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Introduction. Let (M,g) be a compact connected riemannian manifold
and A the Laplacian acting on the space of differentiable functions on M. We
denote by Spec(M,g) the set of all eigenvalues of A;

SpCC(M,g) = {0 =X<MEN S o EMS } ’

where each \; is written a number of times equal to its multiplicity. We
call it the spectrum of (M,g). Two riemannian manifolds (M,g) and (V,k) are
said to be isospectral to each other if Spec(M,g)=Spec(V,kh). What are deter-
mined by the spectrum of (M,g)? This problem have been studied by many
people; as in Berger [2], Colin de Verdiere [6], Duistermaat-Guillemin [7],
MaKean-Singer [8], Sakai [9], Tanno [11] and so on. For example, the spec-
trum of (M, g) determines the dimension of M, the volume of (M,g) and the leng-
ths of closed geodesics of (M,g) etc.

We are interested in the riemannian manifolds of positive constant cur-
vature, and consider whether they are determined by their spectra. Berger
(for =2,3) and Tanno (for n=4,5,6) have shown that the standard sphere S”
and the standard real projective space P"(R) are completely characterized by their
spectra as riemannian manifolds. The lens spaces are familiar examples of
compact riemannian manifold of positive constant curvature. Recently, Ta-
naka [10] have shown that if a 3-dimensional compact riemannian manifold is
isospectral to a lens space with fundamental group of order ¢, then the manifold
is isometric to one of the 3-dimensional lens spaces with fundamental group
of order g. In particular a 3-dimensional homogeneous lens space is charac-
terized by its spectrum as a riemannian manifold.

Now, we state our Main Theorem.

Main Theorem. Let g be a positive integer. If two 3-dimensional lens
spaces with fundamental group of order q are isospectral to each other, then they
are isometric to each other.

This theorem will be shown here in this paper only for ¢g=1I*, 2I* and 2*
where / is an odd prime and »=1. In case of any composite number g, the
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second auther will give a proof in the forthcoming paper [14]. From the above
theorem and the result due to Tanaka, we have

Theorem. A 3-dimensional lens space is completely characterized by its
spectrum as a riemannian manifold.

ReMARK. Tanaka announced in his paper [10] that he obtained the above
main theorem for g=odd primes and 2-times odd primes.

Our proof is as follows:
First, we shall construct the generating function associated to the spectrum
of a 2n+1-dimensional lens space of constant curvature 1 (see in 1), i.e.,

F(2) = 3 (dim Eypan)s*

where the space E,,,, denotes the eigenspace with eigenvalue k(k+2n) (see
more precisely (1.7)).

By the definition, the spectrum of the lens space determines the generating
function and the converse is also true.

Next, we shall consider only the 3-dimensional case, and calculate the
residues of the generating functions at suitable points. Applying Key Lemma
(Lemma 5.3) to the above residues, we shall prove our Main Theorem for ¢=
1Y, 21" and 2%, case by case (see in 6,7,8 and 9).

Lemma 5.3 plays an important role in this paper. It asserts a linear in-
dependence of the values of cotangent over the rational number field Q. It will
be proved using a result in number theory obtained by Chowla [4] and Baker-
Birch-Wirsing [1].

The generating function can be defined also for any Clifford-Klein spherical
form S”/G, where G is a finite subgroup of fixed points free isometries. We
believe that the generating functions plays an important role studying the spectra

of these manifolds.
1. Lens spaces
Let C**! be the space of (n+1)-tuples (2,,2y,++,2,) of complex numbers with
the standard flat kdhler metric dszzfn_,‘ dz;+dz;. Let g be a positive integer
=0

and pg,p1,+++,p, integers prime to g. Put y=exp 2zv/—1/g. We define an
isometry g of C**! by

(11) g ('zo’ Bty 2’”) g (ry/’ozo’ 71’1217 tty 'yp"zn) .
g generates a cyclic subgroup G of the unitary group U(n-1);
(1.2) G = {g%i=0,-q-1-
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Let S***! be the unit sphere centered at the origin of C**'. The elements
g*(0<k<q) act on S**! without fixed points. The sphere S**! is the universal
covering manifold of the differentiable manifold S**'/G. Let = be the cover-
ing projection of S*! onto S**!/G;

(1.3) 7w S > S G

S?*1/G has a unique riemannian metric such that = gives a local isometry of
S?*1 onto S?***1|G. This riemannian manifold S$?*!/G shall be called a lens space
and denoted by L(g:pg, **,p,)- By the definition, for any (z-1)-tuples (pg, -+,
D.)s (Pby++,p7) of integers prime to g such that p/=p, (mod ¢) (=0, --+,n), the
lens space L(q:pg, -, pr) 1s isometric to L(q;pq, ***yPn)-

Proposition 1.1.  Let L(q:py, ***,p.) and L(q:pt, -+, ps) be lens spaces.  Sup-
pose there exist an integer | and numbers &, {—1,1} (i=0,1, ---, n) such that

(Pt =+, pn) s a permutation of (Elpe,+++,Ep,) (mod q). Then L(q:pg, -+,p,) S
isometric to L(q:ps, -+, pr)-

Proof. The isometry of S?*! onto S?***! defined by the map

(1.4) (zo, ...’zi, ...’z”)__)(zo, ooy éi’ ..-’z”)
(resp.
(1.5) (20r ***5 22) = (Botor ***» Zow) »

where o is a permutation) induces an isometry of L(q:p,, -*,p,) onto L(q:pg, -+,
—pis++sPn) (resp. L(q:Poo, = Puew)). Since g' is a generator of G, the lens
space L(q:py, -++,Ip,) is identical to L(q:p,,--+,p,). Now Proposition 1.1 follows
easily from these facts. q.e.d.

Remark. The following fact is known (see M.M. Cohen [5]). Let L(g:p,,
--+,p,) and L(g:pt, -+, ps) be lens spaces. Then L(g:p,, -++,p,) is homeomorphic
to L(q:p§,--+,p4) if and only if there exist an integer / and numbers &, {—1,1}
such that (p§, --+, ps) is a permutation of (Epg, -++,E,0p,) (mod ¢). From this, espe-
cially the converse of Proposition 1.1 is also true.

A riemannian manifold M is said to be homogeneous if the isometry group
of M acts transitively on it.

Proposition 1.2 (see J.A. Wolf [13]). The riemannian manifold L(q:p,, -+,
D») is homogeneous if and only if for any i and j, 0=<1,j <mn, it satisfies either p,=p;
(mod q) or p;=—p; (mod q). Furthermore two homogeneous lens spaces with same
order of fundamental groups are isometric to each other.

In the following, we denote by C*(M) the space of all differentiable func-
tions on a manifold M and also denote by A the Laplacian acting on C=(S%*1),
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For a lens space L(q:py,-**,p,), the Laplacian of L(g:p,,--,p,) is denoted by
AL(yp,,-p, OF simply A. For any nonnegative real number A, we define the

spaces E, and E, by
(1.6) E = {feC~(s""):Af=f},
(1.7) Ey={f€C~(L(g: po =+, P): Af = N}
The following lemma is elementary.

Lemma 1.3. (1) For any f€C=(L(q:p,, **,P.)), we have
(1.8) A(x*f) = =*(Af) -

(2) For any G-invariant function F on S**, there exists a unique function fe&
C=(L(g: poy *++>x)) such that

(1.9) F=n*f.

Corollary 1.4. Let (E,); be the space of all G-invariant functions of E,.
Then have

(1.10) dim E, = dim (B))s .

Proof. By Lemma 1.3, we can see easily that for any eigenfunction f of
A with an eigenvalue A, there exists a unique eigenfunction F of A with the
same eigenvalue A such that F is G-invariant and F=x=*f, and conversely, for
any G-invariant eigenfunction F of A with eigenvalue A, there exists a unique
eigenfunction f of A with eigenvalue A such that F=z*f. These facts imply
(1.10). g.e.d.

2. Spectrum of S%#+1

Let A, be the Laplacian on the space C**! with respect to the flat kihler
metric. Put rzzznj 2;Z;. We denote by P* the space of homogeneous polynomi-
i=o

als of degree k with respect to 2,2, **,2,,20,2,**,2, and H* the subspace of
P* consisting of harmonic polynomials on C**!;

(2.1) H* = {feP Af=0} .

Each unitary transformation of C**! induces canonically a linear isomorphism
of P* thus P* is canonically a U(n+1)-module.

Proposition 2.1. The space H* is U(n+1)-invariant, and the U(n+1)-
module P¥ has the direct sum decomposition;

(2.1) Pt = H*@®r?P*2
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The injection map i: S**'—C"*' induces a linear map i*: C=(C*+')—C=(S**1),
The image 1*(H*) is denoted by 9{*.

Proposition 2.2. J(* is an eigenspace of A on S*™** with eigenvalue k(k+2n)
and 205(" is dense in C=(S*™*) by the uniform convergence topology. Moreover,
It* i:—isomorphz'c to H* as U(n-+1)-modules by the i*.

For the proofs of Proposition 2.1 and 2.2, see in [2].

By Corollary 1.4 and Proposition 2.2, we have

Corollary 2.3. Let L(q:po,-,p.) be a lens space and 9% the space of all
G-invariant functions in H* where G={g"},—¢, . ,-1. Then we have

(2.3) dim Ejp = dim % .

Moreover, for any integer k such that dim 9% =0, k(k-+2n) is an eigenvalue of A
on L(q:po, -, P,) with multiplicity dim 9% and no other eigenvalues appear in the
spectrum of A.

3. Generating function associated to the spectrum of L(q:po, -, P,)

Let L(q:po, ***,p,) be a lens space and G the cyclic subgroup of U(n+-1)
corresponding to it as in 1.  We regard the spaces P*, H* and J{* as G-modules.

Let X, (resp. X;) be the character of the G-module P* (resp. H*). Then by
Proposition 2.1, we have

3.1) Xy = Xy— X4z,

where X_,=0 for t>0, since 72 is invariant by G. The space P* has a base
consisting of all monomials of the form

3.2) o8l = ()0 -+ (2,)"(Zo)0 - (Z,)"

where 7y, ++*, 7,50, ***»Jn =0 and Zp+ -+ +4,4jo+--+j,=k. Letgbe the generator

of G and y=exp 27\ —1/gasinl. Then for any monomial 272/, we have
(3.3) G2l 7)) = rylGobot-tintu=iobo==inpmgl o7l |

Consider the formal expansion of

(34) IT (1 A-pophtgig o) (1 y Pla oy i 4 o).

Then it is easy to see that X,(g') is equal to the z*’s coefficient of (3.4). On
the domain {z=C: |z| <1}, the above power series converges to the function
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1

(3.5) . .
1T (1—7#42) (1—7"%'2)

Now, we consider the generating function F(z) associated to the infinite
series {dim E,(,.20} i=0, L-€.,

(3.6) F(z) = kﬁ: (dim Eygerap)2" -

By Corollary 1.4, the generating function F(2) determines the spectrum of
L(g:pe*,ps), sO that we shall call the function F(z) the generating function
associated to the spectrum of L(g:p,++,p,). Now, consider another lens space
L(q':pé, ++-,pn) and denote by E(2) the generating function associated to the
spectrum of L(q’: p¢, -+, pz). Then we have

Proposition 3.1. The lens space L(q; ¢, *+, P,) 1S 1sospectral to L(q":pG, -+, pr)
if and only if
3.7) F(2) = E(2).

Theorem 3.2. Let L(q:py,--+,p,) be a lens space and F(2) the generating

Sunction associated to the spectrum of 1(q:pg,-+*sp.). Then F(2) has the following
form on the the domain {z=C: |z|<1};

g-1 1_22

(3.8) Flz)= LS1_ :
4L (1 —#iz) (1= v~)

Proof. By Corollary 2.3, we have
(3.9) F(z) = 3) (dim 9%)=* .
k=0
On the other hand by Proposition 2.2 and (3.1), we have

g-1

(3.10) dim 9t = = 53 (,(g)—Xo-olg") -

1

q i=0

Note that, for a nontrivial irreducible representation of G, the sum > X(g) of
=

its character is zero.
By (3.5), (3.9) and (3.10), we have on the domain {2=C: |2| <1}

qF(z) = ¢ 33 (dim H%)z*

k=0
= 3} 2 (Ku(g)2*—Xy-o(g)2")
7-1 1—22

=TT (1—ytiz) (1—y~lz)
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F(2) can be considered as a meromorphic function on the whole complex
plane €. Any pole of F(2) is an ¢-th root of one. Especially, F(z) has a pole
of order (2n+1) at =1, and

(3.11) lim (1—2)**"F(z) = 2.
251 q
Thus, we have proved

Corollary 3.3.  Assume L(q: po, -+, P, ) is isospectral to L(q':p§, -, pr). Then
we have

9=q.
Corollary 3.4. Assume L(q:po,-,pn) i a homogeneous lens space and iso-

spectral to L(q: pt,--,pr). Then L(q: pt,---,ps) is homogeneous and isometric to
L(q: pos *+*sPn)-

Proof. Let F(2) be the generating function associated to the spectrum of
L(q:po,+*,p,). Then F(2) has a pole of order (n+1) or (2n+1) at z=any g¢-th
root of one if and only if for any 7,j(0=7,/ <), we have either p,=p; (mod g)
or p;=—p; (mod g). By proposition 1.2, this condition holds if and only if
L(q:pe, -+, p,) 1s homogeneous. By our assumption and Proposition 3.1, the
generating function associated to the spectrum of L(q:pg,---,ps) has also the
same condition as F(z) so that L(q:p¢, -+, ps) is homogeneous. By Proposition
1.2, this space is isometric to L(q:pg, ***,p,)- q.e.d.

RemArRk. M. Tanaka [10] obtained Corollary 3.4 for 3-dimensional lens
spaces.

4. Three dimensional case

Hereafter in this paper, we consider only 3-dimensional lens spaces. Let
L(g:po,p1) be a lens space. Choosing a suitable generator for its defining cyclic
group G, we may assume p,—1. From now on, a lens space L(q:1,p) is simply
denoted by L(g:p). Assume two lens spaces L(g:p,) and L(s:p,) are isospectral
to each other. Then by Corollary 3.3, we have g=s. Moreover, assume
prEL1 (mod g). Then by Corollary 3.4, we have also p,%= 41 (mod g).

Now, we rewrite Proposition 1.1 for 3-dimensional lens spaces.

Proposition 4.1. Let L(q:p,) and L(q:p,) be 3-dimensional lens spaces.
Then, the lens space L(q: p,) is isometric to L(q: p,) if either

(4.1) pi+p.=0 (mod q),

or

(4.2) bp.=+1 (mod g) .
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Proof. By Proposition 1.1, L(g:p,) is isometric to L(q: p,) if there exists an
integer / such that

either

43) {lEj:l (mod q)
Ip=+4p, (modyg),

or

(44) {l =4p, (mod g)
Ipy=+1 (mod g) .

Now, it is easily seen that (4.3) (resp. (4.4)) is equivalent to (4.1) (resp. (4.2)).
This proves Proposition 4.1. q.e.d.

For two integers a and b, we denote by (a,b) the greatest common divisor
of a and .

Lemma 4.2. Let g be a positive integer =2 and p an integer prime to q.
Choose an integer p* satisfying pp*=1 (mod q). Then have

(4.5) (p+1, 9) = (p*+1,9)
and
(4.6) (r—1,9=0p*-1,9.

Proof. Since p is prime to ¢, we have

@*+1,9) = (p(p*+1), 9) = (p+1,9)
and
(#*—1,9) = (p(p*—1), 9) = (p—1,9), q.e.d.

The following lemma is easy to see.

Lemma 4.3. Let q,p and p* be as in Lemma 4.2. Let k be an integer such
that

(4.7) (p+1)k=0 (mod g)
and

(4.8) (p—1k=0 (mod q) .
Then we have

(4.9) (p*+1)k=0 (mod gq)
and

(4.10) (p*—1)k=0 (modyg).

Lemma 4.4. Suppose L(q:p,) is isospectral to L(q:p,) and p,=+1 (mod g).
Then we have
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etther
(P—1,9) = (P.—1,9)
1 {(P1+1, 9) = (p+1,9)
or
(4.12) {(Pl‘i‘l’Q) = (p»—1,9)
. r—Lg=(p+1,9.

Moreover the greatest common divisor ((p,—1,q), (p1+1,9)) is equal to 1 or 2. When
q is odd (resp. even), it is mecessarily 1 (resp. 2). '

Proof. The last statement is easy to see, since (p;+1)—(p,—1)=2 and
Py is odd for even gq.

Now, we shall give a proof of Lemma 4.4 in the case ¢ is odd. Let Fy(2)
(resp. Fy(2)) be the generating function associated to the spectrum of L(q:p,)
(resp. L(gq:p,)). By our assumption and Proposition 3.1, Fi(2)=F,(2). It is
clear that if F(2) has a pole of order 2 at v* (0<<k<(q), then k& must satisfy
either (p,+1)k=0 (mod ¢) or (p,—1)k=0 (mod ¢). Conversely, if k satisfies
either (p,+1)k=0 (mod q) or (p,—1)k=0 (mod g), then F,(z) has a pole of
order 2 at z=7*. In fact, if k satisfies (p;+1)k=0 (mod q) (resp. (p,—1)k=0
(mod q)), then we have

2

lim (== 7F() qr =1
(resp.

. 2

i =YY RE) = gy 0

By this fact, we can see easily that if (p,41,9)=(p,—1,¢9)=1, then (p,+1,9)=
(P—1,9)=1.

Now, assume d,=(p;+1,¢9)>1. Then at z=v%%, Fy(2) has a pole of
order 2. Since F,(2)=F,(2), F,(2) has also a pole of order 2 at y%?1., Hence,

we have either (pﬁ—l)diEO (mod g) or (pz—l)jEO (mod g). Therefore d,
1 1

is a divisor of either d,=(p,+1,9) or e,=(p,—1,q9). We may assume d, is a divisor
of d,. Since d,=d,>1, we can apply the same argument as the above and we
see that d, is a divisor of either d, or e,=(p,—1,q). If d, is a divisor of d;, then
we have d,—=d,. Suppose d, is a divisor of ¢;. Since d, is a divisor of d,, d,
is a divisor of ¢;. Since d,>>1, this contradicts the last statement in our Lemma
44. If e,>1 (resp. e,>1), then in the same way as before, we have either
e,=e, or e,=d, (resp. e,=d;). But the latter condition contradicts also the
last statement in our Lemma 4.4. Thus we have Lemma 4.4 when ¢ is odd.
By slight modification of the above argument, we can prove Lemma 4.4 when
q is even. q.e.d.
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The following corollary can be obtained easily by using Lemma 4.4.

Corollary 4.5. Let L(q:p,) and L(q:p,) be as in Lemma 4.4. Let k be an
integer such that

(4.13) (pr+1)k=£0 (mod q)

and

(4.14) (pr—1k=0 (mod q) .
Then we have

(4.15) (p.+1)k=£0 (mod q)

and

(4.16) (p.—1)k=0 (mod q) .

Proposition 4.6. Let L(q:p,) and L(q:p,) be as in Lemma 4.4. Then for
any integer k satisfying (4.13) and (4.14), we have

1 _ 1 1 _ 1
1—y~ @Dk o=~ DE | [ _q~(I¥DE | o= (Bi-DE

_ 1 . 1 1 _ 1
T 1y GrtDE (DR | ] e (EDE |- (@E-DE

(4.17)

Proof. Let k be an integer satisfying (4.13) and (4.14). Then by multi-
plying (4.13) and (4.14) by p¥, we have (p¥+1)k==0 (mod g) and (pF—1)k=%0
(mod g). We calculate the residue of F\(2) at z=1*.

lim (z—9*)F\(2)
z5yk

q vk I=0(1—fyi'1’z) (l—fy“f’llz) (1_,),13)(1_7_,2)
_2 { o* + vk }
g (T @by (1= um0k) " (1 Pk (1~ D)
2 { v
T g e (1= rthE) (1 — = (1 DE)

+ 7 }
ry(ﬁ’{‘*‘l)k(l —y~ (P’;"‘l)k) (1._ ry—(PT"l)k)

_2 vt { 1 _ 1 }
q ry(l’1+1)k(fy‘(P1-l)k_ty”(P1+1)”) 1—g= Dk ] _ oy~ (1~

Il

_2 vk 1 _ 1 }
q Y PRy~ GT Dk o= (TR | ] = GFFDF ] o= G- DR

_ 2o { IS SR SR }
g (V*—1) Ll—q= @Dk |_q=@i-Dk © ]_o=GI¥DE | _op-GI-1E '
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Since F(2)=1F,(z), we have the similar result for F,(2). Now, we obtain (4.17)
q.e.d.

Corollary 4.7. Let L(q:p,), L(q:p,) and k be as in Corollary 4.5. Then
we have
(4.18)  cot ™ (p+1)k—cot = (p,—1)k+cot = (p¥+1)k—cot = (p¥—1)k
q q q q
—cotZ (ppt-1)k+cot = (p,—1)k—cot = (pF+1)k+cot = (pf—1)k=0.
q q q q

Proof. Using an elementary formula;
— _V—1 ___l_)
cot = —v—1 (1 - ,

e’z‘/‘“’

we can obtain easily (4.18) from (4.17). q.e.d.

5. Key Lemma

In this section we shall give a key Lemma to show our Main Theorem.
We denote by @ the field of rational numbers and by @, the g-th cyclotomic
polynomical. The following theorem is due to S. Chowla [4], and A. Baker,
B.J. Birch and E.A. Wirsing [1].

Theorem 5.1. If f is a nonvanishing function defined on the integers with
algebraic numbers such that (1) for any integer r, f(r+q)=f(r), (i) f(r)=0 if
1<(r,q9)<q and (iii) @, is irreducible over Q(f(1),-+,£(q)), then

(5.1) S 4o,
n=1 nu
Let T'(2) be the Gamma-function. Define x[r(z):r%, where T''(2)
2

= iI‘(z) Then we have
dz

(5.2) Y(1—2)—+(2) = w cot =z,
(see p. 240 in [12]).

The generalized Zeta-function

S 1
g(s’ a) - = (n_*_a)s ’

where a is a constant with 0<<a=1, is absolutely convergent and holomorphic
function on {s&C: Re s>1}. It satisfies

(5.3) &G, a)—s%i = —yr(a)+o(s—1),






