INDEX OF THE EXPONENTIAL MAP OF A CENTERfree complex simple lie group

Heng-Lung LAI ${ }^{1}$

(Received August 12, 1977)

0. Introduction

Let © be a connected Lie group with Lie algebra G. In general, the exponential map $\exp : G \rightarrow(58$ is not surjective. As in Goto [4], for an element $g \in \mathbb{B}$, we shall define the index (of the exponential map) ind (g) to be the smallest positive integer q such that $g^{q} \in \exp G$, if it exists, otherwise, $\operatorname{ind}(g)=\infty$. The index ind (\&) of the Lie group © \mathbb{E} is defined to be the least common multiple of all ind $(g)(g \in \mathbb{S})$.

In Lai [6], the author proved the following theorem:
Theorem. Let ©f be a connected (real or complex) semisimple Lie group with finite center. Then ind (©) is finite.

More generally, M. Goto proved the following theorem:
Theorem (Goto [3]). Let K be an algebraically closed field (of characteristic 0 or prime), and let $\mathbb{E S}$ be an algebraic group over K. Then there exists a natural number q such that for any $g \in \mathbb{G}$, we can find a connected abelian subgroup of $\mathbb{B S}$ containing g^{q}.

In case $K=\boldsymbol{C}$, this implies that $\operatorname{ind}(\mathbb{\$})$ is finite for any algebraic group (8) over the field of complex numbers.

Theorem (Goto [4]). Let ©S be a semi-algebraic group ozer \boldsymbol{R} (the field of real numbers). Then ind (\mathbb{S}) is finite.

In Lai [6], the author also computed ind(©) for some connected complex simple Lie groups (\$). In the case where (\$) has trivial center, which most interests us in the present paper, the results in [6] can be summarized as follows. Note that \mathbb{E} can be identified with the adjoint group $\operatorname{Ad}(G)$ of (all inner automorphisms of) its Lie algebra G.

1) Partially supported by the National Science Council, Republic of China.
(1) G is of type A_{n-1}. Then exp: $G \rightarrow A d(G)$ is surjective. Because: $\operatorname{Ad}(G) \cong$ $A d(s l(n, \boldsymbol{C})) \cong S L(n, \boldsymbol{C}) /$ center $\cong G L(n, \boldsymbol{C}) /$ center $\cong P G L(n, \boldsymbol{C})$; and in the following commutative diagram, π (the canonical projection) and Exp (the exponential map of matrices) are surjective.

(2) When G is of type B, C, or D. We first considered the corresponding classical groups (the symplectic group $S p(n, C)$ and the special orthogonal group $S O(n, C)$), and proved that the square of any element in each case lies inside the image of the exponential map. Then, in each case, we found some element in $A d(G)$ of index exactly equal to 2 .
(3) G is of type G_{2}. We proved that ind $(g) \in\{1,2,3\}$ for any $g \in \operatorname{Ad}(G)$, and constructed elements of index equal to 2 and 3 respectively.
(4) G is of type F_{4}. We used a computer to compute all the determinants of the coefficient matrices of any four (linearly independent) positive roots (expressed in terms of simple root system) and we found that ind $(g) \in\{1,2,3,4\}$. Again, we constructed elements of index 3 and 4 respectively.
(5) When G is of type E, we couldn't find a workable method to find ind $(\operatorname{Ad}(G))$. We only gave some lower bounds.

For details, see [6].
Let $m_{1} \alpha_{1}+\cdots+m_{l} \alpha_{l}$ be the highest root of G with respect to a fixed Cartan subalgebra H expressed in terms of a simple root system $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$. Then $I(G)=\left\{1, m_{1}, \cdots, m_{l}\right\}$ is a set of positive integers depending only on the type of G; for example, $I\left(A_{l}\right)=\{1\}, I\left(B_{l}\right)=I\left(C_{l}\right)=I\left(D_{l}\right)=\{1,2\}, I\left(G_{2}\right)=\{1,2,3\}$, $I\left(F_{4}\right)=\{1,2,3,4\}$. The above results suggest that ind $(\operatorname{Ad}(G))$ may have some relationship to $I(G)$. The main purpose of this paper is to prove the following theorem.

Theorem. Let G be a complex simple Lie algebra, $\operatorname{Ad}(G)$ the adjoint group of G and $m_{1} \alpha_{1}+\cdots+m_{l} \alpha_{l}$ the highest root expressed in terms of a simple root system $\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$. Then $\{\operatorname{ind}(g) ; g \in \operatorname{Ad}(G)\}$ equals $I(G)=\left\{1, m_{1}, \cdots, m_{l}\right\}$.

To prove the theorem, we use a method from Borel-Siebenthal's [1] classification of maximal subalgebras of maximal rank in a compact simple Lie algebra.

The author would like to take this opportunity to thank Professor M. Goto for his help and many useful suggestions. I would also like to thank Prof. A. Borel who pointed out some mistakes in my earlier argument.

1. Review and notation

Let G be a complex semisimple Lie algebra with a (fixed) Cartan subalgebra H. Let Δ be the root system of G with respect to $H, \Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ a fundamental root system of Δ, and $-\alpha_{0}=m_{1} \alpha_{1}+\cdots+m_{l} \alpha_{l}$ the highest root.

Let B be the Killing form on G. Then for each $\alpha \in \Delta$, we can find $h_{a} \in H$ with $B\left(h, h_{\alpha}\right)=\alpha(h)$ for all $h \in H$, and $e_{\alpha} \in G$ such that

$$
\begin{array}{ll}
G=H+\sum_{\alpha \in \Delta} \boldsymbol{C} e_{\alpha}, & \\
{\left[h, e_{\alpha}\right]=\alpha(h) e_{\alpha},\left[e_{\alpha}, e_{\beta}\right]=N_{\alpha, \beta} e_{\alpha+\beta}} & \text { if } \alpha+\beta \neq 0 \text { is in } \Delta, \\
{\left[e_{\alpha}, e_{-a}\right]=-h_{\alpha},\left[e_{\alpha}, e_{\beta}\right]=0} & \text { if } 0 \neq \alpha+\beta \neq \Delta
\end{array}
$$

Let $H_{0} \subset H$ be the real vector space spanned by $h_{\alpha}(\alpha \in \Delta)$, then $\left.\beta\right|_{H_{0}}$ is real for any $\beta \in \Delta$. Since $\Pi=\left\{\alpha_{1}, \cdots, \alpha_{l}\right\}$ is linearly independent, we can choose $h_{1}, \cdots, h_{l} \in H_{0}$ such that $\alpha_{i}\left(h_{j}\right)=\delta_{i j} 1 \leq i, j \leq l$. The lattice $\Omega=\boldsymbol{Z} 2 \pi i h_{1}+\cdots$ $+\boldsymbol{Z} 2 \pi i h_{l} \subset i H_{0}(i=\sqrt{-1})$ is the kernel of $\left.\exp \right|_{H}: H \rightarrow A d(G)$. For simplicity, we identify Δ with a subse t of $i H_{0}$ by the map $\alpha \mapsto \frac{1}{2 \pi i} h_{\alpha}$, and introduce an inner product in $i H_{0}$ by $\left(h, h^{\prime}\right)=\frac{-1}{(2 \pi)^{2}} B\left(h, h^{\prime}\right)$. Then $(\alpha, h)=\alpha(h) / 2 \pi i$ for $\alpha \in \Delta$,
$h \in i H_{0}$. $h \in i H_{0}$.

Let $\operatorname{Ad}(\Delta)$ denote the Weyl group of Δ. Any element S of $\operatorname{Ad}(\Delta)$, regarded as a linear transformation on $i H_{0}$ can be extended to an inner automorphism of the Lie algebra G. Let $T(\Omega)$ be the group of translations of the euclidean space $i H_{0}$ induced by elements in Ω. Then, if G is simple, the group $\operatorname{Ad}(\Delta) \cdot T(\Omega)$ acts transitively on the set of all cells, see Goto-Grosshans [5] Chapter 5. We summarize as follows:

Let G be a complex simple Lie algebra and C_{0} the fundamental cell: $C_{0}=$ $\left\{h \in i H_{0} ;\left(\alpha_{1}, h\right)>0, \cdots,\left(\alpha_{l}, h\right)>0\right.$ and $\left.\left(-\alpha_{0}, h\right)<1\right\}$. Let \bar{C}_{0} denote the closure of C_{0}. Then for any h in $i H_{0}$, we can find $U \in A d(\Delta) \cdot T(\Omega)$ such that $h \in U \bar{C}_{0}$.

In sections 2 and 3 below, we consider ind (g) for $g \in \operatorname{Ad}(G)$ where G is a complex simple Lie algebra.

2. Upper bound for ind (g)

Theorem. For any $g \in \operatorname{Ad}(G)$, ind $(g) \leq m_{i}$ for some $i=1, \cdots, l$.
Any element g in $\operatorname{Ad}(G)$ has a decomposition $g=g_{0} \cdot \exp N$ into semisimple part g_{0} and unipotent part $\exp N$ such that $g_{0} \cdot \exp N=\exp N \cdot g_{0}$. Let $G\left(1, A d g_{0}\right)$ denote the 1-eigenspace of $A d g_{0}$ in G. Then $G\left(1, A d g_{0}\right)$ is a subalgebra of G and $N \in G\left(1, A d g_{0}\right)$.

By Gantmacher [2], g_{0} is conjugate to some element in $\exp H$. Hence, to prove our theorem, it suffices to consider elements g whose semisimple part lies in $\exp H$, i.e. $g=\exp h_{0} \cdot \exp N, h_{0} \in H$, such that $N \in G\left(1, A d \exp h_{0}\right)$. Let
$\Delta\left(h_{0}\right)=\left\{\alpha \in \Delta ; A d \exp h_{0} \cdot e_{\infty}=e_{\infty}\right\}=\left\{\alpha \in \Delta ; \alpha\left(h_{0}\right) \in 2 \pi i \boldsymbol{Z}\right\}$. Then $G\left(1, A d \exp h_{0}\right)$ $=H+\sum_{\omega \in \Delta\left(h_{0}\right)} \boldsymbol{C} e_{\alpha}$, and $\Delta\left(h_{0}\right)$ satisfies (i) $-\alpha \in \Delta\left(h_{0}\right)$ whenever $\alpha \in \Delta\left(h_{0}\right)$, and (ii) if $\alpha, \beta \in \Delta\left(h_{0}\right)$ and $\alpha+\beta \in \Delta$, then $\alpha+\beta \in \Delta\left(h_{0}\right)$. Hence $\Delta\left(h_{0}\right)$ is a subsystem of Δ, and we can choose a simple root system $\Pi\left(h_{0}\right)=\left\{\beta_{1}, \cdots, \beta_{r}\right\}$ of $\Delta\left(h_{0}\right)$.

Lemma 1. To find an upper bound for ind $(g)(g \in A d(G))$, it suffices to consider elements with semisimple part $\exp h_{0}$, where $h_{0} \in i H_{0}$ and $\Pi\left(h_{0}\right)$ has cardinality $l=\operatorname{rank} G$.

Proof. Assume that $h_{0}=x_{1} h_{1}+\cdots+x_{l} h_{l}$ for some complex numbers x_{i}. For each $j=1, \cdots, r$, since $\left(\exp a d h_{0}-1\right) e_{\beta_{j}}=0$, we have $\beta_{j}\left(h_{0}\right)=2 \pi i k_{j}$ for some $k_{j} \in \boldsymbol{Z}$. If k_{j} are all zero, then for any $N \in G\left(1, A d \exp h_{0}\right)$ we have $\left[h_{0}, N\right]=0$, and $\exp h_{0} \cdot \exp N=\exp \left(h_{0}+N\right)$, i.e. $\operatorname{ind}\left(\exp h_{0} \cdot \exp N\right)=1$. So we assume some $k_{j} \neq 0$, hereafter.

Since $\exp h_{0}=\exp \left(h_{0}+\Omega\right)$, if we can find a positive integer d and integers n_{1}, \cdots, n_{l} such that for $h=d h_{0}+\sum_{j=1}^{l} 2 \pi i n_{j} h_{j},[h, d N]=0$, then the index of $\exp h_{0} \cdot \exp N$ divides d. For this, it suffices to choose d and n_{j} with $\alpha(h)=0$ for all $\alpha \in \Delta\left(h_{0}\right)$, or equivalently for all $\alpha \in \Pi\left(h_{0}\right)=\left\{\beta_{1}, \cdots, \beta_{r}\right\}$. Therefore, the problem reduces to finding d so that $\beta_{i}\left(\sum_{j=1}^{l} n_{j} h_{j}\right)=-d k_{i}$ has integral solutions n_{1}, \cdots, n_{l}.

Choose $\beta_{r+1}, \cdots, \beta_{l} \in \Delta$ so that $\left\{\beta_{1}, \cdots, \beta_{l}\right\}$ is a maximal linearly independent subset of Δ. We write $\beta_{i}=\sum_{j=1}^{l} p_{i j} \alpha_{j}$ where $p_{i j}$ are integers. Consider the following system of linear equations:

$$
\begin{array}{ll}
p_{i 1} n_{1}+\cdots+p_{i l} n_{l}=-k_{i} & i=1, \cdots, r ; \\
p_{i 1} n_{1}+\cdots+p_{i l} n_{l}=0 & i=r+1, \cdots, l .
\end{array}
$$

Since $\left(p_{i j}\right)$ is a nonsingular integral matrix and k_{i} are integers, this has a (nontrivial) rational solution, say $\mathrm{r}_{1}, \cdots, r_{l}$.

Let $h_{0}{ }^{\prime}=2 \pi i\left(r_{1} h_{1}+\cdots+r_{l} h_{l}\right) \in i H_{0}$, then $\beta_{1}, \cdots, \beta_{l} \in \Delta\left(h_{0}{ }^{\prime}\right)$. Suppose we can find a positive integer d^{\prime} and integers $n_{1}{ }^{\prime}, \cdots, n_{l}^{\prime}$ such that $\beta\left(d^{\prime} h_{0}{ }^{\prime}+\sum_{j=1}^{\prime} 2 \pi i n_{j}^{\prime} h_{j}\right)$ $=0$ for all $\beta \in \Delta\left(h_{0}{ }^{\prime}\right)$, then $\left(n_{1}, \cdots, n_{l}\right)=\left(n_{1}{ }^{\prime}, \cdots, n_{l}{ }^{\prime}\right)$ is the solution for the following system of linear equations:

$$
\begin{array}{ll}
\sum_{j=1}^{l} p_{i j} n_{j}=-d^{\prime} k_{i} & i=1, \cdots, r ; \\
\sum_{j=1}^{l} p_{i j} n_{j}=0 & i=r+1, \cdots, l .
\end{array}
$$

Thus we have $n_{j} \in \boldsymbol{Z}$ such that $\beta_{i}\left(\sum_{j=1}^{l} 2 \pi i n_{j} h_{j}\right)=-2 \pi i d^{\prime} k_{i}(i=1, \cdots, r)$. Hence for $h=d^{\prime} h_{0}+\sum_{j=1}^{l} 2 \pi i n_{j} h_{j}$, we have $\beta_{i}(h)=0(i=1, \cdots, r)$ and so $\beta(h)=0$ for all $\beta \in \Delta\left(h_{0}\right)$.

We have proved that ind $\left(\exp h_{0} \cdot \exp N\right) \leq \operatorname{ind}\left(\exp h_{0} \cdot \cdot \exp N\right)$. Therefore, we may replace h_{0} by h_{0}^{\prime} which satisfies Lemma 1 by our construction. ||

Given an $n \times n$ nonsingular integral matrix A, the Smith canonical form of A is a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right)$ such that there are $Q_{1}, Q_{2} \in G L(n, \boldsymbol{Z})$ with $A=Q_{1} D Q_{2}$ and $d_{i} \mid d_{i+1}$ (the positive integers d_{i} are called the elementary divisors of A). We shall denote the biggest one, d_{n}, by $d(A)$.

Given $h_{0} \in i H_{0}$ as in Lemma 1, the coefficient matrix $P=\left(p_{i j}\right)$ of $\Pi\left(h_{0}\right)$ expressed in terms of a simple root system is a nonsingular $l \times l$ matrix. From the proof of Lemma 1, we see that ind $\left(\exp h_{0} \cdot \exp N\right) \leq d(P)$, so our problem is to find $d(P)$.

Now let S be in the Weyl group $\operatorname{Ad}(\Delta)$. Then S can be extended to an automorphism of the Lie algebra G, which can be extended to an inner automorphism σ of the Lie group $A d(G)$. Clearly ind $(g)=\operatorname{ind}(\sigma g)$ for any automorphism σ of $A d(G)$. Therefore, to find an upper bound for ind $(g)(g \in A d(G))$, we may replace g (whose semisimple part is $\exp h_{0}$) by an element whose semisimple part is $\exp S h_{0}(S \in A d(\Delta))$.

On the other hand, $\exp h_{0}=\exp \left(h_{0}+\Omega\right)$, so we may replace h_{0} by $T(\Omega) h_{0}$.
Combining these and the proposition we stated at end of section 1 , we get
Lemma 2. Let $-\alpha_{0}=m_{1} \alpha_{1}+\cdots+m_{l} \alpha_{l}$ be the highest root. To find an upper bound for $\operatorname{ind}(g)(g \in A d(G))$, it suffices to consider elements whose semisimple part has the form $\exp h\left(h \in i H_{0}\right)$ with $\left(\alpha_{1}, h\right) \geq 0, \cdots,\left(\alpha_{l}, h\right) \geq 0$ and $\left(-\alpha_{0}, h\right) \leq 1$.

Let $\tilde{\Pi}=\left\{\alpha_{0}, \alpha_{1}, \cdots, \alpha_{l}\right\}$, be the extended simple root system. To simplify our problem further, we need some discussions in the Borel-Siebenthal theory. The following two lemmas are known. For the sake of completeness, we include a proof here.

Lemma 3. Let $h \in \bar{C}_{0}$ be an element satisfying Lemma 1 , then $\Pi^{\prime}=\tilde{\Pi} \cap \Delta(h)$ is a simple root system of $\Delta(h)$ with respect to a suitable ordering.

Proof. Given any positive root $\beta=b_{1} \alpha_{1}+\cdots+b_{l} \alpha_{l}$, it suffices to prove that β can be written as a linear combination of roots in Π^{\prime} with integral coefficients, all non-negative or all non-positive.
(a) $-\alpha_{0} \notin \Delta(h)$, i.e. $\left(-\alpha_{0}, h\right) \notin \boldsymbol{Z}$.

Since $0: \leq\left(-\alpha_{0}, h\right) \leq 1$, so $0<\left(-\alpha_{0}, h\right)<1$. Then the inequality $0 \leq b_{1}\left(\alpha_{1}, h\right)+\cdots+b_{l}\left(\alpha_{l}, h\right)=(\beta, h) \leq\left(-\alpha_{0}, h\right)<1$ implies that $(\beta, h)=0$ because $(\beta, h) \in Z$. Hence $b_{j}\left(\alpha_{j}, h\right)=0$ for all j; i.e. $\left(\alpha_{j}, h\right)=0$ or $\alpha_{j} \in \Delta(h)$ whenever $b_{j} \neq 0$. Therefore β is a linear combination of $\alpha_{j} \in \Delta(h)$ with nonnegative coefficients.
(b) $-\alpha_{0} \in \Delta(h)$, so $\left(-\alpha_{0}, h\right)=0$ or 1 .

If $\left(-\alpha_{0}, h\right)=0$, then $\left(\alpha_{1}, h\right)=\cdots=\left(\alpha_{l}, h\right)=0$ and $h=0$, which is the trivial case we have excluded (Lemma 1). Hence $\left(-\alpha_{0}, h\right)=1$, so $(\beta, h)=0$ or 1 .

If $(\beta, h)=0$, the same argument as in (a) gives what we want.
If $(\beta, h)=1$, then $\left(-\alpha_{0}, h\right)=1$ and

$$
0=\left(-\alpha_{0}-\beta, h\right)=\left(m_{1}-b_{1}\right)\left(\alpha_{1}, h\right)+\cdots+\left(m_{l}-b_{l}\right)\left(\alpha_{l}, h\right)
$$

Since $m_{j} \geq b_{j},\left(\alpha_{j}, h\right) \geq 0$, we have $\alpha_{j} \in \Delta(h)$ whenever $m_{j}-b_{j} \neq 0$. Hence $\beta=$ $-\alpha_{0}-\left(m_{1}-b_{1}\right) \alpha_{1}-\cdots-\left(m_{l}-b_{l}\right) \alpha_{l}$ is a linear combination of roots in Π^{\prime} with non-positive integral coefficients. ||

Therefore, $\Pi(h)=\tilde{\Pi} \cap \Delta(h)$ is a simple root system of $\Delta(h)$. By Lemma 1, we consider elements $h \in i H_{0}$ such that $\Pi(h)$ has cardinality l. If $\Pi(h)=\Pi$, then $\Delta(h)=\Delta$ and $h \in \Omega$, and in this case, $\exp h \cdot \exp N=\exp N$.

Lemma 4. If $\Pi(h) \neq \Pi$ has cardinality l, then $h=2 \pi i h_{j} / m_{j}$ for some j such that $m_{j}>1$.

Proof. Since $\Pi(h)=\Delta(h) \cap \tilde{\Pi}$, we have $\Pi(h)=\tilde{\Pi}-\left\{\alpha_{j}\right\}$ for some $j>0$. Therefore $0<\left(\alpha_{j}, h\right)<1$ and $\left(-\alpha_{0}, h\right)=1$ because $\left(-\alpha_{0}, h\right) \geq m_{j}\left(\alpha_{j}, h\right)$. For $i>0, i \neq j$, we have $\left(\alpha_{i}, h\right)=0$ or 1 and the inequality

$$
m_{i}\left(\alpha_{i}, h\right)<m_{i}\left(\alpha_{i}, h\right)+m_{j}\left(\alpha_{j}, h\right) \leq\left(-\alpha_{0}, h\right)=1
$$

implies that $\left(\alpha_{i}, h\right)=0$ and $m_{j}(\alpha, h)=\left(-\alpha_{0}, h\right)=1 . \quad$ So $h=2 \pi i h_{j} / m_{j} . \|$
In the case $m_{j}=1$, we have $\Pi\left(2 \pi i h_{j} / m_{j}\right)=\Pi$.
Conclusion. Let G be a complex simple Lie algebra. To find an upper bound for $\{\operatorname{ind}(g) ; g \in A d(G)\}$, it suffices to consider elements $g \in \operatorname{Ad}(G)$ whose semisimple part has the form $\exp 2 \pi i h_{j} / m_{j}$ for some j, i.e. $g=\exp 2 \pi i h_{j} / m_{j} \cdot \exp N$.

Clearly, $g^{m_{j}}=\exp m_{j} N$ for such g. We have proved:
Theorem. For any $g \in A d(G)$, there exists i such that $g^{m_{i}} \in \exp G$. In other words, $\operatorname{ind}(g) \leq \max \left\{m_{i} ; 1 \leq i \leq l\right\}$ for all $g \in A d(G)$. This is the same as saying that ind $(g) \in\left\{1, m_{1}, \cdots, m_{l}\right\}$.

3. Existence of elements with index $\boldsymbol{m}_{\boldsymbol{j}}$ (in case $\boldsymbol{m}_{\boldsymbol{j}}>1$)

In [6], we have shown the existence of such elements in some cases. Here we shall give a unified short proof by using results in Steinberg [7].

We define an element x in a semisimple Lie algebra G to be regular if the centralizer $z_{G}(x)=\{y \in G ;[x, y]=0\}$ of x (in G) has minimal dimension. By a Borel subalgebra, we mean a maximal solvable subalgebra of G. If H is a Cartan subalgebra of G with root system Δ and $U=\sum_{a>0} C e_{\alpha}$, then $B=H+U$ is a Borel subalgebra. Theorem 1 and its corollary in Steinberg [7] (pp. 110112) have obviously the following Lie algebra analogues.

Theorem. Let G be a semisimple Lie algebra with a Cartan subalgebra H, and $B=H+U$ a Borel subalgebra containing H. Let x be a nilpotent element in G. Then the following conditions are equivalent:
(a) x is regular.
(b) x belongs to a unique Borel subalgebra.
(c) x belongs to finitely many Borel subalgebras.
(d) If $U=\sum_{a>0} \boldsymbol{C} e_{\alpha}$ and $x=\sum_{a>0} c_{\alpha} e_{\alpha}\left(c_{\alpha} \in \boldsymbol{C}\right)$, then $c_{\alpha} \neq 0$ for any simple root α.

Corollary. If $x \in U$ is regular, then $z_{G}(x) \subset U$. In particular, $z_{G}(x)$ consists of nilpotent elements.

Retaining the notation above, consider $h_{0}=2 \pi i h_{j} / m_{j}$. Then $\Pi=\tilde{\Pi}-\left\{\alpha_{j}\right\}$ is a simple root system in $\Delta\left(h_{0}\right)$ and $G\left(1, A d \exp h_{0}\right)=H+\sum_{\alpha \in \Delta\left(h_{0}\right)} C e_{\alpha}$. Let $N=\sum_{i=0, \cdots, l ; i \neq j} e_{a_{i}}$. Applying the above theorem, we see that N is a regular element in the semisimple subalgebra $G\left(1, A d \exp h_{0}\right)$, so the above corollary implies that any element of $G\left(1, A d \exp h_{0}\right)$ which commutes with N must be nilpotent.

Let $g=\exp h_{0} \cdot \exp N$. If $g=\exp x$ for some $x \in G$, then x has a decomposition $x=x_{0}+N$, where x_{0} is semisimple and $\left[x_{0}, N\right]=0$. Clearly $x \in G(1, \operatorname{Ad} g)=$ $G\left(1, A d \exp h_{0}\right)$. Since $N \in G\left(1, A d \exp h_{0}\right)$, we have $x_{0} \in G\left(1, A d \exp h_{0}\right)$. But $\left[x_{0}, N\right]=0$, so the above argument implies that x_{0} is nilpotent. Thus $x_{0}=0$ because x_{0} is also semisimple. This implies that $\exp h_{0}=\exp x_{0}=1$ which is absurd ($m_{j}>1$). Therefore $g \notin \exp G$.

Next, let \mathbb{G}_{1} be the connected subgroup of $\mathbb{G}=A d G$ corresponding to the subalgebra $G_{1}=G(1, A d g)$. Clearly, $g \in \mathscr{G}_{1}$ because $\exp h_{0}, \exp N \in \exp G_{1} \subset \mathscr{G}_{1}$. If $g^{p}=\exp x$ for some x in G, then x lies in G_{1} because $g^{p} \in \mathbb{G}_{1}$. (We have $G_{1}=$ $\left.\left\{x \in G ; \exp x \in \mathscr{E}_{1}\right\}\right)$. But N is a regular nilpotent element in G_{1}, it cannot commute with any nonzero semisimple element in G_{1}. The same argument as above implies that the semisimple part of g^{p} must be 1 , i.e., $\exp p h_{0}=1$ or $p h_{0} \in \Omega$. This cannot happen if $p<m_{j}$.

Therefore ind $(g)=m_{j}$.
Q.E.D.

The results in sections 2 and 3 give the following:
Theorem. Let G be a complex simple Lie algebra and $-\alpha_{0}=m_{1} \alpha_{1}+\cdots$ $+m_{l} \alpha_{l}$ the highest root expressed in terms of a simple root system. Then

$$
\{\operatorname{ind}(g) ; g \in \operatorname{Ad}(G)\}=\left\{1, m_{1}, \cdots, m_{l}\right\}
$$

which is the set of all positive integers $\leq \max \left\{m_{i} ; 1 \leq i \leq l\right\}$.
Corollary. ind $(\operatorname{Ad}(G))$ is the least common multiple of $\left\{m_{1}, \cdots, m_{l}\right\}$.
We can list our result in the table:

Type of G	A	B	C	D	G_{2}	F_{4}	E_{6}	E_{7}	E_{8}
$\max \{\operatorname{ind}(g)\}$	1	2	2	2	3	4	3	4	6
$\operatorname{ind}(\operatorname{Ad}(G))$	1	2	2	2	6	12	6	12	60

National Tsing-Hua University

Bibliography

[1] A. Borel and J. de Siebenthal: Les sous-groups fermés de rang maximum des groups de Lie clos, Comm. Math. Helv. 23 (1949), 200-221.
[2] F. Gantmacher: Canonical representations of automorphisms of a complex semisimple Lie group, Rec. Math. 5 (1939), 101-144.
[3] M. Goto: On an integer associated with an algebraic group, J. Math. Soc. Japan 29 (1977), 161-163.
[4] M. Goto: Index of exponential map of a semi-algebraic group (to appear).
[5] M. Goto and F. Grosshans: Semisimple Lie algebras, Marcel-Dekker, New York, 1978.
[6] H.L. Lai: Surjectivity of exponential map on semisimple Lie groups, J. Math. Soc. Japan 29 (1977), 303-325.
[7] R. Steinberg: Conjugacy classes in algebraic groups, Lecture Notes in Mathematics No. 366, Springer-Verlag, 1974.
[8] J. Tits: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Mathematics No. 40, Springer-Verlag, 1967.

