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Introduction

R. Bott [1] and A. Haefliger [3] defined exotic characteristic classes of
foliations. In this paper, we shall study exotic characteristic classes of locally
homogeneous conformal and projective foliations with trivialized normal bun-
dles. Our purpose is to decide whether these exotic characteristic classes
vanish always or not in general.

Let T be a pseudogroup acting tramsitively on a smooth manifold B of
dimension n. A locally homogeneous T'-foliation of condimension # on a mani-
fold M is by definition a maximal family § of submersions f,: U,—B of open
sets U, in M such that the family {U,} is an open covering and for each
x€U,N Upg there exists and element y.,ET" with fg=v%g-f, in some neigh-
bourhood of x. If the above I' is consisting of locally conformal (resp. pro-
jective) transformations on B, F is called locally homogeneous conformal
(resp. projective) foliation.

Let & be a foliation of codimension # on M with trivialized normal bundle
and ¢ the trivialization. Exotic characteristic classes of (F, ) are defined as the
images of the mapping

A0t H¥(W,) — H¥z(M)

which depends only on & and ¢ ([1], [3]). The Vey-basis {Z(, pn} of H*(W,)
is consisting of the following cohomology classes [4]

Z(I.f) = [hio/\hil/\'"/\hj,,®(cl)il"'(cn)i"] ’
where I=(iy, -+, ,) and J=(j,, ***, ;) With
1S5 << <jp=m, k=0, jo—i—Z:lri,gn—}—l, :'gri,gn

and ¢,=0 for » <},
We devide these elements of Vey-basis into following three types;
) o2 ri,>n+1 (ie. rigid classes [4])

*) Supported by Grant-in-Aid for Scientific Research
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(IL.1) jo+237i,=n+1, and j, is odd for some r>0.

(IL. 2) jO—I—Z ri,=n-+-1, and j, are even for all »>0.

We have

Theorem. Let § be a locally homogeneous conformal (resp. projective)

foliation of codimension n(=3) on a manifold M with trivialized normal bundle.
We have the following table.

Structure of §
gz}g(i)sa(s)ifs Projective COHformal—-
n=odd n=even
D zZero sero —
(I1. 1) non-zero sero —
(I1. 2) non-zero Hon-zero o

In case of (*), Z(; ) with J={j,} are zero at least.

ReMmARk. All of the exotic characteristic classes of riemannian foliations
are always zero.

Recently, S. Morita [9] defined secondary characteristic classes for projective
and conformal foliations and obtained the same results, without our assumption
“locally homogeneous.”

This paper is devided into 6 sections.

The example of the locally homogeneous conformal (resp. projective) folia-
tions with non-trivial exotic characteristic classes 1s known as the typical ex-
ample of conformal (resp. projective) foliations. In §1, we review briefly
these constructions following [5], [8] and [10], and these exotic characteristic
classes will be calculated in § 4.

To perform generally the calculation of the exotic characteristic classes of
our foliations, we stand on the Haefliger’s definition of exotic characteristic
classes ([3], for this, we require to assume “local homogeneity”) and we use
the method of calculation of F. Kamber and Ph. Tondeur [5]. Moreover,
existence of normal Cartan connection plays an important role to show that
the rigid classes are zero always. In §2, we state the main Lemmas, one of
these lemmas is concerning existence of “infinitesimal” normal Cartan con-
nection and the other is a diagram for use their method of calculation. The
proofs will be given in §6. § 3 is devoted to prove vanishing of exotic charac-
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teristic classes of type (I) and for conformal case type (II.1). In §5, we prove
vanishing of exotic characteristic classes in case of (¥).

1. Typical examples

Non-vanishing in our theorem is due to the following examples.

ExampLE 1 (locally homogeneous conformal foliation). Set
L=0n+1,1)
0 0—1
={XeGL(n+2, R); ' XSX = S}, where S=| 0 I, 0
-1 0 0,
a 0 0
Li={{* A 0 |eL;A=0(n),acR;.
* % q7!

Define subgroups H C G of the Lie group L by

G=the identity component of L,

H=L,NG.
Then we have a foliation & on G whose leaves are fibres of fibration G—G/H.
Let D be a discrete subgroup of G such that M=D\G is a closed manifold
([2]). Since the foliation § is invariant under the left-action of G, we have
a foliation & defined on M=D\G of codimension # with trivial normal bundle,
which is locally homogeneous conformal foliation.

ExampLE 2 (locally homogeneous projective foliation). Set
L = PGL(n+1, R)=SL(n+1, R)/center,

A 0
LO={(* )EL;AEGL(n, R),acR | .
a

Define subgroups H C G of L by

G=the identity component of L,

H=L,NG. :
Since there exists a discrete subgroup D of G such that M=D\G is a closed
manifold, by the same method we have a locally homogeneous projective folia-
tion § on M=D\G of codimension 7 with trivial normal bundle.

For more detail, see [10].

2. Main lemmas

In this section, § is as in Theorem, ¢ denotes the trivialization and the
base manifold B of dimension 7 is fixed.
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Let 15 denote the Lie algebra of formal conformal (resp. projective) vector
fields at b= B. Since I, is a subalgebra of the Lie algebra @=G_,R,H X, P+
of formal vector fields at b, B, I has a filtered Lie algebra structure

Ip=1"Dl 0L
and for £, we have the following expression

E = E_\+Eq+E+, where £,€Q;.

If the conformal (resp. projective) structure of B is flat ([11]), I, (resp. I}) is
denoted by [ (resp. I’). Remark that the Lie algebra I (resp. !’) is anti-isomor-
phic to the Lie algebra I (resp. I°) of the Lie group L (resp. L,) of the examples
in Section 1.

From Kobayashi and Nagano [6], we have the following. The proof will
be given in Section 6

Proposition 2.1.
(1) 5=0 for k=2, and dim I;<dim [=dim |
(2) dim /I3 =n (local homogeneity).

The following two lemmas are proved in Section 6.

Lemma 1. There exist an injective linear mapping o: lz;—1 and a linear
mapping 0,: 1;—1° such that

(1) (0—8)]g=0

(2) i(£)Q=0 for £}, where Q=dw+[w, »]/2 (that is, ([, 7]) = [o(),
w(n)] for E€1y, nEly), especially Q¥=0 if k>[n/2].

() Q& 7)=0 for £, nE€ 1 where 01=d0:+-[0,, 6.]/2 (that is, 0,| 3 -1
is a homomorphism of Lie algebras), especially (Q,)*=0 if k>n.

Let

At AG* — A*(M) (resp. Mg, p: Al — A*(M))

be the characteristic homomorphism of smooth (resp. locally homogeneous I'-)
foliations (%, t) defined by Haefliger [3]. Following Kamber and Tondeur [5],
we have a unique DGA-homomorphism

A6,): W(I°), — AL}
satisfying
A(Gl)(a) = qof, for ae([o)* — Al([())* ,

where W/(g), denotes the n-truncated Weil algebra of Lie algebra g.

Lemma 2. The following diagram commutes:
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HYW,) =, HWgln R),) =, H*q) 9 HEM)

%
" 75 Mis.o,v

HAWI)) — 5y HA W)

where jz: 1z —Q is inclusion mapping, p: 1"—gl(I/I°)=gl(n, R) is the adjoint
representation of 1° and the above isomorphisms are as in [3].

To show the vanishing of A&, (Z(;, n), we shall prove that
A0) W (p*)(Z(1,)=0  in H*(Lp).
3. Vanishing of exotic characteristic classes of type (I) and for con-
formal case type (IL 1)

In section 3-5, we use the following notations.
Let g, § be Lie algebras and 4, b: H—g linear mappings. Set

I(g) = {g-invariant polynomials on g} ,

Q, = da+[a, a]/2, Q, = db-+[b, b]/2,

Q(a, b) = tQ,+(1—1)Q,+2(t—1)[a—b, a—b)/2, t[0, 1],
‘Q't(a) = ‘Q't(a’ 0) ’

Sl fla—b, Qua, b))dt = 51 fla—b, Qu(a, b), -+, Qa, b)dt< AB*,

where f € I(g).
We use the following formulas. The proofs will be given at the end of
this section.

31 (1) ddeg()-| fta—b, Qa, )Y = QD). FEIG)
@ If g@) =0,
deg(f-8)-{ (f-g)a—0, u(a, b))t

= () A@ex(®) || g(a—b, 0 (@, b))dt)+exact form,

where f, g I(q).
(3) Let ¢: H—>g be another linear mapping. For f€I(g), we have

S: fla—b, Qy(a, b)) dt—S: fla—c, Qa, &)t

—I—Sl f(b—¢, Q4(b, ¢))dt = exact form.
0
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Let i: I'>1 be inclusion mapping and p: I°—gl(n, R) the adjoint repre-
sentation. It is easy to see the following:

Proposition 3.1.
(1) Set &} =p*e,cI'(I). For all k=2, -, n, there exist T,&I*) and
i I*Y(I°) such that

p¥c, = P}Cy+-cL- fy .

When l==o(n+-1, 1) (ie. locally homogeneous conformal case), ¢,=0 for all odd k.
(2) For all I=(3y, -+, 1,), f; of the above (1<j<n) and fiE R,

fi-p*e,=k(R)HM, mod I(I)-4*I*(T),
where ¢c;=(c,)"1+++(c,)*, 1] =2 ri,, and k=0 R.
=1

The notations in the following are as in Section 2.

Let J* denote the ideal in Al generated by A*(L5/I3)*.

For the elements of I(I°)-7*I*(l), we have the following formula. The
proof will be given at the end of this section.

(3.2) For fe-i*geI(l")-i*I*(l) such that deg(f)+2deg(g)>n,
(f-i*g)(Q)=dB  in Al},

where B=f(ﬂl)/\(deg(g)S: 8(0,—w, Q(0,, w))dt, and
BEI, p = deg(f)+deg(e) -

Moreover, by Lemma 1, we have

Proposition 3.2.
(1) cH(Q)EI?, for q=I*()

2) T(Q)EI* and S‘ 01—, Q(6,, w))dte I, for T, I().
0
(3) I*=0, for k>n=dim(L;/1}).
By Proposition 3.1 and (3.1), we have
1
(33) AOIWe)(h) = | (0%)0 QU0 ds
—j S: 2,01 QUO)dt-+c(B) A () +exact form
1 1
—j So 2 (0, Q))dt-+j So £ (01—, 00, v))dt
+c}(0) A f(Qu)+exact form.

Therefore by Proposition 3.2, we have the following for all the elements
Zig,n=[hj,\h;,\ -+ Ahj,Qc/] of the Vey-basis.
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G4 AGIp*)(hj,Ahj, A+ Ah;,®cy)
1
= (50§, 7aor QNG A £ @) A

(5§ e uande) - A5 2100 Q) A(per) )

-+exact form.
Now, by Proposition 3.1. (1),

3.5) (P*er)(Qu) = T Q) +c2(Q) A F(L)
= Et(Ql)+d(C?(91) NF| (-Ql)) ’

where Fe I*"(I°) and ¢, I*(I)(k= | I|).
Moreover, noticing that | 1| =(n+1)/2 by the conditions for the Vey-basis,
we have the following by Lemma 1(2), (3.1) (1) and Proposition (3.2) (2).

(3.6) T/(Qy) = THQ)—C Q) = da, where
a=I| S‘ Elfi—o, Qu(6,, w))dtc I .
0
Hence
(p*cr)(Q) = d(A+a), and A€ 97, ac .

Therefore, noticing that 2j,4-(|I| —1)># and j,+ | I| >n, we have the follow-
ing (3.7) from (3.4) by Proposition 3.2, and the following (3.8) is obtained from
(3.7) by using Proposition 3.1 (2) and (3.2).

3.7) A(HI)W(p*)(h,-o/\h,-l/\ = Ah,Qc;)
=ac(@)Nf, Q) A(p*er)(Q) A

(5 § o ) n o A (5§ @i, Q@)

~+exact form, where a0 R.
(3.8) = b C?(al) /\(.‘(1’ (Ql)j°—1+lll /\

(5 e Qu@Nat) A A (5 Zisor )
-+exact form, where b0 R.
Now, in view of Proposition 3.1 (1), it is trivial that
A@) W (p*)(hj A -+ Nk;,®cp) = exact form

in the following cases (i) and (ii);
() Jjo+IIl>n+1 (ie. type (I)).
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(i1) I=o(n+1, 1) andj, is odd integer for some >0 (ie. type (IL.1) for
conformal case).
This completes proof of vanishing theorem in this section.

Proofs of (3.1) and (3.2),
We shall prove (3.1). (3.1)(1) is well-known as Chern-Weil theory (that is,

‘% f(Q(a, b))=d(deg(f) fla—b, Qa, b))) and (3.1) (3) is also known. See for

example Bott [1] (p. 64-65). We shall prove (3.1) (2). Set i=deg(f), j=deg(g).
We have

(+)) S: (f-g)(a—b, Q(a, b))dt
- iS:f (@—b, Qy(a, b))\ g(Qa, b))dz
15 ! 100, B Agla—b, 0 fa, byt
On the other hand, we have the following by g(€)=0.
8(Q(a, b)) = g(Q(a, b))—g(%)
= d(j S:g(a—b, Q.(a, b))ds> :

Hence

i | fla—t, Qa, D)AZ(OUa, BY)E

= 5: i fla—b, Qya, b))/\(d( j S: g(a—b, Q. (a, b))ds)) dt

= exact form
+ g: (dGi fla—b, Qu(a, B))A ( j S; gla—b, Q,(a, b)ds))dt

= exact form

+ S:(d—‘i f(@ua, B))A ( i S; g(a—b, Q.(a, b)ds) )dt

= exact form
+[ 1@ A gta—b, e, t)as |

~ [ Au@, B A ga—b, ta, b

= exact form

+A)A] | gla=b, O, byt

~ [ AQua, DA gla—b, O, b

1
0
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Therefore we have (3.1) (2). (q.e.d.)
We shall prove (3.2). By (3.1), we have

(f-*g)(Q) = d(? S: (f-*g)(0n, .Q,(Gl))dt>

= d( Q) Adeg(g) | 600, (O )

and
1
[, 26, 2 0)at

1 1
= 860, 90, @it +{ g0, aoat
+exact form.

Hence we have
(f-*8)(n) = dB+f( Q) A\ g(Q) .

Since deg(f)+2deg(g)>n, f(u)Ag(Q2)=0 by Lemma 1. Therefore we have
(3.2). (q.e.d.)

4. Calculation of the exotic characteristic classes of the typical
examples

In this section, we prove non-triviality in our theorem.
Let (M, ) be as in Section 1 and the trivialization ¢ natural one. The
following is known.

Theorem 1 (Kamber and Tondeur [5] and Morita [8]).
Let (M, ) be a foliation of Example 2 in Section 1. Then N, +(Z n)=+0
in H (M), for all Z(; 5y of type (I1.1) and (11.2).

In the following, we consider the foliation & on M=D\G of Example 1.
Then we have,

Theorem 2. If n is an odd (resp. even) integer,
Ag.0(Za,n)*0 (resp. = 0) in HEx(M),

for all = ;) of type (11.2).

We shall prove Theorem 2.

It is well-known that the Lie algebra I=o(n+1, 1) has a graded Lie
algebra structure I=g_,Dg,Pg, such that I’=q,Bg, and g,=RePH8o(r), where
e is an element of g, satisfying ad(e)|g, =k-idg, for k=—1,0, 1. Hence, we
have an 80(n)-equivariant splitting
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g:1-1°

of the exact sequence 0—>['—I—1/I'=R"—0, by 0| ,0=id, and §|4_ =0.
Following Kamber and Tondeur [5], we have the following commutative
diagram.

H*(W(gl(n, R),)

W(p*)
(4.1) H*(W(r),) Mir
/ A0)x
H*() Y Hi«M)

where ¢ denotes the canonical inclusion. (Recall that M=D\G and G was the
identity component of L=0(n-+1, 1).)

Let T,, Ty -+, 02 E1(0(n+1, 1)) be the restrictions of Chern-polynomials
C;, Cy, +++, Cyy, of I(GL(n+-2, R)), where n=2m or n=2m—+1. The primitive
element corresponding to T,; is denoted by 7,,EA¥"'T*. It is a closed form
which represents a non-zero cohomology class of H*(I). Let %,,; denote a non-
zero element oi one-dimensional vector space (A**'[*);,,, which is a closed
form in AT*,

We have the following.

Proposition 4.1.

(1) A0)o W(p*)(l®ct)=c1(0) A ) (Qp)" =aF,11

(2) A(@)o W(P*)(hjo/\ hgjl VAN /\thk®cl) = byzjl/\ A 5’2,',,/\ 5’,,4.1 4 exact
form, for k=0 where a, b= R are non-zero.

Moreover, using the method of calculation of Kamber and Tondeur [5],
we have

Proposition 4.2.
(1) If n=2m-+1, Y(FsA Fu\ *** A Fom/\ Fp11) 15 @ volume form on M=D\G,.
(2) If n=2m, the closed form ¥,,, is an exact form in Al*.

Now, by the above propositions, we have Theorem 2 from the diagram
(4.1).

Proof of Proposition 4.1. It is easy to see the following.

(#.2) A6)o W(p*)(In®ct) =ci(0) Aci(Qe)" 0.
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By the definitions of ¢} and 6, we have (1) easily from (4.2). We prove (2).
Let I denote id: I-1. Then by the definition of primitive elements we have

1
(4.3) =2 a0 oDy, j=1,m.

On the other hand, calculations in Section 3 admit us to obtain (3.8) replaced
0, by 0, Q, by Q,, w by I respectively. Therefore, by (4.3) and Proposition
(4.1) (1), we have (2) of Proposition (4.1). (q.e.d.)

Proof of Proposition 4.2. We shall prove (1). Let ¢} ,¢4, -+, ¢35 € I(SO(n))
denote the restrictions of ©,, ¢y, **+, G, €I(O(n+1, 1)). Since n=2m-+1, they
are generators of I(SO(n)). Therefore, primitive element yj; corresponding to
¢t; is the restriction of 7,; to A8o(n)*, and y;A yiA--* A yim is non-zero form
with degree equal to dim 8o(z). Recall that y,.,& (A**[*);,,, and dim(I/80(n))
=2n+1, then we have (1). We shall prove (2). We can define ¥,,, explicitly
as follows. The Lie algebra [=o(n-+1, 1) is consisting of the following
elements

a u
X=\|%v A ‘'u|csgln+2, R)
0 v —a

with a€ R, A< 8o(n) and u=(u,, -+, u,), v=(v,, -+, v,)ER". Then we have an
injective Lie algebra homomorphism

Jr: [ — Bo(n+-2)°¢

by
0 —a/—1 & — —
, where E=+/—1(v+u)/\/ 2
—t —ty A

Let E,., € I™(80(n+2))CI™(80o(n+2)°) and e, & I"(30(n)) denote the
(normalized) Pfaffian polynomiasl ([5], P. 147), where n=2m. Then
V*E, 1€ I"Y(o(n+1, 1)°) satisfies the following.

(4.4) There is an element &,,,,E I"*(o(n+1, 1)) with

‘P'*Emﬂ = \/—1 €1 -
Moreover, we have

(4.5) (1) i*e,., = kele, in I(I°), for some k+0€ R.
(2) 8 = 0 in [(So(n)

where i: I°-1, j: 80(n)—1 are inclusion mappings and e, & I(80(n)) CI(I’).
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Let 0,: I->80(n) be an 8o(n)-equivariant splitting of the exact sequence
0—8o(n)—1—1/80(n)—0. Define o(¢,,+,)EA**'[* by

o(ns) = (m+1) j: &y ii(I—00 QI 0,))dt .

Since 6, is 8o(n)-equivariant and j*e,,,,=0 in I(80(n)), we have
4.6) (1) o(&p+1)E (A *)ga(,, which is a closed form in AT*,
(2)  en(Q4,)E (A"*)350, Which is an exact form in Al*, that is
(o) = d(m g: en(00, QU6R)dt) in AT* .
(3)  o(Em+1) Aen(£24,) is a non-zero element of (A *1[¥)g, (.

Now, we obtained #,,, explicitly and (4.6) implies (2) of Proposition 4.2. (q.e.d.)

5. Vanishing of some exotic characteristic classes of type (II.2)
for locally homogeneous conformal foliations

In this section, we consider locally homogeneous conformal foliations &
with trivialized normal bundles of codimension #=2m and prove that these exotic
characteristic classes corresponding to elements Z(; n=[4,; ®c,] of Vey-basis
are always zero.

From (3.8), we have

(5.1) A@B)oW(p*)(h;,®cr) = b () AY(Q1)" +exact form, where b0 R.
Define ¢y I(80(n)) by cs(X)=det(X) for X €8o(n). Then we know ([5], P 148)
cn = afe,,)’ for some a+0=R.

And it is easy to see
¢, = B3+ B'()", mod I(I%)-i*I+()

for some B,8'+0= R.
Therefore we have

(5.2) (1) (S)'=7v(en):, mod I(I*[+(), where y+0= R.
(2) i*e, 1 =kcle,, where k=0 R (by (4.5) (1)).

Then, by applying (3.1) and (3.2) to (5.2), we have the following from (5.1).

(5.3) (1) A@)W(p*)(h;,Rc;)
= pci(0,) A e,(Q,)*+exact form, where p#0E R.

(2) (0)Ne,(Q)=0+n+exact form, where o is a closed form which
is defined as follows
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¢ = (m+1) S: 2, (0, Quw))dt

and

1
A=+ Enn(Bi—o, 00, W)dEI™,
0
Now, noticing that e,(Q;)EJ™ is an exact form, we have our result.

6. Proofs of Main lemmas

Let L, L, be as in Section 1 and J*(B) the bundle of frames of order 2 on
B with group Gj(n). Let n: P—B denote the principal subbundle of J%(B) with
group L,C G§(n) which is the conformal (resp. projective) structure on B. For
each element §=§_,+E,+E£,+ - of @, there is a local vector field € around
b,e B such that j§0(§)=f_1+§o+fl, and the natural lifting Eof Eto JAB). In
case of €, we can choose as & a local conformal (resp. projective (vector
field and the natural lifting £ is a vector field on P.

We identify £_,+&,+£, and=(§ 5, € T3, (J¥(B)) through the local diffeomor-
phism @: (R", 0)— (B, b,) with b,=ji (p)eP C J(B). And b, J4B) will be
fixed.

Proof of Proposition 2.1. Under the above identification, we have

(6.1) For E=E+E&+ €1}, E+EcPCqgl, where gi(=Q,PQ)) is the Lie
algebra of G§(n).

On the other hand, the graded Lie algebra ["’=g,Pg, satisfies that g,C®, and
@:C@. And the results of Kobayashi and Nagano [6] (P. 683-687) show the.
following.

(6.2) Let g,(k=2) be defined inductively as follows:
g = {ne@,|[0/0x;, n]Eg,_,, for i =1, ---, n}, then g, = 0 for k=2.
Now, by local homogeneity there are elements X (=1, -+, n) of [, satisfying
X; = 0/0x;4(X)o+H(X )14+

where (X;),€@,, (X;),€Q, etc.
We shall prove [3/13=0. For §=¢'+E"€1} with £'e@, and £”eQq;D
@,D-+, we have the following for i=1, -+, n.
[Xi’ E]EPB ’
and

[X:, E] = [0/0x;, E'T+N s
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where [0/0x;, £'l€ @, and AeQ,PE;PD .
That is, [0/0x;, £']l=g, for i=1, .-, n. Theeefore, by (6.2), we have £'=0 and
I5/13=0.

By the same argument, we have I%/I5**=0 for =2 inductively. Therefore
we have I4=0 for k=2. Now, it is clear that

dim[;<n+4+dim['=dimI. (q.e.d.)

Proof of Lemma 1. Itis known that there exists a unique Cartan connection
® on P called normal conformal (resp. projective) connection if dim B=n>3
([7], [11]). Let 6, be a connection on P. Then we have well-defined linear
mappings

[ON IB - 1
and
01: !B - IO
as follows.
(6.3) () = —5(E)s, »
0.(8) = —04(&)3,, for £€l,.
Injectivity of w is due to injectivity of & and (1) is clear.
Since the normal conformal (resp. projective) connection & is invariant

under conformal (resp. projective) transformations, the curvature form Q of
& satisfies

QE, 7) = a([E, i) +[aE), 3(7)], for £ nEl,.
On the other hand, it is not difficult to see that

[, 7] = [E n] ath,, forE, nel,.

Therefore, we have

(6.4) QE 7);, = Q& 1), forg 1€l
Moreover, it it is known ([11]) that
(6.5) i(A*Q =0, for ASD.

Therefore, we have (2) of Lemma 1 form (6.4) and (6.5). Now, by Lemma 1
(1), (3) of Lemma 1 is clear. (q.e.d.)

Proof of Lemma 2. Commutativity of right-hand side is known ([3]).
Set. Set ® the local canonical flat connection in J*(B) around b, defined by the
local diffeomorphism @. We have a well-defined linear mapping

8: @ — gi(=C@,PA)
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by ©(£)=—6(£);, for £€Q.

Let p: gi—gl(n, R) denote the adjoint representation of g3, where
gl(n, R)=gl(G/(Q,DE:D""")).

We denote not only 8|, by © but p|p by p.

Since (Qg)*=0 for k>n, we have the following diagram.

W(gl(n, R),) W W(g?), W AQ@*

(6.6) W(p*) A(®) 3

W), ALZ

A6))

It is clear that j50A(®)=A(®). And the isomorphism of H*(W(gl(n, R),) onto
H*(®) in Lemma 2 is induced by A(®)o W{(p*).

We shall prove that A(6,)oW(p*) and A(8)oW(p*) induce the same map-
ping in cohomologies. Since p is a homomorphism of Lie algebras, we have

(6.7) A(6)oW(p*) = A(poby) = A(6)
and A(®)oW(p*) = A(pe8) = A(®),

where we denoted pof,(resp. po®) by 6, (resp. ©).
By (3.1) and definitions of A(él) and A(®), we have
6.8) (1) A(é,)(hj)—A(é))(hj) = A(c,)+exact form, for j=1, ---, n,
where A(c;)=j S: c,.(el—é), (0, ®))dtc .
@) AG)E)—AB))=d(A(,), for j=1, -+, n,
and A@)(e)), A@)(c)Ed.

Therefore we have easily A(él)*(Z a, ]))=A(®)*(Z u,n) for all Z(; ;) of Vey-basis.
(q-e.d)

OsakA UNIVERSITY AND INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE,
STRASBOURG




604

(1l
(2]
B3]
(4]
(5]
(6]

(7]
(8]

91
[10]

(1]

K. YamaTo

References

R. Bott: Lectures on characteristic classes and foliations, Lectures on algebraic and
differential tnpology, Lecture Notes in Math., 279, Springer, 1975, 1-94.

A. Borel: Compact Clifford-Klein forms of symmetric spaces, Topology 2 (1963),
111-122.

A. Haefliger: Sur les classes caractéristiques des feuilletages, Séminaire Bourbaki,
24e année 1971/72, n° 412.

J. Heitsch: Deformations of secondary characteristic classes, Topology 12 (1973),
381-388.

F. Kamber and Ph. Tondeur: Foliated bundles and characteristic classes,
Lecture Notes in Math., 493, Springer, 1975.

S. Kobayashi and T. Nagano: On filtered Lie algebras and geomatric structures
111, J. Math. Mech. 14 (1965), 679-706.

S. Kobavashi: Transformation groups in differential geometrv, Springer, 1972.
S. Morita: Non-triviality of some secondary characteristic classes of foliations.
(preprint)

S. Morita: On characteristic classes of conformal and projective foliations. (pre-
print)

S. Nishikawa and H. Sato: On characteristic classes of riemannian, conformal and
projective foliations, J. Math. Soc. Japan 28 (1976), 223-241.

T. Ochiai: Geometry associated with semisimple flat homogeneous spaces, Trans.
Amer. Math. Soc. 152 (1970), 159-193.





