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Introduction

R. Bott [1] and A. Haefliger [3] defined exotic characteristic classes of

foliations. In this paper, we shall study exotic characteristic classes of locally
homogeneous conformal and projective foliations with trivialized normal bun-

dles. Our purpose is to decide whether these exotic characteristic classes
vanish always or not in general.

Let Γ be a pseudogroup acting transitively on a smooth manifold B of

dimension n. A locally homogeneous T-foliation of condimension n on a mani-

fold M is by definition a maximal family % of submersions fΛ : UΛ-^B of open

sets UΛ in M such that the family {UΛ} is an open covering and for each

tfet/^nt/β there exists and element γ*βeΓ with fβ=7x

Λβ fΛ in some neigh-
bourhood of x. If the above Γ is consisting of locally conformal (resp. pro-

jective) transformations on B, § is called locally homogeneous conformal

(resp. projective) foliation.

Let S be a foliation of codimension n on M with trivialized normal bundle

and t the triviahzation. Exotic characteristic classes of (?$, t) are defined as the

images of the mapping

which depends only on % and t ([1], [3]). The Vey-basis {Z(/f/)} of H*(Wn)

is consisting of the following cohomology classes [4]

where I=(il9 •••> in) and/=(/0, •••,/*) with

and ίr=0for r<jQ.

We devide these elements of Vey-basis into following three types;

(I) /o+Σ3 rir>n+l (i.e. rigid classes [4])

*> Supported by Grant-in-Aid for Scientific Research
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(II. 1) yo+Σ nr=n+ly andyr is odd for some r>0.

(II. 2) yo+Σ ή,=n-}-l9 andyr are even for all r>0.

We have

Theorem. Let % be a locally homogeneous conformal (resp. projectίve)

foliation of codimension n(^3) on a manifold M with trivialized normal bundle.

We have the following table.

Types of
Vey basis

(I)

(II. 1)

(II. 2)

Structure of %

Projective

zero

non-zero

non-zero

conformal

n=odd

zero

zero

non-zero

n= even

zero

zero

(*)
In case of (*), Z(/f/) with J= {j0} are zero at least.

REMARK. All of the exotic characteristic classes of riemannian foliations

are always zero.

Recently, S. Morita [9] defined secondary characteristic classes for projective

and conformal foliations and obtained the same results, without our assumption

"locally homogeneous."

This paper is devided into 6 sections.

The example of the locally homogeneous conformal (resp. projective) folia-

tions with non-trivial exotic characteristic classes is known as the typical ex-

ample of conformal (resp. projective) foliations. In § 1, we review briefly
these constructions following [5], [8] and [10], and these exotic characteristic
classes will be calculated in § 4.

To perform generally the calculation of the exotic characteristic classes of

our foliations, we stand on the Haefliger's definition of exotic characteristic
classes ([3], for this, we require to assume "local homogeneity") and we use
the method of calculation of F. Kamber and Ph. Tondeur [5]. Moreover,
existence of normal Cartan connection plays an important role to show that

the rigid classes are zero always. In § 2, we state the main Lemmas, one of

these lemmas is concerning existence of "infinitesimal" normal Cartan con-

nection and the other is a diagram for use their method of calculation. The

proofs will be given in § 6. § 3 is devoted to prove vanishing of exotic charac-
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teristic classes of type (I) and for conformal case type (II. 1). In § 5, we prove
vanishing of exotic characteristic classes in case of (*).

1. Typical examples

Non-vanishing in our theorem is due to the following examples.

EXAMPLE 1 (locally homogeneous conformal foliation). Set

{X(=GL(n+2, Λ); 'XSX = S}9 where S=

0 0

A 0 \<=L\A<=O(n),

Define subgroups H C G of the Lie group L by

G=the identity component of L,

Then we have a foliation $ on G whose leaves are fibres of fibration G->G//f.
Let D be a discrete subgroup of G such that M=D\G is a closed manifold

([2]). Since the foliation § is invariant under the left-action of G, we have

a foliation $ defined on M=D\G of codimension n with trivial normal bundle,
which is locally homogeneous conformal foliation.

EXAMPLE 2 (locally homogeneous projective foliation). Set

L = PGL(n+l, R)^SL(n+l, 72)/center ,

eL;
r

Define subgroups HdG of L by
G=the identity component of L,

Since there exists a discrete subgroup D of G such that M=D\G is a closed

manifold, by the same method we have a locally homogeneous projective folia-

tion f$ on M=D\G of codimension w with trivial normal bundle.

For more detail, see [10].

2. Main lemmas

In this section, % is as in Theorem, t denotes the trivialization and the

base manifold B of dimension n is fixed.
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Let 1B denote the Lie algebra of formal conformal (resp. projective) vector

fields at bQ<=B. Since 1B is a subalgebra of the Lie algebra Q=fi_ιΘfi0Θβιθ —
of formal vector fields at O0e5, 1B has a filtered Lie algebra structure

and for ξ^lB we have the following expression

ξ = £-ι+£o+?ι+-> where £,

If the conformal (resp. projective) structure of B is flat ([11]), 1B (resp. IB) is
denoted by I (resp. I1'). Remark that the Lie algebra I (resp. 1°) is anti-isomor-

phic to the Lie algebra I (resp. 1°) of the Lie group L (resp. L0) of the examples
in Section 1.

From Kobayashi and Nagano [6], we have the following. The proof will
be given in Section 6

Proposition 2.1.
(1) lk

B=Qfork^2,anddimlB^diml=diml
(2) dim l/lβ = n (local homogeneity) .

The following two lemmas are proved in Section 6.

Lemma 1. There exist an ίnjective linear mapping ω: Iβ-»I and a linear

mapping θ^ 1B->1° such that

(1) (ω-^)lώ=0

(2) ί(f)Ω=0 for ξ<=l%, where Ω=dω+[ω, ω]/2 (that is, ω([ξ, 57])= [ω(ξ),
ω(n)]for £<=!£, iislg), especially Ω*=0 ifk>[n/2].

(3) Otf, 57)=0 for ξ, r)^B where ίl1=dθl+[θl! 0J/2 (that is, θ, \ ,j : ΓB-»l°

is a homomorphίsm of Lie algebras), especially (Ω!)*=O if k>n,

Let

,0: Λ(i* ̂  A*(M) (resp.

be the characteristic homomorphism of smooth (resp. locally homogeneous Γ-)
foliations (§, ί) defined by Haefliger [3]. Following Kamber and Tondeur [5],
we have a unique DGA-homomorphism

satisfying

for

where W(θ)n denotes the w-truncated Weil algebra of Lie algebra g.

Lemma 2. The following diagram commutes:
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H*(W.) H*(W(Ql(n,R))n)

where jB:lB-*Q is inclusion mapping, p: 1° -» g/(l/l°) = g/(w, R) is the adjoint
representation of 1° and the above isomorphisms are as in [3].

To show the vanishing of λ*^,/)(Z(7 /)), we shall prove that

n

3. Vanishing of exotic characteristic classes of type (I) and for con-
formal case type (II. 1)

In section 3-5, we use the following notations.
Let g, § be Lie algebras and a, b: §->g linear mappings. Set

/(Q) = {^-invariant polynomials on g} ,

Ωβ = da+[a, a]β, Ω, = db+[b, b]β ,

Ω,(β, ft) = tΩa+(l-t)flb+t(t-l)[a-b, β-ft]/2, ίe[0, 1] ,
Ω((α) = Ω((α, 0) ,

[fla-b, nt(a, b))dt = [/(a-b, flt(a, b), -, £lt(a, ft))ώeΛή* ,
Jo Jo

where /e/(g).
We use the following formulas. The proofs will be given at the end of

this section.

(3.1) (1) d(deg(/).

(2) //*(Ω,) = 0,

f g)(a-i>, Ω,(fl, ft))Λ

(β-ft, Ωt (α, ό))Λ))+exact form,
o

where /,£<Ξ/(g).
(3) Let c: ϊj->g be another linear mapping. For/e/(g), we have

[fta-b, Ωf(α, b^dt-Ϋ f(a-c, Ωt(a, c))dt
Jo Jo

+ ί /(i— ί, Ωί(6, c))dt = exact form.
Jo
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Let i: I°->I be inclusion mapping and p: l°-»g/(w, R) the adjoint repre-
sentation. It is easy to see the following:

Proposition 3.1.

(1) Set ^p^e/'OP). For all Λ = 2, ,Λ, there exist ck£Ξlk(l) and
(V such that

When I^o(n+l, 1) (ie. locally homogeneous conformal case), ?Λ=0 for all odd k.
(2) For all I=(ily -, iH), f. of the above (l<j<n)

where c/=(cιyι (cM)ί», |/| =Σ nr,r = ι

The notations in the following are as in Section 2.

Let Jk denote the ideal in ΛIJ generated by A*(I^/IJ)*.
For the elements of 7(I°) i*/+(I), we have the following formula. The

proof will be given at the end of this section.

(3.2) For / ί*^e/(P) ί*/+(I) such that deg(/)+2deg(^)>n,

σ ί**)(βι)=«f0 in Λlί,

where /e^αjΛίdeg^ί'^-ω, Ω ,̂ ω))Λ, and
o

Moreover, by Lemma 1, we have

Proposition 3.2.
(1) £?(«!) ̂ J*, /or <r?eP(I°)

(2) e,(Ω)e J2* αwrf j1 cX^-ω, Ω,(0ι, ω))dt^ό", for ?/£/*(!).

(3) J*=0>/orA>«=°dιm(IB/I£).

By Proposition 3.1 and (3.1), we have

(3.3) ΔWWVX*,) =; Γ (P*«>)(«ι, Ω,̂ ))*
JO

form

= J ?χ«, Sl,(ω))dt+j Zf/^-ω, Ω,(0ι,
Jo Jo

+rf(βι)Λ/χΩι)+exact form.

Therefore by Proposition 3.2, we have the following for all the elements
®^/] of the Vey-basis.
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(3.4) Δ(WP*)(Ay.Λ A,,Λ - ΛA,.®*,)

Λ (ρ*c,)(Ωj)

+ exact form.

Now, by Proposition 3.1. (1),

(3-5)

where Fe/*-^0) and ?/e/*(I)(A= |/| ).
Moreover, noticing that |/| Ξ>(w+l)/2 by the conditions for the Vey-basis,

we have the following by Lemma 1(2), (3.1)(1) and Proposition (3.2) (2).

(3.6) J/Ω!) = ffXΩ^— Zf/(Ω) = da, where

a = I/I (lcχ^-ω, Ω,(0ι, ω)
Jo

Hence

α), and

Therefore, noticing that 2/0+(|/| — !)>» andj'0+ |/| >n, we have the follow-
ing (3.7) from (3.4) by Proposition 3.2, and the following (3.8) is obtained from
(3.7) by using Proposition 3.1 (2) and (3.2).

(3.7)

= a e?(0ι) Λ /,β(Ω!) Λ (p

( Ί ĵ ,>, Ω,(ω))Λ)Λ Λ(Λ J//>> Ω,(ω))ώ)

+ exact form, where α

(3.8)

+ exact form, where

Now, in view of Proposition 3.1 (1), it is trivial that

c,) = exact form

in the following cases (i) and (ii);
(i) ;
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(h) I^o(n+l, 1) and/r is odd integer for some r>0 (ie. type (Π.l) for
conformal case).

This completes proof of vanishing theorem in this section.

Proofs of (3.1) and (3.2),
We shall prove (3.1). (3.1)(1) is well-known as Chern-Weil theory (that is,

—f(Ωt(a, *))=<*(deg(/) f(a-b, Ωt(a, b))) and (3.1) (3) is also known. See for
dt
example Bott [1] (p. 64-65). We shall prove (3.1) (2). Set i=deg(/), J=
We have

= i /(a-b, ίlt(a, b))Λg(Ωt(a, b))dt

,K b))/\g(a-b, Ω,(α, b))dt .

On the other hand, we have the following by g(Ωj)=0.

Hence

* [fla-b, Clt(a, b))Λg(Ωt(a, b))dt
Jo

= exact form

= exact form

= exact form

+1 f(Ωt(a, b))/\j\ g(a-b, Ωs(a,
Jo

JO

= exact form

- \lf(Ωt(a9 b))/\jg(a-b, Ωt(a, b))dt
Jo

i

\ g(a—b, Ω,(a,
Jo
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Therefore we have (3.1) (2). (q.e.d.)
We shall prove (3.2). By (3.1), we have

(Iί*g(θl9Jo

and

Jo
+ exact form.

Hence we have

Since deg(/)+2deg (#)>«, /(Ω1)Λ|'(Ω)=0' by Lemma 1. Therefore we have
(3.2). (q.e.d.)

4. Calculation of the exotic characteristic classes of the typical
examples

In this section, we prove non-triviality in our theorem.
Let (M, §) be as in Section 1 and the trivialization t natural one. The

following is known.

Theorem 1 (Kamber and Tondeur [5] and Morita [8]).
Let (Mt %) be a foliation of Example 2 in Section 1. Then λ*cF,/)(Z(/ 7))ΦO

in H$s(M),for all Z(/>/) of type (II.l) and (112).

In the following, we consider the foliation g on M=D\G of Example 1.
Then we have,

Theorem 2. If n is an odd (resp. even) integer,

λSM)(Z(Λ/))Φθ (resp. = 0) in H%R(M) ,

for all *(/t/) of type (11.2).

We shall prove Theorem 2.
It is well-known that the Lie algebra I=o(w+l, 1) has a graded Lie

algebra structure I=g_i08o®fli such that I0=floθ9ι and g0=Λ*0So(f?), where
e is an element of g0 satisfying ad(e)\Qk=k idQk for ft = — 1, 0, 1. Hence, we

have an 3o(w)-equivariant splitting
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of the exact sequence 0—I°->I—l/l°=Rn-+Q, by θ \ f=idf> and θ \ g.^O.
Following Kamber and Tondeur [5], we have the following commutative

diagram.

H*(W(Ql(n, R)n)

W(p*)

(4.1)

H*(l)

where γ denotes the canonical inclusion. (Recall that M=D\G and G was the
identity component of L=O(n+l9 1).)

Let c2y C4, •• ,(;2m^I(O(nJt-l, 1)) be the restrictions of Chern-polynomials
C2y C4, •••, C2m of I(GL(n+2, R)), where rc=2w or n=2m+l. The primitive
element corresponding to c2j is denoted by j^ ̂ Λ4'"1!*. It is a closed form
which represents a non-zero cohomology class of //*(!). Let yn+1 denote a non-
zero element 01 one-dimensional vector space (Λ2w+1I*)go(M), which is a closed
form in Λl*.

We have the following.

Proposition 4.1.
(1) Δ(fl)oϊ^(p*)(A1®cϊ)=^)Λcϊ(Ωβ)

ll=flyll+1

(2) Δ(θ)oW(p*)(hj0Λh2JιΛ Λh2Jk®cί) = by2JιΛ - Ay2JkAyn+1 + exact
form,/or Λ^O where a,bζΞR are non-zero.

Moreover, using the method of calculation of Kamber and Tondeur [5],
we have

Proposition 4.2.
(1) Ifn=2m+l, 7(j2Λ^4Λ —Λ y2m/\ yn+ι) is a volume form on M=D\G3.
(2) If n=2m, the closed form yn+1 is an exact form in Λl*.

Now, by the above propositions, we have Theorem 2 from the diagram
(4.1).

Proof of Proposition 4.1. It is easy to see the following.

(4.2) A(θ)oW(p*)(h1®c'ί) =ί
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By the definitions of cϊ and 0, we have (1) easily from (4.2). We prove (2).
Let / denote id: l-»l. Then by the definition of primitive elements we have

(4.3) y2j = 2j c2j(I, Ωt(I))dt , j = 1, -, m .

On the other hand, calculations in Section 3 admit us to obtain (3.8) replaced
θι by θy ΩI by Ωθ> ω by I respectively. Therefore, by (4.3) and Proposition
(4.1) (1), we have (2) of Proposition (4.1). (q.e.d.)

Proof of Proposition 4.2. We shall prove (1). Let c'2 ,c(, -, c'2m<= I(SO(n))
denote the restrictions of C29c49 •• 9c2m^I(O(n-{-l, 1)). Since n=2m-\-l, they
are generators of I(SO(n)). Therefore, primitive element y2j corresponding to
c2j is the restriction of y2j to Λδo(ra)*, and y2/\yί/\ /\y2m is non-zero form
with degree equal to dim §o(ri). Recall that jΛ+1e(Λ2Λ+1I*)go(Λ) and dim(I/§o(«))
=2n+l, then we have (1). We shall prove (2). We can define yn+1 explicitly
as follows. The Lie algebra I = o(w+l, 1) is consisting of the following
elements

fa u 0 \

X=\'v A ' l ie 82(11+2, Λ)

\0 Ό —a)

with a^R, A&8o(ri) and u=(ul9 •••, un)y v=(vly •••, vn)^R". Then we have an
injective Lie algebra homomorphism

and em(=Im($o(n)) denote the
(normalized) Pfaffian polynomiasl ([5], P. 147), where n=2m. Then

, l)c) satisfies the following.

(4.4) There is an element ^+1e/w4"1(o(w+l, 1)) with

Moreover, we have

(4.5) (1) ί*ίrβ+1 = fa;!

(2) y*^+ι = O i

where t: P->ϊ, j: δθ(w)->I are inclusion mappings and
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Let Θ0: I-»§o(w) be an §o(w)-equi variant splitting of the exact sequence

0->δo(n)-*I-*I/δo(if)->0. Define σ(em+1)<ΞΛ»+1l* by

σ(em+1) = (m+l)\l em+1(I-θ0y flt(I, Θ0))dt.
Jo

Since Θ0 is §o(w)-equivariant andj*em+1=Q in /(§o(w)), we have

(4.6) (1) σ(em+1) <Ξ (Λn+1I*)g0(n), which is a closed form in Λl*.

(2) £w(Ω00)e(ΛwI*)g0(n), which is an exact form in Λl*, that is

«β(Ω,0) = d(m ^ em(θϋ, Ω,(00))ώ) in Λl* .

(3) <r(em+1)/\em(£ldo) is a non-zero element of (Λ2Λ+1I*)go(M).

Now, we obtained yn+l explicitly and (4.6) implies (2) of Proposition 4.2. (q.e.d.)

5. Vanishing of some exotic characteristic classes of type (Π.2)
for locally homogeneous conformal foliations

In this section, we consider locally homogeneous conformal foliations §

with trivialized normal bundles of codimension n=2m and prove that these exotic

characteristic classes corresponding to elements Z(ItJ) = [A, 0®£/] of Vey-basis
are always zero.

From (3.8), we have

(5.1) ^(θ1)oW(p^)(hJQ®cI) = b rf(01)Λrf(Ωι)"+exact form, where

Define rfe/(3o(n)) by c*(X)=det(X) for X<=Ξ$o(n). Then we know ([5], P 148)

d = a(em)2 for some a Φ 0 e R .

And it is easy to see

**cn = /3^+/3'(c?)M, mod

for some /3,/3'ΦθeΛ.

Therefore we have

(5.2) (1) (cϊ)n = 7(em)2, mod 7(I°)̂ +(I), where

(2) ^em^^kclem, where ΛφOeΛ (by (4.5) (1)).

Then, by applying (3.1) and (3.2) to (5.2), we have the following from (5.1).

(5.3) (1)

form,

(2) Cι(θι)/\em(Ω1)=σ-{-\-}- exact form, where σ is a closed form which
is defined as follows
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CΓ =

and

λ = (
o

Now, noticing that em(Ωι)ξΞt3m is an exact form, we have our result.

6. Proofs of Main lemmas

Let L, L0 be as in Section 1 and J\E) the bundle of frames of order 2 on

B with group Gl(n). Let π : P-*B denote the principal subbundle oίJ2(B) with
group LQC.Gl(n) which is the conformal (resp. projective) structure on B. For

each element ?=|;_i+f?o+£i+*" °f ^> there is a local vector field I around

b0<=ΞB such that j10(?)=f-ι+fo+fι» and the natural lifting f of | to /%B). In
case of feIB, we can choose as i a local conformal (resp. projective (vector

field and the natural lifting ξ is a vector field on P.

We identify ξ^+ζ^+ξi and (f )- eT j (/2(β)) through the local diffeomor-

phism φ: (R\ 0)-*(5, *0) with lQ=j!0(φ)^Pc:J2(B). And bQ^J\B) will be
fixed.

Proof of Proposition 2.1. Under the above identification, we have

(6.1) For f = £0+f !+•..€=!&, fo+fi^PCflS, where β§(=fi0θfiι) is the Lie
algebra of GO(Λ).

On the other hand, the graded Lie algebra l°=9009i satisfies that g0cβ0 and
ftcC?!. And the results of Kobayashi and Nagano [6] (P. 683-687) show the
following.

(6.2) Let Qk(k^2) be defined inductively as follows:

BA = {T eQj [8/9^-, ^eftfc.!, for ί = 1, .-., if}, then & = 0 for &^2 .

Now, by local homogeneity there are elements Xi (i= 1, •••, w) of 1B satisfying

where (Z,.)0<=G0) (̂ 1^0! etc.

We shall prove I|/I|=0. For ξ=ξ'+ξ"<=l2

B with f 'efl, and
(J4Θ , we have the following for t=l, •••, n.

and

[z,., a = [8/9*,,
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where [9/9*,., ζ']^Ql and λ<Ξβ2θfi3θ .

That is, [9/9*,., f ']eflι for i==l> '" > w- Theeefore, by (6.2), we have f '=0 and
B/B=0.

By the same argument, we have I|/Ii+1=0 for & 2:2 inductively. Therefore
we have 1^=0 for &^2. Now, it is clear that

dimlB^rc+diml0 = dim I. (q.e.d.)

Proof of Lemma 1. It is known that there exists a unique Cartan connection
ώ on P called normal conformal (resp. projective) connection if dim B=n^3

([7], [11]). Let #! be a connection on P. Then we have well-defined linear
mappings

ω:lB->l

and

0,:L,-*F
as follows.

(6.3) ω(f)=-ω(f)ϊβ,

Injectivity of ω is due to injectivity of ω and (1) is clear.

Since the normal conformal (resp. projective) connection ώ is invariant

under conformal (resp. projective) transformations, the curvature form Ω of
ω satisfies

f), ω(5)J , for f ,

On the other hand, it is not difficult to see that

[f, 5] = [f, *] atδ 0 , for

Therefore, we have

(6.4) Ω(|, 5)-o = Ω(f, i?), for f,

Moreover, it it is known ([11]) that

(6.5) f(-4*)Ω = 0 , for A e 1°.

Therefore, we have (2) of Lemma 1 form (6.4) and (6.5). Now, by Lemma 1
(1), (3) of Lemma 1 is clear, (q.e.d.)

Proof of Lemma 2. Commutativity of right-hand side is known ([3]).

Set. Set θ the local canonical flat connection in J2(B) around Ϊ0 defined by the
local diffeomorphism φ. We have a well-defined linear mapping
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Let p: gίi->fl/(ft, R) denote the adjoint representation of go, where

We denote not only θ \ ιB by θ but p \ I0 by p.

Since (ΩΘ)*=0 for k>n, we have the following diagram.

(6.6)

It is clear that/|oΔ(Θ)=Δ(Θ). And the isomorphism of H*(W(Ql(n, R)n) onto
H*(Q) in Lemma 2 is induced by Δ(Θ)oϊF(p*).

We shall prove that Δ(0!)oH/(ρ*) and Δ(Θ)oPF(p*) induce the same map-

ping in cohomologies. Since p is a homomorphism of Lie algebras, we have

(6.7)

and Δ(Θ)o H/(p*) = Δ(poΘ) = Δ(A) ,

where we denoted potf^resp. poθ) by θl (resp. ^)).

By (3.1) and definitions of Δ(σx) and Δ(<§)), we have

(6.8) (1) Δ$)(A,)-Δ(&)(A,) -Δ(c;)+exact form, for ;=!,-, π,

where Δ(CJ)=J

(2) Δ(^)(έ:;.)—Δ(όJ.)(έ:)=J(Δ(^)), for 7=1, —, «,

and Δ($!)(£; ), Δ(ό)(cy)ecί'.

Therefore we have easily Δ(σ1)#(Z(/ /))=Δ((&)S|s(Z(/ />) for all Z(/ /> of Vey-basis.

(q.e.d)

OSAKA UNIVERSITY AND INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE,
STRASBOURG
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