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Introduction. Let J? be a commutative ring and S a commutative Λ-algebra
which is a finitely generated faithful projective jR-module. An Λ-Azumaya
algebra A is called an S/jR-Azumaya algebra if A contains S as a maximal com-
mutative subalgebra and is left S-projective. S-AS-bimodule structure (for
which we shall call S ® R S-module structure) of S/Λ-Azumaya algebras is
determined in [5] when S/R is a separable Galois extension and in [8] when
S/R is a Hopf Galois extension, both are connected with one which is so called
seven terms exact sequence due to Chase, Harrison and Rosenberg [3],

In this paper we shall investigate the S®R S-module structure of S/R-
Azumaya algebras assuming only that S is a finitely generated faithful pro-
jective /?-module. So 5/Λ-Azumaya algebras are not necessarily S®RS-pro-
jective (c.f. [8] Th. 2.1). But in §1 we shall show for any iS/Λ-Azumaya al-
gebra Ay there exists a unique finitely generated projective S®R S-module P

of rank one with certain cohomological properties such that A is S®R S-isomor-

phic to P®s®Rs EndΛ(*S). In §2, we shall investigate 5/Λ-Azumaya algebras
resulting from Amitsur's 2-cocycles. Finally we shall deal with the seven
terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative
Λ-algebra S is a finitely generated faithful projective as Λ-module, each ®, End,
etc. is taken over R unless otherwise stated. Repeated tensor products of S
are denoted by exponents, Sg=S®~ ®S with ^-factors. We shall consider
Sq as an S-algebra on first term. To indicate module structure, we write if
necessary, 51®S'2 instead of S2=S®S,SιMS2 instead of 5r2=*S1®S2-module

M etc.. H\S/R, U) and Hq(S/R,Pic) denote the j-th Amitsur's cohomology
groups of the extension S/R with respect to the unit functor U and Picard group
functor Pic respectively.

1. 5/JR-Azumaya algebras and Hl(S/R, Pic)
First we prove the following, which clarify the 52-module structure of
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split S/P-Azumaya algebras.

Lemma 1.1. Let M be a finitely generated projective S-module of rank oney

then End (M) is ίsomorphic to (M®S) ®S*(S®M*) ®s* End (S) as S2-modules,

where M*=Homs (M, S).

Proof. We define ψ: (M® S)®S*(S®M*)®S* End(S)^End(M) as
follows

ιK(fff ®s)®(t®f)®g)(n) = tg(f(sn))m

m,n<=M,s,t(= S,f e M*, g e End(S). Then ψ is a well-defined S2-homomorphism
and by localization we get ψ is an isomorphism.

REMARK. By ψ, the multiplication of (M®S)®^(S® M*)®s2End (S)
is given by the formula

((m®s)®(t®f)®g) ((n®u)®(v®p)®q)

= (m®u)®(t®p)®g f(ri) s vq.

Now let A be an 5/,R-Azumaya algebra then A is split by S. Hence there
exists a finitely generated faithful projective S-module M such that S®A is
isomorphic to Ends(M) as ̂ -algebras. As is well known, M inherits the ̂ -module
structure and is *S2-projective of rank one. By Lemma 1.1, S® A^ Ends(M)^
(M® SS

2) ® /(S2 ® SM*) ® S3 End5(52) = (SMS2®S3) ® 5

3(SlM*53®52) ® / Ends

(52),M*-Homs2(M,S2). If we put P-((M®55
2)®53(S2®SM*))®5352-

((sMS2®S3)®/(5ιM^3®^)®/S2-((M®s250®52)®525ιM*S2, where we
ragard S2 (resp. 5) as an S3(resp. S2)-module by μ® 1: ̂ -^ΛS2 (resp. μ: S2->S),
μ is the multiplication of *S, then yί^P®s2 End(S) as S2-modules. Define the
S2-algebra isomorphism Φ:Ends2(M® S)=End5ι(g)S2(SιMS4® 52)->Ends2(ASf®M)

=EndSι«g,52(51®52M53) by the composite of the isomorphisms End^s^M^®^)
^51®^[®ASf

2^S1®5'2®^4^EndSι®S2(*S'1®S2MS3), where the middle isomorphism
is the one induced from the twisting homomorphism A®S2-^S2®A(a®sh^s®a)
and the others are induced from S®^4^Ends(M). Then from Morita theory

there exists a finitely generated projective ^-module Q of rank one such

that (sίMS3®S2)®s19S2sίQs2^^ι®S2Ms3

 as Ends2(iS'1®S2M53)-modules, hence as
S3-modules. Tensoring with S2 over S3 (regarding *S2 as an S3-module by 1®

μ: *S3^52), we get an ^-isomorphism sl^s2

Therefore,

S®P=(S®(M®S*S)®S)®S*(S®M*)
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(M® S) ® 53((M*® S2S) ® S2) ® /(S2® SM*) ®S3((M® ̂ S)

(S2® 5M*) ®S3(S2® S(M

- (P*® S)®53(S2®SP), P* = Honv(P, S2) .

This means P is a 1-cocycle of the extension S/R with respect to the functor

Pic (we call simply 1-cocycle). Since P*=((M*®S2,S)® S)®s*My Ends(P*)

s*Ends(M) as 5-algebras.
If S®A^Ends(N) for another N, then End5(M)^Ends(./V) as S-algebras. So

there exists a finitely generated projective ^-module Q' of rank one such that

SιMS2®s£)'^N as S2-modules. Easy calculation shows that the 1-cocycles
obtained from M and N are S^isomorphic.

To prove the uniqueness of 1-cocycle P, we prepare the following

Lemma 1.2. Let T be a commutative R-algebra, which is a finitely genreated
faithful projective R-module. And let Py Q be finitely generated projective T-
modules of rank one. Then

), End(0))

Especially, Isoτ<g)Γ(P® Q, Q® P) corresponds to Isoτ0Γ(End(P, Ecd(Q)).

Proof. For any T-module Mi,Ni(i=l, 2), we have the following isomor-
phism p: Homτ<g)Γ(M1®M2, Hom(./V2, NJ)^ Hom^^Mj®^, Hom(M2, N^)

given by (ρ(φ)(m1®n2))(m2) = (φ(m1®m2))(n2)ί m^M^n^N^ φ^Hoτ^τ^τ(Ml

®M2ί Hom(N29N1))9 ([6] 1.4.2). Put Af1=P,M2=JV1=ρ, JV2-Hom(P,P), then
we get easily. Further assertion follows easily by localization.

Let P.P'be 1-cocycles such that P®52End(5)^P/®s2End(S)^^ as S2-

modules. Then Ends(P*)^End5(P/*) as AS3-modules by Lemma 1.1 and the
cocycle condition of P, Pf . From Lemma 1.2 we get an S3-isomorphism P*®5

P'*= (SιP*S2® S3) ®s>(sP'*s3® S2)^P'*®SP* = (SP'*S2®S3) ®s>(sP*s3®S2).

Thu8(SlP*Si®5s)®s3(SlPSl®52)«(SlP
/*Sa®53)®s»(SlP

/

Sί<g)52), the left side is
isomorphic to *S1®S2PS3 and the right side is isomorphic to *S1®S2P

/

S3 by the
cocycle condition of P, P'. Tensoring with S2 over S3 (regarding *S2 as an *S3-
module by μ® 1 : S3-+S2), we get P^P'.
Summing up we get

Theorem 1.3. Let A be an SjR-Azumaya algebra, then there exists a
unique \-cocycle P such that A is isomorphic to P®s2End(5) as S2-modules and
S®A is isomorphic to End5(P*) as S-algebras, where P*=Honv(P, S2).

REMARK. In proving the above theorem, we used the 5-algebra isomorphism
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S®A^Έnds(M). If we assume this isomorphism is only an S3-module iso-
morphism, then by using Lemma 1.2 in suitable situations we shall get Theorem
1.3 only replaceing "S-algebras" to " S* -modules" in the last statement. So
Theorem 1.3 does not fully characterize *S//?-Azumaya algebras.

Proposition 1.4. Let Ay B be S/R-Azumaya algebras, Py Q be \-cocycles
obtained from A,B respectively. Then the \-cocycle obtained from A B=EndA®B

(S®s*(A®B))isP®s2Q.

Proof. S®A^Enάs(P*)zndS®B^Ends(Q*), so S®(A B)=(S®A)
(S®β)^Ends(P*<g)s2ρ*), (c.f. [3] 2.13.). Thus the 1-cocycle obtained from
A B equals to P®S*Q.

Next we shall start from a 1-cocycle P and an ^-isomorphism φ: S2®SP*=

SίP*s>® 3,^(8,® S2P*S3) ®s3(SlP*52<g> S3)=(S® P*) ®/(P*® 5). Define the
^-isomorphisms φx, φ2, φ3 as follows;

φ1 ==

identity on S1

Φ2 si

identity on S2

identity on 53 .

Further we define u(φ)eEnds

t(sP*Si®S^S3) by the composite

s P*S4®S2®S3 -A (

Then we may think u(φ) is a unit of S4 by homothety. As easily checked,
u(aφ)— B(a~1)u(φ) for a unit a^S3, where δ is the coboundary operator in
Amitsur's complex with respect to the unit functor U.

Lemma 1.5. u(φ) is a Z-cocycle.

Proof. By localization it follows readily.

Theorem 1.6. Let P be a l-cocycle with a S* -isomorphism φ: SlP*s3®S2^
(SΊ®S2P*S3) ®s*(SlP*s2®S3). Then A = P®s*End(S) has an S\R-Azumaya
algebra structure, if and only if, u(φ) is a coboundary. If u(φ)=δ(β) where β is a
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unit of S3, then (βφ)* induces a S-algebra isomorphism S ®A^Ends(P*)y where

(βφY is the isomorphism S®P^(P*®S)®s*(sPSz®S2) induced from βφ.

Proof. First we assume A=P®s2End(5) is an S/jR-Azumaya algebra,

then S®A^Ends(P*) as S-algebras from the uniqueness of 1-cocycle. Define
the 52-algebra isomorphism

by the twisting homomorphism A® S2-*S2®A. Φ is a descent homomorphism,

that is if we put Φ1=l®Φ: SΊ® Ends(P*) ®S-+S1®8® Ends(P*) identity on

S19 Φ2: Ends(P*)®S2®S-*S®S2®Ends(P*) identity on S2, Φ3=Φ®1: Ends

(P*)®S®S3->S® End5(P*)®53 identity on S3, then Φ2—ΦJ-Φ3. Since Φ is

an S2-algebra isomorphism, there exists a finitely generated projective *S2-module

Q of rank one such that SlP*s3®S2 is isomorphic to (S^® sf* s^® Sl^S2 SlQs2=
(Sι®s2P^s3)®s3(slQs2®S3) as *S3-modules and Φ is induced by this isomorphism
φr. From the cocycle condition of P, Q is isomorphic to P*. From the definition

of Φ1? Φ2, Φ3, the following diagram is commutative for any / £ End5ι®S2<g)53

Thus

®s«l). Hence f u(φ') = u(φ') f for any /eEndSlβSlβs,(SlP*S4®S2®5,).
Therefore 3 -cocycle w(φ') is contained in the center of EndSι®S2®S3(SlP*s4®52®

S3), which is SΪ®S2®S3. Easily we get w(φ') is a coboundary. Thus «(φ)=
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u(a~1φ')=δ(a)u(φ') is a coboundary.
Conversely let u(φ) be a coboundary then we may assume u(φ)=l®l®l®ί.
Let φ* be the isomorphism S ®P^(P*®S)®s*(SιPS3®S2) induced from φ
by duality pairing. We consider S®A=(S®P)®S3Enάs(S2) equals Ends(P*)
=(P*®S)®s*(SιPS3®S2)®s*Έnds(S2) by φ*®s

3l. Thus S®A has an S-
algebra structure. Define Φ: S®A®S^S®S®A by the twisting homomor-
phism A®S-*S®A. Clearly Φ2=Φ1 Φ3. From the theory of faithfully
flat descent, if Φ is an S2-algebra isomorphism, then the descented module A has
an P-algebra structure (necessarily an S/P-Azumaya algebra structure) such
that the induced 5-algebra structure of S®A coincides the original one of
S®A. Therefore all is settled if we show Φ is an *S2-algebra homomorphism.
So we may assume R is a local ring. Thus P=S2, A= End (S) and φ* is the
homothety by Σ*!®^*®*!- Since u(φ)=l®l®l®l, Σ

2-cocycle . The multiplication in S ® End(S) ® S is given by (s ® / ® t) (w ® g ® v)

=(Σ ^i®3Ί ®^, ® l)"lβ(Σ xixjsu®yifziyjgZj®tv), s®f®t, u®g®v

(S)®S, which is equal to Σ su®xifyigzi®tv since Σ ^»® JVi®^» is a 2-cocycle.
t ί

The multiplication in S®S® End (*S) is given similarly. As easily checked, Φ
is an S2-algebra homomorphism. This completes the proof.

Proposition 1.7. If P is a l-coboundary then u(φ) is a ^-coboundary.

Proof. Since P=(Q®S}®S*(S®Q*) for some finitely generated pro-
jective 5-module Q of rank one, Q*=Homs(Q,S), ^=P(g)End(S)^End(g)
has an algebra structure. Hence u(φ) is a coboundary by Theorem 1.6.

Let Br(S/R) denotes the Brauer group of P-Azumaya algebras split by S.
For an element ofBr(S/R)y we can choose an iS/jR-Azumaya algebra as its represen-
tative, and this representative is uniquely determined modulo {End (Q) \ Q is a
finitely generated projective ^-module of rank one} (c.f. [3] 2.13).
Thus summing up the results of this section, we get

Corollary 1.8. The following sequence is exact

Br(S/R) — ̂ > H\S/R, Pic) -^> H\S/Ry U)

where Θ5 is the homomorphism induced from the one which carries S/R-Azumaya
algebras to ί-cocycles determined by Theorem 1.3, Θ6 is the one induced by Lemma
1.5.

2. S/Λ-Azumaya algebras and H2(S/R, U)

Let σ— Σ Xi®yi®%i be an Amitsur's 2-cocycle (of the extension S/R

with respect to the unit functor U). We shall define a new multiplication "#"
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on End(*S) by setting

for all f,g<=End(S), s<=S. Then Sweedler [7] proved this algebra A(σ) is
isomorphic to the Rosenberg Zelinsky central separable algebra coming from

the 2-cocycle σ"1.

We shall call that a 2-cocycle σ is normal if ^xiyi®zt='^xi®yizi=\®\.
i i

As can be easily proved, every 2-cocycle σ is cohomologeous to a normal 2-

cocycle σ' and A(σ)^A(σ/). For a normal 2-cocycle σ-', the S/Λ-Azumaya
algebra A(σ') is isomorphic to End(S) as *S2-modules. The following asserts
the converse is true.

Proposition 2.1. An SjR-Azumaya algebra A is obtained from a normal
2-cocycle, if and only if, A is isomorphic to End(S) as S2-modules.

Proof. If A is isomorphic to End(S), then the 1-cocycle P obtained from

A is isomorphic to S2. The method of the proof of the well-known fact that
"H2(SIR, U)^Br(S/R) if Pic(S®S)=0" can be applied in this case (c.f. [6]

V.2.1).
/} /Ί

Corollary 2.2. The sequence H2(S/R, U) — ±> Br(SIR) — ̂  H1 (SjR, Pic),
where Θ4 is induced from the homomorphism which carries a 2-cocycle σ to A(σ),
is exact.

Lemma 2.3. The homomorphίsms p: S® End(S)-^Ends(End(*S)), //:

nd(5)->Homs(End(5)(g)5End(5), End(S)) defined by setting (ρ(s®f))
^(s®t®f))(g®h)=sg'th'fJJg)h^End(S)Js)t^Sί are isomor-

phisms.

Proof, σ is nothing else the well-known isomorphism S® End (5)°̂
Ends(End(5)). The composite of the isomorphisms S® S® En

Ends(End(5))^Hom5(End(S), S®End(5))«Homs(End(ιSr), En
Homs(End(S)®sEnd(5), End (5)) is p'.

Poroposition 2.4. Let σ=^xi®yi®zi,τ=^χ/

i(gίy'i®z/

i be normal 2-

Sy then A(σ)~A(r) as S/R-Azumaya algebras (that is isomorphic as R-

algebras and compatible with the maximal commutative imbeddίngs of S), if and
only only if, σ is cohomologeous to r.

Proof. "If part" is trivial. Let Ψ: A(σ)^A(τ) be the given isomorphism,

then by Lemma 1.2 with T=P=Q=S, Ψ corresponds to the homothety by the
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= Σ «,/M,/eEnd(5) = ̂ (σ
ί

Since Ψ is an algebra isomorphism,

= Σ uiXjf(yjg(^viS

for all/,^eEnd(5)=^(σ), sGΞS. Hence by Lemma 2.3

Σ
T.Thus σ is cohomologeous to

Now let P be a finitely generated projective S-module of rank one with
the ^-isomorphism ζ: S®P^P®S, (this means that P is a 0-cocycle with

respect to the functor Pic). Define ^-isomorphisms £Ί, £2> £3 as follows;

ςl = l®f : Sl®S®P^Sl®P®S identity on S,

ζ2 : S®S2®P^P®S2®S identity on S2

ζs = ζ® 1 : S®P®S3^P®S®S3 identity on S3 .

Define the 53-automorphism of S®S®P by f^-fg-fi then ^•?3*?i is the

homothety by the unit ?;(f)eS3. By localization we can easily check that
v(ζ) is a 2-cocycle.

Proposition 2.5. Let σ be a normal 2-cocycle and assume that A(σ)=Q
in Br(S/R). Then there exists a finitely generated projective S-module P such that

ζ
P®S, and σ is cohomologeous to v(ζ) or equίvalently A(σ)^A(v(ξ)).

Proof. Since A(σ) = 0 in Br(S/R), A(σ)^End(P) for some finitely
generated faithful projective .R-module P. P inherits the ^-module structure
and 5-projective of rank one. End(P)^(P®S)®s2(S®P*)®s*End(S) as

*S2-modules and (P®S)®S2(S®P*) is a 1-cocycle. From the uniqueness of
1-cocycle (Theorem 1.3), there exists an ^-isomorphism ζ: S®P^P®S.
We may assume v(ζ) is a normal 2-cocycle. Therefore by Proposition 2.4,

all is settled if we prove A(v(ξ))^End(P). Define Ψ: A(v(ζ))=End(S)-+
End(P) by the following commutative diagram

ζ

cont.

where "cont" is the contraction homomorphism, f^A(v(ξ)) = End(S). By

localization technique, we get that Ψ is an S/JR-algebra isomorphism.
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θ θ
Corollary 2.6. The sequence H^S/R, Pic) -ί H2(SJR, U) -±Br(SIR), where

Θ3 is induced from the homomorphism which carries a Q-cocycle P, ζ: 5®P^P®5,
to v(ζ) is exact.

Proof. The only thing that we must show is that Θ3 is a homomorphism.

But it follows readily.

3. The seven terms exact sequence

Let ρ=^Xi®yi^S2 be a 1-cocycle of the extension S/R with respect to
»

the unit functor U. From the cocycle condition of p, Σ xyΊ—l We make

a new End (5)-module PS as follows

PS=S as S-modules, / ί=Σ*. /(y,*)> /eEnd(S), s^S. By the cocycle

condition of p, PS is in fact an End(S)-module. From Morita theory

And HomEnd(5)(5', PS) is a finitely generated projective /2-module of rank one.
If p is a coboundary (that is p=x®x~1, x^S), then the homomorphism

HomEnd(s)(5, p5)->HomEnd(S)(ίS', S) (^R) which carries^eHomEnd(5)(5, PS) to
ΛJ~1^reHomEnd(S)(*Sr

J S) is an isomorphism. For another 1 -cocycle pr, we have
a canonical isomorphism HomEnd(s)(5, pS)(g)HomEnd(S)(5, p/*S')^HomEnd(S)(*Sf,

pp'S). Hence the homomorphism which carries the 1 -cocycle p to HomEnd(S)

(S, PS) induces the homomorphism ^: H\SIR, U)-*Pic(R).

Lemma 3.1. Θ1 is a monomorphism.

Proof. Let p=ΣΛ?i®3;ί be a 1-cocycle and assume that HomEnd(S)(*Sf, PS)
I

is a free Λ-module of rank one with a free base g. If we put £(15)=# then x
is a unit of S since HomEnd(5)(S, PS)®S^PS=S as S-modules. The condition

# e HomEnd(s) (5, PS) claims

/W* =/ (ί(*)) = Σ ̂»

for all/eEnd(5), ίe*S. By Lemma 2.3, we get p=Σ xi®yi=x®x~~l. Thus

p is a coboundary.

Next we define Θ2: Pic(R) -* H°(S / R, Pic) as the homomorphism induced

by tensoring with S over R.

Lemma 3.2. The sequence

, U) -̂ > Pic(R) -^+ H0(S/Ry Pic)
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is exact.

Proof. Θ2 Θ1 = 0 since HomEnd(S) (S, PS) ® S ̂  PS for a 1-cocycle p.
Conversely, let P be a finitely generated projective JR-module of rank one and
assume that S®P is isomorphic to S as ^-modules. From the theory of faith-
fully flat descent, there exists an ^-isomorphism η: S®S^S®S with pro-
perty η2=-ηzηl and P is characterized as {seSΊs®l=77(l®s) in S®S},
where ηiy /=!, 2, 3, is defined similarly as f, in §2. Since η is a homothety,
we may put ^=^Xi®y^ x^y^S. Then η is a 1-cocycle by the relation

ψ
η2=η3-ηlf Define the homomorphisms1 Ψ, Ψ', P ^± HomEnd(S) (5, ηS), by setting

Ψ(p) (s)=sp, V'(g)=g(ls)9 ptΞP, s(ΞS, £<ΞHomEnd(s)(S, ,5). By Lemma 2.3
and the characterization of P= {s^S\s® 1=^(1 ®s)}, Ψ and Ψ' are well-
defined homomorphisms and are inverse to each other. This completes the
proof.

Lemma 3.3. The sequence

, U)

is exact, where Θ3 is the homomorphism induced by the one which carries a Q-cocycle

P, ζ: S®P^P®S to v(ξ).

Proof. Θ3 Θ2=Q as easily proved. Let P be a finitely generated projective
ξ

S-module of rank one such that S®P^P®S. Further assume that v(ζ)=
ζ^ζ£ι is a 2-coboundary. Then we may assume v(ξ)=l®l®l. Thus ζ
is a descent homomorphism. Hence there exists a finitely generated projective
Λ-module P' of rank one such that P^*P'®S. This completes the proof.

Summing up Corollary 1.8, 2.2, 2.6, Lemma 3.1, 3.2, 3.3 we get

Theorem 3.4. The sequence

θ θ θ
0 -* H\S/R, U) -i Pic(R) -ί H\S/R, Pic -ί H2(S/Ry U)

-4 Br(S/R) -S H\SIR, Pic) -2 H^S/R, U)

is an exact sequence of abelίan groups.
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