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ORDER OF LIOUVILLIAN ELEMENTS SATISFYING
AN ALGEBRAIC DIFFERENTIAL EQUATION

OF THE FIRST ORDER
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0. Introduction. Let k be an algebraically closed ordinary differential
field of characteristic 0, and Ω be a universal extension of k. A finite chain of
extending differential subfields k=L0c:L1c: c:Ln in Ω is called a Liouville
chain over k if the following two conditions are satisfied:

(i) The field of constants of Ln is &0, where k0 is the field of constants of k\
(ii) For each /(I ̂ zf£n) there exists a finite system of elements wly w2j ywr

of L{ which satisfies the following two conditions; either w'^L^i or w//«0y *s

the derivative of an element of L^i for each j (1^/^Sr), L{ is an algebraic

extension of L^ι(w^ w2> •"> wr) °f finite degree.
Let % be an elemen of Ω. Then, # is .called a tliouvillian element over &

if there exists a Liouville chain over k such that its end contains z. The follow-
ing definition is due to Liouville [2] (cf. [8, p. lllj):

DEFINITION. A liouvillian element z over k is said to be of order m if m
is the minimum of those n such that the end of a Liouville chain L0c cLΛ

over k contains z.

Let F be an algebraically irreducible element of the first order of the dif-
ferential polynomial algebra k{u} in a single indeterminate u over k. Suppose
that z is a solution of jP=0. Then, z is a generic point of the general solution
of jF=0 over k if and only if z is transcendental over k. Suppose that two
liouvillian elements over k satisfy F=0 and that they are transcendental over k.
Then, their orders are the same.

Theorem. The order of a liouvillian element over k satisfying F=Q is at
most three.

For example, suppose that k is the algebraic closure of kQ(x) with x'=\

and that F=u'—au\x, where a^k0. Then, any non-trivial solution of jF=0
is of the second order if a is not a rational number (cf. Liouville [2, pp. 94-98]).

REMARK 1. If we replace "liouvillian" by "generalized elementary" and
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modify the definition of "order" to fit the replacement, then a similar result to
our theorem can be derived from a theorem of Singer (cf. [7], [6, Theorem 1]).

In order to prove our theorem we shall prepare several lemmas: Suppose
that y is a generic point of the general solution of F=0 over k. Then, k(y,y')

is a one-dimensional algebraic function field over k with F(yy y')=Q. The
following lemma is due to the author [3]:

Lemma 1. Suppose that vP(τ')?£Q for every prime divisor P of k(y, y f ) ,
where vp is the normalized valuation belonging to P and r is a prime element in P.

Then, the order of any liouvίllian element over k satisfying F=0 is 0.

Let k* be a differential subfield of Ω containing k such that k* is finitely
generated over k and the field of constants of ft* is ft0, and η be a generic point
of the general solution of F=0 over k*:

Lemma 2. Suppose that there exists a lίouvillian element z over k satisfying
F—Q whose order is not 0. Then, we have such k* that z is algebraic over k* and
that

( 1 ) k*(η, ηf) contains a transcendental constant over ft*.

Lemma 3. Suppose that the condition (1) is satisfied by some ft* and that
z/p(τ/)>0 for some prime divisor P of k(y, y'). Then, there exists in k(η, ηf) a
transcendental element φ over ft such that φ'=aφ-\-b, where a, ieft.

Lemmas 2, 3 and Theorem will be proved in the sections 1, 3 and 4 respec-
tively. In the section 2 we shall show the following:

Proposition. Suppose that some ft* has the property (1). Then, in the
algebiaic closure of ft* there exists a lίouvillian extension ft* of ft such that k\ηy ηf)
has a transcendental constant over ft*, if and only ifvP(τ')>Qfor some prime divisor

Pofk(y,y').

REMARK 2. Suppose that ft is the algebraic closure of k0(x) with x'=l

and that

F = u'-aulx-\l(\+x), αeΞft 0 .

Then, any solution of .F=0 is of the third order if a is not a rational number.
This remark is due to M. Matsuda.

REMARK 3. The following theorem due to Rosenlicht [5] can be derived
from Lemma 3: Assume that ft=ft0 and F=u'—f(u), where/eft(w). Then,
the condition (1) is satisfied by some ft* if and only if we are in one of the follow-
ing three cases: /=0, l/f=dg/du, ^lf=c(dg/du)/g with g^k(u) and
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1. Proof of Lemma 2. There exist in Ω an element t and a differential
subfield kι containing k which satisfy the following conditions: kι is finitely
generated over k] either £' or t'/t^kι; the field of constants of kι(t) is ft0; z is
transcendental over kι and algebraic over k^t). Let us set k*=kl(i). Then,
η is a generic differential specialization of z over kι. Hence, there exists an
element u of Ω such that (ηy u) is a generic differential specialization of (z, t)
over kι. We have either u'^ki or u'\u^kly and η is algebraic over k*(u).
Since η is transcendental over ft*, u is transcendental over ft*. Either u—t or
u\t is a transcendental constant over ft*. Hence, ft*(??, 17') contains a trans-
cendental constant over ft*, since u is algebraic over k*(η, ηf).

2. Proof of Proposition. Firstly we shall prove the "only if" part. By
the assumption there exists in k*(η, ηr) a transcendental constant c over ft*.
The solution η of F= 0 is algebraic over k*(c) Since ft* is a liouvillian ex-
tension of ft, η is a weakly liouvillian element over ft Hence, z^P(τ/)>0 for
some prime divisor P of k(y, y') (cf. [3]).

Secondly we shall prove the "if" part. By the assumption there exists
such a prime divisor P of k(η, η' ) that z>P(τ')>0. As τ we can take an element
of k(η, η'}. In the completion of k(η η') with respect to P we have

(2) τ' = 2V, l^i<oo,i,e*.

Let ft2 denote the algebraic closure of ft* in Ω. Then, there exists uniquely a
prime divisor Q of k2(η, ΎJ') such that the restriction of v% to k(η, ηr) is vp> where
z>$ is the normalized valuation belonging to Q. In this Q, r is a prime element.
In the completion of ft2(??, ??') with respect to Q we have

(3) 7,ιj'eΛ((τ)),

because τ^k(η, η'}. There exists in ft2(^, V) a transcendental constant c over
ft2 by the assumption (1). Since c~l is a constant, we may assume that

( 4 ) c = Σ V ,

Differentiating both sides we have

0 = c' = ΣίT/T'

Hence, for each i (θ5Ξί<°°)

5 •yί+ήΆ+Σ'y- +i = o
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by (2). For i=0 we have 70=0 and γ0eΛ. There is a positive integer m
such that 7,=0 for each i(l^i<m) and 7mφO, because c&k. We have

Let δ be a root of δw=γw. Then, 8f+b1S=0. For each i(m<i<oo) let us

define an element u{ of k2 by tγi=uiS
t. Then,

and

u'i<ΞLk(δy um+1, -,^-1),

by (5). Since c^k2(η, 17'), we have

( 6 ) * = S(>7, *')/IX*) , (5, Γ)= 1, deg,'S<deg/F ,

where ιS(F, Z) and T(Y) are polynomials over k2:

T=

Let L and M denote

and

respectively. We shall prove that

(7) L=M.

For each n (0^n<oo) we have

by (3), (4) and (6), where φn is a rational function of F, y (Q^i^
and Z, (0^/^r) over k. Hence, LcM. Take an algebraic automorphism σ

of k2 over L. Let S0" and Tσ be the polynomials obtained from S and Γ
respectively by operating σ on each of their coefficients. Then, we have

SW)/Π*) = Σ ΎnT" = S(η, rtlTfr), 0^n<oo,

since each of 7n(OfS«<o°) is left invariant by σ. Hence, each of atj(Q^*i^p,

Q^j^ q) and yS, (0^/^r) is left invariant by σ, and it is an element of L.
Thus, we have (7). There exists a positive integer e such that L=k(fγQί •••, γ,).
As Λ* we can take L(δ).



ORDER OF LIOUVILLIAN ELEMXNHS 671

3. Proof of Lemma 3. We may assume that the field of constants of

k(*}> V) is ^o: For, in the contrary case a transcendental constant of k(η, η')
over k can be taken as φ. By the discussions of the previous section, there

exists such an extending chain Λ=JV_1cΛ/0cJV1c cΛ/'n of differential sub-
fields of the algebraic closure k2 of ft* in ίl that satisfies the following three

conditions:
(iii) Each of the fields of constants of Nn_ι(η, τjf) and Nn is kQ\
(iv) the field of constants of Nn(η, η') is not kQ

(v) there exist elements ί0, •••, tn of k2 which satisfy the following conditions;
for each i(Q<i^ri), N—N^ti) and t^N^] NQ=k(t0) and t'^bj^ b^k.
We may assume that t{ is transcendental over N^i for each i (l^i^n): For,

t^Nf^i if tι is algebraic over N^I.
Firstly suppose that n is positive. By the induction on / we shall prove

that for each i (0<z^77) there exists in Nn,i(n> η') a transcendental element Φn_,

over Nn_i such that the derivative of Φn_ f is an element of ΛΓn_ f. By (iii) and (iv)

our statement is true for ί=l, because Nn=Nn.1(tn) and tfeNΛ-ι. Suppose

that our statement is true for i (l^/<n). For convenience let us represent ΦM_ f

by Φ, tn_i by ί, NΛ^^ι(η9 η') by H and NΛ.^ι by M respectively. Then, t
is transcendental over H: For, in the contrary case Φ is algebraic over M(ί)\
this contradicts our assumption that Φ is transcendental over Nn^. Since
Φ^H(t)y we have

Φ = S/R, (S, R)=l, S, ReH[t] 9

here the coefficient of the highest degree in R is assumed to be 1. We shall
prove that R^M[i\. Let P. run over all irreducible factors of R in which the
coefficient of the highest degree is 1. Then,

here,

(8)

Since ί'eM, we have

deg (Q'jP>)i-\jQ}Pfr^)<2\ί deg P,,

by (8). Suppose that some Py is not an element of M[t\. Then,

because Φ'eM(£). This contradicts our assumption that the field of constants

of H(t) is k0. Hence, PyeΛfLf] for each/. Thus, we have ReM[t] and

(9) S'R-SR'ς=M[t].
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Since ΦφM(ί), we have S$M[f\. Set

Then, there exists an integer j (O^j^m) such that s^M if i>j
We have s^M by (9). Since the field of constants of H is kQ, s. is transcen-
dental over M. Hence, Sj can be taken as Φn-f_ι. Thus, the induction is
completed. In particular, for i=n there exists in N0(η, 37') a transcendental
element Φ0 over N0 such that ΦζGN0. We are in one of the following two
cases: In the first case t^k\ we have ΦQ^k(η, η'), Φ'0^k and ΦQ$k. In
this case Φ0 can be taken as φ. In the second case tQ$.k\ let us set i=n in the
above induction on i. Then, we have an element Sj of k(η, 17') such that

r=deg#,

because £'=iι/£, b^k. Hence, s. can be taken as φ in this case.
Secondly suppose that n=Q. Then, t0 is transcendental over k(η, η').

By our assumption there exists in k(tQy ηy -η') a transcendental constant over
k(η, 97'). Hence, in k(η, η') we have a nontrivial solution φ of φ'=hb1φ for

some positive integer A, because £0=^1*0 with b^k. Since the field of constants
of k(t0) is kQ, φ is transcendental over k.

4. Proof of Theorem. By Lemmas 1, 2 and 3 it is sufficient to prove
the following: Suppose that k(y> y') contains a transcendental element φ
over k such that φ'=aφ-\-b, a, b^k. Then, any liouvillian element over k
satisfying jF=0 is at most of the third order. We may set

Let Γ be the set of all solutions of F=0 contained in k. Firstly assume that Γ
is infinite. In this case we shall prove that k(y, yf) contains a transcendental
constant over k and hence any liouvillian element over k satisfying F=0 is of
order 0. There exists an element/ of k{u} satisfying J(y, y', « )ΦO such
that any differential specialization w of y over k with /(«;, w'y * )ΦO can be
extended to a differential specialization (w, φ0) of (y, φ) over k(cf. Ritt [4],
Koichin [1, p. 928]). Since Γ is infinite, there exists an element w of Γ such
that J(w, w', •••JΦO and P(w)Φθ. Let (w, φ0) be a differential specialization of

(y> Φ) over k. Then, φo=flφ0+*, and φ0^k. Set Λ/r=φ— φ0. Then, ^'=a^.
In a similar way to the above we have an element Λ/ΓO of k satisfying ψo=αψ0

and ι/r0Φθ. The element ψ / ψ o °f ^Cx> j') ^s a transcendental constant over &.
Secondly assume that Γ is finite. Take elements A, t of Ω such that A'=a,
t'=at and ίΦθ. Let Λ be the prime differential ideal in k{zl9 z2> %3> %*} whose
generic zero over k is (A, ί, φ, y). We define an element T of k[z2, #4] by
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Then, Γ$Λ. There exists a zero (^40, ί0, φ0, j;0) of Λ such that Γ(ί0, ;y0) Φθ
and the field of constants of k(A0, ί0, φ0, yoy is kQ (cf. Kolchin [1]). We have

Al=a, ΐ'o=aΐ0, *0ΦO, (φ0/*oj'=*/*o. F(y0, y{)=0 and j;0φΓ. The element y0

is transcendental over k and algebraic over k(φQ). Hence, y0 is a liouvillian

element over k whose order is not 0 and at most 3.
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