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ON QF-3 AND |I-GORENSTEIN RINGS
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Let R be a ring with identity, E the injective hull of R, and Q the maximal

right quotient ring of R. Consider the following conditions.

.. E is projective.

: R has a minimal faithful right R-module.

: R has a faithful injective right ideal.

: E is torsionless.

: Any finitely generated submodule of E is torsionless.

: Any finitely generated submodule of Q is torsionless.

For arbltrary ring R, A,=>A;=A,=> A;=>A; hold (see [14, p, 47]). On the
other hand if R is a left perfect ring, A,, A; and A, are equivalent (see [4, Theorem
3.2], [1, Theorem 2] and [13, Proposition 3.1]). Any commutative integral
domain which is not a field satisfies. A;, but does not satisfy A,. However,
Rutter [8, Corollary 3] proved that for any right or left artinian ring R A implies
A,. In §2 we shall define a new ring, called a right DWA ring, which is a
generalization of a right semi-artinian ring, and we shall show that for any
right DWA and right perfect ring R A; implies A;. As a consequence, for any
perfect ring R A; implies A,. We owe the method of the proof essentially to
Rutter [8, Lemma 2] and the proofs of Colby and Rutter [1, Theorem 2] and
Jans [4, Theorem 3.2]. We call a ring R right QF-3 if R satisfies 4; and R right
QF-3’ if R satisfies A,

By Wu, Mochizuki and Jans [16] (or Colby and Rutter [1, Theorem 1] and
Kato [6, Remark, p. 236]), a characterization of right artinian rings satisfying
A, (or rings satisfying A,) was given. In §3 we shall give an analogous result
for right QF-3 rings. In §4 we shall show that any right QF-3’ and right
1-Gorenstein ring is QF-3 (see §4 for the definition of a 1-Gorenstein ring).
Moreover using this result, we shall show that any noetherian right QF-3’ ring
such that E@E/R is an injective cogenerator is right and left 1-Gorenstein.
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1. Definitions and notations

Throughout this note we assume that R is a ring with identity and all R-
modules are unitary. We denote by E the injective hull of R; and by QO the
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maximal right quotient ring of R. For an R-module M we denote by M* the
dual module Homg(M, R). We assume that “torsion theory”’ means the Lambek
torsion theory. We call R right QF-3 if any finitely generated submodule of
E is torsionless. (Note that we call such a ring right QF-3’ in [11] and [12]).
On the other hand we call R right QF-3’ if any finitely generated submodule of
O is torsionless.

Let M be a right R-module. For a submodule N of M, we say that N is
saturated in M if M|N is torsion-free. (In [12] we call such a submodule
closed). See [10] for saturated submodules. We say that M is D-noetherian
(resp. D-artinian) if M satisfies the ascending (resp. descending) chain condition
on saturated submodules of M. (The letter D comes from the topology con-
sisting of dense right ideals of R.) A ring R is called right D-noetherian (resp.
right D-artinian) if a right R-module Ry is D-noetherian (resp. D-artinian).
There exists a maximal chain

M=MD>OM,D---DM,

of saturated submodules M; of M if and only if M is D-noetherian and D-
artinian. If M has a maximal chain as above, we say that M is finite Lambek-
dimensional (or simply finite dimensional) and denote it by dim M=n. Otherwise
we define it by dim M=oco. We call a module M strongly uniform (simply
s-uniform) if M is torsion-free and dim M=1. We say that M is D-weakly
artinian (or simply DWA) if any submodule IV of M with dim N>1 has a sub-
module L with dim L=1 and R is right DWA if R, is DWA. Note that any
right semi-artinian (in particular left perfect) ring and any right D-artinian
ring is right DWA

2. Perfect QF-3 rings

We can obtain the following theorem and corollaries (in particular Corol-
lary 1) by Rutter [8, Lemma 2] and a slight modification of the proofs of Colby
and Rutter [1, Theorem 1.2] and Jans [4, Theorem 3.2].

Theorem 1. Let R be a right DWA and right perfect ring. Then the follow-
ing conditions are equivalent:

(1) R s right QF-3.

(2) R has a faithful injective right ideal.

Proof. It always holds that (2) implies (1). Assume (1). Let I be an
s-uniform right ideal of R. E(I) is clearly imbedded in E, where E(I) is the in-

jective hull of . If M is a non-zero finitely generated submodule of E(I), M is
torsionless, i.e. N Kerf=0. Hence there exists a map fe M* such that
feEM*

INMdEKerf, since INM=+0. Suppose Ker f=0. Then I NKerfis a non-
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zero proper submodule of I N M. But I N M/I N Ker f isimbedded in a torsion-
free R-module M/Ker f. Since dim I N M=1, we have I N M[/I NKer f=0 or
equivalently I NMcCXKer f. This is a contradiction. Thus we have Ker f=0,
so M is imbedded in R (see Proposition 1). Therefore by [8, Lemma 2] E(I)
is flat and so is projective. Since E(I) is clearly indecomposable, E(I) is iso-
morphic to a right ideal eR of R, where e is a primitive idempotent of R. Let
eR, ---,e,R be a complete set of pairwise non-isomorphic injective inde-
composable right ideals of R and put P=e,R+----4¢,R, where the sum is clearly
direct. We show P is faithful. Let Of=a=R. Then there exists an s-uniform
right ideal I contained in aR. Since we have a monomorphism I—e¢;R for some
7 and ¢;R is injective, there exists x=¢;R such that xI (=I)#0. Thus we
have xa =0 and this shows P is faithful.

Corollary 1. Let R be a perfect ring. Then the following conditions are
equivalent:

(1) R s right QF-3.

(2) R has a minimal faithful right R-module.

Corollary 2. Let R be a semi-perfect right DWA ring. Then the following
conditions are equivalent:

(1) E 1s torsionless, where E is the injective hull of Rp.

(2) R has a faithful injective right ideal.

We call a module M essentially finite dimensional if there exists a finite
dimensional submodule N of M such that N is essential in M. Then the prop-
erty that the torsionless module M in the proof of Theorem 1 is imbedded in
R is extended as follows:

Proposition 1. Let M be an essentially finite dimensional right R-module.
If M is torsionless, then M can be imbedded in a finitely generated free right R-
module.

Proof. Let N be a finite dimensional and essential submodule of M.
Since M is torsionless, we have a monomorphism f: M — [] R, with R, copies
ac4d

of R;. 'Then by [12, Lemma 1’] there exists a finite subset B of 4 such that
pfg: N— II Rs is monomorphic, where p: [T R,— Il Rs and g: N—M are
geB acd BEB

the canoical projection and the canonical injection, respectively. This shows
N NKer pf=0. Since N is essential in M, Ker pf=0, and so M is imbedded in
a finitely generated free right R-module.

The following holds on essentially finite dimensional R-modules.

Proposition 2. Let R be a ring. Then we have
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(1) Any torsion-free and essentially finite dimensional right R-module is
DWA and finite Goldie-dimensional.

(2) Any DWA and finite Goldie-dimensional right R-module is essentially
finite dimensional.

(3) Any D-artinian right R-module is essentially finite dimensional.

Proof. (1) and (2) are immediate consequences.

(3) Let M be a D-artinian right R-module and (M) the torsion submodule
of M. Then M/t(M) is DWA and finite Goldie-dimensional by [12, Lemma 2].
Hence by (2) there exists an essential and finite dimensional submodule N/t(M)
of M/¢(M). Then N is clearly an essential and finite dimensional submodule

of M.

3. QF-3 rings

Wu, Mochizuki and Jans [16] gave a characterization of right artinian rings
satisfying the condition A, (in the introduction). Moreover this characteri-
zation is also that of rings satisfying A, (see Colby and Rutter [1, Theorem 1]
and Kato [6, Remark, p. 236]). We shall show that an analogous characteri-
zation holds for right QF-3 rings. A right R-module M is called finitely im-
bedded (simply FI) if M is imbedded in some finitely generated right R-module.
Note that any submodule and any factor module of FI modules is also FI, and
any FI torsion-free right R-module is isomorphic to a submodule of some fi-
nitely generated torsion-free right R-module.

Theorem 2. Let R be a ring. Then the following conditions (1) and (2)
are equivalent:
(1) Ris right QF-3.
(2) (@) If0—>L—->M—>N—0is an exact sequence such that M is FI (or
finitely generated), and L and N are torsionless, then M is torsionless.
(b) For every FI right R-module M, M*=0 if and only if M is a
torsion module.

Proof. (1)=(2). (a) is clear since any torsionless module is torsion-free.
(b) follows from the definition of FI-modules.

(2)=(1). 'The proof is due to Wu, Mochizuki and Jans [16]. Let M be an
FI torsion-free right R-module and K the kernel of a canonical map M — M **,
As is well-known, K is the smallest submodule of M such that M/K is torsion-
less. Moreover let K’ be the kernel of a canonical map K—K**. Then we
have an exact sequence 0—K/K'—=M|K'—M|K—0. Since M/K and K/K’
are torsionless, so is M/K’ by (a). Hence K=K’, so K*=0 and K is a torsion
module by (b). Consequently K=0 since K is torsion-free. Thus M is
torsionless.
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Let M be the category of right R-modules and let MM, be the full subcategory
of M whose objects are FI R-modules. An R-module M is torsionless, i.e.,
M can be imbedded in a products of copies of R if and only if for any non-zero
submodule NV of M a canonical map M*—N* is non-zero. Now we adopt the
latter condition as the definition of torsionless R-modules in M,. We denote
by & (resp. £;) the class of torsionless modules in M (resp. M;), and denote
by T (resp.E,;) the class of modules M in M (resp. M) such that M*
(=Homg (M, R))=0. Then it is clear that R is right QF-3 if and only if £, is
closed under taking essential extensions in SM,. On the other hand since M
is a torsion module if and only if N*=0 for any submodule N of M, (2)-(b)
in Theorem 2 is equivalent to the condition that £, is closed under taking
submodules (see [15, Proposition 1]). Thus Theorem 2 shows that we can
replace &, T and M with &, T, and M/, respectively, in [1, Theorem 1] (if
we consider right R-modules instead of left R-modules in it). That is,

Corollary 3. Let R be a ring. Then the following conditions (1) and (2)
are equivalent:
(1) R, is closed under taking essential extensions in I .
(2) (a) &, is closed under taking extensions in SN, by elements of ¥ ,.
(b) T, is closed under taking submodules.

4. QF-3 and 1-Gorenstein rings

We shall give a sufficient condition for a right QF-3’ ring to be right QF-3.
We call a ring R a right n-Gorenstein ring if R is (right and left) noetherian and
R has the right self-injective dimension<n.

Lemmal. Let M be a D-noetherian R-module whick is not a torsion module.
Then there exists a submodule N of M such that M|N is s-uniform.

Proof. If N is a maximal element in the set consisting of saturated sub-
modules of M, N clearly satisfies the assertion.

Lemma 2. Let M be an s-uniform right R-module. Then M can be imbed-
ded into Q, where Q is the maximal right quotient ring of R.

Proof. Since M is torsion-free, we have a non-zero map M— E, where
E denotes the injective hull of R;. Then by [11, Lemma 1] this map is mono-
morphic. Thus we may assume that M is contained in E. Consider an exact
sequence 0>MNQ—->M—->M/MNQ—0. Since MNQO+0, M/MNQ is a
torsion module. On the other hand, since M/M N Q=M+Q/QC E/Q, M[MNQ
is torsion-free, so M/M N Q=0. Therefore we have M C Q.

ReMARK. The proof of the above lemma shows that any s-uniform sub-
module of £ is contained in Q if we regard Q as a submodule of E.
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Proposition 3. Let R be a right D-noetherian and right QF-3" ring. Then
for every finitely generated right R-module M, M*=0 if and only if M is a torsion
module.

Proof. Let M be a finitely generated right R-module. If M is a torsion
module, M*=0 is clear. Assume M is not a torsion module. Since M is
D-noetherian by [12, Lemma 2], there exists a submodule N of M such that
M|N is s-uniform by Lemma 1. M/N can be imbedded in Q by Lemma 2 and
so M|N is torsionless. Now we have an exact sequence 0— (M/N)* — M*.
Thus we have M*=£0 since (M/N)*=0.

Lemma 3. Let R be a ring with right self-injective dimension <1. If
0— L,—>M;—>N—0 is an exact sequence such that L is torsionless and N is a
submodule of a finitely generated free right R-module, then M is torsionless.

Proof. Since R has the right self-injective dimension<1, we have an
exact sequence 0—>N*—>M*—L*—-0. Hence we have a following commuta-

tive diagram with exact rows:

0O—sL—M—>N—>0

0 > L¥¥ s JJ** > N**
It follows that M is torsionless.

From Theorem 2, Proposition 3, Lemma 3 and [9, Theorem 1.1], the
following theorem is immediate.

Theorem 3. Let R be a right QF-3' and right 1-Gorenstein ring. Then R
is a QF-3 ring with finite dimension on both sides.

The following theorem is a slight extension of Theorem 3.

Theorem 4. Let R be a right noetherian right QF-3' ring satisfying the
descending chain condition on annihilator right ideals and assume R has the right
self-injective dimension <1. Then R is right finite dimensional and right QF-3.

Proof. Let M be a finitely generated torsion-free right R-module with
finite dimension. Put dim M=mn. First we show that such a module M is
torsionless by induction on zn. When n=1, the result holds by Lemma 2.
Assume n>1. Then there exists a submodule N of M such that M/N is s-
uniform. By inductional assumption NV and M/N are torsionless. In particular
M|N can be imbedded in R, since M/N is s-uniform and (M/N)*=+0. Hence
by Lemma 3 M is torsionless.

Next we show that any finitely generated right R-module is finite dimen-
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sional. By using Lemma 1 inductively we have a following descending chain of
right ideals I; of R such that I;_;;I; is an s-uniform right R-module:

R=I1>DI>L,>--.

Then R/I; is a torsion-free module with dimension ¢ for each z. Therefore
R/I; is torsionless and I; is an annihilator right ideal. Hence the above chain
terminates. Thus a right R-module R; and consequently any finitely generated
right R-module is finite dimensional.

Combining the above facts, we conclude that any finitely generated torsion-
free right R-module is torsionless.

ExampLE. We give a noetherian QF-3’ ring which is not right (and left)
finite dimensional. Let .S be a commutative noetherian ring and put R=
S[X, Y]/(XY, Y?), where S[X, Y] is a polynomial ring with variables X and Y.
Then R is a commutative (hence QF-3’) noetherian ring. Let x and y be the
image of X and Y by the canonical map S[X, Y]— R, respectively. Put
I,=R, I,=xR+yR, I,=x'"'R (1>2) and consider a following chain of ideals I;
of R:

R=1,D0I,D01,>:-.

Since each factor I,/I;,, is isomorphic to an ideal yR, R is not finite dimensional.
Hence in particular R is not QF-3 by [11. Proposition 1].

Recently Iwanaga [3, Theorem 1] showed that if R is a (right and left)
1-Gorenstein ring, EPE/R is an injective cogenerator. Here we show that the
converse holds for noetherian right QF-3' ring.

Lemma 4. Let R be a right 1-Gorenstein ring. If 0—M —Fzr—L;—0
is an exact sequence where F is a finitely generated free module and L is torsionless,
then M is reflexive.

Proof. This is immediate from a following commutative diagram:

0 >M —> F > L >0

Theorem 5. Let R be a noetherain right QF-3' ring and E the injective
hull of Ry. If EBE|R is an injective cogenerator, then R is a 1-Gorenstein ring.

Proof. Let O be the maximal right quotient ring. If S is a simple
torsion right R-module, S is imbedded in Q/R since Q/R is the torsion sub-
module of a cogenerator EQE/R. On the other hand we have an isomorphism
Homg (S, Q/R)— Exti(S, R). Therefore Exti (S, R)=*0.
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Now we show that every finitely generated torsionless right R-module is
reflexive, which implies R is a left 1-Gorenstein ring by [5, Corollary 1.3].
Suppose that there exists a finitely generated torsionless right R-module M
which is not reflexive. Then M, can be imbedded in a finitely generated free
module F,. Since F is noetherian, there is a maximal element in the set con-
sisting of submodules NV of F such that NV is not reflexive. We may assume
that M is such a maximal element. By Theorem 3 R is OF-3. Hence, if
F/M is torsion-free, F/M is torsionless and so M is reflexive by Lemma 4. This
is a contradiction. Therefore the torsion submodule L/M of F/M is non-zero.
If LoL,DL,D---2M is a descending chain of submodules L; ‘of L containing
M, we have an ascending chain L¥*CL*CL,*C--CM*. Then there is an
integer n such that L*=L,,* for each i>n since M* is noetherian. But by
the maximality of M, L, is reflexive and hence we have L,=L,,, for each i>n.
This shows L/M is artinian. Let P/M is a simple submodule of L/M and
consider an exact sequence 0—M—>P—P/M—0. Then we have an exact
sequence 0—P*—M* —Ext x(P/M, R)—0. Since M* and P* are reflexive and
Ext: (P,M, R)=0, a derived map M **— P** is not isomorphic. By [7, Propo-
sition 1.2] and [12, Proposition 6] Exti(P/M, R) is a torsion module. There-
fore we have a commutative diagram

0—>M—>P—>P/M—>0

0 —> M ** _ pkx

Since P is reflexive and P/M is simple, M is reflexive. This is a contradiction.
Thus R is a 1-Gorenstein ring.

For any (right and left) noetherian ring R, the socle of Rj is zero if and
only if so is that of ;R (see [2, Theorem 5]). Therefore, by Theorem 5 and
[3, Corollary 2], we have:

Corollary 4. Let R be a noetherian right QF-3' ring. If E|R is an injective
cogenerator, then R is a 1-Gorenstein ring with zero socle (on both sides), where E
is the injective hull of Ry.
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