A DECOMPOSITION OF THE SPACE ${\mathcal M}$ OF RIEMANNIAN METRICS ON A MANIFOLD

Norihito KOISO

(Received March 6, 1978)

0. Introduction

Let M be a compact C^{∞} -manifold. We denote by \mathcal{M} , \mathcal{D} and \mathcal{F} the space of all riemannian metrics on M, the diffeomorphism group of M, and the space of all positive functions on M, respectively. Then the group \mathcal{D} and \mathcal{F} acts on \mathcal{M} by pull back and multiplication, respectively. D. Ebin and N. Koiso establish Slice theorem [4, Theorem 2.2] on the action of \mathcal{D} .

In this paper, we shall give a decomposition theorem on the action of \mathcal{F} (Theorem 2.5). That is, there is a local diffeomorphism from $\mathcal{F} \times \overline{\mathcal{C}}$ into \mathcal{M} where $\overline{\mathcal{C}}$ is a subspace of \mathcal{M} of riemannian metrics with volume 1 and of constant scalar curvature τ_g such that $\tau_g = 0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Combining the above theorems, we get the following decomposition of a deformation (Corollary 2.9). Let $g \in \overline{\mathcal{C}}$ and g(t) be a deformation of g. Then there are a curve f(t) in \mathcal{F} , a curve $\gamma(t)$ in \mathcal{D} and a curve $\overline{g}(t)$ in $\overline{\mathcal{C}}$ such that $\delta \overline{g}'(0) = 0$, which satisfy the equation $g(t) = f(t)\gamma(t)^* \overline{g}(t)$. (For the operator δ , see 1.)

The author wishes to express his thanks to the referee.

1. Preliminaries

First, we introduce notation and definitions which will be used throughout this paper. Let M be an n-dimensional, connected and compact C^{∞} -manifold, and we always assmue $n \ge 2$. For a vector bundle T over M, we denote by $H^r(T)$ the space of all H^r -sections, where H^r means an object which has derivatives defined almost everywhere up to order r and such that each partial derivative is square integrable. Then $H^r(T)$ is isomorphic to a Hilbert space and the space $C^{\infty}(T)$ of all C^{∞} -sections becomes an inverse limit of $\{H^r(T)\}_{r=1,2,\dots}$. Therefore such a space is said to be an ILH-space. If a topological space $\mathcal X$ is isomorphic to an ILH-space locally, $\mathcal X$ is said to be an ILH-manifold. For details, see [5].

424 N. Koiso

Let g be an H^s -metric on M. We consider the riemannian connection and use the following notations:

 v_g ; the volume element with respect to g,

R; the curvature tensor,

 ρ ; the Ricci tensor,

(For the standard sphere with orthnormal basis, $R_{121}^2 = R_{1212} < 0$ and $\rho_{11} < 0$.)

 τ ; the scalar curvature,

(,); the inner product in fibres of a tensor bundle defined by g,

< , >; the global inner product for sections of a tensor bundle over M, i.e., < , >= $\int_M ($, $)v_g,$

 S^2 ; the symmetric covariant 2-tensor bundle over M,

H'(M); the Hilbert space of all H'-functions,

 $H'_{g}(M)$; the Hilbert space of all H'-functions f such that $\int_{M} f v_{g} = 0$,

 $H_g^r(S^2)$; the Hilbert space of all symmetric bilinear H^r -forms h such that $\langle h, g \rangle = 0$,

 ∇ ; the covariant derivation,

 δ ; the formal adjoint of ∇ with respect to \langle , \rangle ,

 δ^* ; the formal adjoint of $\delta | H'(S^2)$,

 $\Delta = \delta d$; the Laplacian operating on the space H'(M),

 $\overline{\Delta} = \delta \nabla$; the rough Laplacian operating on the space $H'(T_q^p)$,

Hess= ∇d ; the Hessian on the space H'(M),

 \mathcal{F} ; the ILH-manifold of all positive C^{∞} -functions on M,

 \mathcal{F}' ; the Hilbert manifold of all positive H'-functions on M,

 \mathcal{M} ; the ILH-manifold of all C^{∞} -metrics on M,

 \mathcal{M}' ; the Hilbert manifold of all H'-metrics on M,

 \mathcal{M}_1 ; the ILH-manifold of all C^{∞} -metrics with volume 1,

 \mathcal{M}'_1 ; the Hilbert manifold of all H'-metrics with volume 1.

When we consider the metric space \mathcal{M}^s , the covariant derivation, the curvature tensor and the Ricci tensor with respect to an element g of \mathcal{M}^s will be denoted by ∇_g , R_g or ρ_g . By a deformation of g we mean a C^{∞} -curve $g(t) \colon I \to \mathcal{M}$ such that g(0) = g, where I is an open interval. The differential g'(0) is called an infinitesimal deformation, or simply an i-deformation. If there is a 1-parameter family $\gamma(t)$ of diffeomorphisms such that $g(t) = \gamma(t) * g$ then the deformation g(t) is said to be trival. If there is a 1-form ξ such that $h = \delta * \xi$, then the i-deformation h is said to be essential if $\delta h = 0$.

Now, we give some fundamental propositions.

Lemma 1.1 [6,11.3]. Let E and F be vector bundles over M and $f: E \to F$ be a fiber preserving C^{∞} -map. If $s > \frac{n}{2}$, then the map $\phi: H^{s}(E) \to H^{s}(F)$ which is defined by $\phi(\alpha) = f \circ \alpha$ is C^{∞} .

Proposition 1.2. If $s > \frac{n}{2}$, then the map $D: \mathcal{M}^{s+1} \times H^{s+1}(T_q^p) \to H^s(T_{q+1}^p)$ which is defined by $D(g, \xi) = \nabla_g \xi$ is C^{∞} .

Proof. Let g_0 be a fixed C^{∞} -metric on M. We define the tensor field T(g) by $T(g)(X, Y) = (\nabla_g)_X Y - (\nabla_{g_0})_X Y$ for an H^s -metric g on M. Then we get

$$(T(g))^k{}_{ij} = rac{1}{2} \, g^{kl} \{ (
abla_{g_0})_i g_{lj} + (
abla_{g_0})_j g_{li} - (
abla_{g_0})_l g_{ij} \}$$
 ,

and

$$\begin{split} (D(g,\xi))^{i_1\cdots i_p}{}_{j_0\cdots j_q} - (D(g_0,\xi))^{i_1\cdots i_p}{}_{j_0\cdots j_q} \\ &= -\sum_{a=1}^k (T(g))^l{}_{j_0j_a} \, \xi^{i_1\cdots i_p}{}_{j_1\cdots j_{a-1}lj_{a+1}\cdots j_q} \\ &+ \sum_{b=1}^p (T(g))^{i_b}{}_{j_0k} \, \xi^{i_1\cdots i_{b-1}ki_{b+1}\cdots i_p}{}_{j_1\cdots j_q} \, . \end{split}$$

By the definition of the H^s -topology, we know that the map $: g \to (\nabla_{g_0})g$ is a C^∞ -map from \mathcal{M}^{s+1} to $H^s(T^0_3)$. Hence Lemma 1.1 implies that the map: $g \to T(g)$ is a C^∞ -map from \mathcal{M}^{s+1} to $H^s(T^1_2)$. Applying Lemma 1.1 to the above formula, we see that the map $: (T(g), \xi) \to D(g, \xi) - D(g_0, \xi)$ is a C^∞ -map from $H^s(T^1_2) \times H^{s+1}(T^p_q)$ to $H^s(T^p_{q+1})$. But the map $: \xi \to D(g_0, \xi)$ is a continuous linear map from $H^{s+1}(T^p_q)$ to $H^s(T^p_{q+1})$, hence the map $: (T(g), \xi) \to D(g, \xi)$ is C^∞ . Thus we see that the map D is a composition of C^∞ -maps, and so is C^∞ .

Corollary 1.3. If $s > \frac{n}{2}$, then the map $: (g, f) \to \nabla_g f$ is a C^{∞} -map from $\mathcal{M}^{s+1} \times H^{s+2}(M)$ to $H^s(M)$.

Proof. We apply Proposition 1.2 to the formula ; $\Delta_g f = -g^{ij} \nabla_i d_j f$.

Corollary 1.4. If $s>\frac{n}{2}$, then the maps : $g\to R$, ρ , τ are C^{∞} -maps from \mathcal{M}^{s+2} to $H^s(T^1_3)$, $H^s(S^2)$ and $H^s(M)$, respectively.

Proof. The smoothness of the map : $g \rightarrow R$ completes the proof. By easy computation, we get the next formula :

$$\begin{split} R(g)_{ijk}{}^{l} - R(g_{0})_{ijk}{}^{l} &= (\nabla_{g_{0}})_{i}(T(g))^{l}{}_{jk} - (\nabla_{g_{0}})_{j}(T(g))^{l}{}_{ik} \\ &+ (T(g))^{l}{}_{im}(T(g))^{m}{}_{jk} - (T(g))^{l}{}_{jm}(T(g))^{m}{}_{ik} \,. \end{split}$$

Thus, applying Proposition 1.2, we see that the map $: g \rightarrow R$ is C^{∞} .

Lemma 1.5 [9,(19.5); 1,(2.11) (2.12)]. Let g(t) be a deformation of g. If we set h=g'(0), then we have the following formulae;

$$\frac{d}{dt}|_{0}\tau_{g(t)} = \Delta \operatorname{tr} h + \delta \delta h - (h, \rho), \qquad (1.5.1)$$

$$\frac{d}{dt}|_{0}\rho_{g(t)} = \frac{1}{2} \{ \overline{\Delta}h + 2Qh + 2Lh - 2\delta^*\delta h - \text{Hess tr } h, \}$$
 (1.5.2)

where $2(Qh)_{ij} = \rho_i^{\ k} h_{kj} + \rho_j^{\ k} h_{ik}$ and $(Lh)_{ij} = R_{ikjl} h^{kl}$.

426 N. Koiso

2. A decomposition of the space \mathcal{M}

We denote by C' the space of all H'-metrics with constant scalar curvature and with volume 1. Fix a C^{∞} -metric $g_0 \in \mathcal{M}_1$. For an integer $r > \frac{n}{2} + 4$ and $g \in \mathcal{M}_1'$, we define a C^{∞} -map

$$\sigma_g^r: H_{g_0}^r(M) {\rightarrow} H_{g_0}^{r-4}(M)$$

by $\sigma_g^r(f) = (n-1)(\Delta_g)^2 f - \tau_g \Delta_g f - \int \{(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f\} v_{g_0}.$

In fact the map: $(g,f) \rightarrow \sigma_g^r(f)$ is a \check{C}^{∞} -map from $\mathcal{M}_1^r \times H_{g_0}^r(M)$ to $H_{g_0}^{r-4}(M)$ owing to Corollary 1.3 and Corollary 1.4. First we show some lemmas.

Lemma 2.1. If we denote by K' the subset of \mathcal{M}_1^r of all metrics $g \in \mathcal{M}_1^r$ such that σ_g^r is an isomorphism, then K' is open in \mathcal{M}_1^r .

Proof. The map : $g \to \sigma_g^r$ is a C^{∞} -map from \mathcal{M}_1^r to the space $L(H_{s_0}^r(M), H_{s_0}^{r-4}(M))$ of all continuous linear maps from $H_{s_0}^r(M)$ to $H_{s_0}^{r-4}(M)$. On the other hand the set of all isomorphisms is open in $L(H_{s_0}^r(M), H_{s_0}^{r-4}(M))$, hence K^r is open \mathcal{M}_1^r .

Lemma 2.2. Let \overline{C} be the subset of \mathcal{M} of all metrics g with constant scalar curvature τ_g such that $\tau_g=0$ or $\tau_g/(n-1)$ is not an eigenvalue of Δ_g . Then $C'\cap K'\cap \mathcal{M}=\overline{C}$.

Proof. Let $g \in \overline{\mathcal{C}}$. Then $g \in \mathcal{C}' \cap \mathcal{M}$, and so it is sufficient to prove that $g \in K'$. If $f \in \text{Ker } \sigma_g'$ then $(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f$ is a constant. By integration we see

$$(n-1)(\Delta_g)^2 f - \tau_g \Delta_g f = 0$$
.

But here $\tau_g = 0$ or τ_g is not an eigenvalue of Δ_g . Hence $\Delta_g f$ is a constant, and so the assumption that $f \in H^r_{g_0}(M)$ implies f = 0. Thus we see σ_g^r is injective. On the other hand $\operatorname{Im} \{(n-1)(\Delta_g)^2 - \tau_g \Delta_g\} = H^{r-4}_g(M)$ implies σ_g^r is surjective. Therefore $\bar{\mathcal{C}} \subset \mathcal{C}^r \cap K^r \cap \mathcal{M}$, and by the definition of $\bar{\mathcal{C}}$ and K^r we see $\bar{\mathcal{C}} \supset \mathcal{C}^r \cap K^r \cap \mathcal{M}$.

Lemma 2.3.⁽¹⁾ $C^r \cap K^r$ is an submanifold of \mathcal{M}_1^r .

Proof. We define a C^{∞} -map $\widetilde{\Delta \tau}: \mathcal{M}'_1 \rightarrow H^{r-4}_{g_0}(M)$ by

$$\widetilde{\Delta au}(g) = \Delta_g au_g - \int \!\! \Delta_g au_g v_{g_0} \, .$$

Then $C' = (\Delta \tau)^{-1}(0)$. By differentiation we get

⁽¹⁾ A.E. Fischer and J.E. Marsden [8, Theorem 3] show that the space $\mathbf{R} \cdot \overline{\mathcal{C}}$ becomes a submanifold of \mathcal{M} .

$$T_{\mathbf{g}}(\widetilde{\Delta^{\tau}})(h) = \Delta'_{(\mathbf{g},h)}\tau_{\mathbf{g}} + \Delta_{\mathbf{g}}\tau'_{(\mathbf{g},h)} - \int \{(\Delta'_{(\mathbf{g},h)} + \Delta_{\mathbf{g}}\tau'_{(\mathbf{g},h)})\} v_{\mathbf{g}_0}.$$

Let $g \in \mathcal{C}'$. Then we get

$$\Delta'_{(g,h)} au_g = rac{d}{dt} |_{0} \Delta_{g+th} au_g = 0$$
 .

If h is conformal, i.e., there is $f \in H_s^r(M)$ such that h=fg, by substituting to the formula (1.5.1) we get

$$\tau'_{(g,fg)} = (n-1)\Delta_g f - \tau_g f$$
.

Thus we get $T_g(\widetilde{\Delta \tau})$ $(fg) = \sigma'_g(f)$, and $T_g(\widetilde{\Delta \tau})$ is surjective. This implies, by implicit function theorem, $C' \cap K'$ is a submanifold of \mathcal{M}'_1 , and so of \mathcal{M}' .

Lemma 2.4. Define a C^{∞} -map $\chi^r : \mathcal{F}^r \times (C^r \cap K^r) \to \mathcal{M}^r$ by $\chi^r(f,g) = fg$. If $g \in \overline{C}$ then $T_{(f,g)}\chi^r$ is an isomorphism.

Proof. Injectivity. We see

$$(T_{(f,g)}\chi')(\phi,h)=fh+\phi g$$
.

If $fh+\phi g=0$, then $\tilde{\phi}g\in \operatorname{Ker} T_{\sigma}(\widetilde{\Delta \tau})$, where $\tilde{\phi}=-\phi/f$. Hence

$$\Delta_{\rm g} \ {\rm tr}_{\rm g}(\tilde{\phi} g) + \delta_{\rm g} \delta_{\rm g}(\tilde{\phi} g) - (\tilde{\phi} g, \, \rho_{\rm g})_{\rm g} = 0$$
 ,

therefore $(n-1)\Delta_{g}\tilde{\phi}-\tau_{g}\tilde{\phi}=0$.

But here $g \in \overline{C}$, which implies $\tilde{\phi} = 0$, and so h = 0, $\phi = 0$.

Surjectivity. The equation $\operatorname{Im} T_{(f,g)}X'=fT_g(\mathcal{C}')+H'(M)g$ shows that $\operatorname{Im} T_{(f,g)}X'$ is closed in $H'(S^2)$. Hence, if $T_{(f,g)}X'$ is not surjective then there exists a non-zero element \overline{h} in $H'(S^2)$ orthogornal to $fT_g(\mathcal{C}')$ and H'(M)g. We set

$$K_{\rm g}(h) = \Delta_{\rm g}(\Delta_{\rm g} {\rm tr}_{\rm g} h + \delta_{\rm g} \delta_{\rm g} h - (h, \rho_{\rm g})_{\rm g})$$
 .

Then we get $T_g(\mathcal{C}') = \operatorname{Ker} T_g(\Delta \tau) = \operatorname{Ker} T_g(\Delta \tau) = \operatorname{Ker} K_g$. On the other hand K_g has surjective symbol. Hence [2, Corollary 6.9] implies that $H'(S^2)$ has the decomposition

$$H'(S^2) = Rg \oplus T_g(\mathcal{C}') \oplus \operatorname{Im} K_g^*$$
,

where K_g^* is the formal adjoint of K_g . $f\bar{h}$ is orthogonal to $T_g(\mathcal{C}')$ and H'(M)g, hence $f\bar{h} \in \text{Im}K_g^*$. If we set $f\bar{h} = K_g^*(\psi)$, then we see

$$f ar{h} = (\Delta_{\scriptscriptstyle oldsymbol{g}})^2 \psi +
abla_{\scriptscriptstyle oldsymbol{g}}
abla_{\scriptscriptstyle oldsymbol{g}}
abla_{\scriptscriptstyle oldsymbol{g}} \psi - \Delta_{\scriptscriptstyle oldsymbol{g}} \psi
ho_{\scriptscriptstyle oldsymbol{g}} \,.$$

Since $f \bar{h}$ is orthogonal to H'(M)g, we see

428 N. Koiso

$$0 = \operatorname{tr}_{g}(f\bar{h}) = (n-1)(\Delta_{g})^{2}\psi - \tau_{g}\Delta_{g}\psi.$$

By the assumption that $g \in \bar{C}$, we see $\Delta_g \psi = 0$ and so $f \bar{h} = 0$, which contradicts the assumption that $\bar{h} = 0$.

Theorem 2.5.⁽²⁾ The space \overline{C} is an ILH-submanifold of \mathcal{M} and the map $\chi: \mathcal{F} \times \overline{C} \rightarrow \mathcal{M}$ is a local ILH-diffeomorphism into \mathcal{M} , where χ is defined by $\chi(f,g)=fg$.

(For the notation ILH, see [5, pp. 168-169].)

REMARK 2.6. J.L. Kazdan and F.W. Warner [3, Theorem 1.1] show that \bar{C} is not empty.

REMARK 2.7. When n=2, this result is classical. That is, any metric g is conformal to some metric with constant scalar curvature.

Proof. We fix a sufficiantly large integer r. By Lemma 2.2, Lemma 2.4 and the inverse function theorem there is an open neighbourhood W' of $\mathcal{Z} \times \overline{\mathcal{C}}$ in $\mathcal{Z}' \times (\mathcal{C}' \cap K')$ such that $\chi' \mid W'$ is a local diffeomorphism. We denote by $\overline{\mathcal{C}}'$ the set of all metrics $g \in \mathcal{C}' \cap K'$ such that there is an H'-function f such that $(f,g) \in W'$. For an integer $s \geq r$ we set $\overline{\mathcal{C}}^s = \overline{\mathcal{C}}' \cap \bigcap_{i=r}^s (\mathcal{C}^i \cap K^i)$. We easily see that $\overline{\mathcal{C}}^s \supset \overline{\mathcal{C}}^{s+1}$ and, by Lemma 2.1, that $\overline{\mathcal{C}}^s$ is open in $\mathcal{C}^s \cap K^s$. Moreover we see $\bigcap_{s=r}^\infty \overline{\mathcal{C}}^s = \overline{\mathcal{C}}$ by Lemma 2.2, and thus we can define an ILH-structure on $\overline{\mathcal{C}}$ as $\overline{\mathcal{C}} = \lim_{s \geq r} \overline{\mathcal{C}}^s$.

Next we shall prove that the map $\chi^r | \mathcal{F}^s \times \overline{\mathcal{C}}^s : \mathcal{F}^s \times \overline{\mathcal{C}}^s \to \mathcal{M}^s$ is a local diffeomorphism. Lemma 1.1 implies the smoothness of this map. To prove the smoothness of the inverse map, we choose an open covering $\{W_a^r\}$ of W^r such that $\chi^r | W_a^r$ is a diffeomorphism. We apply the following lemma to $(\chi^r | W^r)^{-1}$.

Lemma 2.8 [4, Lemma 2.8]. Let E and F be vector bundles over M associated to the frame bundle of M. Then there exists a cannonical linear map $\eta^*: H^0(E) \to H^0(E)$ for a diffeomorphism η of M. Let A be an open set of H'(E) and $\phi: A \to H'(F)$ be a C^{∞} -map which commutes with any η^* . If we set $A^s = A \cap H^s(E)$ for $s \ge r$, then $\phi(A^s) \subset H^s(F)$ and the map $\phi \mid A^s: A^s \to H^s(F)$ is C^{∞} .

If we set $\operatorname{Im}(X'|W'_{\alpha})=A$ and $(X'|W'_{\alpha})^{-1}=\phi$, then ϕ is a C^{∞} -map from A into $H'(M)\times H'(S^2)$ which commutes with the action of the diffeomorphism group $\mathcal D$ of M. Hence Lemma 2.8 implies that the map

⁽²⁾ J.P. Bourguignon [7, VIII. 8. Proposition] shows that $\tau : \mathcal{M} \to \mathcal{F}$ is a submersion around a metric $g \in \mathcal{M}$ such that τ_g is not non-negative constant.

$$(\chi^r | W_{\alpha}^r)^{-1} | A^s : A^s \rightarrow H^s(M) \times H^s(S^2)$$

is C^{∞} . But here $\mathcal{F}^s \times \bar{\mathcal{C}}^s$ is a submanifold of $H^s(M) \times H^s(S^2)$, hence the map $(\mathcal{X}' | W')^{-1} | A^s : A^s \to \mathcal{F}^s \times \bar{\mathcal{C}}^s$ is C^{∞} . Thus \mathcal{X}^s is a local diffeomorphism and $\mathcal{X} = \lim_{s \to \infty} \mathcal{X}^s$ is an ILH-diffeomorphism, which implies that $\bar{\mathcal{C}}$ is an ILH-submanifold of \mathcal{M} .

Corollary 2.9. Let $g=f\overline{g}$, where $f \in \mathcal{F}$ and $\overline{g} \in \overline{C}$. If g(t) is a deformation of g with sufficiently small domain of t, then there exist a 1-parameter family of positive functions f(t) on M, a 1-parameter family of diffeomorphisms $\gamma(t)$ of M and a deformation $\overline{g}(t)$ in \overline{C} such that f(0)=f, $\delta \overline{g}'(0)=0$ and $g(t)=f(t)\gamma(t)*\overline{g}(t)$.

Proof. By Theorem 2.5, g(t) is decomposed into $f(t)\tilde{g}(t)$, where $\tilde{g}(t)$ is a deformation in \bar{C} . Applying Slice theorem [4, Theorem 2.2] to $\tilde{g}(t)$, we get $\tilde{g}(t) = \gamma(t) * \bar{g}(t)$, where $\bar{g}(t)$ is a deformation such that $\delta \bar{g}'(0) = 0$. Also we easily see that $\bar{g}(t) \in \bar{C}$ for each t.

The author wishes to express his thanks to Professor J.P. Bourguignon for his kind informations concerning with Lemma 2.3 and Theorem 2.5.

OSAKA UNIVERSITY

References

- [1] M. Berger: Quelques formules de variation pour une structure riemannienne, Ann. Sci. Ecole Norm. Sup. 4° serie 3 (1970), 285-294.
- [2] D.G. Ebin: The manifold of riemannian metrics, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 11-40.
- [3] J.L. Kazdan and F.W. Warner: Scalar curvature and conformal deformation of riemmanian structures, J. Differential Geometry 10 (1975), 113-134.
- [4] N. Koiso: Non-deformability of Einstein metrics, Osaka J. Math. 15 (1978), 419-433
- [5] H. Omori: On the group of diffeomorphisms of a compact manifold, Global Analysis (Proc. Sympos. Pure Math.) 15 (1968), 167-183.
- [6] R.S. Palais: Foundations of non-linear functional analysis, Benjamin, New York, 1968.
- [7] J.P. Bourguignon: Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975), 1-41.
- [8] A.E. Fischer and J.E. Marsden: Manifolds of riemannian metrics with prescribed scalar curvature, Bull. Amer. Math. Soc. 80 (1974), 479-484.
- [9] A. Lichnerowicz: *Propagateurs et cummutateurs en relativité générale*, Inst. Hautes Etudes Sci. Publ. Math. **10** (1961), 293-344.