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0. Introduction. Let & be an algebraically closed ordinary differential
field of characteristic 0, and Q be a universal extension of k. A finite chain of
extending differential subfields k=L,CL,C---CL, in Q is called a Liouville
chain over k if the following two conditions are satisfied:

(i) The fieid of constants of L, is k,, where k, is the field of constants of k;

(i) For each #(1=7=<n) there exists a finite system of elements w,, w,, -+, w,
of L; which satisfies the following two conditions; either w;EL;_, or wjw; is
the derivative of an element of L; , for each j (1<j=<r), L; 1s an algebraic
extension of L, _,(w,, w,, -+, w,) of finite degree.

Let 2 be an elemen of Q. Then, 2 is .called a liouvillian element over &
if there exists a Liouville chain over & such that its end contains 2. 'The follow-
ing definition is due to Liouville [2] (cf. [8, p. 111)):

DEerFINITION. A liouvillian element 2 over k is said to be of order m if m
is the minimum of those # such that the end of a Liouville chain L,C-.-CL,
over k contains 2.

Let F be an algebraically irreducible element of the first order of the dif-
ferential polynomial algebra k{u} in a single indeterminate # over k. Suppose
that z is a solution of F=0. Then, 2 is a generic point of the general solution
of F=0 over k if and only if 2 is transcendental over k. Suppose that two
liouvillian elements over & satisfy F=0 and that they are transcendental over k.
Then, their orders are the same.

Theorem. The order of a liouvillian element over k satisfying F=O0 is at
most three.

For example, suppose that k is the algebraic closure of ky(x) with »'=1
and that F=u'—qu[x, where a =k, Then, any non-trivial solution of F=0
is of the second order if ¢ is not a rational number (cf. Liouville [2, pp. 94-98]).

Remark 1. If we replace “liouvillian” by “generalized elementary” and
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modify the definition of “order” to fit the replacement, then a simular result to
our theorem can be derived from a theorem of Singer (cf. [7], [6, Theorem 1]).

In order to prove our theorem we shall prepare several lemmas: Suppose
that y is a generic point of the general solution of F=0 over k. Then, k(y, y’)
is a one-dimensional algebraic function field over k& with F(y, y')=0. The
following lemma is due to the author [3]:

Lemma 1. Suppose that vp(t')<0 for every prime divisor P of k(y, y'),
where vp is the normalized valuation belonging to P and T is a prime e’ement in P.
Then, the order of any liouvillian element over k satisfying F=0 is 0.

Let k* be a differential subfield of Q containing & such that k* is finitely
generated over k and the field of constants of k* is k,, and # be a generic point
of the general solution of F=0 over k*:

Lemma 2. Suppose that there exists a liouvillian element 2 over k satisfying
F=0 whose order is not 0. Then, we have such k* that z is algebraic over k* and
that

(1) k*(n, 1) contains a transcendental constant over k* .

Lemma 3. Suppose that the condition (1) is satisfied by some k* and that
vp(1")>0 for some prime divisor P of k(y, y'). Then, there exists in k(n, 7") a
transcendental element ¢ over k such that ¢'=adp+b, where a, bEk.

Lemmas 2, 3 and Theorem will be proved in the sections 1,3 and 4 respec-
tively. In the section 2 we shall show the following:

Proposition. Suppose that some k* has the property (1). Then, in the
algebiaic closure of k* there exists a liouvillian extension k* of k such that k¥(n, n')
has a transcendental constant over K, if and only if vp(7") >0 for some prime divisor

P of k(y, y").

ReEMARK 2. Suppose that k is the algebraic closure of ky(x) with x'=1
and that

F =u'—aulx—1/(1+x), aEk,.
Then, any solution of F=0 is of the third order if & is not a rational number.

This remark is due to M. Matsuda.

RemMarRk 3. The following theorem due to Rosenlicht [5] can be derived
from Lemma 3: Assume that A=k, and F=u'—f(u), where fEk(u). Then,
the condition (1) is satisfied by some k* if and only if we are in one of the follow-
ing three cases: f=0, 1/f=0g/0u, 1/f=c(0g/0u)/g with g=k(u) and cck.
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1. Proof of Lemma 2. There exist in Q an element ¢ and a differential
subfield %, containing & which satisfy the following conditions: &, is finitely
generated over k; either ¢’ or ¢'[tEk,; the field of constants of &(2) is ky; = 18
transcendental over k; and algebraic over ky(f). Let us set k*=k, (). Then,
7 is a generic differential specialization of 2 over k. Hence, there exists an
element u of Q such that (7, #) is a generic differential specialization of (2, )
over k.. We have either u'€k, or u'/luck,, and 7 is algebraic over k*(u).
Since 7 is transcendental over k*, u is transcendental over k*. Either u—t¢ or
ult is a transcendental constant over k*. Hence, k*(», #’) contains a trans-
cendental constant over k*, since u is algebraic over k*(n, 7).

2. Proof of Proposition. Firstly we shall prove the “only if” part. By
the assumption there exists in k¥(n, ") a transcendental constant ¢ over A%
The solution 7 of F=0 is algebraic over k¥c). Since k* is a liouvillian ex-
tension of k, » is a weakly liouvillian element over & Hence, v(7/)>0 for
some prime divisor P of k(y, y") (cf. [3]).

Secondly we shall prove the “if” part. By the assumption there exists
such a prime divisor P of k(%, 7") that vp(7')>0. As T we can take an element
of k(», 7"). In the completion of k(7 7") with respect to P we have

(2) T,=2b,'-ri, 1§i<°°, b,'Eko

Let k, denote the algebraic closure of k* in ). Then, there exists uniquely a
prime divisor Q of ky(7, 7") such that the restriction of v} to k(x, %") is vp, where
v} is the normalized valuation belonging to Q. In this Q, 7 is a prime element.
In the completion of k,(7, »") with respect to QO we have

(3) 7, 7' €k((7))

because T€k(n, ). There exists in &y(7, ') a transcendental constant ¢ over
k, by the assumption (1). Since ¢™! is a constant, we may assume that
v§(c)20;

(4) c=Sy, 0<i<oo, v,Ek,.
Differentiating both sides we have

0=c = SN yirtivsr), 0=<i<oo.
Hence, for each 7 (0=7 < )
(5) i+ +2 b =0 (0<j<i)
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by (2). For i=0 we have ¥{=0 and y,&k. There is a positive integer m
such that v;=0 for each 7 (1<i<m) and 7,70, because c&k. We have

Vmtm¥ub=0.

Let & be a root of §"=v,. Then, §'+58=0. For each {(m<i< ) let us
define an element u; of k, by v;=u;8'. Then,

vidivh =uld, m<i<oo,
and
U ER(S, Upiry *+*y Uin1) m<i < oo
by (5). Since c&ky(n, 7"), we have
(6) e= 8, 7)[T(), (S, T)=1, deg,/S<deg,F,
where S(Y, Z) and T(Y) are polynomials over k;:
S=Na;Y'Z (0<i<p,0<j=<q), a,;Ek,,
r=x8Y (0=i=n), B, =1, B:iEk,.
Let L and M denote
E(Yor V1, % Ty ++), 0=m< 0
and
R(0tony *+* @ijs +*3 Qg3 Bor 5 By)y  0=i=p, 0=j=¢
respectively. We shall prove that
(7) L=M.

For each n (0=n< o) we have

Vn = ¢n(a00) Sty Uijy o0ty Oygs Bo: ) Br)

by (3), (4) and (6), where ¢, is a rational function of Y;; (0=i<p, 0=7=¢q)
and Z; (0=7=7) over k. Hence, LCM. Take an algebraic automorphism o
of k, over L. Let S” and T° be the polynomials obtained from S and T
respectively by operating o on each of their coefficients. Then, we have

S 0n")|T"(n) = 277" = S(n, 7)[T(n), ~ 0=n<oo,

since each of v,(0=<n< o) is left invariant by . Hence, each of &, ;(0=7 = p,
0=j=¢) and B,(0=<i=r) is left invariant by o, and it is an element of L.
Thus, we have (7). There exists a positive integer e such that L=~k(v,, +-*, 7,).
As k* we can take L(3).
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3. Proof of Lemma 3. We may assume that the field of constants of
k(n, ") is ky: For, in the contrary case a transcendental constant of k(%, 7’)
over k can be taken as ¢. By the discussions of the previous section, there
exists such an extending chain k=N_,CN,CN,C.--CN, of differential sub-
fields of the algebraic closure k, of k* in Q that satisfies the following three
conditions:

(iii) Each of the fields of constants of N,_,(», 7") and N, is ky;

(iv) the field of constants of N,(n, #") is not k,;

(v) there exist elements #,, -+, , of k, which satisfy the following conditions;
for each {(0<i=<n), N;=N,_,(t;) and t!=N,_;; Ny=k(t,) and {=bt,, b,Ek.
We may assume that #; is transcendental over N;_; for each 7 (1=i=<n): For,
t,eN;_, if t; is algebraic over N;_,.

Firstly suppose that # is positive. By the induction on 7 we shall prove
that for each 7 (0 <7=mn) there exists in N,_,(7, 7") a transcendental element ®,_;
over N,_; such that the derivative of ®,_; is an element of N,_;. By (iii) and (iv)
our statement is true for i=1, because N,=N,_,(¢,) and t;,€N,_,. Suppose
that our statement is true for ¢ (1=7<#). For convenience let us represent ®,_;
by &, t,_; by t, N,_;_(n,7') by H and N,_;_, by M respectively. Then, ¢
is transcendental over H: For, in the contrary case @ is algebraic over M(f);
this contradicts our assumption that & is transcendental over N,_;. Since
D H(t), we have

®=SR, (S,R)=1, S, ReH[f];

here the coefficient of the highest degree in R is assumed to be 1. We shall
prove that REM[t]. Let P, run over all irreducible factors of R in which the
coefficient of the highest degree is 1. Then,

@ = U_I—EQJ/P}’ (1§]§p), U, Qp P,EH[t];
here,

(8) deg Q;<x;degP,, 1=j=Zp.
Since t'€ M, we have
deg (Q;P}i—N,Q,P}i'P)<2n;deg P, ISj=sp
by (8). Suppose that some P, is not an element of M[t]. Then,
(Q,/P}y =0,

because ®'M(t). This contradicts our assumption that the field of constants
of H(t) is k,. Hence, P,&M{] for each j. Thus, we have RE M[t] and

(9) S'R—SR'eM[1].
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Since @& M(t), we have S M[t]. Set
S = sy+-st++-Fs,t" s;€H, s,*0.

Then, there exists an integer j (0= j=<m) such that ;&M if i>j and s,&¢ M.
We have s)&M by (9). Since the field of constants of H is k,, s, is transcen-
dental over M. Hence, s; can be taken as @, ; ;. Thus, the induction is
completed. In particular, for 7=n there exists in Ny(7, #') a transcendental
element ®, over N, such that ®/N,. We are in one of the following two
cases: In the first case t,€k; we have ®,Ek(n, 7'), Dtk and P,k In
this case @, can be taken as ¢. In the second case f,&k; let us set i=n in the
above induction on 7. Then, we have an element s, of k(n, 7) such that
s;&k and

Si+(j—n)bs,Ek, r=degR,

because t'=b,[t, by=k. Hence, s ; can be taken as ¢ in this case.

Secondly suppose that n=0. Then, #, is transcendental over k(», 7’).
By our assumption there exists in k(%, 7, 7') a transcendental constant over
k(n, 7"). Hence, in k(n, n) we have a nontrivial solution ¢ of ¢'=hb¢p for
some positive integer &, because #{=>5,, with b;k. Since the field of constants
of k(t,) is ky, ¢ is transcendental over k.

4. Proof of Theorem. By Lemmas 1, 2 and 3 it is sufficient to prove
the following: Suppose that k(y, y’) contains a transcendental element ¢
over k such that ¢'=a¢+b, a, bk. Then, any liouvillian element over &
satisfying F=0 is at most of the third order. We may set

=00, y)P©»), P Qkiu}.

Let T" be the set of all solutions of F=0 contained in k. Firstly assume that T’
is infinite. In this case we shall prove that k(y, y’) contains a transcendental
constant over k and hence any liouvillian element over % satisfying F=0 is of
order 0. There exists an element J of k{u} satisfying J(y, y', --+)=%0 such
that any differential specialization w of y over k& with J(w, w’, +)3=0 can be
extended to a differential specialization (w, ¢,) of (v, ¢) over k(cf. Ritt [4],
Koichin [1, p. 928]). Since I' is infinite, there exists an element w of T such
that J(w, w’, -++)4=0 and P(w)=0. Let (w, ¢,) be a differential specialization of
(3, ) over k. Then, pt=ad,+b, and p,=k. Set yr=¢—¢,. Then, '=ay.
In a similar way to the above we have an element v, of k satisfying yJrj=a+r,
and Yry%0. The element 4/, of k(y, ¥') is a transcendental constant over k.
Secondly assume that T is finite. Take elements 4, ¢ of Q such that A’'=aq,
t'=at and t0. Let A be the prime differential ideal in k{2, 2,, 2, 2,} Whose
generic zero over k is (4, t, ¢, y). We define an element T of k[2,, 2,] by
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T =z, T1(z,—w), wel.

Then, T A. There exists a zero (4y, %, do, ¥o) of A such that T(¢,, y,)+0
and the field of constants of k{A,, #,, ¢y, ¥, is k, (cf. Kolchin [1]). We have
Ai=a, ti=at,, 1,30, (po/ty)’=b/ty, F(yo, y5)=0 and y,eT. The element y,
is transcendental over & and algebraic over k(¢,). Hence, y, is a liouvillian
element over k& whose order is not 0 and at most 3.
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