ON LOGARITHMIC K3 SURFACES

Shigeru IITAKA

(Received August 22, 1978)
(Revised October 27, 1978)

Introduction. By surfaces we mean non-singular algebraic surfaces defined over the field of complex numbers C. A logarithmic $K 3$ surface S is by definition a surface S with $\bar{P}_{g}(S)=1, \bar{\kappa}(S)=\bar{q}(S)=0$, in which $\bar{P}_{g}(S)$ is the logarithmic geometric genus, $\bar{\kappa}(S)$ is the logarithmic Kodaira dimension, and $\bar{q}(S)$ is the logarithmic irregularity. These notions will be explained in $\S 1$.

Let \bar{S} be a completion of S with ordinary boundary D, i.e., \bar{S} is a nonsingular complete surface and D is a divisor with normal crossings on \bar{S} such that $S=\bar{S}-D$. We write D as a sum of irreducible components: $D=C_{1}+\cdots+C_{s}$.

Logarithmic $K 3$ surfaces are classified into the following three types: Type I) $p_{g}(\bar{S})=1$; Then \bar{S} is a $K 3$ surface and D consists of non-singular rational curves C_{i} with negative-definite intersection matrix $\left[\left(C_{i}, C_{j}\right)\right]$.
Type $\left.\mathrm{II}_{\mathrm{a}}\right) \quad p_{g}(\overline{\mathrm{~S}})=0$ and a component C_{1} of D is a non-singular elliptic curve; Then \bar{S} is a rational surface and the graph of D has no cycles.
Type $\left.\mathrm{II}_{\mathrm{b}}\right) \quad p_{g}(\bar{S})=0$ and D consists of rational curves C_{j}; Then \bar{S} is a rational surface and the graph of D has one cycle.

We define A-boundary D_{A} and B-boundary D_{B} of (\bar{S}, D) as follows: 1) If S is of type I, then $D_{A}=\phi$ and $D_{B}=D$. 2) If S is of type II_{a}, then $D_{A}=C_{1}$ (a non-singular elliptic curve) and $D_{B}=C_{2}+\cdots+C_{s}$. 3) If S is of type II_{b}, then $D_{A}=C_{1}+\cdots+C_{r}$ that is a circular boundary (for definition, see $\S 1 \mathrm{v}$)) and $D_{B}=C_{r+1}+\cdots+C_{s}$.

Theorem 1. If $\bar{S}-D_{A}$ has no exceptional curves of the first kind, then $K(\bar{S})+D_{A} \sim 0$.

Next, consider the case where $\bar{S}-D_{A}$ has exceptional curves. Let ρ : $\bar{S} \rightarrow \bar{S}_{*}$ be a contraction of exceptional curves of the first kind on $\bar{S}-D_{A}$, i.e., \bar{S}_{*} is a complete surface and ρ is biregular around D_{A} such that $\bar{S}_{*}-\rho\left(D_{A}\right)$ has no exceptional curves of the first kind. By Theorem 1, $K\left(\bar{S}_{*}\right)+\rho\left(D_{A}\right) \sim 0$.

Theorem 2. $\rho\left(D_{B}\right)$ is a divisor with simple normal crossings. Let $\mathscr{L}_{1}, \cdots, \mathscr{L}_{u}$ be the connected components of $\rho\left(D_{B}\right)$. Then 1) if $\mathscr{Z}_{i} \cap \rho\left(D_{A}\right) \neq \phi, \mathscr{Z}_{i}$ is an exceptional curve of the first kind such that $\left(\mathcal{Z}_{i}, \rho\left(D_{A}\right)\right)=1$. 2) If $\mathscr{L}_{i} \cap \rho\left(D_{A}\right)=\phi$,
then \mathscr{Z}_{i} is a curve of Dynkin type $A D E$ on $\bar{S}-\rho\left(D_{A}\right)$. In case S is of type II, \mathcal{L}_{i} is a curve of Dynkin type A.

For definition of curves of Dynkin type ADE, see § 1. iv).
Theorem 3. Suppose that $K(\bar{S})+D_{A} \sim 0$ and D_{B} is a curve of Dynkin type ADE. If S is of type II_{a}, then (\bar{S}, D) is obtained from one of 4 classes in Table II_{a} by $1 / 2$-point attachments. If S is of type I_{b}, then (\bar{S}, D) is obtained from one of 15 classes in TABLE II_{b} by canonical blowing ups and attaching several 1/2-points.

Theorem 4. Let (\bar{S}, D) be a ∂-surafce of which interior S satisfies that $\bar{\kappa}(S)=p_{g}(\bar{S})=0$ and $\bar{p}_{g}(S)=1$. Suppose that a component C_{1} of D is not rational. Then $\bar{q}(S)=0$. Next, assume that D consists of rational curves. If $\bar{q}(S)=0$, then there exists an open subset S_{1} of S such that $\bar{\kappa}\left(S_{1}\right)=0$ and $\bar{q}\left(S_{1}\right)=1$. Furthermore, if $\bar{q}(S)=1$, then there exists an open subset S_{2} of S such that $\bar{\kappa}\left(S_{2}\right)=0$ and $\bar{q}\left(S_{2}\right)=2$.

Theorem 5. Let S be a surface with $\bar{\kappa}(S)=p_{g}(\bar{S})=0$ and $\bar{p}_{g}(S)=1$. Then there exists an algebraic pencil $\left\{C_{u}\right\}$ on S whose general member C_{u} is isomorphic to C^{*}. Hence, S is not measure-hyperbolic. Moreover, the connected component of $\operatorname{Aut}(S)$ is $\{1\}$ or \boldsymbol{C}^{*} or $\boldsymbol{C}^{* 2}$. Further,

$$
\operatorname{dim} \operatorname{Aut}(S)^{0} \leqq \bar{q}(S)
$$

Theorem 6. Let (\bar{S}, D) be a ∂-sulface whose interior S satisfies that $\bar{\kappa}(S)=0$ and $\bar{P}_{g}(S)=1$. Then, there exists a proper birational morphism $\rho: \bar{S} \rightarrow \bar{S}_{*}$ such that i) \bar{S}_{*} is relatively minimal, ii) $P_{m}\left(\bar{S}_{*}-\rho_{*}(D)\right)=1$ for any $m \geqq 1$, iii) $\rho_{*}(D)=$ $\Delta+Y$ has only normal crossings with $K\left(\bar{S}_{*}\right)+\Delta \sim 0, Y$ being a curve of Dynkin type.
$\left(\bar{S}_{*}, \rho_{*}(D)\right)$ might be called a supermodel of S (or of (\bar{S}, D)). In the study of non-complete surfaces, minimal model (and even ∂-minimal model) is not helpful. Instead, supermodel will play the important role. For full discussion of the classification theory of surfaces of non-complete surfaces, see Kawamata's recent article [18].

Example 1. Let \bar{S} be a non-singular cubic surface in \boldsymbol{P}^{3}. Let E be a general hyperplane section on \bar{S}. Then $\bar{S}-E$ is a logarithmic $K 3$ surface of type I_{a} and the fundamental group $\pi_{1}(\bar{S}-E) \cong\{1\}$. Contracting exceptional curves of the first kind, we obtain a proper birational morphism $\rho: \bar{S} \rightarrow \bar{S}_{*}$ in which $\bar{S}_{*}=\boldsymbol{P}^{2} . \quad E_{1}=\rho(E)$ is a nen-singular elliptic curve on \boldsymbol{P}^{2}. Then $\pi_{1}\left(\bar{S}_{*}-E_{1}\right) \cong Z /(3)$ and $\bar{S}-E \supset \bar{S}_{*}-E_{1}$.

Example 2. Let $\varphi(y)$ be a polynomial of degree $n+1$ such that $\varphi(0) \neq 0$. Let Γ be the graph $\left(\subset \boldsymbol{C}^{2}\right)$ of a rational function $\varphi(y) / y^{n-m}(0<m<n)$. By
C we denote the closure of Γ in \boldsymbol{P}^{2}. Then $\boldsymbol{P}^{2}-\Gamma$ is a logarithmic $K 3$ surface of type II_{b}.

Figure 1.
Example 3. Let $\Phi: \boldsymbol{C}[x, y] \rightarrow \boldsymbol{C}[x, y]$ be a \boldsymbol{C}-automorphism. Put $X(x, y)$ $=\Phi(x)$ and $Y(x, y)=\Phi(y)$. Let $F(x, y)=Y(x, y)^{n-m} X(x, y)-\phi(Y(x, y)), \phi$ being as in Example 3. Then the closure C_{Φ} of $V(F)=\operatorname{Spec} k[x, y] /(F)$ in \boldsymbol{P}^{2} is a complement of a logarithmic $K 3$ surface of type II_{b} if C_{Φ} has an analytically reducible (i.e., non-cusp) singular point.

For instance, let $\varphi(y)=y^{3}+1$ and $\Phi(x)=x, \Phi(y)=y+x^{2}$. Then $F=$ $\left(y+x^{2}\right) x-\left(y+x^{2}\right)^{3}-1$. Thus letting Γ be the closure of $V(F)$ in $\boldsymbol{P}^{2}, \boldsymbol{P}^{2}-\Gamma$ is a logarithmic $K 3$ surface of type II_{b}.

Example 4. Let $C=V\left(\left(y-x^{2}\right)^{2}-x y^{2}\right)$ in C^{2}. Denote by Γ the closure of C in \boldsymbol{P}^{2}. Then $S=\boldsymbol{P}^{2}-C$ has the following numerical characters: $\bar{P}_{\boldsymbol{g}}=0$, $\bar{P}_{2}=1, \bar{\kappa}=1$, and $\bar{q}=0$.

1. Basic notions, notations and conventions

i) ∂-manifold and $1 / 2$-point attachment. A pair (\bar{V}, D) consisting of a complete non-singular algebraic variety \bar{V} and a divisor D with normal crossings on \bar{V} is called a ∂-manifold. The dimension of (\bar{V}, D) is understood as the dimension of \bar{V}. A 2-dimensional ∂-manifold is called a ∂-surface. We have a theory of minimal models for ∂-manifolds (see [12]). Let (\bar{S}, D) be a ∂-surface. Then D is not a minimal boundary if and only if there is an irreducible component E of D which is an exceptional curve of the first kind such that $\left(E, D^{\prime}\right)=1$ or $2, D^{\prime}$ being defined by $D=D^{\prime}+E$. We say that (\bar{S}, D) is relatively ∂-minimal if $S-D$ has no exceptional curves of the first kind and if D is a minimal boundary.

Let $\left(\bar{V}_{1}, D_{1}\right)$ and (\bar{V}_{2}, D_{2}) be ∂-manifolds. We say that a morphism $f: \bar{V}_{1} \rightarrow \bar{V}_{2}$ is a ∂-morphism when $f^{-1} D_{2} \subset D_{1}$. Here $f^{-1}\left(D_{2}\right)$ is the reduced divisor of the pull back $f^{*} D_{2}$.

Let (\bar{S}, D) be a ∂-surface and take a point $p \in D$. By $\lambda: \bar{S}^{1}=Q_{p}(\bar{S}) \rightarrow \bar{S}$ denote the blowing up at p. Defining $D^{1}=\lambda^{-1}(D)$, we have a ∂-morphism $\lambda:\left(\bar{S}^{1}, D^{1}\right) \rightarrow(\bar{S}, D)$. If p is a double point of D, λ is called a canonical blowing
$u p$. Then we have the linear equivalence:

$$
K\left(\bar{S}^{1}\right)+D^{1} \sim \lambda^{*}(K(\bar{S})+D)
$$

where $K\left(\bar{S}^{1}\right)$ and $K(\bar{S})$ denote canonical divisors on \bar{S}^{1} and \bar{S}, respectively. If p is a simple point of D, define D^{*} by $D^{1}=\lambda^{-1}(p)+D^{*} . \quad S^{*}=\bar{S}^{1}-D^{*}$ contains S as an open subset. S^{*} is called a $1 / 2$-point attachment to S at p. Conversely, S is called a $1 / 2$-point detachment from S^{*}. To make things clear, we may say that $\left(\bar{S}^{*}, D^{*}\right)$ is obtained from (\bar{S}, D) by attaching a $1 / 2$-point $\lambda^{-1}(p)-D^{*}([10])$. It is easy to check that

$$
K\left(\bar{S}^{1}\right)+D^{*} \sim \lambda^{*}(K(\bar{S})+D) .
$$

Hence, $K(\bar{S})+D$ modulo linear equivalence is invariant under canonical blowing ups and 1/2-point attachments.

In general letting (\bar{S}, D) be a ∂-surface, we consider an irreducible curve E on \bar{S} satisfying that E is an exceptional curve of the first kind, $E \Phi D$, and $(E, D)=1$. Such an E is called a D-ex'eptional curve of the first kind. Note that $E-D \cong A^{1}$, which is called a $1 / 2$-point. $\quad S-D$ is a $1 / 2$-point attachment to $\bar{S}-D-E$.
ii) logarithmic genera. Let V be an algebraic variety. Then there exists a non-singular algebraic variety V^{*} such that there exists a proper birational morphism $\mu: V^{*} \rightarrow V$. Let $\left(\bar{V}^{*}, D^{*}\right)$ be a ∂-manifold such that $V^{*}=\bar{V}^{*}-D^{*}$. Then we say that \bar{V}^{*} is a completion of V^{*} with ordinary boundary D^{*}. According to Deligne [3], we have a sheaf $\Omega^{1}\left(\log D^{*}\right)$ of logarithmic 1 -forms on \bar{V}^{*}. We have the spaces of logarithmic forms:

$$
T_{i}\left(V^{*}\right)=H^{0}\left(\bar{V}^{*}, \Omega^{i}\left(\log D^{*}\right)\right), \quad 1 \leqq i \leqq n
$$

and

$$
H^{0}\left(\bar{V}^{*},\left(\Omega^{n} \log D^{*}\right)^{m}\right) \quad \text { for } m=1,2, \cdots
$$

where $\Omega^{i}\left(\log D^{*}\right)=\wedge^{i}\left(\Omega^{1} \log D^{*}\right)$ and $n=\operatorname{dim} V$. These spaces depend only on V. Hence, define

$$
\bar{q}_{i}(V)=\operatorname{dim} T_{i}\left(V^{*}\right)
$$

and

$$
\bar{P}_{m}(V)=\operatorname{dim} H^{0}\left(\bar{V}^{*},\left(\Omega^{n} \log D^{*}\right)^{m}\right)
$$

We call $\bar{q}_{i}(V)$ the logarthmic i-th irregularity of V and call $\bar{P}_{m}(V)$ the logarithmic m-genus of V. Writing $\bar{q}(V)=\bar{q}_{1}(V)$ and $\bar{P}_{g}(V)=\bar{q}_{n}(V)=\bar{P}_{1}(V)$, we call them the logarithmic irregularity and the logarithmetic geometric genus of V, respectively (see [4], [5]).
iii) D-dimension and logarithmic Kodaira dimension. In general, let \bar{V} be a normal complete algebraic variety and D a divisor on \bar{V}. By Φ_{m} we denote
the rational map associated with $|m D|$ under the assumption that $|m D| \neq \phi$. We define

$$
\kappa(D, \bar{V})=\max \left\{\operatorname{dim} \Phi_{m}(\bar{V}) ; \text { when }|m D| \neq \phi\right\}
$$

which is said to be the D-dimension of \bar{V}. If $|m D|$ is empty for any $m \geqq 1$, we put $\kappa(D, \bar{V})=-\infty$. The following two facts ([6]) are very useful in the study of varieties and divisors.

1) If $\kappa\left(D_{1}, \bar{V}\right) \geqq 0, \cdots, \kappa\left(D_{l}, \bar{V}\right) \geqq 0$, then for any $\alpha_{1}>0, \cdots, \alpha_{l}>0$, wee have

$$
\kappa\left(\sum D_{j}, \bar{V}\right)=\kappa\left(\sum \alpha_{j} D_{j}, \bar{V}\right)
$$

2) Let $f: \bar{V} \rightarrow W$ be a surjective morphism of \bar{V} onto a normal complete variety W. For a divisor D on W and an effective divisor E which is f-exceptional (i.e., $\operatorname{codim} f(E) \geqq 2$), we have

$$
\kappa\left(f^{-1} D+E, \bar{V}\right)=\kappa(D, W)
$$

When \bar{V} is non-singular, we denote by $K(\bar{V})$ a canonical divisor on \bar{V}. The Kodaira dimension $\kappa(\bar{V})$ of \bar{V} is defined to be $\kappa(K(\bar{V}), \bar{V})$.

Let (\bar{V}, D) be a ∂-manifold of dimension $n . \quad V=\bar{V}-D$ is called the interior of (\bar{V}, D). We see that

$$
\bar{P}_{m}(V)=\operatorname{dim} H^{0}(\bar{V}, \mathcal{O}(m(K(\bar{V})+D))) .
$$

The logarithmic Kodaira dimension of V is defined to be

$$
\bar{\kappa}(V)=\kappa(K(\bar{V})+D, \bar{V}),
$$

which does not depend on the choice of the smooth completion \bar{V} of V with ordinary boundary D.
iv) $W^{2} P B$-equivalence. If there exists a proper birational morphism $f: V_{1} \rightarrow V_{2}$, then $\bar{P}_{m}\left(V_{1}\right)=\bar{P}_{m}\left(V_{2}\right)$ and $\bar{q}_{i}\left(V_{1}\right)=\bar{q}_{i}\left(V_{2}\right)$. A proper birational map is by definition a composition of a proper birational morphism and an inverse of a proper birational morphism. If there is a proper birational map $f: V_{1} \rightarrow V_{2}$, then we say that V_{1} is proper birationally equivalent to V_{2}. In this case, $\bar{P}_{m}\left(V_{1}\right)=\bar{P}_{m}\left(V_{2}\right)$ and $\bar{q}_{i}\left(V_{1}\right)=\bar{q}_{i}\left(V_{2}\right)$.

Moreover, when V is non-singular and F a closed subset of V of codim $\geqq 2, \bar{P}_{m}(V-F)=\bar{P}_{m}(V)$ and $\bar{q}_{i}(V-F)=\bar{q}_{i}(V)$. In such a case, we say that i: $V-F \hookrightarrow V$ is a strict open immersion.

A WPB-map $f: V_{1} \rightarrow V_{2}$ is by definition a birational map which is a composition of proper birational maps, strict open immersions, and inverses of strict open immersions. If there exists a $W P B$-map $f: V_{1} \rightarrow V_{2}$, we say that V_{1} is $W P B$-equivalent to V_{2}.

Now define $\mathscr{W}=\left\{f: V_{1} \rightarrow V_{2}\right.$ birational morphism; there exist a morphism $g: V_{2} \rightarrow V_{3}$ such that $g \cdot f$ is a $W P B$-map or a morphism $h: U \rightarrow V_{1}$ such that $f \cdot h$ is a $W P B$-map $\}$. A birational map which is a composition $f_{1} f_{2}^{-1} f_{3} \cdots f_{l}^{ \pm 1}$, $f_{j} \in \mathscr{W}$, is called a $W^{2} P B-m a p$. If there is a $W^{2} P B$-map $f: V_{1} \rightarrow V_{2}$, then we say that V_{1} is $W^{2} P B$-equivalent to V_{2} and $\bar{P}_{m}\left(V_{1}\right)=\bar{P}_{m}\left(V_{2}\right), \bar{q}_{i}\left(V_{1}\right)=\bar{q}_{i}\left(V_{2}\right)$. Recall that a surface S is $W^{2} P B$-equivalent to a quasi-abelian surface if and only if $\bar{\pi}(S)=0$ and $\bar{q}(S)=2([10])$.
v) circular boundary. Let (\bar{S}, D) be a ∂-surface. We say that D is a circular boundary if D is a rational curve with only one ordinary double point p such that $D-\{p\}$ is non-singular or if D is a sum of non-singular rational curves $C_{1}, C_{2}, \cdots, C_{r}$ such that when $r=2$, we have $\left(C_{1}, C_{2}\right)=2$ and when $r \geqq 3$, we have $\left(C_{i}, C_{j}\right)=1$ for $i-j \equiv \pm 1 \bmod r$, and $\left(C_{i}, C_{j}\right)=0$ for $i-j \neq 0$, $\equiv \pm 1$ $\bmod r$.

Figures 3.
vi) curve of Dynkin type. Let (\bar{S}, Y) be a ∂-surface. We say that Y is a curve of Dynkin type ADE if Y is a sum of non-singular rational curves Y_{j} such that $Y_{j}^{2}=-2$ and the intersection matrix $\left[\left(Y_{i}, Y_{j}\right)\right]$ corresponds to a direct sum of Dynkin diagrams A_{n}, D_{m}, E_{l}. Similarly, we can define a curve of extended Dynkin type $\tilde{A} \tilde{D} \widetilde{E}$ (, which are not necessarily reduced divisors).

2. Logarithmic $K 3$ surfaces of type I

Let S be a logarithmic $K 3$ surface, i.e., $\bar{p}_{g}(S)=1 . \bar{q}(S)=\bar{\kappa}(S)=0$. Let (\bar{S}, D) be a ∂-surface of which interior is S. Then $\kappa(\bar{S}) \leqq \bar{\kappa}(S)=0, p_{g}(\bar{S}) \leqq$ $\bar{p}_{g}(S)=1$. Hence, $p_{g}(\bar{S})=1$ or 0 .

First, assume that $p_{g}(\bar{S})=1$. Combining this with $\kappa(\bar{S}) \leqq \bar{\kappa}(S)=0, \bar{q}(\bar{S}) \leqq$ $q(\bar{S})=0$, we see that \bar{S} is a $K 3$ surface which may not be minimal. By contracting exceptional curves of the first kind on \bar{S} successively, we obtain a minimal $K 3$ surface \bar{S}_{*} and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$. If $\mu(D)$ is a finite set of points, then, putting $\bar{S}_{0}=\bar{S}-\mu^{-1}(\mu(D))$ and $S_{*}=\bar{S}_{*}-\mu(D)$, we have a proper birational morphism $\mu_{0}=\mu \mid S_{0}: S_{0} \rightarrow S_{*}$. We obtain the following commutative diagram:

Figure 4.
Hence, by definition (see $\S 1$ iv)) $S_{0} \subset S$ and $S \subset \bar{S}$ are both $W^{2} P B$-morphisms. Hence S is $W^{2} P B$-equivalent to \bar{S}_{*}.

If $\mu(D)$ contains a curve, we le: D_{*} be a purely 1-dimensional part of $\mu(D)$. Then by the previous argument, we see that S is $W^{2} P B$-equivalent to $\bar{S}-\mu^{-1}\left(D_{*}\right) \cap D$. Thus we may assume $D_{*}=\mu(D)$.

Lemma 1. Let \bar{V} be a complete non-singular algebraic variety and D a reduced divisor on \bar{V}. Let $\mu: \bar{V}^{*} \rightarrow \bar{V}$ be a birational morphism such that (\bar{V}^{*}, $\mu^{-1}(D)$) is a ∂-manifold. Denote by D^{*} the proper transform of D by μ^{-1}. Suppose that $\kappa(\bar{V}) \geqq 0$. Then

$$
\begin{aligned}
\bar{\kappa}\left(\bar{V}^{*}-D^{*}\right) & =\bar{\kappa}\left(\bar{V}^{*}-\mu^{-1}(D)\right)=\bar{\kappa}(\bar{V}-D) \\
& =\kappa(K(\bar{V})+D, \bar{V})
\end{aligned}
$$

For a proof, see [6]. A generalization of this is the following Lemma 6, whose proof will be given there. By the above lemma, we get

$$
\begin{aligned}
0 & =\bar{\kappa}(S)=\bar{\kappa}(\bar{S}-D)=\bar{\kappa}\left(\bar{S}_{*}-D_{*}\right) \\
& =\kappa\left(K\left(\bar{S}_{*}\right)+D_{*}, \bar{S}_{*}\right)=\kappa\left(D_{*}, S_{*}\right)
\end{aligned}
$$

Proposition 1. Let \bar{S} be a minimal $K 3$ surface and Y a reduced divisor on \bar{S} such that $\kappa(Y, \bar{S})=0$. Then Y turns out to be a curve of Dynkin type ADE. Moreover, $\bar{P}_{m}(\bar{S}-Y)=1$ for any $m \geqq 1$ and $\bar{q}(S-Y)=0$. Hence $\bar{S}-Y$ is a logarithmic K3 surface.

Proof. Let $\sum Y_{j}$ be the irreducible decomposition of Y. Then for any $m_{j} \geqq 0$, we have $\kappa\left(\sum m_{j} Y_{j}, \bar{S}\right)=0$ by the fact 1) in $\S 1$ iii). By making use of Riemann Roch Theorem on \bar{S} we have

$$
0=\operatorname{dim}\left|\left(\sum m_{j} Y_{j}\right)\right| \geqq\left(\sum m_{j} Y_{j}\right)^{2} / 2+1
$$

except for $m_{1}=\cdots=m_{s}=0$. Hence

$$
\left(\sum m_{j} Y_{j}\right)^{2} \leqq-2
$$

In particular, $Y_{j}^{2} \leqq-2$. In view of the adjunction formula, we have

$$
-2 \leqq 2 \pi\left(Y_{j}\right)-2=Y_{j}^{2} .
$$

Here $\pi(Y)$ denotes the virtual genus of Y. Thus $Y_{j}^{2}=-2$ and $\pi\left(Y_{j}\right)=0$. More generally, letting Q be a connected reduced curve in Y, we have the exact sequences

$$
0 \rightarrow O(-a j) \rightarrow \mathcal{O} \rightarrow \mathcal{O} q \rightarrow 0
$$

and

$$
\begin{aligned}
0 & \rightarrow H^{0}(\mathcal{O}) \rightarrow H^{0}(\mathcal{O} q) \rightarrow H^{1}(\mathcal{O}(-G y)) \rightarrow H^{1}(\mathcal{O}) \\
& \rightarrow H^{1}(\mathcal{O} q) \rightarrow H^{2}(\mathcal{O}(-q j)) \rightarrow H^{2}(\mathcal{O}) \rightarrow 0 .
\end{aligned}
$$

From this, it follows that $H^{1}(O(-Q y))=0$ and

$$
\begin{aligned}
\operatorname{dim} H^{0}(O(q y)) & =\operatorname{dim} H^{2}(O(-q))=\operatorname{dim} H^{1}(O q)+1 \\
& =\pi(q)+1=q y^{2} / 2+2
\end{aligned}
$$

Hence $O y^{2}=-2$. In particular, if $Y_{i} \neq Y_{j}$, we have $\left(Y_{i}, Y_{j}\right)=0$ or 1 . It is easy to see that the intersection-matrix $\left[\left(Y_{i}, Y_{j}\right)\right]\left(Y_{i} \leqq Y_{j}\right)$ corresponds to the Dynkin diagram of type A_{n}, D_{m}, E_{l}. Eence, Y is a curve of Dynkin type $A D E$. Therefore,

$$
\bar{\kappa}(\bar{S}-Y)=\kappa(K(\bar{S})+Y, \bar{S})=0
$$

and $\bar{p}_{g}(\bar{S}-Y) \geqq p_{g}(\bar{S})=1$. These imply that $\bar{P}_{m}(\bar{S}-Y)=1$ for any $m \geqq 1$.
Since $\left[\left(Y_{i}, Y_{j}\right)\right]$ is negative-definite, Y_{1}, \cdots, Y_{s} are linearly independent in Pic (\bar{S}). We make use of the following

Lemma 2. Let \bar{V} be a non-singular complete algebr aic variety with $q(\bar{V})=0$ and Y a reduced divisor on $\bar{\nabla}$. Let $\sum Y_{j}$ be the irreducible decomposition of Y. Then, putting $V=\bar{V}-Y$, we get

$$
\bar{q}(V)=\operatorname{dim} \operatorname{Ker}\left(\underset{j}{\oplus} \boldsymbol{Q} Y_{j} \rightarrow \operatorname{Pic}(\bar{V}) \otimes_{\boldsymbol{z}} \boldsymbol{Q}\right)
$$

Proof. We have the exact sequence:

$$
0=H^{1}(\bar{V}, \boldsymbol{Q}) \rightarrow H^{1}(V, \boldsymbol{Q}) \rightarrow \oplus \boldsymbol{Q} Y_{j} \xrightarrow{\delta} H^{2}(\bar{V}, \boldsymbol{Q})
$$

Since $q(\bar{V})=0$, it follows that $\operatorname{Im} \delta \subset \operatorname{Pic}(\bar{V}) \otimes \boldsymbol{Q} \subset H^{2}(\bar{V}, \boldsymbol{Q})$. Thus we obtain

$$
\bar{q}(V)=\operatorname{dim} \operatorname{Ker}\left(\oplus \boldsymbol{Q} Y_{j} \xrightarrow{\delta} \operatorname{Pic}(\bar{V}) \otimes \boldsymbol{Q}\right)
$$

We proceed with the proof of Proposition 1. By the lemma above we conclude that $\bar{q}(\bar{S}-Y)=0$.
Q.E.D.

Thus we obtain the following
Theorem I. Let (\bar{S}, D) be a ∂-surface whose interior is a logarithmic K3 surface S of type I. Theri there exists a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that
\bar{S}_{*} is a minimal K3 surface and such that $\mu(D)$ is a union of a curve Y of Dynkin type and a finite set F, and hence

$$
S_{0}=\bar{S}-\mu^{-1}(Y)-\mu^{-1}(F) \subset S \subset \bar{S}
$$

In other words, S is $W^{2} P B$-equivalent to $\bar{S}_{*}-Y$.
Note that D and Y may be empty.
Table I. \bar{S}_{*} being a minimal compact K3 surface

class	D	$\bar{S}_{*}-D$
i)	ϕ	compact
i)*	curve of Dynkin type ADE	non-compact

3. Logarithmic K3 surfaces of type II. We begin by recalling the elementary result, called $\bar{\Phi}_{g}$-formula.

Lemma 3. Let (\bar{S}, D) be a ∂-surface with $q(\bar{S})=0$. Let $\sum^{s} C_{j}$ be the irreducible decomposition of D. Then

$$
\bar{p}_{g}(\bar{S}-D)=p_{g}(\bar{S})+\sum g\left(C_{j}\right)+h(\Gamma(D)),
$$

where $\Gamma(D)$ is the (dual) graph of the intersection of $D=\sum C_{j}, h(\Gamma)$ is the cyclotomic number of the graph Γ, and the $g\left(C_{i}\right)$ denote the genera of the C_{i}.

For a proof see ([7], the Appendix).
With the notation being in Lemma 3, we further assume that S is a logarithmic $K 3$ surface of type II. Hence $p_{g}(\bar{S})=0$ and $\bar{p}_{g}(S)=1$. By the formula in Lemma 3, we have

$$
1=\bar{p}_{g}(S)=\sum g\left(C_{j}\right)+h(\Gamma(D))
$$

Hence, there are the following two types;

$$
\begin{aligned}
& \text { Type } \mathrm{II}_{\mathrm{a}} ; g\left(C_{1}\right)=1, g\left(C_{2}\right)=\cdots=g\left(C_{s}\right)=0 \text { and } h(\Gamma(D))=0 . \\
& \text { Type } \left.\mathrm{II}_{\mathrm{b}} ; g\left(C_{1}\right)\right)=g\left(C_{2}\right)=\cdots=g\left(C_{s}\right)=0 \text { and } h(\Gamma(D))=1
\end{aligned}
$$

Proposition 2. If S is a logarithmic $K 3$ surface of type II, then S is a rational surface.

First, assume $\kappa(\bar{S})$ to be 0 . Recalling $p_{g}(\bar{S})=q(\bar{S})=0$, we see that \bar{S} is an Enriques surface. Hence, there exists an étale covering $\pi: \widetilde{S} \rightarrow \bar{S}$ where \tilde{S} is a $K 3$ surface. Let $\tilde{D}=\pi^{-1}(D)$. Since $\tilde{S}-\tilde{D} \rightarrow \bar{S}-D$ is etale, we have $\bar{\kappa}(\tilde{S}-\tilde{D})=\bar{\kappa}(\bar{S}-D)=0$ by Theorem 3 [5]. Hence, $\tilde{S}-\tilde{D}$ is a logarithmic
$K 3$ surface of type I. By Theorem I, \tilde{D} consists of rational non-singular curves whose intersection matrix is negative-definite. Hence D has the same property as \tilde{D}. Thus $h(\Gamma(D))=0$. This contradicts the fact that S is of type II. Therefore, it follows that $\kappa(\bar{S})=-\infty$. Recalling Castelnuovo's criterion, \bar{S} is a rational surface, because $q(\bar{S})=0$.
O.E.D.
4. Logarithmic $K 3$ surfaces of type $\mathbf{I I}_{\mathbf{a}}$. Employing the notation in $\S 3$, we assume S to be a logarithmic $K 3$ surface of type II_{a}. Putting $D_{A}=C_{1}$ and $D_{B}=C_{2}+\cdots+C_{s}$, we have $D=D_{A}+D_{B}$ and $g\left(D_{A}\right)=1$. Hence, $\bar{P}_{g}\left(S-D_{A}\right)$ $=1, \bar{\kappa}\left(\bar{S}-D_{A}\right) \leqq \bar{\kappa}(\bar{S}-D)=0$, and $\bar{q}\left(\bar{S}-D_{A}\right) \leqq \bar{q}\left(\bar{S}-D_{A}\right)=0$. These show that $\bar{S}-D_{A}$ is a logarithmic $K 3$ surface of type I_{a}. Contractıng exceptional curves of the first kind in $\bar{S}-D_{A}$, successively, we have a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that μ is isomorphic around $D_{A} \cong \mu\left(D_{A}\right)$ and $\bar{S}_{*}-\mu\left(D_{A}\right)$ has no exceptional curves of the first kind, i.e., $\left(\bar{S}_{*}, \mu\left(D_{A}\right)\right)$ is a relatively ∂-minimal model of $\left(\bar{S}, D_{A}\right)$.

Proposition 3. Let (\bar{S}, C) be a relatively ∂-minimal ∂-surface such that C is a non-singular elliptic curve with $\bar{\kappa}(\bar{S}-C)=\bar{q}(\bar{S}-C)=0$. Then $K(\bar{S})+C \sim 0$.

Proof. By Proposition 2, \bar{S} is a rational surface.
If $K(\bar{S})+C$ were linearly equivalent to an effective divisor $\Delta=\sum_{i=1}^{s} r_{i} E_{i}\left(r_{i}>0\right)$, we would derive a contradiction. Since $\kappa(\Delta, \bar{S})=\bar{\kappa}(\bar{S}-C)=0$, we know that the intersection matrix $\left[\left(E_{i}, E_{j}\right)\right]$ is negative semi-definite. In particular $E_{j}^{2} \leqq 0$ for any $1 \leqq j \leqq s$. If $E_{j}=C$, then $K(=K(\bar{S})) \sim \Delta-E_{j}=\Delta-C_{1} \geqq 0$. This is a contradiction. Therefore $E_{j} \neq C$, which implies $(\Delta, C) \geqq 0$. Since $\Delta^{2} \leqq 0$, we may assume that $\left(\Delta, E_{1}\right) \leqq 0$. Hence, $\left(K, E_{1}\right) \leqq-\left(C, E_{j}\right) \leqq 0$. By the adjunction formula,

$$
-2 \leqq 2 \pi\left(E_{1}\right)-2=E_{1}^{2}+\left(K, E_{1}\right) \leqq 0 .
$$

Hence, $\pi\left(E_{1}\right)=0$ or 1 . We shall examine various cases, separately.

1) If $\pi\left(E_{1}\right)=1$, we have $E_{1}^{2}=\left(K, E_{1}\right)=0$.

Hence $\left(C, E_{1}\right)=0$. Thus $C \cap E_{1}=\phi$ and $\left(\Delta, E_{1}\right)=0$.
2) If $\pi\left(E_{1}\right)=0$ and $\left(C, E_{1}\right) \geqq 1$, it follows that $\left(K, E_{1}\right) \leqq-1$ and $-2=E_{1}^{2}+$ $\left(K, E_{1}\right) \leqq-1$. Hence, $\left.\alpha\right) E_{1}^{2}=\left(K, E_{1}\right)=-1$ or $\left.\beta\right) E_{1}^{2}=0$ and $\left(K, E_{1}\right)=-2$. In the case of α), we have $1 \leqq\left(C, E_{1}\right)=\left(\Delta, E_{1}\right)-\left(K, E_{1}\right) \leqq 1$. Hence $\left(\Delta, E_{1}\right)=0$, $-\left(C, E_{1}\right)=\left(K, E_{1}\right)=-1$. This implies that E_{1} is a C-exceptional curve. Hence, we can contract E_{1}. Note that $K+C$ is invariant under $1 / 2$-point detachments (see $\S 1 \mathrm{i})$). Thus we may assume that this case does not occur.

In the case of β), we use the following
Lemma 4. Let \bar{S} be a complete surface with $p_{g}(\bar{S})=q(\bar{S})=0$ and E a curve
on \bar{S} such that $\pi(E)=0$. Then

$$
\operatorname{dim}|E| \geqq 1+E^{2}
$$

Proof. By Riemann Roch Theorem,

$$
\operatorname{dim}|E| \geqq(E, E-K) / 2, K \text { being } K(\bar{S}) .
$$

On the other hand, $(E, E+K)=2 \pi(E)-2=-2$. Hence, follows the assertion.
Q.E.D.

Therefore letting $S=\bar{S}-C$,

$$
0=\bar{p}_{g}(S)-1=-\operatorname{dim}|\Delta| \geqq \operatorname{dim}\left|E_{1}\right| \geqq 1
$$

Thus we have arrived at a contradiction.
3) If $\pi\left(E_{1}\right)=\left(C, E_{1}\right)=0$, then $E_{1}^{2} \leqq-1$ and $\left(K, E_{1}\right)=-1$ or 0 . Suppose $\left(K, E_{1}\right)=-1$. We have $E_{1}^{2}=-1$ and $E_{1} \cap C=\phi$. This yields that E_{1} is an exceptional curve of the first kind on $\bar{S}-C$. This contradicts the hypothesis. Suppose that $\left(K, E_{1}\right)=0$. We have $E_{1}^{2}=-2$. Thus $E_{1} \cap C=\phi$ and $\left(\Delta, E_{1}\right)=0$.

Consequently, after a finite succession of $1 / 2$-point detachments, we have $\left(\Delta, E_{j}\right)=0$, and i) $E_{j}^{2}=0, \pi\left(E_{j}\right)=1$ or ii) $E_{j}^{2}=-2, \pi\left(E_{j}\right)=0$. Hence $\left(K, E_{j}\right)=0$ for any irreducible components E_{j} of Δ. Thus letting $\mathscr{D}_{1}, \cdots, \mathscr{D}_{c}$ be the connected components of Δ, we have $\Delta=\sum \mathscr{D}_{j}$ and $\Delta^{2}=\sum \mathscr{D}_{j}^{2}=0$. Since $\Delta^{2}=0$ and $\mathscr{D}_{j}^{2} \leqq 0$ for any j, it follows that $\mathscr{D}_{1}^{2}=\cdots=\mathscr{D}_{c}^{2}=0$. Recalling that $\left(K, E_{i}\right)=0$, for any i we have $\left(K, \mathscr{D}_{j}\right)=0$. Therefore, the \mathscr{D}_{j} are curves of extended Dynkin type $\widetilde{A} \tilde{D} \widetilde{E}$.

Lemma 5. Let \bar{S} be a complete surface with $p_{g}(\bar{S})=q(\bar{S})=0$. For an effective divisor $F(\neq 0)$ on S, we have

$$
\operatorname{dim}|F+K|=\operatorname{dim} H^{1}\left(\Theta_{F}\right)-1 \geqq(F, F+K) / 2 .
$$

Moreover, if $\operatorname{dim} H^{0}\left(\mathcal{O}_{F}\right)=1$, then

$$
H^{1}(\mathcal{O}(F+K))=0, \text { and so } \pi(F)=\operatorname{dim} H^{1}\left(\mathcal{O}_{F}\right)
$$

Hence,

$$
\operatorname{dim}|F+K|=(F, F+K) / 2
$$

Proof. From the exact sequence:

$$
\begin{aligned}
& 0 \rightarrow \boldsymbol{C}=H^{0}(\mathcal{O}) \rightarrow H^{0}\left(\mathcal{O}_{F}\right) \rightarrow H^{1}(\mathcal{O}(-F)) \\
& \rightarrow 0=H^{1}(\mathcal{O}) \rightarrow H^{1}\left(\mathcal{O}_{F}\right) \rightarrow H^{1}(\mathcal{O}(-F)) \rightarrow 0=H^{2}(\mathcal{O}),
\end{aligned}
$$

follows the assertion.
Q.E.D.

By this, we have

$$
\operatorname{dim}\left|\mathscr{D}_{i}+K\right| \geqq\left(\mathscr{D}_{i}, \mathscr{D}_{i}+K\right) / 2=0 .
$$

But since $\bar{P}_{2}(S)-1 \geqq \operatorname{dim}|\Delta+K| \geqq \operatorname{dim}\left|\mathscr{D}_{i}+K\right|$, it follows that $\operatorname{dim}\left|\mathscr{D}_{i}+K\right|$ $=0$. Putting $K\left(\mathscr{D}_{i}\right)=\left(\mathscr{D}_{i}+K\right) \mid \mathscr{D}_{i}$, we get the following exact sequence:

$$
\begin{aligned}
0 & =H^{0}(\mathcal{O}(K)) \rightarrow H^{0}\left(\mathcal{O}\left(K+\mathscr{D}_{i}\right)\right) \rightarrow H^{0}\left(\mathcal{O}\left(K\left(\mathscr{D}_{i}\right)\right)\right) \\
& \rightarrow H^{1}(\mathcal{O}(K))=H^{1}(\mathcal{O})=0 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\operatorname{dim}\left|K\left(\mathscr{D}_{i}\right)\right| & =\operatorname{dim} H^{0}\left(\mathcal{O}\left(K\left(\mathscr{D}_{i}\right)\right)\right)-1 \\
& =\operatorname{dim} H^{0}\left(O\left(K+\mathscr{D}_{i}\right)\right)-1 \\
& =\operatorname{dim}\left|K+\mathscr{D}_{i}\right|=0 .
\end{aligned}
$$

Similarly, we have

$$
\operatorname{dim}|K(C)|=0, \text { where } K(C)=(K+C) \mid C,
$$

since $\bar{D}_{g}(\bar{S}-C)-1=\operatorname{dim}|K+C|=0$. Furthermore,

$$
\begin{aligned}
0 & =\bar{P}_{g}(\bar{S}-C)-1 \leqq \operatorname{dim}\left|K+C+\mathscr{D}_{i}\right| \\
& \leqq \operatorname{dim}|2 \Delta|=\bar{P}_{2}(\bar{S}-C)-1=0 .
\end{aligned}
$$

Hence, $\operatorname{dim}\left|K+C+\mathscr{D}_{i}\right|=0$. Thus,

$$
\operatorname{dim}\left|K\left(C+\mathscr{D}_{i}\right)\right|=\operatorname{dim}\left|K+C+\mathscr{D}_{i}\right|=0
$$

By the way, since $C \cap \mathscr{D}_{i}=\phi$, it follows that

$$
\begin{aligned}
K\left(C+\mathscr{D}_{i}\right) & =\left(K+C+\mathscr{D}_{i}\right) \mid\left(C+\mathscr{D}_{i}\right) \\
& =(K+C)\left|C \oplus\left(K+\mathscr{D}_{i}\right)\right| \mathscr{D}_{i} \\
& =K(C) \oplus K\left(\mathscr{D}_{i}\right) .
\end{aligned}
$$

Thus, $\operatorname{dim}\left|K\left(C+\mathscr{D}_{i}\right)\right|=\operatorname{dim}|K(C)|+\operatorname{dim}\left|K\left(\mathscr{D}_{i}\right)\right|+1=1$. This contradicts *). Q.E.D.

The following lemma is a generalization of Lemma 1.
Lemma 6. Let (\bar{V}, D) be a ∂-manifold and put $V=\bar{V}-D$. Assume that $\bar{\kappa}(V) \geqq 0$. Let Y be a reduced divisor on V and denote by \bar{Y} the closure of Y in in \bar{V}. Take a proper birational morphism $\rho: \bar{V}^{*} \rightarrow \bar{V}$ such that $\left(V^{*}, \rho^{-1}(\bar{Y}+D)\right)$ is a ∂-manifold. $\quad \mu=\rho \mid V^{*}: V^{*}=\bar{V}^{*}-\rho^{-1}(D) \rightarrow V$ is a proper birational morphism. Then letting Y^{*} be the proper transform of Y by μ^{-1}, we obtain

$$
\bar{\kappa}\left(V^{*}-Y^{*}\right)=\bar{\kappa}(V-Y)=\kappa(K(\bar{V})+D+\bar{Y}, \bar{V}) .
$$

Proof. Denoting by Z^{*} the closure of Z in \bar{V}^{*}, we have $\left(\mu^{-1}(Y)\right)^{\sharp}=$ $Y^{\sharp}+\mathcal{E}, \mathcal{E}$ being an effective divisor which is ρ-exceptional. Similarly,

$$
\left(\mu^{*}(Y)\right)^{\sharp}=Y^{\sharp}+\mathscr{F}, \mathscr{F} \text { being effective and } \mathscr{F}_{\text {red }}=\mathcal{E}
$$

Recall the logarithmic ramification formula ([5]):

$$
K\left(\bar{V}^{*}\right)+\rho^{-1}(D)=\rho^{*}(K(\bar{V})+D)+\bar{R}_{\mu},
$$

where \bar{R}_{μ} is the logarithmic ramification divisor for μ. By definition, we have

$$
\begin{aligned}
\bar{\kappa}(V-Y) & =\bar{\kappa}\left(V^{*}-\mu^{-1}(Y)\right) \geqq \bar{\kappa}\left(V^{*}-Y^{*}\right) \\
& =\kappa\left(K\left(\bar{V}^{*}\right)+\rho^{-1}(D)+Y^{*}, \bar{V}^{*}\right) \\
& =\kappa\left(\rho^{*}(K(\overline{\bar{V}})+D)+\bar{R}_{\mu}+Y^{*}, \bar{V}^{*}\right) \\
& =\kappa\left(\rho^{*}(K(\bar{V})+D)+N \bar{R}_{\mu}+Y^{*}, \bar{V}^{*}\right), N \gg 0 .
\end{aligned}
$$

This follows from $\bar{\kappa}(V) \geqq 0$ by using 2) of $\S 1$. iii). On the other hand, $\bar{R}_{\mu} \mid V^{*}=R_{\mu}$ and $\mu^{-1}(Y) \leqq Y^{*}+N_{1} R_{\mu}$ for some $N_{1}>0$. Hence, we have $\left(\mu^{*} Y\right)^{\sharp} \leqq Y^{\sharp}+N_{2}\left(R_{\mu}\right)^{*}$ for some $N_{2}>0$. Choosing $N \gg 0$, we obtain

$$
\begin{aligned}
& \kappa\left(\rho^{*}(K(\bar{V})+D)+N \bar{R}_{\mu}+Y^{*}, \bar{V}^{*}\right) \\
\geqq & \kappa\left(\rho^{*}(K(\bar{V})+D)+\left(\mu^{*} Y\right)^{*}, \bar{V}^{*}\right) .
\end{aligned}
$$

We note that

$$
\rho^{*}(D)+\left(\mu^{*} Y\right)^{*}=\rho^{*}(D+\bar{Y}) .
$$

Hence,

$$
\begin{aligned}
\kappa\left(\rho^{*}(K(\bar{V})+D)+\left(\mu^{*} Y\right)^{\ddagger}, \bar{V}^{*}\right) & =\kappa\left(\rho^{*}(K(\bar{V})+D+\bar{Y}), \bar{V}^{*}\right) \\
& =\kappa\left(K(\bar{V})+D+\bar{Y}, \bar{V}^{*}\right) .
\end{aligned}
$$

It is easily seen that

$$
\kappa\left(K(\bar{V})+D+\bar{Y}, \bar{V}^{*}\right) \geqq \bar{\kappa}(V-Y) \geqq \bar{\kappa}\left(V^{*}-Y^{*}\right) .
$$

Thus we obtain the desired equality.
Q.E.D.

We come back to the study of a logarithmic $K 3$ surface S of type II_{a}. Writing $D_{A}=\mu\left(D_{A}\right)$ and $Y=\mu_{*}\left(D_{B}\right)$, we have by Lemma 6

$$
\bar{\pi}\left(\bar{S}_{*}-D_{A}-Y\right)=\bar{\kappa}(\bar{S}-D)=0 .
$$

Since $K\left(\bar{S}_{*}\right)+D_{A} \sim 0$, we make use of the following proposition.
Proposition 4. With the notation being as in Proposition 3, let Y be a reduced divisor on \bar{S} which does not contain C. Suppose that $\bar{\kappa}(\bar{S}-C-Y)=0$. Then $\kappa(Y, \bar{S})=0$. Moreover, letting $\mathscr{y}_{1}, \cdots, ఝ_{u}$ be the connected components lof Y, we have the following assertions, separately.

1) If $\mathscr{y}_{j} \cap C \neq \phi$, then $\left(q_{j}, C\right)=1$ and ϑ_{j} is an exceptional curve of the first kind in \bar{S}.
2) If $\mathscr{y}_{j} \cap C=\phi$, then \exists_{j} is a curve of Dynkin type $A D E$.

Proof. Letting $Y_{0}=Y \cap S, S=\bar{S}-C$, we have \bar{Y}_{0} (the closure of Y_{0} in \bar{S}) $=Y$. Take a proper birational morphism $\rho: \bar{S}^{*} \rightarrow S$ such that $\left(\bar{S}^{*}, \rho^{-1}(C+Y)\right.$) is a ∂-surface. By Lemma 6, we have

$$
\kappa(K(\bar{S})+C+Y, \bar{S})=\bar{\kappa}(\bar{S}-C-Y)=0
$$

Recalling Proposition 3, we get $\kappa(Y, \bar{S})=0$. Let $\sum Y_{j}$ be the irreducible decomposition of Y and let q_{1}, \cdots, q_{u} be the connected components of Y. By Lemma 5, letting $Q J$ be a connected reduced divisor in Y, we have

$$
\begin{aligned}
0 & =\operatorname{dim}|q y|=\operatorname{dim}|K+C+a y| \\
& =\operatorname{dim} H^{1}(O c+a y)-1 \geqq(C+a y, K+C+a y) / 2
\end{aligned}
$$

Hence, $(c+q J, q) \leqq 0$. If $C+q J$ is connected,

$$
\begin{aligned}
0 & =\operatorname{dim}|K+C+q|=(C+a j, K+C+a y) / 2 \\
& =\pi(C+a y)-1=\pi(C)+\pi(q)+(C, q y)-2 \\
& =\pi(q y)+(C, a y)-1 \geqq \pi(q) .
\end{aligned}
$$

From this, it follows that $\pi(q)=0$ and $(C, q y)=1$. If $C+q y$ is not connecied, chen

$$
\begin{aligned}
0 & =\operatorname{dim}|K+C+q j|=\operatorname{dim} H^{1}(O c+q)-1 \\
& =\operatorname{dim} H^{1}(O c)+\operatorname{dim} H^{1}(O q)-1 \\
& =\operatorname{dim} H^{1}(O q)=\pi(q)=(q,, K+q j) / 2+1 .
\end{aligned}
$$

On the other hand, $(C, q j)=0$ yields $(K, q j)=0$, since $K+C \sim 0$. Hence, $a y^{2}=$ -2. In particular, if $Y_{j} \cap C \neq \phi$, then Y_{j} is a C-exceptional curve, and if $Y_{j} \cap C=\phi$, then $Y_{j}^{2}=-2$ and $\left(K, Y_{j}\right)=0$.

For any $m_{j} \geqq 0$, define $Z=\sum m_{j} Y_{j} \neq 0$. We write $Z=\mathscr{L}_{1}+\cdots+\mathscr{Z}_{v}$ where $\operatorname{Supp}\left(\mathscr{L}_{1}\right), \cdots, \operatorname{Supp}\left(\mathscr{Z}_{v}\right)$ are the connected components of Supp Z. By Lemma 5,

$$
\begin{aligned}
0 & =\operatorname{dim}|Z|=\operatorname{dim}|Z+C+K|=\operatorname{dim} H^{1}\left(\Theta_{C+Z}\right)-1 \\
& \geqq(C+Z, C+K+Z) / 2=\left((C, Z)+Z^{2}\right) / 2
\end{aligned}
$$

If $(C, Z)>0$, then $Z^{2} \leqq-1$. Next, assume $(C, Z)=0$. Then $\left(C, \mathscr{L}_{1}\right)=\cdots$ $=\left(C, \mathscr{L}_{v}\right)=0$. This implies $\left(K, \mathscr{Z}_{1}\right)=\cdots=\left(K, \mathscr{L}_{v}\right)=0$. Hence,

$$
1=\operatorname{dim} H^{1}\left(\mathcal{O}_{c+z}\right)=\operatorname{dim} H^{1}\left(\mathcal{O}_{c}\right)+\sum \operatorname{dim} H^{1}\left(\mathcal{O} \mathscr{L}_{i}\right)
$$

Thus $\operatorname{dim} H^{1}\left(\Theta \mathscr{L}_{i}\right)=0$. Recalling Riemann Roch Theorem on \bar{S}, we have

$$
\left(\mathscr{L}_{i}, \mathscr{L}_{i}+K\right) / 2=\operatorname{dim} H^{1}\left(\mathcal{O} \mathscr{L}_{i}\right)-\operatorname{dim} H^{0}\left(\mathcal{O} \mathscr{L}_{i}\right) \leqq-1
$$

Since $\left(\mathscr{L}_{i}, K\right)=0$, we have $\mathscr{L}_{i}^{2} \leqq-2$. Hence Supp \mathscr{Z}_{i} is a curve of Dynkin type
and so the intersection matrix $\left[\left(Y_{i}, Y_{j}\right)\right]$ is negative-definite. Thus we complete the proof of Proposition 4.

Proposition 5. Let \bar{S} be a complete surface and C a non-singular elliptic curve on \bar{S}. Suppose that $q(\bar{S})=0$ and $K(\bar{S})+C \sim 0$. Then $\bar{q}(\bar{S}-C)=0$, and (\bar{S}, C) is obtained from one of the following three ∂-surfaces by attaching $1 / 2$-points:
a-i) $\left(\boldsymbol{P}^{2}, E\right)$ where E is a non-singular curve of degree 3,
a-i) $\quad\left(\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, E\right)$ where E is a non-singular curve of degree $(2,2)$,
a-iii) $\left(\Sigma_{2}, E\right)$ where Σ_{2} is a Hirzebruch surface of degree 2 and E a non-singular elliptic curve such that $K\left(\Sigma_{2}\right)+E \sim 0$.

Proof. $\bar{q}(\bar{S}-C)=0$ follows from Lemma 2. First assume that $\bar{S}=\boldsymbol{P}^{2}$ or $\Sigma_{0}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or $\Sigma_{b}(b \geqq 2)$, that is the Hirzebruch surface of degree b.

Lemma 7. A Hirzebruch suiface $\sum_{b}(b \geqq 1)$ is a non-trivial \boldsymbol{P}^{1}-bundle over \boldsymbol{P}^{1} on which there exists one and only one irreducible curve Δ_{∞} with negative selfintersection number $-b . \quad \Delta_{\infty}$ is a section of $\Sigma_{b} \rightarrow \boldsymbol{P}^{1}$, whose fiber is denoted by F. Any section $C \neq \Delta_{\infty}$ is linearly equivalent to $\Delta_{\infty}+\alpha F(\alpha \geqq b)$. Then $C^{2}=2 \alpha-b$ and $\left(C, \Delta_{\infty}\right)=\alpha-b$. The smallest C^{2} is b. Since $\operatorname{dim}\left|\Delta_{\infty}+b F\right|=1+b$, we have sections Δ_{λ} (λ being a point of \boldsymbol{C}^{1+b}), which satisfy $\Delta_{\lambda} \cap \Delta_{\infty}=\phi$ and $\Delta_{\lambda}^{2}=b$. Moreover, $-K\left(\sum_{b}\right) \sim \Delta_{\infty}+\Delta_{\lambda}+2 F$.

Proof. The verification is easy and omitted.
We continue the proof of Proposition 5. If $\bar{S}=\sum_{b}$, and $E \sim-K\left(\Sigma_{b}\right) \sim$ $\Delta_{\lambda}+\Delta_{\infty}+2 F$, then $\left(E, \Delta_{\infty}\right)=-b+2$. By the way, $E \neq \Delta_{\infty}$. Hence, $\left(E, \Delta_{\infty}\right) \geqq 0$, which implies $b \leqq 2$. We have to show that there exists a non-singular member in $\left|-K\left(\sum_{2}\right)\right|$.

Lemma 8. Let $V=\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{2}$. Then $\sum_{b}(b \geqq 1)$ is isomorphic to a nonsingular hypersurface of degree $(b, 1)$ of V.

Proof. Letting h be a line on \boldsymbol{P}^{2}, we put $L=p \times \boldsymbol{P}^{2}$ and $M=\boldsymbol{P}^{1} \times h$. Then, by the adjunction formula,

$$
-K(V) \sim 2 L+3 M
$$

Since $b L+M$ is very ample ($b \geqq 1$), a general member W of $|b L+M|$ is nonsingular and

$$
-K(W) \sim(2 L+3 M-M-b L) \mid W
$$

Hence $K(W)^{2}=8$. Moreover, the projection $\pi: V \rightarrow \boldsymbol{P}^{1}$ induces the fibered surface $\pi^{\prime}=\pi \mid W: W \rightarrow \boldsymbol{P}^{1}$, whose fiber is linearly equivalent to $L \mid W$. Clearly, $(L \mid W)^{2}=0$ and $L \mid W \leftrightarrows \boldsymbol{P}^{1}$. Hence, $\pi \mid W: W \rightarrow \boldsymbol{P}^{1}$ is a \boldsymbol{P}^{1}-bundle. $M \mid W$ is a section which satisfies $(M \mid W)^{2}=b$. Hence $W \xrightarrow{\hookrightarrow} \sum_{b}$. Employing the notation in Lemma 7, we see that $\Delta_{\infty} \sim(M-b L) \mid W$ and $\Delta_{\lambda} \sim M \mid W$.
Q.E.D.

When $b=2,-K\left(\sum_{2}\right)$ is linearly equivalent to $2 M \mid W . \quad(2 M \mid W)^{2}=8$ and $2 M \mid W$ has no base points. Therefore a general member of $\left|-K\left(\Sigma_{2}\right)\right|$ is a non-singular elliptic curve. A curve E on \boldsymbol{P}^{2} or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ which satisfies the condition of Proposition 5 is a non-singular curve of degree 3 or degree (2,2), respectively.

Recalling that a relatively minimal rational surface \bar{S} is isomorphic to $\boldsymbol{P}^{2}, \boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or \sum_{b}, we have only to consider the case where there is an exceptional curve L of the first kind on \bar{S}. Since $L \neq C$ and $L^{2}=(K(\bar{S}), L)=-1$, we have $(C, L)=-(K(\bar{S}), L)=1$. Hence, L is a C-exceptional curve. Contracting such L successively, we complete the proof.

With the notacion being as in Proposition 5, let Y be a curve of Dynkin type in $S=\bar{S}-C$. Corresponding to the $1 / 2$-point attachments, we have a proper birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}, \bar{S}_{*}=\boldsymbol{P}^{2}$ or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or \sum_{2}. By Lemma 6, writing $Z=\mu_{*}(Y)$, we have $\bar{\kappa}\left(\bar{S}_{*}-\mu(C)-Z\right)=\bar{\kappa}(\bar{S}-C-Y)=\kappa(Y, \bar{S})=0$. Hence, Z is a sum of exceptional curves and a curve of Dynkin type. Since \bar{S}_{*} is relatively minimal, Z is a curve of Dynkin type such that $Z \cap \mu(C)=\phi$. Thus, $Z=\Delta_{\infty}$ in \sum_{2}. Accordingly, $\mu(Y)$ is a union of a finite set of points in $\mu(C)$ and $\Delta_{\infty} \subset \bar{S}_{*}=\sum_{2}$.

Therefore, Y is a curve of Dynkin type A. Summarizing the argument above, we obtain the following proposition.

Proposition 6. Let (\bar{S}, D) be a relatively ∂-minimal surface such that $S=\bar{S}-D$ is a logarithmic $K 3$ surface. Suppose that $\left(\bar{S}, D_{A}\right)$ is relatively ∂-minimal and that there are no D-exceptional curves of the first kind on \bar{S}. Then such $\partial-$ surfaces (\bar{S}, D) are classified inte the following table. There, $D=\Sigma C_{i}$ is the irreducible decomposition and C_{1} is a non-singular elliptic irreducible curve.

Table II_{a}.

class	\bar{S}	D with the self-intersection numbers	$\pi_{1}(S)$	S
a-1)	\boldsymbol{P}^{2}	$c_{1}<^{9}$	$\boldsymbol{Z} /(3)$	affine
a-ii)	$\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$	${ }^{C_{1}}<^{8}$	$\boldsymbol{Z} /(2)$	
a-iii)	Σ_{2}	$c_{1} \square^{8}$	$\boldsymbol{Z} /(2)$	non-affine
a-iii)		$C_{1} \sum^{8} C_{2}-2$?	

We have the following
Theorem I_{a}. Let (\bar{S}, D) be a ∂-surface whose interior S is a logarithmic $K 3$ surface of type II_{a}. Then there exists a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that

1) $\bar{S}_{*}=\boldsymbol{P}^{2}$ or $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ or \sum_{2} 2) $C=\mu\left(D_{A}\right)$ is a non-singular curve, 3) $\mu\left(D_{B}\right)$ is a finite set or a union of a finite set and $Z=\Delta_{\infty}$ on Σ_{2}. The latter case occurs only urken $\bar{S}_{*}=\sum_{2}$.

Structure of logarithmic $K 3$ surfaces of type II_{a} is studied precisely by examining each class of a-i) through a-iii)* separately. We use the following notion: Let S be a surface and let μ be a proper birational morphism: $S^{*} \rightarrow S$ such that there exists a dominant morphism $f: S^{*} \rightarrow J, J$ being a curve, whose general fiber $f^{-1}(u)$ is \boldsymbol{C}^{*}. Then we say that S is a \boldsymbol{C}^{*}-fibered surface or S^{S} has the structure of \boldsymbol{C}^{*}-fibered surface.

Proposition 7. Every surface of the class a-ii) or a-iii) has a structure of C^{*}-filered surface.

Proof is easy.
Proposition 8. Let S be a surface of the class a-i) or a-iii)*. Then S does not admit the structure of \boldsymbol{C}^{*}-fibered surface.

Proof. First we let S be a surface of the class a-iii)*. Suppose that there exist a proper birational morphism $\mu: S^{*} \rightarrow S$ and a dominant morphism $f: S^{*} \rightarrow J, J$ being a complete curve, whose general fiber is C^{*}. Choosing a suitable completion S^{*} of S^{*} with smooth boundary D^{*}, we assume that μ defines a morphism $\bar{\mu}: \bar{S}^{*} \rightarrow \Sigma_{2}$ and $D^{*}=\bar{\mu}^{-1}\left(C_{1}+C_{2}\right)$ and that f defines a morphism $\bar{f}: \bar{S}^{*} \rightarrow J$. By C_{1}^{*} we denote the proper transform of C_{1} by μ^{-1}, which is a non-singular elliptic curve. Since a general fiber of f is $\boldsymbol{P}^{1}, C_{1}^{*}$ is not contained in a fiber of \bar{f}. Hence $\bar{f}\left(C_{1}^{*}\right)=J$. Since \bar{S}^{*} is rational, J is \boldsymbol{P}^{1}. This implies that $f \mid C_{1}^{*}: C_{1}^{*} \rightarrow \boldsymbol{P}^{1}$ is a two-sheeted covering. Hence, $\bar{f}\left(C_{2}^{*}\right)$ is a point, because $\bar{f}^{-1}(u) \cap D^{*}=\left\{p_{1}, p_{2}\right\}$ for a general point $u \in J$. Therefore, $g=f \cdot \bar{\mu}^{-1}: \sum_{2} \rightarrow J$ tuins out to be a morphism. Moreover, $g\left(C_{2}\right)$ is a point a. Hence, C_{2} is a part of the singular fiber $g^{-1}(a)$. Since $C_{2}^{2}=-2$, there is another component C_{3} in $g^{-1}(a)$ such that $C_{3}^{2}=-1$. This contradicts the fact that \sum_{2} is a relatively minimal surface. It is easier to prove the same result for surfaces of the class $\mathrm{a}-\mathrm{i}$).
Q.E.D.

Proposition 9. There exists an algebraic pencil $\left\{C_{u}\right\}$ on each surface of the classes a-i) and a-iii)* whose general member C_{u} is \boldsymbol{C}^{*}.

Here, an algebraic pencil $\left\{C_{u}\right\}$ on S is understood as follows: there exist an algebraic surface S^{*} and a proper birational morphism $\rho: S^{*} \rightarrow S$ in which $\psi: S^{*} \rightarrow J$ is a fibered surface whose general fiber $C_{u}^{*} . \quad\left\{C_{u}=\rho\left(C_{u}^{*}\right)\right\}$ is the algebraic pencil on S.

We omit the proof of Proposition 9.

If there is a propır birational map $f: S_{1} \rightarrow S_{2}$ then the existence of the algebraic pencil $\left\{C_{u}\right\}, C_{u} \cong \boldsymbol{C}^{*}$, on S_{1}, induces the existence of the same ching on S_{2}. Moreover, when S_{1} is an open set of S_{2} with $\bar{\kappa}\left(S_{2}\right) \geqq 0$, the existence of an algebraic pencil of $C_{u} \cong C^{*}$ on S_{1} implies the existence of the same thing on S_{2}. In fact, there are a proper birational morphism $\rho: S_{1}^{*} \rightarrow S_{1}$ and a morphism $\psi: S_{1}^{*} \rightarrow J$ with $C_{u}=\rho\left(\psi^{-1}(u)\right) \cong \boldsymbol{C}^{*}$ for a general $u \in J$. Let Γ_{u} be the closure of C_{u} in S_{2}. Then $\bar{\kappa}\left(\Gamma_{u}\right) \leqq 0$. If $\bar{\kappa}\left(\Gamma_{u}\right)=-\infty$, it would imply that $\bar{\kappa}(S)=-\infty$, a contradiction.

Accordingly we get
Proposition 10. There is an algebraic pencil $\left\{C_{u}\right\}$ with the general member $C_{u} \cong \boldsymbol{C}^{*}$ on any logarithmic K3 surface of type II_{a}.

Corollary. A lugarithmic K3 surface of type II_{a} is not measure-hyperbolic.
Proof follows from the fact that \boldsymbol{C}^{*} is not measure-hyperbolic.
Proposition 11. Let S be a surface in the TABLE IIa. Then, Aut (S) is a finite group.

Proof. We give a proof for a surface of the class a-iii)*. Let $\varphi \in \operatorname{Aut}(S)$. Then φ extends to an isomorphism of $\bar{S}=\sum_{2}$, since $g\left(C_{1}\right)=1$ and $C_{2}^{2}=-2 \leqq$ $-2([12])$. Thus $\operatorname{Aut}(S) \subset \operatorname{Aut}_{D}\left(\sum_{2}\right)=\left\{\varphi \in \operatorname{Aut} \sum_{2} ; \varphi(D)=D\right\}$. Let $\pi: \sum_{2} \rightarrow$ \boldsymbol{P}^{1} be ihe \boldsymbol{P}^{1}-bundle structure of Σ_{2}. We have the group exiension:

$$
1 \rightarrow G_{1} \rightarrow \operatorname{Aut}\left(\sum_{2}\right) \rightarrow P G L(1, k)=\operatorname{Aut}\left(\boldsymbol{P}^{1}\right) \rightarrow 1
$$

It is well known that G_{1} is an algebraic group of dimension 4. Moreover, G_{1} is an affine group. Hence Aut $\left(\Sigma_{2}\right)$ is an affine algebraic gıoup. And so is $\operatorname{Aut}_{D}\left(\sum_{2}\right)$. Furthermore, we have the group homomorphism $\gamma: \operatorname{Aut}_{D}\left(\sum_{2}\right) \rightarrow$ $\operatorname{Aut}\left(C_{1}\right)$ which is the restriction, i.e., $\gamma(\varphi)=\varphi \mid C_{1}$. Therefore, $\operatorname{Im} \gamma$ is finite, since Aut $\left(C_{1}\right)$ is a finite union of elliptic curves. Put $G_{2}=\operatorname{Ker} \gamma$, which turns out to be a finite group. Thus $\operatorname{Aut}_{D}\left(\sum_{2}\right)$ is finite and so is $\operatorname{Aut}(S)$. Q.E.D.

Proposition 12. Let \bar{S} be a rational surface and C a non-singular elliptic curve on \bar{S}. Let Y be a reduced divisor on S such that $\bar{\kappa}(\bar{S}-(C \cup Y))=0$. Then $\bar{q}(\bar{S}-(C \cup Y))=0$, i.e., $\bar{S}-(C \cup Y)$ is a logarithmic $K 3$ surface of type I_{a}.

A proof follows from the arguments in the proofs of Propositions 3 and 4. Actually, the intersection matrix of Y is negative-definite and hence we can use Lemma 2.

Propostion 13. Let (\bar{S}, D) be a ∂-surface whose interior S is a logarithmic K3 surface of type II_{a}. Suppose that 1) (\bar{S}, D) is relatively ∂-minimal, 2) S has no $1 / 2$-points, and 3) D is connected. Then (\bar{S}, D) is (ne of a-i)~a-iii) in Proposition 5.

Proof. At the beginning of $\S 4$ we have had the decomposition: $D=$ $D_{A}+D_{B}$. Suppose that there exists an irreducible exceptional curve E of the first kind on $\bar{S}-D_{A}$. In view of Preposition 4, by contracting E we have a proper birational ∂-morphism $\lambda:(\bar{S}, D) \rightarrow\left(\bar{S}_{1}, D_{1}\right)$. We have the following cases: 1) If $E \subset D_{B}$ or $E \cap D_{B}=\phi$, this contradicts the hypothesis. 2) If $E \cap D_{B} \neq \phi$, then $\lambda:(\bar{S}, D+E) \rightarrow\left(S_{1}, D_{1}\right)$ is a non-canonical blowing up. In fact if λ were canonical, D would be disconnected. Thus $E-D_{B} \subset S$ is a $1 / 2$-point. This is also a contradiction. Accordingly, we conclude that $\bar{S}-D_{A}$ is relatively minimal. By Proposition 4, D_{B} is a union of exceptional curves of the first kind. Hence $D_{B}=\phi$. Since, there are no D-exceptional curves, it follows that \bar{S} is a relatively minimal surface.
Q.E.D.
5. Logarithmic $K \mathbf{3}$ surfaces of type $\mathbf{I I}_{\mathrm{b}}$. In $\S 5$, let S be a logarithmic $K 3$ surface and let (\bar{S}, D) be a ∂-surface such that $S=\bar{S}-D$. By C_{1}, \cdots, C_{s} we denote the irreducible components of D. Since $h(\Gamma(D))=1$, there is a circular boundary $D_{A}=C_{1}+\cdots+C_{r} \leqq D . \quad \bar{p}_{A}\left(\bar{S}-D_{A}\right)=1$ induces that $\bar{S}-D_{A}$ is also a logarithmic $K 3$ surface of type II_{b}. Contracting exceptional curves of the first kind in $\bar{S}-D_{A}$ successively, we have a non-singular complete surface \bar{S}_{*} and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that μ is isomorphic around $D_{A} \rightarrow \mu\left(D_{A}\right)$ and such that $\bar{S}-\mu\left(D_{A}\right)$ has no exceptional curves of the first kind. After choosing D to be a minimal boundary, we have a minimal boundary $D_{A}=\mu\left(D_{A}\right)$. Then $\left(\bar{S}_{*}, D_{A}\right)$ is a relatively ∂-minimal ∂-surface.

We write $D=D_{A}+D_{B}$ and $Y=\mu_{*}\left(D_{B}\right)$. By Lemma 6 we have

$$
0=\bar{\kappa}(\bar{S}-D)=\bar{\kappa}\left(\bar{S}_{*}-D_{A}-Y\right)
$$

From the condition $h\left(\Gamma\left(D_{A}\right)\right)=1$, we infer readily that $\bar{g}_{g}\left(\bar{S}_{*}-D_{A}\right)=1$. Hence, $\bar{P}_{i}\left(\bar{S}_{*}-D_{A}\right)=1$ for any $i \geqq 1$. However, $\bar{q}\left(\bar{S}_{*}-D_{A}\right) \geqq 0$.

Proposition 14. Let (\bar{S}, D) be a circular ∂-surface (i.e., D is circular) uhich is relatively ∂-minimal. Suppose that $\bar{\kappa}(\bar{S}-D)=0$. Then $K(S)+D \sim 0$.

Proof. It is easy to check that \bar{S} is a rational surface. Assuning that $|K(\bar{S})+D|$ has a non-trivial member $\Delta=\sum r_{i} E_{i}\left(r_{i}>0\right)$ we shall derive a contradiction.

Now, $0=\kappa(\bar{S}-D)=\kappa(K(\bar{S})+D, \bar{S})=\kappa(\Delta, \bar{S})=\kappa\left(\sum E_{i}, \bar{S}\right)$ implies that the intersection matrix $\left[\left(E_{i} E_{j}\right)\right]$ is negative semi-definite. We assume $\left(\Delta, E_{1}\right) \leqq 0$ and $E_{1} \nsubseteq D$ Then by the same reasoning as in the proof of Proposition 4, we have the following cases:

Case 1: $\pi\left(E_{1}\right)=1$. Then $E_{1} \cap D=\phi$ and $E_{1}^{2}=-\left(K, E_{1}\right)=0$.
Case 2: $\pi\left(E_{1}\right)=0$ and $\left(D, E_{1}\right) \geqq 1$. Then $E_{1}^{2}=\left(K, E_{1}\right)=-1$ and $\left(E_{1}, D\right)=1$. Hence E_{1} is D-exceptional. By detaching $1 / 2$-points, we may assume that this case does not occur.

Case 3: $\quad \pi\left(E_{1}\right)=0$ and $\left(D, E_{1}\right)=0$. Then $E_{1} \cap D=\phi$ and $E_{1}^{2}=-2,\left(K, E_{1}\right)$ $=0$.
In all cases we have $\left(\Delta_{1}, E_{1}\right)=0$. If $E_{1} \subset D$ and $r \geqq 2$, we have $D^{\prime}+E_{1}=D$, $E_{1}=\boldsymbol{P}^{1}$ and $\left(D^{\prime}, E_{1}\right)=2$. Hence

$$
\operatorname{dim}\left|K+D^{\prime}\right|=\bar{P}_{g}\left(\bar{S}-D^{\prime}\right)-1=h\left(\Gamma\left(D^{\prime}\right)\right)-1
$$

On the other hand, $\left|K+D^{\prime}\right| \ni\left(r_{1}-1\right) E_{1}+r_{2} E_{2}+\cdots$. This is a contradiction.
Thus, $\Delta^{2}=\sum r_{i}\left(\Delta, E_{i}\right) \geqq 0$. Since $\kappa(\Delta, \bar{S})=0$, we have $\Delta^{2}=0$. By the similar argument to the proof of Proposition 4, we derive a contradiction. Q.E.D.

Proposition 15. With the notation being as in Proposition 14, let Y be a reduced divisor on \bar{S} which does not contain any components of D. Suppose that $\bar{\kappa}(\bar{S}-D-Y)=0$. Then $\kappa(Y, \bar{S})=0$. By a_{1}, \cdots, q_{u}, we denote the connected components of Y. If $\mathscr{q}_{j} \cap D \neq \phi$, then $\left(\mathscr{Y}_{j}, D\right)=1$ and \mathscr{y}_{j} is an exceptional curve of the first kind. If $\mathscr{y}_{j} \cap D=\phi$, then \mathscr{y}_{j} is a curve of Dynkin type A.

The proof of Proposition 4 can be used again here.
Proposition 16. Let (\bar{S}, D) be a circular ∂-surface such that $K(\bar{S})+D \sim 0$. Then (\bar{S}, D) is obtained from one of the following ∂-surfaces by attaching several $1 / 2$-points and canonical blowing ups.
b-i) $\bar{S}=\boldsymbol{P}^{2}, D=H_{1}+H_{2}+H_{3}$ where each H_{i} is a line on \boldsymbol{P}^{2},
b-ii) $\bar{S}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, D=H_{1}+H_{2}+G_{1}+G_{2}$, where each H_{i} is a line of degree $(1,0)$ and each G_{j} is a line of degree $(0,1)$,
b-iii) $\bar{S}=\sum_{\beta}, D=\Delta_{\lambda}+\Delta_{\infty}+F_{1}+F_{2}$, where each F is a fiber,
b-iv) $\bar{S}=\boldsymbol{P}^{2}, D=H+C$, where H is a line and C is a conic,
b-v) $\bar{S}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, D=C_{1}+C_{2}$ where eack $C_{i} i$ s a curve of degree $(1,1)$,
b-vi) $\bar{S}=\sum_{2}, D=\Delta_{0}+\Delta_{\lambda}(\lambda \neq 0)$, where the Δ_{λ} is a section which is different from Δ_{∞},
b -vii) $)_{\beta} \quad \bar{S}=\sum_{\beta}, D=F+\Delta_{\infty}+C_{3}$ where C_{3} is a non-singular rational curve which is linearly equivalent to $\Delta_{0}+F$,
b-viii) $\bar{S}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, D=H_{1}+G_{1}+C$, where H is a line of degree $(1,0), G_{1}$ is a line of degree $(0,1)$, and C is a curve of degree $(1,1)$,
b-ix) $\bar{S}=\boldsymbol{P}^{2}, D=C$, where C is a cubic curve uith one ordinary double point,
$\mathrm{b}-\mathrm{x}) \quad \bar{S}=\boldsymbol{P}^{2} D=C$, where C is a curve of degree $(2,2)$ which has one ordinary double point,
b-xi) $\bar{S}=\sum_{2}, D=C$, where C is a rational curve witl, only one ordinary double point which is linearly equivalent to $2 \Delta_{\lambda}$,
b-xii) $\bar{S}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}, D=G+C$, where G is a line of degree $(0,1)$ and C is a curve of degree $(2,1)$,
b-xiii) $\bar{S}=\sum_{\beta}, D=\Delta_{\infty}+C$, where C is a curve which is linearly equivalent to $\Delta_{0}+2 F$.

Proof is easy and left to the reader.
In the following Table II_{b}, we exhibit \bar{q} and configurations of components of D of $b-\mathrm{i}) \sim \mathrm{b}-\mathrm{xiii})$.

Proposition 17. Let (\bar{S}, D) be a circular ∂-surface whose interior S is a logarithmic K3 surface or a surface satisfying the following conditions: 1) \bar{S} is rational, 2) $\bar{\kappa}(S)=0,3) \bar{p}_{g}(S)=1$, and 4) $\bar{q}(S)=1$ or 2. Suppose that i) (\bar{S}, D) is relatively ∂-minimal, ii) D is connected, and iii) S has no $1 / 2$-points. Then (\bar{S}, D) is one of $\mathrm{b}-\mathrm{i}) \sim \mathrm{b}$-xiii) $)_{\mathrm{\beta}}$ in $T A B L E \mathrm{II}_{\mathrm{b}}$.

Proof is similar to that of Proposition 13.

Table II_{b} of $(\bar{S}, D), S=\bar{S}-D$

\bar{q}	class	\bar{S}	configuration of D	$\pi_{1}(S)$	S
2	b-i)	$\boldsymbol{P}^{\mathbf{2}}$		$\boldsymbol{Z}^{\mathbf{2}}$	C^{*}
	b-ii)	$\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{\mathbf{1}}$	${ }_{+}^{0}+0$	$\boldsymbol{Z}^{\mathbf{2}}$	
	$\begin{aligned} & \mathrm{b}-\mathrm{iii})_{\beta} \\ & (\beta \geqq 2) \end{aligned}$	\sum_{β}		$\boldsymbol{Z}^{\mathbf{2}}$	
1	b-iv)	\boldsymbol{P}^{2}		\boldsymbol{Z}	
	$\mathrm{b}-\mathrm{v}$)	$\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$	x_{2}^{2}	\boldsymbol{Z}	
	b-vi)	Σ_{2}	t_{2}^{2}	\boldsymbol{Z}	
	b -vii) ${ }_{\beta}$ $(\beta \geqq 2)$	\sum_{β}	$\underbrace{2+\beta}_{-\beta}$	\boldsymbol{Z}	
	b-viii)	$\boldsymbol{P}^{\mathbf{1}} \times \boldsymbol{P}^{1}$	$0 x_{0}^{2}$	\boldsymbol{Z}	

\bar{q}	class	\bar{S}	configuration of D	$\pi_{1}(S)$	S
0	b-ix)	\boldsymbol{P}^{2}	γ°	$\boldsymbol{Z} /(3)$	
	b-x)	$\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$	6^{8}	$\boldsymbol{Z} /(2)$	
	b-xi)	Σ_{2}	γ^{8}	$\boldsymbol{Z} /(2)$	
	b-xii)	$\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$	A_{0}^{4}	$\boldsymbol{Z} /(2)$	
	$\begin{aligned} & (-x i i i)_{\beta} \\ & (\beta \geqq 2) \end{aligned}$	Σ_{β}	$\bigcap_{-\beta}^{4+\beta}$?	
1	b -vi)*	Σ_{2}	$C^{2} \frac{\Delta_{n}}{}{ }^{-2}$?	
0	b -xi)*		$\alpha_{8}^{\Delta_{0}-2}$?	

Next we treat the ∂-surface (S, D) whose boundary is not connected. As in $\S 4$, we have to look for a curve Z of Dynkin type on $\bar{S}-D$ where (\bar{S}, D) is one of $\mathrm{b}-\mathrm{i}$) ihrough b -xiii) $)_{\beta}$. Such Z exists only in the cases b -vi) and b -xi). Then Z turns out to be Δ_{∞} of \sum_{2}. We write b-vi)* or b-xi)* in the case of disconnected boundaries. Therefore we obtain the following

Theorem Π_{b}. Let (\bar{S}, D) be a ∂-surface whose interior S is a logarithmic K3 surface of type II_{b}. Then, there exists a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that $\left(\bar{S}_{*}, \mu\left(D_{A}\right) \text {) is one of b-i) through b-xiii) }\right)_{\beta}$ in TABLE II_{b}. Moreover, $\mu\left(D_{B}\right)$ is a finite set or a union of a finite set and $Z=\Delta_{\infty}$ on Σ_{2}. The latter case occurs only when $\left(\bar{S}, \mu_{*}(D)-Z\right)$ is the class $\left.\mathrm{b}-\mathrm{vi}\right)$ or $\left.\mathrm{b}-\mathrm{xi}\right)$.

Remark. In the above theorem the hypothesis that S is a logarithmic $K 3$ surface of type II_{b} is replaced by the following condition that 1) $\bar{P}_{g}(S)=1$ and $\bar{\kappa}(S)=0,2) \bar{S}$ is rational, 3) D consists of rational curves.

In order to prove the generalized Theorem II_{b}, we have only to note that

Propositions 14, 15 and 16 were proved without the logarithmic irregularity condition to the effect $\bar{q}=0$.
6. Surfaces with $\overline{\boldsymbol{\kappa}}=\mathbf{0}$ and $\overline{\boldsymbol{p}}_{g}=1$. In general, let (\bar{S}, D) be a ∂ surface such that the interior S satisfies $\bar{p}_{g}(S)=1$ and $\bar{\kappa}(S)=0$. Then $p_{g}(\bar{S}) \leqq 1$ and $\kappa(\bar{S}) \leqq 0$.

Proposition 18. If $p_{g}(\bar{S})=0$, then $\kappa(\bar{S})=-\infty$. Hence, \bar{S} is a ruled surface.
Proof. In view of Proposition 2, it suffices to derive a contradiction from the hypothesis that $\kappa(\bar{S})=0, p_{g}(\bar{S})=0$, and $q(\bar{S}) \geqq 1$. Such a surface \bar{S} is birationally equivalent to a hyperelliptic surface, whose universal covering surface is an abelian surface. Namely, contracting exceptional curves of the first kind on \bar{S} succssively, we get a hyperelliptic surface \bar{S}_{*} and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$. Then by Lemma 1,

$$
\begin{aligned}
0 & =\bar{\kappa}(S)=\kappa(K(\bar{S})+D, \bar{S})=\kappa\left(K\left(\bar{S}_{*}\right)+\mu_{*}(D), \bar{S}_{*}\right) \\
& =\kappa\left(\mu_{*} D, \bar{S}\right)
\end{aligned}
$$

This implies that $\mu_{*} D=0$. Thus

$$
\begin{aligned}
& H^{0}(\mathcal{O}(K(\bar{S})+D))=H^{0}\left(\mathcal{O}\left(\mu^{*}\left(K\left(\bar{S}_{*}\right)\right)+R_{\mu}+D\right)\right) \\
& \quad \xrightarrow{\sim} H^{0}\left(\mathcal{O}\left(K\left(\bar{S}_{*}\right)\right)\right)=0
\end{aligned}
$$

This contradicts $\bar{g}_{g}(S)=\operatorname{dim} H^{0}(\mathcal{O}(K(\bar{S})+D))=1$.
Q.E.D.

Consequently, we have the following cases to examine separately.

1) If $p_{g}(\bar{S})=0$ and $q(\bar{S})=0$, then \bar{S} is a ra.ional surface. Hence, letting $\sum_{j=1}^{s} C_{j}$ be the irreducible decomposition of D,
α) if $g\left(C_{1}\right)=1$, then put $D_{A}=C_{1}$,
β) if $g\left(C_{1}\right)=\cdots=g\left(C_{s}\right)=0$, then there is a circular boundary $D_{A}=C_{1}+\cdots$ $+C_{r} \subset D$.
2) If $p_{g}(\bar{S})=0$ and $q(\bar{S}) \geqq 1$, then \bar{S} is a ruled surface of genus 1 . Let $f: \bar{S} \rightarrow J$ be the Albanese map of S, J being an elliptic curve, since $p_{g}(\bar{S})=0$. For a general point $y \in J, f^{-1}(y)$ turns out to be a non-singular rational curve. Define $C_{y}=f^{-1}(y)-D \cap f^{-1}(y)$. Then by Kawamata's Theorem ([14]), we obtain

$$
0=\bar{\kappa}(S) \geqq \bar{\kappa}\left(C_{y}\right)+\bar{\kappa}(J)=\bar{\kappa}\left(C_{y}\right)
$$

Hence, $\bar{x}\left(C_{y}\right)=0$ follows. This implies that $C_{y} \simeq C^{*}$ and $\left(D, f^{-1}(y)\right)=2$. Hence, the horizontal component D_{A} defined to be $\left\{\sum C_{j} ; f\left(C_{j}\right)=J\right\}$ satisfies that $\left(D_{A}, f^{-1}(y)\right)=2$. Referring to the following lemma, we have

$$
\operatorname{dim}\left|K(\bar{S})+D_{A}\right|=0, \quad \text { i.e., } \bar{D}_{g}\left(\bar{S}-D_{A}\right)=1
$$

Lemma 9. Let \bar{V} be a complete normal variety and let A, B be divisors on \bar{V} such that $\kappa(A, \bar{V}) \geqq 0,|A+B| \neq \phi, B$ is effective, and $\kappa(A+B, \bar{V})=0$. Then $|A| \neq \phi$.

Proof. Choose $i>0$ such that $|i A| \neq \phi$ and take $X \in|A+B|$ and $Z \in$ $|i A|$. Then $Z+i B \sim i X$. By $\kappa(X, \bar{V})=0$, we have $Z+i B=i X$. Hence, $Z=$ $i(X-B)$ is effective This implies that $X-B$ is effective.
Q.E.D.
3) If $p_{g}(\bar{S})=1$, then put $D_{A}=0$.

In all cases above, we define D_{B} by $D=D_{A}+D_{B}$
Theorem III. With the notation being as above, we suppose that $\bar{S}-D_{A}$ has no exceptional curves of the first kind. Then $K(\bar{S})+D_{A} \sim 0$.

Proof. Recalling Propositions 3 and 14, it suffices to prove under the assumption that \bar{S} is a ruled surface with $q(\bar{S})=1$. Take $\Delta \in\left|K+D_{A}\right|$ and we shall derive a contradiction from the hypothesis $\Delta \neq 0$. Let $\sum r_{j} E_{j}$ be the irreducible decomposition of $\Delta .\left[\left(E_{i}, E_{j}\right)\right]$ is negative semi-definite. In particular, $E_{j}^{2} \leqq 0$. First assume that $\left(\Delta, E_{1}\right) \leqq 0$, since $\Delta^{2} \leqq 0$. If $E_{1} \subset D_{A}$, then, putting $D_{A}=E_{1}+D^{\prime}$, we would have $\left(f^{-1}(y), D^{\prime}\right) \leqq 1$. This would imply $\bar{\kappa}\left(\bar{S}-D^{\prime}\right)=-\infty \quad$ while $\quad \bar{\kappa}\left(S-D^{\prime}\right)=\kappa\left(K(\bar{S})+D^{\prime}, \bar{S}\right)=\kappa\left(K(\bar{S})+D_{A}-E_{1}, \bar{S}\right)=$ $\kappa\left(\Delta-E_{1}, \bar{S}\right)=\kappa\left(\left(r_{1}-1\right) E_{1}+, \cdots, \bar{S}\right)=0$. Therefore, $E_{1} \nsubseteq D_{A}$. Hence $\left(D_{A}, E_{1}\right)$ $\geqq 0$. Since $\left(\Delta, E_{1}\right)=\left(K, E_{1}\right)+\left(D_{A}, E_{1}\right) \leqq 0$, we have $E_{1}^{2} \leqq 0$ and $\left(K, E_{1}\right) \leqq 0$. As in the proof of Proposition 3 we have the following cases to examine separately.

1) If $E_{1}^{2}=-2,\left(K, E_{1}\right)=0$, then $\pi\left(E_{1}\right)=0$ and $\left(D_{A}, E_{1}\right)=0$.
2) If $E_{1}^{2}=-1,\left(K, E_{1}\right)=-1$, then $\left(D_{A}, E_{1}\right)=0$ or 1 . In this case, $\left(D_{A}, E_{1}\right)=0$ contradicts the hypothesis that $\bar{S}-D_{A}$ has no exceptional curves of the first kind. In the case when $\left(D_{A}, E_{1}\right)=1$, contracting E_{1} corresponds to a $1 / 2$-point detachment.
3) If $E_{1}^{2}=0,\left(K, E_{1}\right)=-2$, then $\left(D_{A}, E_{1}\right)=2$. Since $\pi\left(E_{1}\right)=0, f\left(E_{1}\right)=p \in J$. Hence, $E_{1}=f^{-1}(p)$. Therefore, by Kawamata's Theorem ([14]), $\bar{\kappa}\left(S-E_{1}\right) \geqq$ $\bar{\kappa}\left(C_{y}\right)+\bar{\kappa}(J-\{p\})=1$. On the other hand, $\kappa\left(K(\bar{S})+D_{A}+E_{1}, \bar{S}\right) \geqq \bar{\kappa}\left(S-E_{1}\right) \geqq 1$. Since $E_{1} \leqq \Delta \in\left|K(\bar{S})+D_{A}\right|$, we have

$$
\kappa\left(K(\bar{S})+D_{A}+E_{1}, \bar{S}\right)=0
$$

This is a contradiction. Hence, we conclude that the case 3) does not occur. 4) If $E_{1}^{2}=0$ and $\left(K, E_{1}\right)=0$, then $\pi\left(E_{1}\right)=1$ and $\left(D_{A}, E_{1}\right)=0$. In all cases, we have $\left(D_{A}, E_{1}\right)=0$ and $\left(\Delta, E_{1}\right)=0$. Therefore, $\left(\Delta, E_{j}\right)=0$ for all j, hence $\Delta^{2}=\sum r_{j}\left(\Delta, E_{j}\right)=0$. Letting $\mathscr{D}_{1}, \cdots, \mathscr{D}_{u}$ be the connected components of Δ, we can easily see that these are curves of extended Dynkin type $\tilde{A} \widetilde{D} \widetilde{E}$. In particular, $\mathscr{D}_{1}^{2}=\cdots=\mathscr{D}_{u}^{2}=0$.
α) If \mathscr{D}_{1} consists of one irreducible component, then \mathscr{D}_{1} is an elliptic curve. Hence $f\left(\mathscr{D}_{1}\right)=J$, and so $\left(\mathscr{D}_{1}+D_{A}, f^{-1}(y)\right) \geqq 3$. This implies $\bar{\kappa}\left(\bar{S}-\mathscr{D}_{1}\right) \geqq 1$ by

Kawamata's Theorem. By the way,

$$
\kappa\left(K(\bar{S})+D_{A}+\mathscr{D}_{1}, \bar{S}\right) \geqq \bar{\kappa}\left(\bar{S}-\mathscr{D}_{1}\right) \geqq 1
$$

and

$$
\kappa\left(K(\bar{S})+D_{A}+\mathscr{D}_{1}, \bar{S}\right)=\kappa\left(\Delta+\mathscr{D}_{1}, \bar{S}\right)=0 .
$$

This is a contradiction.
β) If \mathscr{D}_{1} has more than 1 irreducible components, $f\left(\mathscr{D}_{1}\right)$ is a point. Hence \mathscr{D}_{1} is a reducible member of $\left|f^{*}(y)\right|$. This implies $h\left(\Gamma\left(\mathscr{D}_{1}\right)\right)=0$, a contradiction.
Q.E.D.

Next, we shall consider the counterparts of Propositions 4 and 15 in the case of $q(\bar{S})=1$.

Proposition 19. Let \bar{S} be a ruled surface of $q(\bar{S})=1$ with the Albanese fibered surface $f: \bar{S} \rightarrow J$. Let D_{A} be a divisor with normal crossings consisting of horizontal components such that $K(\bar{S})+D_{A} \sim 0$. Suppose that a reduced divisor Y on \bar{S}, each component of which is not contained in D_{A}, satisfies the condition that $\bar{\kappa}(\bar{S}-$ $\left.D_{A}-Y\right)=0$. Then $\kappa(Y, \bar{S})=0$. Moreover, letting q_{1}, \cdots, q_{u} be the connected components, we see that if $\mathscr{Y}_{j} \cap D_{A} \neq \phi, \mathcal{Y}_{j}$ is an exceptional curve of the first kind such that $\left(\mathscr{q}_{j}, D_{A}\right)=1$ and that if $\mathscr{Y}_{j} \cap D_{A}=\phi$, then \mathscr{q}_{j} is a curve of Dynkin type A.

Proof. Let $\sum Y_{j}$ be the irreducible decomposition of Y. If Y_{j} is horizontal with respect to f, then $\left(Y_{j}+D_{A}, f^{-1}(u)\right) \geqq 3$ for a general $u \in J$. By Kawamata's Theorem, we get

$$
\bar{\kappa}\left(S-Y_{j}\right) \geqq \bar{\kappa}\left(f^{-1}(u)-Y_{j}-D_{A}\right)+\bar{\kappa}(J)=1,
$$

where $S=\bar{S}-D_{A}$.
This contradicts $\bar{\kappa}(S-Y)=0$. Hence, $f(Y)$ is a finite set of points. For a connected reduced curve $Q \subset \subset Y$, we have a point $p=f(Q)$, and so $Q \subset \subset f^{-1}(p)$. In view of $\bar{\pi}(S-q j) \neq 1$, we see that $Q f \neq f^{-1}(p)$. Therefore, $q f$ consists of nonsingular rational curves Y_{j} with negative-definite intersection matrix $\left[\left(Y_{i}, Y_{j}\right)\right]$, $Y_{i} \subset$ q. If $Y_{j} \cap D_{A}=\phi$, then $\left(D_{A}, Y_{j}\right)=0$ and so $\left(K, Y_{j}\right)=-\left(D_{A}, Y_{j}\right)=0$. Combining this with $Y_{j}^{2} \leqq-1$, we have $Y_{j}^{2}=-2$ and $\pi\left(Y_{j}\right)=0$. If $Y_{j} \cap D_{A} \neq \phi$, then $\left(Y_{j}, D_{A}\right)=-\left(Y_{j}, K\right)>0$. Hence Y_{j} is an exceptional curve of the first kind and $\left(Y_{j}, D_{A}\right)=1$.
Q.E.D.

Proposition 20. With the same notation as in Proposition 19, we further assume that \bar{S} is relatively minimal. Then
c-i) $\bar{S}=\boldsymbol{P}^{1} \times J, D_{A}=p_{1} \times J+p_{2} \times J$,
or
c-ii) $\bar{S} \rightarrow J$ is a \boldsymbol{C}^{*}-bundle of degree 0 which is not $\boldsymbol{P}^{1} \times J$, and $D_{A}=\Gamma_{0}+\Gamma_{\infty}$,
Γ_{0} and Γ_{∞} being sections with $\Gamma_{0}^{2}=\Gamma_{\infty}^{2}=\left(\Gamma_{0}, \Gamma_{\infty}\right)=0$. Note that Γ_{0} is cohomologously equivalert to Γ_{∞}.
Further,
c-iii) $\quad \bar{S} \rightarrow J$ is a C^{*}-bundle of degree $m>0$ and $D_{A}=\Gamma_{0}+\Gamma_{\infty}, \Gamma_{0}$ and Γ_{∞} heing sections with $\Gamma_{0}^{2}=m$ and $\Gamma_{\infty}^{2}=-m$.

In order to prove this, we need the following lemma.
Lemma 10. Let $f: \bar{S} \rightarrow J$ be a P^{1}-bundle over an elliptic curve J. Then we have the following table.

Table III

class	$\bar{S} \rightarrow J$	$\operatorname{dim}\|-K(\bar{S})\|$	a member of $\|-K(\bar{S})\|$	$\bar{q}\left(\bar{S}-D_{A}\right)$
i)	$\boldsymbol{P}^{1} \times J$	2	$D_{A}=p_{1} \times J+p_{2} \times J$	2
ii)	C^{*}-bundle of degree 0	0	$D_{A}=\Gamma_{0}+\Gamma_{\infty}$ $\left(\Gamma_{0}^{2}=\Gamma_{\infty}^{2}=\left(\Gamma_{0}, \Gamma_{\infty}\right)=0\right)$	2
iii)	C^{*}-bundle of degree $m, m \geqq 1$	m	$D_{A}=\Gamma_{0}+\Gamma_{\infty}$ $\left(\Gamma_{0}^{2}=m, \Gamma_{\infty}^{2}=-m,\left(\Gamma_{0}, \Gamma_{\infty}\right)=0\right)$	1
iv)	affine bundle A_{0}	0	$2 \Gamma_{\infty}$ $\left(\Gamma_{\infty}^{2}=0\right)$	D_{A} does not exist.
v)	affine bundle A_{-1}	$-\infty$	ϕ	

For the notation used above, we refer the reader to [2] and [18]. Explicit constructions of \bar{S} in [18] are used to compute $\operatorname{dim}|-K(\bar{S})|$ and to find a normal crossing divisor in $|-K(\bar{S})|$. We omit the details.

Proposition 20 follows from the lemma above. In the case of the class $\mathrm{c}-\mathrm{i})$ or c-ii), $\bar{S}-D_{A}$ is a quasi-abelian surface. Attaching several $1 / 2$-points to $\bar{S}-D_{A}$ at points of D_{A}, we have surfaces with $\bar{\kappa}=0$ and $q=\bar{q}=1$.

Proposition 21. Let (\bar{S}, D) be a ∂-surface with the interior S. Suppose that $\bar{P}_{g}(S)=1, \bar{\kappa}(S)=0$, and $q(\bar{S})=1$. Then \bar{S} is a ruled surface of genus 1 . Moreover, D is disconnected. D_{A} consists of two sections of the Albanese fibered surface $f: \bar{S} \rightarrow J$ of \bar{S}. In particular, S cannot be affine.

Proof. If $\kappa(S)=0$, it would follow that $p_{g}(\bar{S})=0$ from the classification theory of projective surfaces. Combined with Proposition 18, this would imply $\kappa(\bar{S})=-\infty$, a contradiction. Thus, \bar{S} turns out to be a ruled surface of genus 1. In view of Lemma 6, by contracting exceptional curves of the first kind on $\bar{S}-D_{A}$, we may assume that $K(\bar{S})+D_{A} \sim 0$. Then we contract
successively connected exceptional curves $Q f$ of the first kind $\leqq D_{B}$ such that $\left(\vartheta, D_{A}\right)=1$. Thus we arrive at the situation that $D_{B} \cap D_{A}=\phi$. Detaching several half-points in $\bar{S}-D_{A}$, we have a relatively minimal surface \bar{S}_{*} and a proper birational map $\mu: \bar{S} \rightarrow \bar{S}_{*}$. By Lemma $6, \bar{\kappa}\left(\bar{S}-\mu\left(D_{A}\right)-\mu_{*}\left(D_{B}\right), S\right)=0$. Hence $\mu_{*}\left(D_{B}\right) \subset \mu\left(D_{A}\right)$. Thus we can apply Proposition 21. Especially D and D_{A} are disconnected.
Q.E.D.

Proposition 22. Let (\bar{S}, D) be a ∂-surface whose interior S satisfies that $\bar{p}_{g}(S)=1, \bar{\kappa}(S)=0, p_{g}(\bar{S})=0$, and $q(\bar{S})=1$. Suppose that $\bar{q}(S)=2$. Then there are a relatively minimal ruled surface \bar{S}_{*} and a birational morphism $\mu: \bar{S} \rightarrow \bar{S}_{*}$ such that $\mu\left(D_{B}\right)$ is a finite set and $\left(\bar{S}_{*}, \mu\left(D_{A}\right)\right)$ is c-i) or c-ii) in Proposition 20. Moreover, if $\mu\left(D_{B}\right) \subset \mu\left(D_{A}\right), S$ is proper birationally equivalent to a quasi-abelian surface.

By these theorem and propositions, we have another proof of Theorem I in [10].

Theorem IV. Let S be a logarithmic abelian surface, i.e., $\bar{\kappa}(S)=0, \bar{q}(S)=2$. Then S is $W^{2} P B$-equivalent to a quasi-abelian surface.

Proof. Let $\alpha: S \rightarrow \mathcal{A}_{s}$ be a quasi-Albanese map. Let J be the closure of $\alpha(S)$ in \mathcal{A}_{s}. Then by Kawamata's Theorem, J turns out to be a surface \mathcal{A}_{s}. Hence, $\bar{P}_{g}(S) \geqq \bar{P}_{g}\left(\mathcal{A}_{s}\right)=1$. Therefore, we can apply Theorem III and Propositions 20, 22. We omit the details.

Corollary 1. Let S be an affine normal surface with $\bar{\kappa}(S)=0$ and $\bar{q}(S)=2$. Then S is isomorphic to $\boldsymbol{C}^{* 2}$.

Corollary 2. Let S be a surface with $\bar{\kappa}(S)=q(S)=0$ and $\bar{q}(S)=2$. Then S is $W^{2} P B$-equivalent tc $C^{* 2}$.

The above two corollaries are found in [10].
Proposition 23. Let (\bar{S}, D) be any ∂-surface in $T A B L E \mathrm{II}_{\mathrm{b}}$. If $\bar{q}(S)=0$, then there is a reduced divisor R on S such that $\bar{\kappa}(S-R)=0$ and $\bar{q}(S-R)=1$. Similarly, if $\bar{q}(S)=1$, then there is R^{\prime} on S such that $\bar{\kappa}\left(S-R^{\prime}\right)=0$ and $\bar{q}\left(S-R^{\prime}\right)$ $=2$. Hence $S-R^{\prime} \cong C^{* 2}$.

Proof. We use the notation in Proposition 16 and we shall look for R in each case, separately.
i) If S is the class b-iv), take a line \bar{R} on \boldsymbol{P}^{2} such that $\bar{R} \cap C=\{p\}$ and $H \cap C$ $=\{p\}$. Then $\bar{S}-D-\bar{R} \cong C^{* 2}$.
ii) If S is the class b-v), take two curves C_{3} and C_{4} of degree (1,0) such that, denoting by $\left\{p_{1}, p_{2}\right\}$ the intersection $C_{1} \cap C_{2}, C_{3} \ni p_{1}$ and $C_{4} \ni p_{2}$. Defining $\bar{R}=C_{3}+C_{4}$, we have $S-\bar{R} \cong C^{* 2}$.
iii) If S is the class b-vi), write $C_{1} \cap C_{2}=\left\{p_{1}, p_{2}\right\}$. Take two fikres C_{3} and C_{4} of $\sum_{2} \rightarrow \boldsymbol{P}^{1}$ of such that $C_{3} \ni p_{1}$ and $C_{4} \ni p_{2}$. Then defining $\bar{R}=C_{3}+C_{4}$, we have $S-\bar{R}=C^{* 2}$.
iv) If S is the class b-vii) $)_{\beta}$, write $C_{3} \cap \Delta_{\infty}=\{p\}$. Take a fiber \bar{R} passing through p. Then $\bar{S}-\bar{R} \cong C^{* 2}$.
v) If S is the class b-viii), write $H_{1} \cap C=\{p\}$. Take a curve $\bar{R}=G_{2}$ of degree $(0,1)$ passing through p. Then $S-\bar{R}=C^{* 2}$.
vi) If S is the class b-ix), by p we denote the singular point of C. Take two lines C_{1}, C_{2} which are tangential to C at p. Putting $\bar{R}=C_{1}+C_{2}$, we have $S-\bar{R}=C^{* 2}$. Moreover, $S-C_{1}$ is a surface of the class b-vii) ${ }_{2}$.
vii) If S is the class $\mathrm{b}-\mathrm{x}$), by p we denote the singular point of C. Take two curves C_{2} and C_{3} of degree (1,0) and $(0,1)$, respectively, such that $C_{2} \ni p$ and $C_{3} \ni p$. Then, putting $\bar{R}=C_{2}+C_{3}$, we see $S-\bar{R}$ is a surface of the class b-iv). viii) If S is the class b-xi), by p we denote the singular point of C. Take a fiber C_{2} passing through p. Defining $\bar{R}=C_{2}+\Delta_{\infty}$, we see $S-\bar{R}$ is a surface of the class b-iv).
ix) If S is the class b -xii), take a curve \bar{R} of degree (1,0) passing through a point $\in G \cap C$. Then $S-\bar{R}$ is a surface of class b-iv).
x) If S is the class b-xiii) $)_{\beta}$, take a fiber \bar{R} passing through a point $\in \Delta_{\infty} \cap C$. Then $S-\bar{R}$ is a surface of the class b-vii) $)_{\beta+1}$.
xi) If S is the class b-vi)*, take a fiber C_{4}. Then $S-C_{4}=C^{* 2}$.
xii) If S is the class $\mathrm{b}-\mathrm{xi})^{*}$, take a fiber C_{4} which passes through the singular point of C. Then $S-C_{4}$ is a surface of the class b-iv). Q.E.D.

Therefore, we establish the following
Proposition 24. Let S be a surface with $\bar{\kappa}(S)=0, \bar{p}_{g}(S)=1$ and $p_{g}(\bar{S})=$ $q(\bar{S})=0$. Suppose that S is not a logarithmic K3 surface of type II_{a}. If $\bar{q}(S)=0$, then there is an open subset S_{1} of S suck that $\bar{\kappa}\left(S_{1}\right)=\bar{\kappa}(S)=0$ and $\bar{q}\left(S_{1}\right)=1$. Mcreover if $\bar{q}(S)=1$, then there is an open subset S_{2} of S such that $\bar{c}\left(S_{2}\right)=0$ and $\bar{q}\left(S_{2}\right)=2$.

Corollary. Let S be a surface in Proposition 24. Then there is a surjective morphism $\psi: S \rightarrow J$ whose general fiber $\psi^{-1}(u) \cong \boldsymbol{C}^{*}$. Here $J \cong \boldsymbol{P}^{1}$ or \boldsymbol{A}^{1}, if $\bar{q}(S)=0$. And $J \cong \boldsymbol{C}^{*}$, if $\bar{q}(S)=1$ or 2 .

A proof follows from the fact that S_{2} with $\bar{\kappa}\left(S_{2}\right)=q\left(S_{2}\right)=0$ and $\bar{q}\left(S_{2}\right)=2$ is $W^{2} P B$-equivalent to $C^{* 2}$.

Example. Lec C be an irreducible curve with a non-cuspidal singular point. Then $\boldsymbol{P}^{2}-C$ is a logarithmic $K 3$ surface, i.e., $\overline{\boldsymbol{\kappa}}\left(\boldsymbol{P}^{2}-C\right)=0$ if and only if there exist two irreducible curves C_{1} and C_{2} such that $\boldsymbol{P}^{2}-C-C_{1}-C_{2} \cong \boldsymbol{C}^{* 2}$.

Proposition 25. Let $C=V(\varphi), \varphi$ being an irreducible polynomial, be a
curve on A^{2} and let $S=A^{2}-C$. Suppose $\bar{\kappa}(S)=0$. Then, choosing an appropriate system of coordinates (x, y) of $\boldsymbol{A}^{2}, \varphi$ is zoritten as follows:

$$
\varphi=x^{l} y+a_{0}+a_{1} x+\cdots+a_{s} x^{s} .
$$

Proof. Since $\bar{q}(S)=1$ and $\bar{\kappa}(S)=0$, it follows that $\bar{p}_{g}(S)=1$. Actually, assume that $\bar{p}_{g}(S)=0$. Then \bar{C} (the closure of C in \boldsymbol{P}^{2}) is a rational curve whose singularities are cuspidal. If C were singular, then a general member C_{λ} of the fiber space $\varphi: S \rightarrow \boldsymbol{C}^{*}$ would be of hyperbolic type, i.e., $\bar{\kappa}\left(C_{\lambda}\right)=1$. Kawamata's Theorem would assert that $\bar{\kappa}(S) \geqq \bar{\kappa}\left(C_{\lambda}\right)+\bar{\kappa}\left(G_{m}\right)=1$, a contradiction. Thus C is non-singular and hence $C \xrightarrow{\sim} \boldsymbol{A}^{1}$. By the imbedding theorem of \boldsymbol{A}^{1} due to Abhyankar and Moh [1], we know that $S \cong \boldsymbol{A}^{1} \times G_{m}$, which implies that $\bar{\kappa}(S)=-\infty$.

Accordingly, we conclude that $\bar{\Phi}_{g}(S)=1$ and $\bar{\kappa}(S)=0$. Applying Proposition 24 , we have an irreducible curve C_{3} such that $\boldsymbol{P}^{2}-C_{1} \cup C_{2} \cup C_{3} \cong \boldsymbol{C}^{* 2}$, where $C_{1}=\boldsymbol{P}^{2}-\boldsymbol{A}^{2}$ and $C_{2}=\bar{C}$. Since $\bar{P}_{g}\left(S-C_{3}\right)=1, C_{2}$ or C_{3} has only cuspidal singularities. We may assume that C_{3} has only cuspidal singularities. Hence, applying Kawamata's Theorem and Abhyankar and Moh Theorem, we can assume that $A^{2} \cap C_{3}$ is $V(x)$, i.e., the y-axis of the affine plane. Therefore

$$
\operatorname{Spec} k\left[x, y, x^{-1}, \varphi^{-1}\right] \cong \boldsymbol{C}^{* 2}
$$

From this it follows that $y \in k\left[x, y, x^{-1}, \varphi^{-1}\right]=k\left[x, \varphi, x^{-1}, \varphi^{-1}\right]$. Hence

$$
y=f(x, \varphi) / x^{m} \varphi^{n}
$$

where, $m, n>0$ and $f(x, Y)$ is a polynomial. Then consider the y-derivative $\partial_{y}=\partial / \partial_{y}$. Thus,

$$
x^{m} \varphi^{n}+n x^{m} \varphi^{n-1} \partial_{y} \varphi=\partial_{Y} f(x, \varphi) \partial_{y} \varphi .
$$

Hence,

$$
x^{m} \varphi^{n}=\partial_{y} \varphi\left\{\partial_{Y} f(x, \varphi)-n x^{m} \varphi^{n-1}\right\}
$$

Since φ is irreducible, $\partial_{y} \varphi=\alpha x^{l}$ for some $\alpha \neq 0, l \geqq 0$. This yields that $\varphi=$ $\psi(x)+\alpha x^{l} y, \psi$ being a polynomial. We may assume $\alpha=1$ and hence

$$
\varphi=x^{l} y+a_{0}+a_{1} x+\cdots+a_{s} x^{s} .
$$

In the above, we may assume that $a_{0}=1$ and $a_{s} \neq 0$. We have the following cases: 1) If $l+1 \geqq s$, then writing $C_{1} \cap C_{2}=\left\{p_{1}, p_{2}\right\}, C_{2}$ has the cusp singularity

at p_{1} and $C_{1}+C_{2}$ has normal crossings at p_{2}. 2) If $2+l \leqq s$, then C_{2} has two (analytically irreducible) branches at p, the singular point of C_{2}. Hence $\boldsymbol{P}^{2}-C_{2}$ is a logarithmic $K 3$ surface of type II_{b}.

Proposition 26. If S satisfies that $\bar{\kappa}(S)=0, \bar{p}_{g}(S)=1$ and $p_{g}(\bar{S})=0$. Then there exists an algebraic pencil $\left\{C_{u}\right\}$ whose general member C_{u} is C^{*}. Hence S is not measure-hyperbolic.

This follows from Corollary to Proposition 24 and Propositions 9, 21.
Proposition 27. Let (\bar{S}, D) he a ∂-surface in the TABLE I_{b}. Define $\operatorname{Aut}(\bar{S}, D)=\{\varphi \in \operatorname{Aut}(\bar{S}) ; \varphi D=D\}$. Then $\operatorname{Aut}(\bar{S}, D)$ is a finite group if $\bar{q}(S)=0$.

Proof. First assume that (\bar{S}, D) is the class b-ix). A point p of inflexion of D (a nodal cubic curve), is characterized by the existence of a line L on \boldsymbol{P}^{2} such that $L \cap D=\{p\}$. There are three such points. Hence $\varphi \in \operatorname{Aut}(\bar{S}, D)$ preserves the set of points of inflexion. Therefore the image of the homomorphism $\operatorname{Aut}(S, D) \rightarrow \operatorname{Aut}(D)$ is a finite group. Using the similar argument to the proof of Proposition 11, we complete the proof. We can check the finiteness of $\operatorname{Aut}(\bar{S}, D)$ for the other classes.
Q.E.D.

From the above, we infer the following Proposition, whose proof is not given here.

Proposition 28. Let S be a logarithmic $K 3$ surface. Then, Aut (S) has at most countably many elements.

University of Tokyo

References

[1] S. Abhyankar and T.T. Moh: Embedding of the line in the plane, J. Reine Angew. Math. 276 (1975), 148-166.
[2] M.F. Ativah: Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (27) (1957), 414-452.
[3] P. Deligne: Théorie de Hodge II. Publ. Math. I.H.E.S. 40 (1971), 5-57.
[4] S. Iitaka: Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo 23 (1976), 525-544.
[5] S. Iitaka: On logarithmic Kodaira dimension of algebraic varieties, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, (1977), 175-189.
[6] -: Some applications of logarithmic Kodaira dimension, Proc. Int. Symp. Algebraic Geometry, Kyoto, (1978), 185-206.
[7] -: On the Diophantine equation $\varphi(X, Y)=\varphi(x, y)$, J. Reine Angew. Math. 298 (1978), 43-52.
[8] -: Finiteness property for weakly proper birational maps, J. Fac. Sci. Univ. Tokyo 24 (1977), 491-502.
[9] —: Classification of algebraic varieties, Proc. Japan Acad. 53 (1977), 103105.
[10] : A numerical characterization of quasi-abelian surfaces, Nagoya J. Math. 73 (1973), 99-115.
[11] —: Structure of logarithmic K3 surfaces, Proc. Japan Acad. 54 (1978), 49-51.
[12] —: Minimal models in proper birational geometry, Tokyo J. Math. 2 (1979), 29-45.
[13] -: Minimal circular boundaries and classification of algebraic surfaces (in Japanese), Proc. Symp. Algebraic Geometry, Kinosaki, (1978), 1-99.
[14] ——: On Kodaira dimension of graphs, Proc. Japan Acad. 54 (1978), 128-132.
[15] -: Virtual singularity theorem and logarithmic bigenus theorem, preprint.
[16] Y. Kawamata: Addition theorem of logarithmic Kodiara dimension for morphisms of relative dimension one, Proc. Int. Symp. Algebraic Geometry, Kyoto, 1977.
[17] -: Deformations of compact compactifiable manifolds, Math. Ann. 235 (1978), 247-265.
[18] -: Classification of non-complete algebraic surfaces, Proc. Japan Acad. 54 (1978), 133-135.
[19] F. Sakai: Kodaira dimensions of complements of divisors, Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, (1977), 239-257.
[20] -: On logarithmic canonical mappings of algebraic surfaces of general type, to appear.
[21] T. Suwa: On ruled surfaces of genus 1, J. Math. Soc. Japan 21 (1969), 293-311.
[22] I. Wakabayashi: On logarithmic Kodaira dimension of a complement of a curve in \boldsymbol{P}^{2}, Proc. Japan Acad. 54 (1978), 157-162.

