=1. However, §(Sx—D,)=0.

Proposition 14. Let (S, D) be a circular 0-surface (i.e., D is circular) which
is relatively 0-minimal. Suppose that #(S—D)=0. Then K(S)+D~0.

Proof. It is easy to check that S is a rational surface. Assuming that
| K(S)+D| has a non-trivial member A=31r.E; (r;>0) we shall derive a
contradiction.

Now, 0=«(S—D)=w(K(S)+D, S)=w(A, S)=«x(XE,, S) implies that the
intersection matrix [(E; E;)] is negative semi-definite. We assume (A, E})<0
and E;¢D Then by the same reasoning as in the proof of Proposition 4, we
have the following cases:

Case 1: #(E))=1. Then E,ND=¢ and Ei=(K, E,;)=0.

Case 2: #(E,)=0and (D, E))=1. Then Ei=(K, E,)=—1 and (E,, D)=1.
Hence E, is D-exceptional. By detaching 1/2-points, we may assume that this
case does not occur.
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Case 3: #(E,)=0 and (D, E;)=0. Then F,ND=¢ and Ei=-2, (K, E,)
=0.
In all cases we have (A, E))=0. If E,cD and r=2, we have D'4-E;=D,
E,=P"and (D', E})=2. Hence

dim|K4-D' | = §(§—D")—1 = KT(D)—1.

On the other hand, |K+D'| ©(r,—1)E,+7,E,+---. 'This is a contradiction.
Thus, A>=3r(A, E;)=0. Since (A, S)=-0, we have A’=0. By the
similar argument to the proof of Proposition 4, we derive a contradiction. Q.E.D.

Proposition 15. With the notation being as in Proposition 14, let Y be a
reduced divisor cn S which does not contain any components of D. Suppose that
“(S—D— Y)=0. Then «(Y,S)=0. By 4},, -+, 4, we denote the connected com-
ponents of Y. If Y, ND=+¢, then (Y,, D)=1 and Y, is an exceptional curve of
the first kind. If G, D=¢, then 4, is a curve of Dynkin type A.

The proof of Proposition 4 can be used again here.

Proposition 16. Let (S, D) be a circular 9-surface such that K(S)-+D~0.
Then (S, D) is obtained from one of the following 0-surfaces by attaching several
1/2-points and canonical blowing ups.

b-i) S=P? D=H,+ H,+H, where each H; is a line on P?,

b-ii) S=P'x P!, D=H,+H,+G,+G,, where each H; is a line of degree (1, 0)
and each G is a line of degree (0, 1),

b-iii) S=35, D=A,+A.+F,+F,, where each F is a fiber,

b-iv) S=P? D=H-C, where H is a line and C is a conic,

b-v) S=P!'x P!, D=C,+}C, where eack C; is a curve of degree (1, 1),

b-vi) S=3V,, D=A,+A, (A=0), where the A, is a section which is different from
Am:

b-vii)g S=3V, D==F+A.+C; where C, is a non-singular rational curve which
is linearly equivalent to A+ F,

b-viii) S=P!'x P!, D=H,+G,+C, where H is a line of degree (1,0), G, 15 a
line of degree (0, 1), and C is a curve of degree (1, 1),

b-ix) S=P?, D=C, where C is a cubic curve with one ordinary double point,
b-x) S=P2D=C, where C is a curve of degree (2,2) which has one ordinary
double point,

b-xi) S=3V, D=C, where C is a rational curve with only one ordinary double
point which is linearly equivalent to 2A,,

b-xii) S=P!X P!, D=G-C, where G is a line of degree (0, 1) and C is a curve
of degree (2, 1),

b-xiii)g S=3s, D=A.+C, where C is a curve which is linearly equivalent to
Ay+2F.
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Proof is easy and left to the reader.
In the following Table II,, we exhibit g and configurations of components
of D of b-i)~b-xiii).

Proposition 17. Let (S, D) be a circular d-surface whose interior S is a
logarithmic K3 surface or a surface satisfying the following conditions: 1) S is ra-
tional, 2) &(S)=0, 3) p,(S)=1, and 4) g(S)=1 or 2. Suppose that i) (S, D)
is relatively 0-minimal, ii) D is connected, and iii) S has no 1/2-points. Then (S, D)
is one of b-i)~b-xiii)g in TABLE 1I,.

Proof is similar to that of Proposition 13.

Table ITy, of (S, D), S=5—D

g class S configuration of D m(S) S
1
b-i) P A z
lI
0 0
2 | b-ii) P'x P! 3 z? Cc*
b-iii)g 0,
28 z?
(B=2) e
4
b-iv) P JULI z
b-v) P'x P! éﬁz z
1 | b-vi) s, éﬁz z
b-vii)g s, X apg z
(B=2) A‘B
b-viii) | P'x P! 0[32 . z
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i class S configuration of D m(S)
9
b-ix) P? 7{ Z/(3)
b-x) | P'xP! £ Z/(2)
8
0 |bxi) | 3 - Z)(2)
bxii) | P'x P! ) Z|(2)
b-Xiii)p 44-8
28 ,Q—_ B ?
(B=2)
1| b-vi)* CCZZ}J ?
20
0 | bexi)* A2 ?

Next we treat the 0-surface (S, D) whose boundary is not connected.
As in § 4, we have to look for a curve Z of Dynkin type on S—D where (S, D)
is one of b-i) through b-xiii)g. Such Z exists only in the cases b-vi) and b-xi).
Then Z turns out to be A, of >Y,. We write b-vi)* or b-xi)* in the case of
disconnected boundaries. Therefore we obtain the following

Theorem IL,. Let (S, D) be a 0-surface whose interior S is a logarithmic
K3 surface of type 11,. Then, there exists a birational morphism p: S—Sy such
that (Sx, w(D,)) is one of b-i) through b-xiii)s in TABLE 11,. Moreover, u(Dy)
is a finite set or a union of a finite set and Z=A. on >Y,. The latter case occurs
only when (S, p+(D)—Z) is the class b-vi) or b=xi).

ReEMARK. In the above theorem the hypothesis that S is a logarithmic
K3 surface of type II, is replaced by the following condition that 1) $,(S)=1
and %(S)=0, 2) S is rational, 3) D consists of rational curves.

In order to prove the generalized Theorem II,, we have ouly to note that
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Propositions 14, 15 and 16 were proved without the logarithmic irregularity
condition to the effect g=0.

6. Surfaces with x=0 and p,=1. In general, let (S, D) be a o-
surface such that the interior S satisfies $,(S)=1 and #(S)=0. Then p(S)<1
and «(S)=<0.

Proposition 18. Ifp,(S5)=0, then x(S)=—co. Hence, S is a ruled surface.

Proof. In view of Proposition 2, it suffices to derive a contradiction from
the hypothesis that «(S)=0, p,(S)=0, and ¢(S)=1. Such a surface S is
birationally equivalent to a hyperelliptic surface, whose universal covering
surface is an abelian surface. Namely, contracting exceptional curves of the
first kind on S succssively, we get a hyperelliptic surface Sy and a birational
morphism p: S—S4. Then by Lemma 1,

0 = &(S) = «(K(S)+D, S) = «(K(Sx)+u«(D), Sx)
= w(usD, S).

This implies that uD=0. Thus

H(O(K(S)+D)) = HYO(u*(K(S«))+Ru+D))
S HY(O(K(S4)) = 0.

This contradicts §,(S)=dim HY(O(K(S)+D))=1. Q.E.D.

Consequently, we have the following cases to examine separately.
1) If p,(S)=0 and ¢(S5)=0, then S is a ra.ional surface. Hence, letting > C;

=1

be the irreducible decomposition of D,

a) if g(C))=1, then put D,=C,,

B) if g(C))=:-+=g(C,)=0, then there is a circular boundary D,=C;+-
+C,cD. _
2) If p,(S)=0 and ¢(S)=1, then S is a ruled surface of genus 1. Letf: S— ]
be the Albanese map of S, J being an elliptic curve, since p,(S)=0. For a

general point y& J, f7)(y) turns out to be a non-singular rational curve. Define
C,=f"(»)—DNf(y). Then by Kawamata’s Theorem ([14]), we obtain

0 = &(S)2&(C,)+i(J) = H(C,) -

Hence, #(C,)=0 follows. This implies that C,=C* and (D, f™(y))=2.
Hence, the horizontal component D, defined to be {33 C;; f(C;)=]} satisfies
that (D, f~%(y))=2. Referring to the following lemma, we have

dim|K(S)+D,|=0, ie,p(S—D,)=1.



698 S. ItTaka

Lemma 9. Let V be a complete normal variety and let A, B be divisors on
V such that (A, V)=0, |A+B| =+, B is effective, and k(A+B, V)=0. Then
| 4] #¢.

Proof. Choose >0 such that [i4|=+¢ and take X |4A+B| and Z &
|iA|. Then Z+iB~iX. By x(X, V)=0, we have Z+iB=iX. Hence, Z=
i(X—B) is effective. This implies that X— B is effective. Q.E.D.
3) If p,(S)=1, then put D,=0.

In all cases above, we define Dy by D=D ,+Dy

Theorem III. With the notation being as above, we suppose that S—D,
has no exceptional curves of the first kind. Then K(S)+D,~0.

Proof. Recalling Propositions 3 and 14, it suffices to prove under the
assumption that S is a ruled surface with ¢(S)=1. Take A€ |K+D,|
and we shall derive a contradiction from the hypothesis A=#0. Let >17,E;
be the irreducible decomposition of A. [(E;, E;)] is negative semi-definite.
In particular, E2<0. First assume that (A, E;)<0, since A’<0. If E,CD,,
then, putting D,=E,+D’, we would have (f~*(y), D')<1. This would imply
#A(S—D")=—c while #(S—D")=«x(K(S)+D’, S)=«(K(S)+D,—E, S)=
(A—E;, S)=«((r,—1)E,+, -+, S)=0. Therefore, E;&D,. Hence (D, E)
=0. Since (A, E)=(K, E))+(D,, E)<0, we have E{<0 and (X, E;)=<0.
As in the pioof of Proposition 3 we have the following cases to examine separa-
tely.

1) If E{=-2, (K, E,)=0, then #(E,)=0 and (D,, E;)=0.

2) If E{=—1, (K, E;)=—1, then (D,, E;)=0 or 1. In this case, (D,, £,)=0
contradicts the hypothesis that S—D, has no exceptional curves of the first
kind. In the case when (D,, E,)=1, contracting E; corresponds to a 1/2-point
detachment.

3) If Ei=0, (K, E\)=—2, then (D,, E;)=2. Since z(E,)=0, f(E))=p<].
Hence, E;=f"'(p). Therefore, by Kawamata’s Theorem ([14]), #(S—E,)=
#(C,)+&(J—{p})=1. On the other hand, #(K(S)+D,+E,, S)=w(S—E)=1.
Since E,<Ae |K(S)+D,|, we have

«(K(S)+D,+E,, S)=0.

This is a contradiction. Hence, we conclude that the case 3) does not occur.
4) If E{=0 and (K, E,)=0, then z(E,))=1 and (D,, E;)=0. In all cases,
we have (D,, E,)=0 and (A, E,)=0. Therefore, (A, E ;)=0 for all j, hence
A?=317,A, E;)=0. Letting 9, ---, 9, be the connected components of A,
we can easily see that these are curves of extended Dynkin type ADE. In
particular, @i=..-=P:=0.

a) If 9, consists of one irreducible component, then &), is an elliptic curve.

Hence f(9D,)=], and so (D,+D,, f}(y))=3. This implies #(S—9,)=1 by
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Kawamata’s Theorem. By the way,

"(K(S—)‘FD,H‘-@n §) g,z(§— D=1

and
(K(S)+D 44Dy, S) = e(A+D,, S)=0.

This is a contradiction.

B) If 9, has more than 1 irreducible components, f(9),) is a point. Hence

9, is a reducible member of [f*(y)|. This implies A(T'(9),))=0, a con-

tradiction. Q.E.D.
Next, we shall consider the counterparts of Propositions 4 and 15 in the

case of ¢(S)=1.

Proposition 19.  Let S be a ruled surface of ¢(S)=1 with the Albanese fibered
surface f: S—J. Let D, be a divisor with normal crossings consisting of horizontal
components such that K(S)+D,~0. Suppose that a reduced divisor Y on S,
each component of which is not contained in D,, satisfies the condition that =(S—
D,—Y)=0. Then (Y, S)=0. Moreaver, letting U, ---, 9, be the connected
components, we see that if Y, ND,+¢, Y; is an exceptional curve of the first
kind such that (Y;, D )=1 and that if GY;N\D,=¢, then Y, is a curve of Dynkin
type A.

Proof. Let 21Y; be the irreducible decomposition of Y. If ¥; is hori-

zontal with respect to f, then (Y, +D,, f(u))=3 for a general u€ J. By Kawa-
mata’s Theorem, we get

HS—Y)za(f )~ Y;—D)+a(J) =1,

where S=S—D,.

This contradicts #(S— Y)=0. Hence, f(Y) is a finite set of points. For a con-
nected reduced curve YC Y, we have a point p=f(Y), and so YC fY(p).
In view of #(S—Y) =1, we see that G == f~!(p). Therefore, Y consists of non-
singular rational curves Y; with negative-definite intersection matrix [(Y;, Y})],
Y,cqy. If Y,ND,=¢, then (D,, Y;)=0 and so (K, Y;)=—(D,, Y;)=0.
Combining this with Y7< —1, we have Y}=—2and #»(Y,;)=0. If Y;ND,%¢,
then (Y;, D,)=—(Y;, K)>0. Hence Y; is an exceptional curve of the first
kind and (Y}, D,)=1. Q.E.D.

Proposition 20. With the same notation as in Proposition 19, we further
assume that S is relatively minimal. Then

C'i) S———PIX], DA=P1X.]+P2><]’
or

c-ii) S— ] is a C*-bundle of degree 0 which is not P*X J, and D,=T' 4T,
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T, and T, being sections with Ti=T2%=(Ty, T'«)=0. Note that T\, is cohomolo-
gously equivalert to T ...
Further,

c-iii) S—J is a C*-bundle of degree m>0 and D ;=T +T .., Ty and T'.. being
sections with T'{=m and T%Z=—m.

In order to prove this, we need the following lemma.

Lemma 10. Let f: S— ] be a P'-bundle over an elliptic curve J. Then we
have the following table.

Table III
class S—J dim| —K(S)| a member of | —K(S)| g(S—D,)
) | P'x]J 2 D =p:xJ+p,x]J 2
.. C*-bundle of D,=Ty+T.
i) degree 0 0 1 2

(I%=T2%=(T,, I'.)=0)

C*-bundle of

D,=Ty+T.
iit) ?nfg;zeé : m (1442=m°’ T2 —m, (T, T.)=0) 1
iv) affine bundle 0 ) 2T,
A (r==9) D, does
affine bundle not exist.
v) A, —oo ¢

For the notation used above, we refer the reader to [2] and [18]. Explicit
constructions of S in [18] are used to compute dim|—K(S)| and to find a
normal crossing divisor in | —K(S)|. We omit the details.

Proposition 20 follows from the lemma above. In the case of the class
c-i) or c-ii), S—D, is a quasi-abelian surface. Attaching several 1/2-points to
S—D, at points of D,, we have surfaces with z=0 and g=g=1.

Proposition 21. Let (S, D) be a 0-surface with the interior S. Suppose
that p,(S)=1, #(S)=0, and ¢(S)=1. Then S is a ruled surface of genus 1.
Moreover, D is disconnected. D, consists of two sections of the Albanese fibered
surface f: S—J of S. In particular, S cannot be affine.

Proof. If #(S)=0, it would follow that p,(S)=0 from the classification
theory of projective surfaces. Combined with Proposition 18, this would
imply «(S)=— oo, a contradiction. Thus, S turns out to be a ruled surface
of genus 1. In view of Lemma 6, by contracting exceptional curves of the
first kind on S—D,, we may assume that K(S)+D,~0. Then we contract
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successively connected exceptional curves 4 of the first kind <D, such that
(¥, Dy)=1. Thus we arrive at the situation that DyND,=¢. Detaching
several half-points in S—D,, we have a relatively minimal surface Sy and a
proper birational map p: S—Sx. By Lemma 6, #(S— u(D,)— p«(D5), S)=0.
Hence px(Dz)Cpu(D,). Thus we can apply Proposition 21.  FEspecially D and
D, are disconnected. Q.E.D.

Proposition 22. Let (S, D) be a d-surface whose interior S satisfies that
P.(S)=1, &(S)=0, p,(5)=0, and ¢(S)=1. Suppose that g(S)=2. Then there
are a relatively minimal ruled surface Sy and a birational morphism p: S—Sy
such that u(Dy) is a finite set and (S, p(D,)) is c-i) or c-ii) in Proposition 20.
Moreover, if u(Dg)C u(D,), S is proper birationally equivalent to a quasi-abelian
surface.

By these theorem and propositions, we have another proof of Theorem I
in [10].

Theorem IV. Let S be a logarithmic abelian surface, i.e., #(S)=0, g(S)=2.
Then S is W?PB-equivalent to a quasi-abelian surface.

Proof. Let a: S—As be a quasi-Albanese map. Let J be the closure of
a(S) in Ag. Then by Kawamata’s Theorem, J turns out to be a surface As.
Hence, §,(S)=p,(As)=1. Therefore, we can apply Theorem III and Pro-
positions 20, 22. We omit the details.

Corollary 1. Let S be an affine normal surface with z#(S)=0 and g(S)=2.
Then S is isomorphic to C**.

Corollary 2. Let S be a surface with 7(S)=q(S)=0 and q(S)=2. Then
S is W2PB-equivalent tc C*2.

The above two corollaries are found in [10].

Proposition 23. Let (S, D) be any 0-surface in TABLE 11,. If g(S)=0,
then there is a reduced divisor R on S such that 7(S—R)=0 and g(S—R)=1.
Similarly, if g(S)=1, then there is R" on S such that #(S—R')=0 and g(S—R’)
=2. Hence S—R'=C*.

Proof. We use the notation in Proposition 16 and we shall look for R in
each case, separately.
i) If Sis the class b-iv), take a line R on P? such that RNC={p} and HNC
={p}. Then S—D—R=C*.
ii) If S is the class b-v), take two curves C; and C, of degree (1, 0) such that,
denoting by {p,, p,} the intersection C;NC, C;>p, and C ;S p,. Defining
R=C,+C,, we have S—R=C*.
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iii) If S is the class b-vi), write C, N C,= {py, p,}. Take two fitres C; and C,
of 3Y,—P! of such that C;=p, and C,> p,. Then defining R=C,+C,, we
have S— R=C*.

iv) If S is the class b-vii)g, write C3NA.={p}. Take a fiber R passing
through p. Then S—R=C*.

v) If Sis the class b-viii), write H;NC={p}. Take a curve R=G, of degree
(0, 1) passing through p. Then S—R=C*2

vi) If S is the class b-ix), by p we denote the singular point of C. Take two
lines C,, C, which are tangential to C at p. Putting R=C,+C,, we have
S—R=cC*. Moreover, S—C, is a surface of the class b-vii),.

vii) If S is the class b-x), by p we denote the singular point of C. Take two
curves C, and C, of degree (1, 0) and (0, 1), respectively, such that C,= p and
C,2p. Then, putting R=C,+C;, we see S—R is a surface of the class b-iv).
viii) If S is the class b-xi), by p we denote the singular point of C. Take a
fiber C, passing through p. Defining R=C,+A.., we see S—R is a surface
of the class b-1v).

ix) If S is the class b-xii), take a curve R of degree (1,0) passing through a
point €GNC. Then S—R is a surface of class b-iv).

x) If S is the class b-xiii)s, take a fiber R passing through a point €A..NC.
Then S—R is a surface of the class b-vii)g,.

xi) If S is the class b-vi)*, take a fiber C,. Then S—C,=C*2.

xii) If S is the class b-xi)*, take a fiber C, which passes through the singular
point of C. Then S—C, is a surface of the class b-iv). Q.E.D.

Therefore, we establish the following

Proposition 24. Let S be a surface with ©(S)=0, p,(S)=1 and p(S)=
9(S)=0. Suppose that S is not a logarithmic K3 surface of type 11,. If g(S)=0,
then there is an open subset S, of S suck that #(S,)=#=(S)=0 and g(S,)=1.
Mcreover if g(S)=1, then there is an open subset S, of S such that %(S;)=0 and
4(S2)=2.

Corollary. Let S be a surface in Proposition 24. Then there is a surjective
morphism p: S— | whose general fiber \»~*(u)=C*. Here J=P"or A',if g(S)=0.
And J=C*, if g(S)=1 or 2.

A proof follows from the fact that S, with #(S,)=¢(S;)=0 and g(S,)=2
is W?PB-equivalent to C*2

ExampLE. Let C be an irreducible curve with a non-cuspidal singular point.
Then P?—C is a logarithmic K3 surface, i.e., #(P?—C)=0 if and only if there
exist two irreducible curves C; and C, such that P2—C—C,—C,=C*2.

Proposition 25. Let C=V(p), @ being an irreducible polynomial, be a
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curve on A* and let S=A’—C. Suppose #(S)=0. Then, choosing an appropriate
system of coordinates (x,y) of A? @ is written as follows:

P = x'y+ao+a1x-l-"-+asx‘ .

Proof. Since 7(S)=1 and #(&)=0, it follows that p(S)=1. Actually,
assume that ,(S)==0. Then C (the closure of C in P?) is a rational curve whose
singularities are cuspidal. If C were singular, then a general member C, of
the fiber space @: S—C* would be of hyperbolic type, i.e., #(C,)=1. Kawa-
mata’s Theorem would assert that #(S)=#=(C,)+#(G,)=1, a contradiction.
Thus C is non-singular and hence C=3A'. By the imbedding theorem of A!
due to Abhyankar and Moh [1], we know that S =A4'XG,,, which implies that
7(S)=—oo.

Accordingly, we conclude that 5,(S)=1 and #(S)=0. Applying Pro-
position 24, we have an irreducible curve C; such that P*—C,U C,U C;=C*,
where C;=P?— A? and C,==C. Since p,(S—C;3)=1, C; or C; has only cus-
pidal singularities. We may assume that C; has only cuspidal singularities.
Hence, applying Kawamata’s Theorem: and Abhyankar and Moh Theorem, we
can assume that A2 C; is V(x), i.e., the y-axis of the affine plane. Therefore

Spec k[x, y, x71, 7] = C*2.
From this it follows that yek[x, v, 7!, o |=k[x, @, 7!, »~']. Hence
y = flx, p)x"9"

where, m, n>0 and f(x, Y) is a polynomial. Then consider the y-derivative
0,=0/0,. Thus,

x"p"+na"p" 10,0 = 0y f(%, )3, -
Hence,

x"p" = 0, {0y f(x, p)—nx"p" '} .

Since @ is irreducible, 9, p=ax’ for some a=0, [=0. This yields that p=
Yr(%)4-ax'y, Jr being a polynomial. We may assume =1 and hence

Q= x'y—}-ao+a1x—i—---—|—asx“ . Q.E.D.

In the above, we may assume that ¢)=1 and a,4-0. We have the following
cases: 1) If /4+1=s, then writing C; N Co={py, ps}, C: has the cusp singularity

YA Lo c

1 C,
% C
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at p, and C;+C, has normal crossings at p,. 2) If 2+I=<s, then C, has two
(analytically irreducible) branches at p, the singular point of C,. Hence P?*—C,
is a logarithmic K3 surface of type II,.

Proposition 26. If S satisfies that #(S)=0, $,(S)=1 and p(S)=0. Then
there exists an algebraic pencil {C,} whose general member C, is .C*. Hence S
is not measure-hyperbolic.

This follows from Corollary to Proposition 24 and Propositions 9, 21.

Proposition 27. Let (S, D) be a 0-surface in the TABLE IL,. Define
Aut(S, D)= {p=Aut(S); pD=D}. Then Aut(S, D) is a finite group if g(S)=0.

Proof. First assume that (S, D) is the class b-ix). A point p of inflexion of
D(a nodal cubic curve), is characterized by the existence of a line L on P? such
that LN D—={p}. There are three such points. Hence p& Aut(S, D) preserves
the set of points of inflexion. Therefore the image of the homomorphism
Aut(S, D)— Aut(D) is a finite group. Using the similar argument to the
proof of Proposition 11, we complete the proof. We can check the finiteness of
Aut(S, D) for the other classes. Q.E.D.

From the above, we infer the following Proposition, whose proof is not
given here.

Proposition 28. Let S be a logarithmic K3 surface. Then, Aut(S) has
at most countably many elements.
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