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Introduction. P. Lelong has introduced the notion of positivity in the

space of currents(1) on a complex manifold M. Given an irreducible analytic
set V in M, he showed that V defines a closed positive current [V] by integrating
forms on the regular points of V. Such a current as \V\ is now called an an-

alytic cycle. Thus he has enabled us to study some properties of analytic sets

from the view point of real analysis ([5]). Then using geometric measure

theory of H. Federer ([!]), J. King proved his characterization theorem of an-
alytic cycles among closed positive currents on M ([4]). Since then, many
interesting results have been obtained on closed positive currents. For the

detail we refer readers to the excellent survey article by R. Harvey ([2]).

On the other hand, D. Sullivan has introduced the notion of a cane structure

C on C°° manifold M, and that of C-structure currents in the space of currents on

M. He proved several general properties of C-structure currents with com-

pact support, and obtained beautiful applications to the study of leaves of foli-

ations on compact manifolds ([6]).

A complex manifold M has the natural cone structures Ck (£=1,2, •••) defined

by its almost complex structure and the notion of C^-structure currents is ex-

actly the same as that of positive currents of dimension k. Thus, as remarked

in [6], a cone structure C and C-structure currents generalize positive currents
on complex manifolds. However it seems to us that general properties of

C-structure currents have not been exploited so much as we would expect from

our knowledge on positive currents on complex manifolds. Therefore in

this paper we shall study cone structures and structure currents in more general

setting. For this purpose, first of all, we shall define our cone structures which

are more general than those defined in [6]. Namely in our definition of a cone

structure Ω, we only need a closedness of Ω, while the "continuity" of Ω is

necessary for the definition in [6]. Then closely following the case of com-

plex manifolds, we shall define the notion of Cl-positive currents^ and that of

(1) in the sense of G. de Rham.

(2) In conjunction with complex case, we prefer this terminology to that of a Ω-structure

current.
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Ω-sets which is an analogue of analytic set in complex case. In the last section,
we shall study their general properties.

Finally we should record our debt to papers [2] and [3] as well as to [6].

Several proofs adopted here are modifications of those given in [2]. The in-

teresting example guaranteed by Lemma 3-5 is just a slight change of φ-geo-

metries in [3], and our Theorem 5-6 is a minor generalization of Theorem in
[3].

1. Convex cones in vector spaces. Let V be a real vector space of finite
dimension. We write V* for its dual space. For a non empty convex cone Ω
in V, its dual cone Ω* is defined by

Ω*: == {a<ΞV*\ a(u)>0 for any

where Ω is the topological closure of Ω in V. Then the following is well
known ([7]).

Lemma 1-1. Let Ω be a non empty open convex cone in V.

(i) // Ω*Φ0, then Ω* is also an open convex cone and we have (Ω*)*=Ω. (ii)

We have Ω* φ 0 if and only if Ω contains no straight line.

We write {Ω} for the linear subspace of V spanned by Ω. Regarding Ω as a

subset of {Ω} , we write Ω° for the set of the interior points in Ω. Then Ω° is a
non empty open convex cone in {Ω} .

Lemma 1-2. Let Ω be a non empty convex cone in V.
(i) We have Ω*Φ0 if ar*d only if Ω° containsno straight line.

(ii) If Ω* φ 0, then we have

Ω* = {αe V*\ a(u)^Q for any u<=Ω}
= {a^V*\ a(u)^Q for any u<=Ω} .

(iii) If Ω*Φ 0, then we have

Ω = {u& V\ a(u)^Q for any

= {z/eF; a(u)^0 for any

Proof (3). Fixing an inner product ( , ) on F, we identify F* with V.

(i) Put Wl= {Ω} . We write W2 for the orthogonal complement of W±. Set

Ω 1: = {utΞW^ (u,v)>$ for any ϋeΠ,ϋ=t=0} .

Then Ω-1- is the dual cone of Ω° in Wlt A vector v=wl+w2(wl^ Wly w2^ W2) is
in Ω* if and only if w^Ω1-. Thus Ω*Φ0 if and only if Ω±Φ0. Thus our

assertion follows from (ii) of Lemma 1-1.
(ii) We will only have to show

(3) Especially (ii) and (iii) are well known.
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Ω*Z){αeF*;α(w)^0 for any u<=Ω} .

Take any v e V satisfying

(«Mθ^O for any u&Ω .

Choose any w^Ω*. Then for any £>0, we have v+tw^Ω*. Thus ^=li
t +o

(in) We will only have to show

ΩlDfyeF; a(u)^0 for any

Suppose a vector w=tt!+ί/2 (%
e ι̂> W2e ̂ 2) satisfies

(u9v)^0 for any z eΩ*.

Since Ω*= {vλ+v2\ v^Ω^ and ̂ 2^ ̂ }> we have (uly v)^0 for any v^Ω 1- and

z/2=0. From (ii) we have ^^(Ω-1-)*, where (Ω-1)* is the dual cone of Ωx in W^.

Since (ΩI-
L)*=ΩG from (i) of Lemma 1-1, we have M1eΩδ=Π. q.e.d.

2. Convex cones in vector bundles. Let M be a connected C°° manifold
of dimension m. Let TT: E-*M be a real vector bundle over M of fibre dimen-
sion r . For x^M, we write £", for the fibre of E over Λ . We write TT* : £*->M
for the dual vector bundle of E. By a convex cone in £", we mean a non empty
subset Ω of E such that for any x^M, ΩX:=ΩΠEX is a non empty convex
cone in Ex. Wen Ω is moreover closed (resp. open) in £", we call Ω a £/0ί£<f
(resp. 0/>ew) convex cone in £". We set

Ω*: = Π (Ω,)*.
*<=JC

Lemma 2-1. Suppose Ω is a closed convex cone in E. Then Ω* is an open
subset of E*.

Proof. Suppose Ω* were not open in 1?*. Then there exist αeΩ* and a

sequence {α;}CjE*— Ω* such that lim a^=a. Set Λ>=w*(α>) and 7r*(a)=tf.

Then we have lim x.=x. We may assume that there exists a compact subset

K with {#;.} C.K. Choose a fibre metric on E\κ and denote by S(E\K) its unit

sphere bundle. Since #;.$Ω*, there exists Uj^Ωx/ (= Ωx.) such that ||#y|| =
and α;(tty)^0. Since {u^ is in the compact subset Ω (Ί S(E \ JΓ), we may assume
{w;.} converges to weΩ. Then u^Ωx and α(w)=lim α/wy)^0. This is a con-

tradiction. q.e.d.

Corollary 2-2. Let Ω be a closed convex cone in E. Suppose Ω? :=(ΩΛ)* is
not empty for any x^M. Then Ω* is an open convex cone in E*.
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3. Cone structures. We write TM (resp. T*M) for the tangent (resp.
cotangent) bundle of M. For a point x^M, we write TXM (resp. Γ*M) for the
tangent (resp. cotangent) space of M at x. For a non negative integer k, set

/\kTM: = ΓMΛ ΛΓM (&-times)

and

(β-times) .

The fibre of /\kTM (resp. /\kTM) over x<=M is denoted by /\kTxM (resp.
/\kTxM). Thus Λ,7ykf (resp. f\kTxM) is the vector space of ^-vectors (resp.
β-covectors) of M at x We remark /\kTM is the dual bundle of /\kTM.

DEFINITION. By a cone structure of dimension k on M, we mean a closed
convex cone Ω in f\kTM satisfying one of the following mutually equivalent
conditions (cf. (i) of Lemma 1-2 and Corollary 2-2):

(3-1) Ω*: = Ω* Π ΛXMΦ0 /or any

(3-2) ΩΪ contains no straight line for any

(3-3) Ω* is an open convex cone in /\kTM.

A ^-dimensional oriented regular submanifold N of M is called an Ω-submanifold
if the following two conditions are satisfied:

(3-4) for each x^N, we have Λ kTxN Π ΩΛ= Zfo half line which defines
the orientation of N,

and

(3-5) N has a locally finite volume.

The following three examples are well known.

EXAMPLE 3-1. Let E be an involutive oriented k dimensional subbundle of
TM. For each x^M, set Ωx=the half line in /\kEx defining the orientation.
Then Ω: = U Ω, is a cone structure of dimension k on M. Then a closed

XGM

connected Ω-submanifold is nothing but a closed leaf with locally finite volume.

EXAMPLE 3-2. Let M be an m dimensional connected complex manifold,
and / the natural almost complex structure on M. For each #eM, we write
SPkk(TxM) for the closed convex cone in /\2kTxM generated by {t/iΛ/^Λ •••
Λ uk Λ Juk MJ, , uk <Ξ TXM} . Then SPkfk(M) : = U SP*,*( TJM) is a cone structure

of dimension 2k on M. A closed SPk ^(MJ-submanifold is exactly the same
as a non singular analytic set of pure dimension k (cf. [2]).

EXAMPLE 3-3. Let the notation be as in Example 3-2. Choose k and p
so that k+p=m. For each #eM, we write f\ktkTxM for the subspace of 2k-
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vectors of type (ky k) at x. Set

WPktk(TxM): = {«eΛM(ΪVM); u^v^SPm>m(TxM)

for any u^SPptP(TxM)} .

Then WPkk(M)= U WPkfk(TxM) is a cone structure of dimension 2k on M. We

have SPM(Λf)c WPk>k(M). A closed H/PM(M)-submanifold is also a SPk>k(M)-
submanifold.

The following example will show that our cone structure is more general
than those in [6].

EXAMPLE 3-4. For (x, y) e Λ2, set

if *>0

if *=0

if *<0.

Then Ω~ \J Ω(jc ) (disjoint) is a cone structure of dimension 1 on R2. This
(x.y^R2

Ω is not cone structure in the sense of [6], because Ω has no "continuity "-pro-
perty.

Fix a continuous Riemannian metric g on M. Then it definens the natural
norm \u\ on /\kTxM. Set

Gk(TxM): = {we /\kTxM\ \u\ = 1 and z/ is a simple vector).

For a Λ-covector αe /\kTxM, the comass ||α||* is defined by

α : = s u p α

For a ^-vector we /\kTxM, the /wαίί ||w|| is defined by

I N I : = sup{α(M);αeΛ*ΪVMand ||α||* = 1} ,

(cf. [1]). Now let φ be a nowhere zero continuous Λ-form on M. For each
, define ΩφtX by

Ωψ x: = the closed convex cone in /\kTxM generated by

and set Ωφ= U Ωψ x.
*€ΞJf

Lemma 3-5. ΓA^ notation being as above, Ωψ is a cone structure of dimension

k on M.

Proof. Let G?(TΛM)Λ be the closed convex closure of Gί(TxM] in Λ kTxM.

We remark that
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(3-6) G?(7Vlf)Λ = {«(= Λ*ΓΛM; \\u\\ = 1} ,

and that for a^/\kTxM, we have

(3-7) ||α||* = sup{a(z/); iieGi(7yif)A} .

Now G£(M)Λ:= U Gί(TxM)^ is a closed subset of Λ^

is continuous. Since Gk(TxM)Λ is compact, (3-7) implies that the mapping

is continuous. Therefore the subset

X: = {κeΞG?(M)Λ; φ(u) = Φ(u)}

is closed in G?(M)Λ and hence in /\kTM. Since

Ωψ = {au\ α>0 and we Jf} ,

Ωψ is a closed convex cone in /\kTM. For any u^XΓ\ f\kTxM) we have φ(w)

HIΦJI*>0. Therefore φ(u)>0 for any weΩΦ > x, WΦO. Thus Ωφ is a cone

structure of dimension k on M. q.e.α.

REMARK 3-6. (i) The cone structure Ωψ constructed as above is inspired

by the φ-geometry in [3]. In fact, in [3], the set Φ:= fy<ΞG*(M); φ(n)=||φ||*}

is considered, where ||φ||*=sup{||φj|*; x^M}. Therefore a φ-submanifold in

[3] is in particular an Ωφ-submanifold. In general the converse is not true.

(ii) Suppose M is a Kahler manifold with a Kahler form ω. Then the

cone structure Ωω* of dimension 2k defined as above is exactly thai of Example

3-2. This is a direct consequence of Wirtinger's Inequality (cf. [2]).

(iii) In general the definition of Ωψ depends upon the choice of a con-

tinuous Riemannian metric g on M. However a conformal change of g does

not affect Ωψ. Changing £ with ||φJ|*2/*£, we may assutme ||φj|*=l for any

4. Current.. In this section we fix some terminology from current theory

(e.g. [1]). We assume that M is a connected C°° manifold with a C° Riemannian

metric.

Let JCk(M) denote the real vector space of continuous Λ-forms with com-

pact support on M with the usual inducth e limit topology. Let Sf(M) be the

real vector space of C°° &-forms with compact support with the usual inductive

limit topology. The space <3)'k(M) of currents of dimension k on M is by definition

the topological dual space of 3)k(M). The topological dual space JC'k(M) of

JCk(M) is a subset of £Dί(M) and by definition the space of currents of dimension k
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representabk by integration.^
For Te JC£(M), the total variation measure \\T\\ is defined by

II7ΊK/): = sup {| Γ(φ)| φe^(M), ||φ,||*^/(*) for any

where /eJ£°(M),/^0. Then the following is well known (e.g. [1]).

Lemma 4-1. Let T^JC'k(M). Then there exists a \\T\\-measurable k-

vector field.

: #<ΞMι-» f\kTxM

satisfying the following three conditions:

(4-1) for any φe.2)*(M), we have

(x^ — limx~l™

for \\T\\ almost all x in M, where B(x, £) is the S-ball with center x and %β(*,ε) is its
characteristic function

(4-2) ||Γ(*)|| = 1 far \\T\\ almost all x in M;

and

(4-3) T(φ)=\Mφx(f(x))d\\T\\(x)

for any φζΞJCk(M).

Moreover if there exists another \\T\\-measurable k-vector field S satisfying
(4-1), (4-2) and (4-3), then

T(x) = S(x) for \\T\\ almost all x in M.

DEFINITION. Let ΓeJf^M) and T be the ^-vector field as in Lemma
— > — »

4-1. By abuse of language, we call T the density k-vector field of T.

5. Ω-positive currents. In this section we fix an w-dimensional con-
nected C°° manifold with a C° Riemannian metric g and a cone structure Ω

of dimension k on M.

DEFINITION. A A-form φ^^)k(M) is called Si-positive if φ(u)^0 for any
A current T^Φί(M) is called Si-positive if T(φ)^0 for any Ω-positive

EXAMPLE 5-1. Let N be an Ω-submanifold of M (cf. section 3). Define

(4) For any T^Kf

R(M)y using Riesz representation theorem, the domain of definition T can
be naturally extended to all bounded Borel measurable &-forms with compact support
(cf. 4-3).
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a current [N]e3)ί(M) by

for any β-form φ^3)k(M). Then [N] is Ω-positive. Moreover if N is closed,

then [N] is a closed current.

DEFINITION. A C°° &-form ω on M is called a Ω-transversal k-form (ac-

cording to [6]) if ω(w)>0 for any

Lemma 5—1. There exists an Ω-transversal k-form on M.

Proof. From Corollary 2-2, we know Ω* is an open convex cone in /\kTM.

Thus for each point x^M, there exist an open neighbourhood U and a C°°

&-form a on [/ such that a(u)>0 for any weΩ^ (y^U). Therefore there
exist a locally finite open covering {t/;} of M and C°° A-forms αy on t/y with
OC/M)>O for any u^Ωy (y^ t/;.). Let {p}} be a partition of unity subordinat-
ing to {U;}. Then ω=^ρ]aj is a Ω-transversal Λ-form q.e.d.

Theorem 5-1. // T is an Ω-positive current in 5)^(M), then T is represen-
table by integration (i.e., Γe JC'k(M)).

Proof. Choose x£ΞM arbitrarily and fix it. From Corollary 2-2, we

know Ω* is an open convex cone in /\kTM. Therefore if we choose a sufficient-

ly small open neighbourhood U of x, there exist Ω-positive Λ-forms φ1, •••,

φ1 e <3)k(M) such that {φj,, , φ^} is a basis for Λ k TyM for any y e U. Choosing
U sufficiently small, we may assume U is oriented. Then /\kTyM and /\m~kTyM
are dual to each other. Therefore, choosing U sufficiently small, there exist
(w-&)-forms θ\—,θleig)m-\M) such that {(9), --, θl

y} is the dual basis for

/\m~kTyM for any je U. On U, we can write T as

where TteΦ'0(U) (=3)'m(U)\ Then for any /e^°(C7) with /^0,/φ' is Ω-
J id

positive. So we have

= Tt(f) .

Therefore Γt is a positive Radom measure. Therefore Γl^e Jβ(t/). Since
# is arbitrary, we can prove T^JCί(M). q.e.d.

Theorem 5-2. Lέtf Γe JCί(M) and T the density k-vector field of T (cf.

section 4). Then T is Ω-positive if and only if T(x)^Ωx for \\T\\ almost all x in
M.

Proof. Suppose T is Ω-positive. Then for any Ω-positive k-form
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φe.2)*(Af), we have T(%β(jC)8)φ)^0. Thus (4-1) implies φx((x))^0 for any
Ω-positive Λ-form φ^3)k(M). Since Ω* is open in /\kTM, we see

(5-1) Ω* = {φ/, φ<Ξ$k(M) and Ω-positive}.

Therefore we have a(T(^))^0 for any αeΩ?. Then (iii) of Lemma 1-2 im-

plies ΪΠMeΠ^Ω,. The "if "-part is trivial. q.e.d.

Proposition 5-3. Let ΩP*(M) be the set of all Ω-positive currents in
<3)k(M). Then ΩP£(M) is a closed convex cone in «2)£(M), and contains no straight

line.

Proof. Let {T} be a sequence in ΩPjζ(M) such that lim T.=
1 /-><*>

with respect to the simple topology. Then for any Ω-positive &-form φ,
we have Γ(φ)=lim Γ.(φ)^0. Thus TeΩPjS(M). Clearly ΩP*'(M) is a

/•>«» '
convex cone. Suppose there existed SeΩP*(M) and T^S)'k(M) such that

{S+fΓ; ίeΛ} CΩP*'(M) .

Then we must have

(5-2) Γ(φ) = 0 for any Cl-posίtive k-form φ in

From Theorem 5-1, we know ΓeJC*(Λ/). Let T be the density A-vector field
of T. Then from (4-1) we know that for ||Γ| (-almost all x in M, we have

(5-3) Φ*(T(x)) = 0 for any Ω-positive k-form φ in 3f(M).

Since Ω? is open, (5-1) and (5-3) imply that T(x)=Q for ||Γ|| almost all x

in M. Then from (4-2) we can conclude that the support of ||Γ||=0. Thus

T=0. q.e.d.

Proposition 5-4. Let 6l(M) be the set of currents with compact Support on
M. Then fw any Ω-transversal k-form ω, the subset

A: =

is relatively compact in 3)'k(M).

Proof. It suffices to show that for any η^3f(M), {|T(^7)|; T<=A} is
bounded. Let K be the support of η. Set cκ: =inf {ω(w); weΩx, ||t/|| = l,

x^K} . Then cκ>Q. Take any T^A and write T for its density A-vector field
(cf. Theorem 5-1). Then we have
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£ sup |toJ
*e=ιε

On the other hand, we have

^ ( ωt(T(x))d\\T\\(x) ^ cκ\ d\\T\\ .
J K J KJ K

Therefore we see

sup 1 1??, 1 1*

for any Γe A. q.e.d.

DEFINITION. A closed subset X of M is called a Ω-subset if there exists an
open dense subset U of X such that

(5-4) U is a connected Ω-submanifold and the Hausdorff (k-Y)-dimensional
measure of X~ U is zero.

Then we define the current [X\<=3)'k(M) by [X]: = [U] (cf. Example 5-1).
This is independent of the particular choice of U satisfying (5-4).

Lemma 5-2. The current [X] is closed and Ω-positive.

Proof. It remains to show [X] is closed. We know the support of d\X\
is in X~ U. Since [X]=[U] is a locally flat current (cf. p. 316 in [2]), d[X] is
also a locally flat current of dimension (k-l). Then we know d[X]=Q, because
the Hausdorff (k-l)-dimensional measure of the support of d[X] is zero (cf.
4.1. [1]). q.e.d.

Lemma 5-3. Let T be an Ω-positive closed current. Suppose the suport of
Tis in an Ω-subset X. Then we have T=a[X] (α^

Proof. The proof goes similarly as in [2]. Since T is in JCί(M) and
dT=Q, T is a locally flat current of dimension k. Remark [X] is also a locally
flat current of dimension k. Set S= X~ U. Then U is a closed Ω-submanifold
in M~S and T \ υ is a closed locally flat current of dimension k with support in
U. Thus there exists a<=R with T\u=a[U] on M~S. Therefore T-a[X] is a
locally flat current of dimension k with support in S. Since the Hausdorff
Λ-dimensional measure of S is zero, we have T-a[X]=Q. Clearly a^Q. q.e.d.

Theorem 5-5. Let X be an Ω-subset. Then {a[X]\ a^ϋ} is an extreme
ray in the closed convex cone of Ω-positive closed currents.

Proof. The proof goes similarly as in [2j. Fix an Ω-transversal Λ-form
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ω on M (cf. Lemma 5-1). Let K be any compact subset of M. Let T^JC'k(M)

and T the density ^-vector field of T. Then we have

(5-5) T(Xκω)=\ ω,(Ί\x))d\\T\\(x)
J K

^ sup |K||*|miCS:) (cf. 4-2).

If T is moreover Ω-positive, then we have

(5-6) cκ\\T\\(K)

where cκ='mf {ω(u)\ u^Ωx, ||u|| = l, x^K} >0. From (5-5) and (5-6), we know
that for an Ω-positive current T,

(5-7) the support of T=ΐhe support of T/\ω.

Now suppose [X]=S+T where S, T are closed Ω-positive currents. Then
from (5-7), we have

the support of S = the upoort of S/\ ω

C the support of (S+ T)/\ω

= the support of [JP]Λω

= the support of [X].

From Lemma 5-3, we have S=a[X], a^O. q.e.d.

Theorem 5-6. Let φ be a nowhere zero closed k-form on M. Let g be a
C°-Riemannian metric on M such that 110,11*=! for any x^M(5\ Let T be a
closed Ωφ-positive current. Then T is homologically volume minimizing^.

Proof. Let T be the density ^-vector field of T. From Theorem 5-2,
we have

(5-8) T(x) e (ΩΦ), for 1 1 Γ| I almost all x in M.

On the other hand (3-6) and (4—2) imply

(5-9) T(x) e Gί (Γ,M)Λ for 1 1 T\ \ almost all x in M.

Then (5-8) and (5-9) imply

(5-10) φ,(T(x)) = 1 for || T\ \ almost all x in M.

Let K be any compact subset of M. Remarking φ is a Ωψ-transversal k-

(5) Confer (iii) of Remark 3-6.
(6) By this, we mean that for any current R in Di+i with compact support, we have

I I for any compact subset K of M.


