AN APPLICATION OF THE THEORY OF DESCENT TO THE $S \otimes_{R} S$-MODULE STRUCTURE OF S/R-AZUMAYA ALGEBRAS

Kenji YOKOGAWA

(Received December 17, 1976)
(Revised March 4, 1977)

Introduction. Let R be a commutative ring and S a commutative R-algebra which is a finitely generated faithful projective R-module. An R-Azumaya algebra A is called an S / R-Azumaya algebra if A contains S as a maximal commutative subalgebra and is left S-projective. S - S-bimodule structure (for which we shall call $S \otimes_{R} S$-module structure) of S / R-Azumaya algebras is determined in [5] when S / R is a separable Galois extension and in [8] when S / R is a Hopf Galois extension, both are connected with one which is so called seven terms exact sequence due to Chase, Harrison and Rosenberg [3].

In this paper we shall investigate the $S \otimes_{R} S$-module structure of S / R Azumaya algebras assuming only that S is a finitely generated faithful projective R-module. So S / R-Azumaya algebras are not necessarily $S \otimes_{R} S$-projective (c.f. [8] Th. 2.1). But in $\S 1$ we shall show for any S / R-Azumaya algebra A, there exists a unique finitely generated projective $S \otimes_{R} S$-module P of rank one with certain cohomological properties such that A is $S \otimes_{R} S$-isomorphic to $P \otimes_{s \otimes_{R} S} \operatorname{End}_{R}(S)$. In §2, we shall investigate S / R-Azumaya algebras resulting from Amitsur's 2-cocycles. Finally we shall deal with the seven terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative R-algebra S is a finitely generated faithful projective as R-module, each \otimes, End, etc. is taken over R unless otherwise stated. Repeated tensor products of S are denoted by exponents, $S^{q}=S \otimes \cdots \otimes S$ with q-factors. We shall consider S^{q} as an S-algebra on first term. To indicate module structure, we write if necessary, $S_{1} \otimes S_{2}$ instead of $S^{2}=S \otimes S,{ }_{s_{1}} M_{S_{2}}$ instead of $S^{2}=S_{1} \otimes S_{2}$-module M etc.. $H^{q}(S / R, U)$ and $H^{q}(S / R, P i c)$ denote the q-th Amitsur's cohomology groups of the extension S / R with respect to the unit functor U and Picard group functor Pic respectively.

1. S / R-Azumaya algebras and $H^{1}(S / R, P i c)$

First we prove the following, which clarify the S^{2}-module structure of
split S / R-Azumaya algebras.
Lemma 1.1. Let M be a finitely generated projective S-module of rank one, then End (M) is isomorphic to $(M \otimes S) \otimes_{s^{2}}\left(S \otimes M^{*}\right) \otimes_{s^{2}}$ End (S) as S^{2}-modules, where $M^{*}=\operatorname{Hom}_{s}(M, S)$.

Proof. We define $\psi:(M \otimes S) \otimes s^{2}\left(S \otimes M^{*}\right) \otimes_{s^{2}} \operatorname{End}(S) \rightarrow \operatorname{End}(M)$ as follows;

$$
\psi((m \otimes s) \otimes(t \otimes f) \otimes g)(n)=t g(f(s n)) m
$$

$m, n \in M, s, t \in S, f \in M^{*}, g \in \operatorname{End}(S)$. Then ψ is a well-defined S^{2}-homomorphism and by localization we get ψ is an isomorphism.

Remark. By ψ, the multiplication of $(M \otimes S) \otimes_{s^{2}}\left(S \otimes M^{*}\right) \otimes_{s^{2}}$ End (S) is given by the formula

$$
\begin{aligned}
& ((m \otimes s) \otimes(t \otimes f) \otimes g) \cdot((n \otimes u) \otimes(v \otimes p) \otimes q) \\
= & (m \otimes u) \otimes(t \otimes p) \otimes g \cdot f(n) \cdot s \cdot v q .
\end{aligned}
$$

Now let A be an S / R-Azumaya algebra then A is split by S. Hence there exists a finitely generated faithful projective S-module M such that $S \otimes A$ is isomorphic to $\operatorname{End}_{s}(M)$ as S-algebras. As is well known, M inherits the S^{2}-module structure and is S^{2}-projective of rank one. By Lemma 1.1, $S \otimes A \cong \operatorname{End}_{S}(M) \cong$ $\left.\left(M \otimes_{s} S^{2}\right) \otimes_{s^{3}}\left(S^{2} \otimes_{s} M^{*}\right) \otimes_{s^{3}} \operatorname{End}_{s}\left(S^{2}\right)=\left({ }_{s_{1}} M_{s_{2}} \otimes S_{3}\right) \otimes_{s^{3}\left(s_{1}\right.} M_{s_{3}}^{*} \otimes S_{2}\right) \otimes_{s^{3}} \operatorname{End}_{s}$ $\left(S^{2}\right), M^{*}=\operatorname{Hom}_{s^{2}}\left(M, S^{2}\right)$. If we put $P=\left(\left(M \otimes_{S} S^{2}\right) \otimes_{s^{3}}\left(S^{2} \otimes_{S} M^{*}\right)\right) \otimes_{s^{3}} S^{2}=$ $\left.\left(\left(s_{s_{2}} \otimes S_{3}\right) \otimes_{s^{3}\left(s_{1}\right.} M_{s_{3}} \otimes S_{2}\right)\right) \otimes_{s^{3}} S^{2}=\left(\left(M \otimes_{s^{2}} S_{1}\right) \otimes S_{2}\right) \otimes_{s^{2} s_{1}} M_{s_{2}}$, where we ragard $S^{2}\left(\right.$ resp. S) as an S^{3} (resp. S^{2})-module by $\mu \otimes 1: S^{3} \rightarrow S^{2}\left(\right.$ resp. $\mu: S^{2} \rightarrow S$), μ is the multiplication of S, then $A \cong P \otimes_{s^{2}} \operatorname{End}(S)$ as S^{2}-modules. Define the S^{2}-algebra isomorphism $\Phi: \operatorname{End}_{s^{2}}(M \otimes S)=\operatorname{End}_{S_{1} \otimes s_{2}}\left(s_{1} M_{S_{4}} \otimes S_{2}\right) \rightarrow \operatorname{End}_{s^{2}}(S \otimes M)$ $=\operatorname{End}_{S_{1} \otimes s_{2}}\left(S_{1} \otimes_{s_{2}} M_{S_{3}}\right)$ by the composite of the isomorphisms $\operatorname{End}_{s_{1} \otimes s_{2}}\left(s_{1} M_{S_{3}} \otimes S_{2}\right)$ $\cong S_{1} \otimes A \otimes S_{2} \cong S_{1} \otimes S_{2} \otimes A \cong \operatorname{End}_{S_{1} \otimes S_{2}}\left(S_{1} \otimes_{S_{2}} M_{S_{3}}\right)$, where the middle isomorphism is the one induced from the twisting homomorphism $A \otimes S_{2} \rightarrow S_{2} \otimes A(a \otimes s \mapsto s \otimes a)$ and the others are induced from $S \otimes A \cong \operatorname{End}_{s}(M)$. Then from Morita theory there exists a finitely generated projective S^{2}-module Q of rank one such that $\left(s_{1} M_{s_{3}} \otimes S_{2}\right) \otimes_{s_{1} \otimes s_{2} s_{1}} Q_{s_{2}} \cong S_{1} \otimes_{S_{2}} M_{S_{3}}$ as $\operatorname{End}_{s^{2}}\left(S_{1} \otimes_{S_{2}} M_{S_{3}}\right)$-modules, hence as S^{3}-modules. Tensoring with S^{2} over S^{3} (regarding S^{2} as an S^{3}-module by $1 \otimes$ $\left.\mu: S^{3} \rightarrow S^{2}\right)$, we get an S^{2}-isomorphism $s_{s_{1}} M_{S_{2}} \otimes_{s_{1} \otimes S_{2} s_{1}} Q_{S_{2}} \cong S_{1} \otimes\left(M \otimes_{s^{2}} S_{2}\right)$. Therefore,

$$
\begin{aligned}
S \otimes P & =\left(S \otimes\left(M \otimes_{s^{2}} S\right) \otimes S\right) \otimes_{s^{3}}\left(S \otimes M^{*}\right) \\
& \cong\left(\left(M \otimes_{s^{2}} Q\right) \otimes S\right) \otimes_{s^{3}}\left(S \otimes M^{*}\right) \\
& =(M \otimes S) \otimes_{s^{3}}(Q \otimes S) \otimes_{s^{3}}\left(S \otimes M^{*}\right) \\
& \cong(M \otimes S) \otimes_{s^{3}}\left(S^{2} \otimes_{S} M^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
\cong & (M \otimes S) \otimes_{s^{3}}\left(\left(M^{*} \otimes_{s^{2}} S\right) \otimes S^{2}\right) \otimes_{s^{3}}\left(S^{2} \otimes_{s} M^{*}\right) \otimes_{s^{3}}\left(\left(M \otimes_{s^{2}} S\right)\right. \\
& \left.\otimes S^{2}\right) \\
= & (M \otimes S) \otimes_{s^{3}}\left(\left(M^{*} \otimes_{s^{2}} S\right) \otimes S^{2}\right) \otimes_{s^{3}}\left(S^{2} \otimes_{s} M^{*}\right) \otimes_{s^{3}}\left(S^{2} \otimes_{s}(M\right. \\
& \left.\left.\otimes_{s^{2}} S\right) \otimes S\right) \\
= & \left(P^{*} \otimes S\right) \otimes_{s^{3}}\left(S^{2} \otimes_{s} P\right), P^{*}=\operatorname{Hom}_{s^{2}}\left(P, S^{2}\right) .
\end{aligned}
$$

This means P is a 1 -cocycle of the extension S / R with respect to the functor Pic (we call simply 1-cocycle). Since $P^{*}=\left(\left(M^{*} \otimes_{s^{2}} S\right) \otimes S\right) \otimes_{s^{2}} M$, $\operatorname{End}_{s}\left(P^{*}\right)$ $\simeq \operatorname{End}_{S}(M)$ as S-algebras.
If $S \otimes A \cong \operatorname{End}_{s}(N)$ for another N, then $\operatorname{End}_{s}(M) \cong \operatorname{End}_{s}(N)$ as S-algebras. So there exists a finitely generated projective S-module Q^{\prime} of rank one such that ${ }_{s_{1}} M_{S_{2}} \otimes_{s_{1}} Q^{\prime} \cong N$ as S^{2}-modules. Easy calculation shows that the 1 -cocycles obtained from M and N are S^{2}-isomorphic.

To prove the uniqueness of 1-cocycle P, we prepare the following
Lemma 1.2. Let T be a commutative R-algebra, which is a finitely genreated faithful projective R-module. And let P, Q be finitely generated projective T modules of rank one. Then

$$
\operatorname{Hom}_{T \otimes T}(P \otimes Q, Q \otimes P) \cong \operatorname{Hom}_{T \otimes T}(\operatorname{End}(P), \operatorname{End}(Q))
$$

Especially, $\mathrm{Iso}_{T \otimes_{T}}(P \otimes Q, Q \otimes P)$ corresponds to $\mathrm{Iso}_{T \otimes_{T}}(\operatorname{End}(P, \operatorname{Ecd}(Q))$.
Proof. For any T-module $M_{i}, N_{i}(i=1,2)$, we have the following isomorphism $\quad \rho: \operatorname{Hom}_{T \otimes T}\left(M_{1} \otimes M_{2}, \operatorname{Hom}\left(N_{2}, N_{1}\right)\right) \cong \operatorname{Hom}_{T \otimes T}\left(M_{1} \otimes N_{2}, \operatorname{Hom}\left(M_{2}, N_{1}\right)\right)$ given by $\left(\rho(\varphi)\left(m_{1} \otimes n_{2}\right)\right)\left(m_{2}\right)=\left(\varphi\left(m_{1} \otimes m_{2}\right)\right)\left(n_{2}\right), m_{i} \in M_{i}, n_{i} \in N_{i}, \varphi \in \operatorname{Hom}_{T \otimes T}\left(M_{1}\right.$ $\left.\otimes M_{2}, \operatorname{Hom}\left(N_{2}, N_{1}\right)\right)$, ([6] I.4.2). Put $M_{1}=P, M_{2}=N_{1}=Q, N_{2}=\operatorname{Hom}(P, R)$, then we get easily. Further assertion follows easily by localization.

Let P, P^{\prime} be 1-cocycles such that $P \otimes_{s^{2}} \operatorname{End}(S) \cong P^{\prime} \otimes_{s^{2}} \operatorname{End}(S) \cong A$ as S^{2} modules. Then $\operatorname{End}_{s}\left(P^{*}\right) \cong \operatorname{End}_{s}\left(P^{*}\right)$ as S^{3}-modules by Lemma 1.1 and the cocycle condition of P, P^{\prime}. From Lemma 1.2 we get an S^{3}-isomorphism $P^{*} \otimes_{S}$ $\left.P^{*}=\left(s_{1} P^{*} s_{2} \otimes S_{3}\right) \otimes_{s^{3}}\left(s_{1} P^{*}{ }_{s_{3}} \otimes S_{2}\right) \cong P^{*} \otimes_{s} P^{*}=\left(s_{1} P^{*}{ }_{s_{2}} \otimes S_{3}\right) \otimes_{s^{3}\left(s_{1}\right.} P_{s_{3}}^{*} \otimes S_{2}\right)$. Thus $\left.\left({ }_{s_{1}} P_{s_{2}}^{*} \otimes S_{3}\right) \otimes_{s^{3}\left(s_{1}\right.} P_{s_{3}} \otimes S_{2}\right) \cong\left(s_{1} P^{\prime *}{ }_{s_{2}} \otimes S_{3}\right) \otimes_{s^{3}}\left(s_{1} P_{s_{3}}^{\prime} \otimes S_{2}\right)$, the left side is isomorphic to $S_{1} \otimes_{S_{2}} P_{S_{3}}$ and the right side is isomorphic to $S_{1} \otimes_{S_{2}} P_{S_{3}}$ by the cocycle condition of P, P^{\prime}. Tensoring with S^{2} over S^{3} (regarding S^{2} as an S^{3} module by $\mu \otimes 1: S^{3} \rightarrow S^{2}$), we get $P \cong P^{\prime}$.
Summing up we get
Theorem 1.3. Let A be an S / R-Azumaya algebra, then there exists a unique 1-cocycle P such that A is isomorphic to $P \otimes_{s^{2}} \operatorname{End}(S)$ as S^{2}-modules and $S \otimes A$ is isomorphic to $\operatorname{End}_{s}\left(P^{*}\right)$ as S-algebras, where $P^{*}=\operatorname{Hom}_{s^{2}}\left(P, S^{2}\right)$.

Remark. In proving the above theorem, we used the S-algebra isomorphism
$S \otimes A \cong \operatorname{End}_{S}(M)$. If we assume this isomorphism is only an S^{3}-module isomorphism, then by using Lemma 1.2 in suitable situations we shall get Theorem 1.3 only replaceing " S-algebras" to " S^{3}-modules" in the last statement. So Theorem 1.3 does not fully characterize S / R-Azumaya algebras.

Proposition 1.4. Let A, B be $S / R-A z u m a y a$ algebras, P, Q be 1-cocycles obtained from A, B respectively. Then the 1-cocycle obtained from $A \cdot B=\operatorname{End}_{A \otimes_{B}}$ $\left(S \otimes_{s^{2}}(A \otimes B)\right)$ is $P \otimes_{s^{2}} Q$.

Proof. $\quad S \otimes A \cong \operatorname{End}_{s}\left(P^{*}\right)$ and $S \otimes B \cong \operatorname{End}_{s}\left(Q^{*}\right)$, so $S \otimes(A \cdot B)=(S \otimes A)$. $(S \otimes B) \cong \operatorname{End}_{s}\left(P^{*} \otimes_{s^{2}} Q^{*}\right)$, (c.f. [3] 2.13.). Thus the 1-cocycle obtained from $A \cdot B$ equals to $P \otimes_{s^{2}} Q$.

Next we shall start from a 1-cocycle P and an S^{3}-isomorphism $\phi: S^{2} \otimes_{s} P^{*}=$ ${ }_{s_{1}} P^{*}{ }_{S_{3}} \otimes S_{2} \cong\left(S_{1} \otimes_{S_{2}} P^{*}{ }_{S_{3}}\right) \otimes_{s^{3}}\left(s_{1} P_{s_{2}} \otimes S_{3}\right)=\left(S \otimes P^{*}\right) \otimes_{s^{3}}\left(P^{*} \otimes S\right)$. Define the S^{4}-isomorphisms $\phi_{1}, \phi_{2}, \phi_{3}$ as follows;

$$
\phi_{1}=1 \otimes \phi: S_{1} \otimes_{s_{2}} P_{S_{4}} \otimes S_{3} \cong\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}\right) \otimes_{s^{4}}\left(S_{1} \otimes_{S_{2}} P_{S_{3}} \otimes S_{4}\right),
$$ identity on S_{1}

$\left.\phi_{2} \quad:{ }_{s_{1}} P^{*}{ }_{s_{4}} \otimes S_{2} \otimes S_{3} \cong\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P^{*}{ }_{S_{4}}\right) \otimes{ }_{s^{4}\left(s_{1}\right.} P_{S_{3}} \otimes S_{2} \otimes S_{4}\right)$,
identity on S_{2}
$\left.\phi_{3} \quad:{ }_{s_{1}} P_{S_{4}} \otimes S_{2} \otimes S_{3} \cong\left(S_{1} \otimes_{S_{2}} P_{S_{4}} \otimes S_{3}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{S_{2}} \otimes S_{3} \otimes S_{4}\right)$, identity on S_{3}.

Further we define $\left.u(\phi) \in \operatorname{End}_{S^{4}\left({ }_{S_{1}} P^{*} S_{4}\right.} \otimes S_{2} \otimes S_{3}\right)$ by the composite

$$
\begin{aligned}
& \left.{ }_{s_{1}} P^{*}{s_{4}}_{4} \otimes S_{2} \otimes S_{3} \xrightarrow{\phi_{2}}\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P^{*} S_{4}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{S_{3}} \otimes S_{2} \otimes S_{4}\right) \\
& \xrightarrow{1 \otimes_{s^{4}(\phi \otimes 1)}}\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}\right) \otimes_{s^{4}}\left(S_{1} \otimes_{S_{2}} P^{*}{ }_{S_{3}} \otimes S_{4}\right) \otimes_{s^{4}} \\
& \left.\left(s_{1} P^{*} s_{2} \otimes S_{3} \otimes S_{4}\right) \xrightarrow{\phi_{1}^{-1} \otimes_{s^{4}} 1}\left(S_{1} \otimes_{s_{2}} P^{*} s_{4} \otimes S_{3}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{s_{2}} \otimes S_{3} \otimes S_{4}\right) \\
& \xrightarrow{\phi_{3}^{-1}}{ }_{s_{1}} P_{S_{4}} \otimes S_{2} \otimes S_{3} .
\end{aligned}
$$

Then we may think $u(\phi)$ is a unit of S^{4} by homothety. As easily checked, $u(\alpha \phi)=\delta\left(\alpha^{-1}\right) u(\phi)$ for a unit $\alpha \in S^{3}$, where δ is the coboundary operator in Amitsur's complex with respect to the unit functor U.

Lemma 1.5. $u(\phi)$ is a 3-cocycle.
Proof. By localization it follows readily.
Theorem 1.6. Let P be a 1-cocycle with a S^{3}-isomorphism $\phi:{ }_{s_{1}} P_{S_{3}} \otimes S_{2} \cong$ $\left(S_{1} \otimes_{S_{2}} P_{S_{3}}\right) \otimes_{s^{3}}\left(s_{1} P^{*}{ }_{S_{2}} \otimes S_{3}\right)$. Then $A=P \otimes_{s^{2}} \operatorname{End}(S)$ has an $S / R-A z u m a y a$ algebra structure, if and only if, $u(\phi)$ is a coboundary. If $u(\phi)=\delta(\beta)$ where β is a
unit of S^{3}, then $(\beta \phi)^{*}$ induces a S-algebra isomorphism $S \otimes A \cong \operatorname{End}_{s}\left(P^{*}\right)$, where $(\beta \phi)^{*}$ is the isomorphism $S \otimes P \cong\left(P^{*} \otimes S\right) \otimes s^{3}\left(s_{1} P_{S_{3}} \otimes S_{2}\right)$ induced from $\beta \phi$.

Proof. First we assume $A=P \otimes_{s^{2}} \operatorname{End}(S)$ is an S / R-Azumaya algebra, then $S \otimes A \cong \operatorname{End}_{s}\left(P^{*}\right)$ as S-algebras from the uniqueness of 1-cocycle. Define the S^{2}-algebra isomorphism

$$
\begin{aligned}
& \Phi: \operatorname{End}_{S_{1} \otimes s_{2}}\left(s_{1} P_{S_{3}}^{*} \otimes S_{2}\right)=S_{1} \otimes A \otimes S_{2} \rightarrow S_{1} \otimes S_{2} \otimes A=\operatorname{End}_{S_{1} \otimes S_{2}} \\
& \left(S_{1} \otimes_{S_{2}} P^{*}{ }_{S_{3}}\right)
\end{aligned}
$$

by the twisting homomorphism $A \otimes S_{2} \rightarrow S_{2} \otimes A . \quad \Phi$ is a descent homomorphism, that is if we put $\Phi_{1}=1 \otimes \Phi: S_{1} \otimes \operatorname{End}_{s}\left(P^{*}\right) \otimes S \rightarrow S_{1} \otimes S \otimes \operatorname{End}_{s}\left(P^{*}\right)$ identity on $S_{1}, \Phi_{2}: \operatorname{End}_{s}\left(P^{*}\right) \otimes S_{2} \otimes S \rightarrow S \otimes S_{2} \otimes \operatorname{End}_{s}\left(P^{*}\right)$ identity on $S_{2}, \Phi_{3}=\Phi \otimes 1: \operatorname{End}_{s}$ $\left(P^{*}\right) \otimes S \otimes S_{3} \rightarrow S \otimes \operatorname{End}_{S}\left(P^{*}\right) \otimes S_{3}$ identity on S_{3}, then $\Phi_{2}=\Phi_{1} \cdot \Phi_{3}$. Since Φ is an S^{2}-algebra isomorphism, there exists a finitely generated projective S^{2}-module Q of rank one such that ${ }_{s_{1}} P^{*} S_{3} \otimes S_{2}$ is isomorphic to $\left(S_{1} \otimes \otimes_{S_{2}} P^{*}{ }_{S_{3}}\right) \otimes_{s_{1} \otimes S_{2}} S_{1} Q_{s_{2}}=$
 ϕ^{\prime}. From the cocycle condition of P, Q is isomorphic to P^{*}. From the definition of $\Phi_{1}, \Phi_{2}, \Phi_{3}$, the following diagram is commutative for any $f \in \operatorname{End}_{s_{1} \otimes S_{2} \otimes S_{3}}$ $\left({ }_{s} P^{*}{ }_{S_{4}} \otimes S_{2} \otimes S_{3}\right)$.
$\left.\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P^{*} s_{4}\right) \otimes_{s^{4}}\left(S_{1} \otimes_{s_{2}} P^{*}{S_{3}} \otimes S_{4}\right) \otimes_{s^{4}\left(s_{1}\right.} P^{*}{ }_{s_{2}} \otimes S_{3} \otimes S_{4}\right) \xrightarrow{\Phi_{2}(f) \otimes_{s^{4}} 1 \otimes s^{4} 1}$ $\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}^{*}\right) \otimes_{S_{4}}\left(S_{1} \otimes_{S_{2}} P^{*}{ }_{S_{3}} \otimes S_{4}\right) \otimes_{S^{4}}\left({ }_{S_{1}} P^{*}{ }_{S_{2}} \otimes S_{3} \otimes S_{4}\right)$
$\left\|\| 1 \otimes s_{s^{4}\left(\phi^{\prime} \otimes 1\right)}\right.$
$\uparrow \mid 1 \otimes_{s^{4}\left(\phi^{\prime} \otimes 1\right)}$
$\left.\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{S_{3}} \otimes S_{2} \otimes S_{4}\right) \xrightarrow{\left.\Phi_{2}(f) \otimes_{s^{4}}{ }^{1}\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}\right) \otimes s_{s^{4}\left(s_{1}\right.} P^{*}{S_{3}}_{3} \otimes S_{2} \otimes S_{4}\right)}$

$\uparrow \| \phi_{2}{ }^{\prime}$

$\left.\left.\left(S_{1} \otimes_{s_{2}} P_{S_{4}}^{*} \otimes S_{3}\right) \otimes s_{s^{4}\left(s_{1}\right.} P_{s_{2}}^{*} \otimes S_{3} \otimes S_{4}\right) \xrightarrow{\Phi_{3}(f) \otimes_{s^{4} 1}}\left(S_{1} \otimes_{s_{2}} P^{*} s_{4} \otimes S_{3}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{s_{2}}^{*} \otimes S_{3} \otimes S_{4}\right)$
$\phi_{1}{ }^{\prime}\| \| \otimes_{s^{4}} 1$
$\phi_{1}{ }^{\prime}\| \| \otimes_{s^{4}} 1$
$\left.\left.\left(S_{1} \otimes S_{2} \otimes_{s_{3}} P^{*}{ }_{s_{4}}\right) \otimes_{s^{4}\left(S_{1}\right.} \otimes_{s_{2}} P^{*}{ }_{S_{3}} \otimes S_{4}\right) \otimes_{s^{4}\left(s_{1}\right.} P^{*} s_{s_{2}} \otimes S_{3} \otimes S_{4}\right) . \Phi_{1} \cdot \Phi_{3}(f) \otimes_{s_{4}} 1 \otimes_{s^{4}}$ $\left.\left(S_{1} \otimes S_{2} \otimes_{S_{3}} P_{S_{4}}^{*}\right) \otimes_{s^{4}}\left(S_{1} \otimes_{s_{2}} P_{S_{3}} \otimes S_{4}\right) \otimes_{s^{4}\left(s_{1}\right.} P_{S_{2}} \otimes S_{3} \otimes S_{4}\right)$

Thus $\left(1 \otimes_{s^{4}}\left(\phi^{\prime} \otimes 1\right)\right) \cdot \phi_{2}^{\prime} \cdot f \cdot \phi_{2}^{\prime-1} \cdot\left(1 \otimes_{s^{4}}\left(\phi^{\prime-1} \otimes 1\right)\right)=\left(\phi_{1}^{\prime} \otimes_{s^{4}} 1\right) \cdot \phi_{3}^{\prime} \cdot f \cdot \phi_{3}^{\prime-1} \cdot\left(\phi_{1}^{\prime-1}\right.$ $\left.\otimes_{s^{4}} 1\right)$. Hence $f \cdot u\left(\phi^{\prime}\right)=u\left(\phi^{\prime}\right) \cdot f$ for any $f \in \operatorname{End}_{S_{1} \otimes s_{2} \otimes S_{3}}\left(s_{1} P^{*} s_{4} \otimes S_{2} \otimes S_{3}\right)$. Therefore 3-cocycle $u\left(\phi^{\prime}\right)$ is contained in the center of $\operatorname{End}_{S_{1} \otimes S_{2} \otimes S_{3}\left(s_{1}\right.} P^{*} S_{S_{4}} \otimes S_{2} \otimes$ S_{3}), which is $S_{1} \otimes S_{2} \otimes S_{3}$. Easily we get $u\left(\phi^{\prime}\right)$ is a coboundary. Thus $u(\phi)=$
$u\left(\alpha^{-1} \phi^{\prime}\right)=\delta(\alpha) u\left(\phi^{\prime}\right)$ is a coboundary.
Conversely let $u(\phi)$ be a coboundary then we may assume $u(\phi)=1 \otimes 1 \otimes 1 \otimes 1$. Let ϕ^{*} be the isomorphism $S \otimes P \cong\left(P^{*} \otimes S\right) \otimes s^{3}\left(s_{1} P_{S_{3}} \otimes S_{2}\right)$ induced from ϕ by duality pairing. We consider $S \otimes A=(S \otimes P) \otimes_{S_{3}} \operatorname{End}_{s}\left(S^{2}\right)$ equals $\operatorname{End}_{s}\left(P^{*}\right)$
 algebra structure. Define $\Phi: S \otimes A \otimes S \cong S \otimes S \otimes A$ by the twisting homomorphism $A \otimes S \rightarrow S \otimes A$. Clearly $\Phi_{2}=\Phi_{1} \cdot \Phi_{3}$. From. the theory of faithfully flat descent, if Φ is an S^{2}-algebra isomorphism, then the descented module A has an R-algebra structure (necessarily an S / R-Azumaya algebra structure) such that the induced S-algebra structure of $S \otimes A$ coincides the original one of $S \otimes A$. Therefore all is settled if we show Φ is an S^{2}-algebra homomorphism. So we may assume R is a local ring. Thus $P=S^{2}, A=\operatorname{End}(S)$ and ϕ^{*} is the homothety by $\sum_{i} x_{i} \otimes_{i} y_{i} \otimes z_{i}$. Since $u(\phi)=1 \otimes 1 \otimes 1 \otimes 1, \sum_{i} x_{i} \otimes y_{i} \otimes z_{i}$ is a 2-cocycle. The multiplication in $S \otimes \operatorname{End}(S) \otimes S$ is given by $(s \otimes f \otimes t) \cdot(u \otimes g \otimes v)$ $=\left(\sum_{i} x_{i} \otimes y_{i} \otimes z_{i} \otimes 1\right)^{-1} \cdot\left(\sum_{i, j} x_{i} x_{j} s u \otimes y_{i} f z_{i} y_{j} g z_{j} \otimes t v\right), s \otimes f \otimes t, u \otimes g \otimes v \in S \otimes$ End $(S) \otimes S$, which is equal to $\sum_{i} s u \otimes x_{i} f y_{i} g z_{i} \otimes t v$ since $\sum_{i} x_{i} \otimes y_{i} \otimes z_{i}$ is a 2-cocycle. The multiplication in $S \otimes S \otimes \operatorname{End}(S)$ is given similarly. As easily checked, Φ is an S^{2}-algebra homomorphism. This completes the proof.

Proposition 1.7. If P is a 1-coboundary then $u(\phi)$ is a 3-coboundary.
Proof. Since $P=(Q \otimes S) \otimes_{s^{2}}\left(S \otimes Q^{*}\right)$ for some finitely generated projective S-module Q of rank one, $Q^{*}=\operatorname{Hom}_{s}(Q, S), A=P \otimes \operatorname{End}(S) \cong \operatorname{End}(Q)$ has an algebra structure. Hence $u(\phi)$ is a coboundary by Theorem 1.6.

Let $\operatorname{Br}(S / R)$ denotes the Brauer group of R-Azumaya algebras split by S. For an element of $\operatorname{Br}(S / R)$, we can choose an S / R-Azumaya algebra as its representative, and this representative is uniquely determined modulo $\{$ End $(Q) \mid Q$ is a finitely generated projective S-module of rank one\} (c.f. [3] 2.13).
Thus summing up the results of this section, we get
Corollary 1.8. The following sequence is exact

$$
\operatorname{Br}(S / R) \xrightarrow{\theta_{5}} H^{1}(S / R, P i c) \xrightarrow{\theta_{6}} H^{3}(S / R, U)
$$

where θ_{5} is the homomorphism induced from the one which carries $S / R-A z u m a y a$ algebras to 1-cocycles determined by Theorem 1.3, θ_{6} is the one induced by Lemma 1.5.

2. $\quad S / R$-Azumaya algebras and $H^{2}(S / R, U)$

Let $\sigma=\sum_{i} x_{i} \otimes y_{i} \otimes z_{i}$ be an Amitsur's 2-cocycle (of the extension S / R with respect to the unit functor U). We shall define a new multiplication "*"
on $\operatorname{End}(S)$ by setting

$$
(f * g)(s)=\sum_{i} x_{i} f\left(y_{i} g\left(z_{i} s\right)\right)
$$

for all $f, g \in \operatorname{End}(S), s \in S$. Then Sweedler [7] proved this algebra $A(\sigma)$ is isomorphic to the Rosenberg Zelinsky central separable algebra coming from the 2-cocycle σ^{-1}.

We shall call that a 2 -cocycle σ is normal if $\sum_{i} x_{i} y_{i} \otimes z_{t}=\sum_{i} x_{i} \otimes y_{i} z_{i}=1 \otimes 1$. As can be easily proved, every 2 -cocycle σ is cohomologeous to a normal 2cocycle σ^{\prime} and $A(\sigma) \cong A\left(\sigma^{\prime}\right)$. For a normal 2-cocycle σ^{\prime}, the S / R-Azumaya algebra $A\left(\sigma^{\prime}\right)$ is isomorphic to $\operatorname{End}(S)$ as S^{2}-modules. The following asserts the converse is true.

Proposition 2.1. An S / R-Azumaya algebra A is obtained from a normal 2-cocycle, if and only if, A is isomorphic to $\operatorname{End}(S)$ as S^{2}-modules.

Proof. If A is isomorphic to $\operatorname{End}(S)$, then the 1-cocycle P obtained from A is isomorphic to S^{2}. The method of the proof of the well-known fact that " $H^{2}(S / R, U) \cong \operatorname{Br}(S / R)$ if $\operatorname{Pic}(S \otimes S)=0$ " can be applied in this case (c.f. [6] V.2.1).

Corollary 2.2. The sequence $H^{2}(S / R, U) \xrightarrow{\theta_{4}} B r(S / R) \xrightarrow{\theta_{5}} H^{1}(S / R, P i c)$, where θ_{4} is induced from the homomorphism which carries a 2-cocycle σ to $A(\sigma)$, is exact.

Lemma 2.3. The homomorphisms $\rho: S \otimes \operatorname{End}(S) \rightarrow \operatorname{End}_{s}(\operatorname{End}(S)), \rho^{\prime}:$ $S \otimes S \otimes \operatorname{End}(S) \rightarrow \operatorname{Hom}_{s}\left(\operatorname{End}(S) \otimes_{S} \operatorname{End}(S), \operatorname{End}(S)\right)$ defined by setting $(\rho(s \otimes f))$ $(g))=s g \cdot f,\left(\rho^{\prime}(s \otimes t \otimes f)\right)(g \otimes h)=s g \cdot t h \cdot f, f, g, h \in \operatorname{End}(S), s, t \in S$, are isomorphisms.

Proof. σ is nothing else the well-known isomorphism $S \otimes \operatorname{End}(S)^{0} \cong$ $\operatorname{End}_{s}(\operatorname{End}(S))$. The composite of the isomorphisms $S \otimes S \otimes \operatorname{End}(S) \cong S \otimes$ $\operatorname{End}_{s}(\operatorname{End}(S)) \cong \operatorname{Hom}_{s}(\operatorname{End}(S), S \otimes \operatorname{End}(S)) \simeq \operatorname{Hom}_{s}\left(\operatorname{End}(S), \operatorname{End}_{s}(\operatorname{End}(S)) \simeq\right.$ $\operatorname{Hom}_{s}\left(\operatorname{End}(S) \otimes_{S} \operatorname{End}(S), \operatorname{End}(S)\right)$ is ρ^{\prime}.

Poroposition 2.4. Let $\sigma=\sum_{i} x_{i} \otimes y_{i} \otimes z_{i}, \tau=\sum_{i} x_{i}^{\prime} \otimes y_{i}^{\prime} \otimes z_{i}^{\prime}$ be normal 2cocycles, then $A(\sigma) \cong A(\tau)$ as $S / R-A z u m a y a$ algebras (that is isomorphic as R algebras and compatible with the maximal commutative imbeddings of S), if and only only if, σ is cohomologeous to τ.

Proof. "If part" is trivial. Let $\Psi: A(\sigma) \cong A(\tau)$ be the given isomorphism, then by Lemma 1.2 with $T=P=Q=S, \Psi$ corresponds to the homothety by the unit $\sum_{i} u_{i} \otimes v_{i} \in S^{2}$.

$$
\Psi(f)(s)=\sum_{i} u_{i} f\left(v_{i} s\right), f \in \operatorname{End}(S)=A(\sigma), s \in S
$$

Since Ψ is an algebra isomorphism,

$$
\begin{aligned}
& \Psi(f * g)(s)=\sum_{i} u_{i}(f * g)\left(v_{i} s\right)=\sum_{i, j} u_{i} x_{j} f\left(y_{j} g\left(z_{j} v_{i} s\right)\right) \\
= & (\Psi(f) * \Psi(g))(s)=\sum_{i, j, k} u_{i} x_{k}^{\prime} f\left(v_{i} y_{k}^{\prime} u_{j} g\left(v_{j} z_{k}^{\prime} s\right)\right)
\end{aligned}
$$

for all $f, g \in \operatorname{End}(S)=A(\sigma), s \in S$. Hence by Lemma 2.3

$$
\sum_{i, j} u_{i} x_{j} \otimes y_{j} \otimes z_{j} v_{i}=\sum_{i, j, k} u_{i} x_{k}^{\prime} \otimes v_{i} u_{j} y_{k}^{\prime} \otimes v_{j} z_{k}^{\prime} .
$$

Thus σ is cohomologeous to τ.
Now let P be a finitely generated projective S-module of rank one with the S^{2}-isomorphism $\zeta: S \otimes P \cong P \otimes S$, (this means that P is a 0 -cocycle with respect to the functor Pic). Define S^{3}-isomorphisms $\zeta_{1}, \zeta_{2}, \zeta_{3}$ as follows;

$$
\begin{array}{lrl}
\zeta_{1}=1 \otimes \zeta: & S_{1} \otimes S \otimes P \cong S_{1} \otimes P \otimes S & \text { identity on } S_{1} \\
\zeta_{2} & : S \otimes S_{2} \otimes P \cong P \otimes S_{2} \otimes S & \text { identity on } S_{2} \\
\zeta_{3}=\zeta \otimes 1: & S \otimes P \otimes S_{3} \cong P \otimes S \otimes S_{3} & \text { identity on } S_{3} .
\end{array}
$$

Define the S^{3}-automorphism of $S \otimes S \otimes P$ by $\zeta_{2}^{-1} \cdot \zeta_{3} \cdot \zeta_{1}$ then $\zeta_{2}^{-1} \cdot \zeta_{3} \cdot \zeta_{1}$ is the homothety by the unit $v(\zeta) \in S^{3}$. By localization we can easily check that $v(\zeta)$ is a 2-cocycle.

Proposition 2.5. Let σ be a normal 2-cocycle and assume that $A(\sigma)=0$ in $\operatorname{Br}(S / R)$. Then there exists a finitely generated projective S-module P such that $S \otimes P \stackrel{\zeta}{=} P \otimes S$, and σ is cohomologeous to $v(\zeta)$ or equivalently $A(\sigma) \cong A(v(\zeta))$.

Proof. Since $A(\sigma)=0$ in $\operatorname{Br}(S / R), A(\sigma) \cong \operatorname{End}(P)$ for some finitely generated faithful projective R-module P. P inherits the S-module structure and S-projective of rank one. $\operatorname{End}(P) \cong(P \otimes S) \otimes_{s^{2}}\left(S \otimes P^{*}\right) \otimes_{s^{2}} \operatorname{End}(S)$ as S^{2}-modules and $(P \otimes S) \otimes_{s^{2}}\left(S \otimes P^{*}\right)$ is a 1-cocycle. From the uniqueness of 1-cocycle (Theorem 1.3), there exists an S^{2}-isomorphism $\zeta: S \otimes P \cong P \otimes S$. We may assume $v(\zeta)$ is a normal 2-cocycle. Therefore by Proposition 2.4, all is settled if we prove $A(v(\zeta)) \cong \operatorname{End}(P)$. Define $\Psi: A(v(\zeta))=\operatorname{End}(S) \rightarrow$ End (P) by the following commutative diagram

where "cont." is the contraction homomorphism, $f \in A(v(\zeta))=\operatorname{End}(S) . \quad$ By localization technique, we get that Ψ is an S / R-algebra isomorphism.

Corollary 2.6. The sequence $H^{0}(S / R, P i c) \xrightarrow{\theta_{3}} H^{2}(S / R, U) \xrightarrow{\theta_{4}} B r(S / R)$, where θ_{3} is induced from the homomorphism which carries a 0 -cocycle $P, \zeta: S \otimes P \cong P \otimes S$, to $v(\zeta)$ is exact.

Proof. The only thing that we must show is that θ_{3} is a homomorphism. But it follows readily.

3. The seven terms exact sequence

Let $\rho=\sum_{i} x_{i} \otimes y_{i} \in S^{2}$ be a 1 -cocycle of the extension S / R with respect to the unit functor U. From the cocycle condition of $\rho, \sum_{i} x_{i} y_{i}=1$. We make a new End (S)-module ${ }_{\rho} S$ as follows;
${ }_{\rho} S=S$ as S-modules, $f \cdot s=\sum_{i} x_{i} f\left(y_{i} s\right), f \in \operatorname{End}(S), s \in S$. By the cocycle condition of $\rho,{ }_{\rho} S$ is in fact an $\operatorname{End}(S)$-module. From Morita theory

$$
\operatorname{Hom}_{\text {End }(s)}\left(S,{ }_{\rho} S\right) \otimes S \cong{ }_{\rho} S
$$

And $\operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{\rho} S\right)$ is a finitely generated projective R-module of rank one. If ρ is a coboundary (that is $\rho=x \otimes x^{-1}, x \in S$), then the homomorphism $\operatorname{Hom}_{\text {End }(S)}\left(S,{ }_{\rho} S\right) \rightarrow \operatorname{Hom}_{\text {End }(s)}(S, S)(\cong R)$ which carries $g \in \operatorname{Hom}_{\text {End }(s)}\left(S,{ }_{\rho} S\right)$ to $x^{-1} g \in \operatorname{Hom}_{\text {End }(s)}(S, S)$ is an isomorphism. For another 1-cocycle ρ^{\prime}, we have a canonical isomorphism $\operatorname{Hom}_{\text {End }(s)}\left(S,{ }_{\rho} S\right) \otimes \operatorname{Hom}_{\text {End }(s)}\left(S,{ }_{\rho} S\right) \cong \operatorname{Hom}_{\text {End }(S)}(S$, $\left.{ }_{\rho \rho} \rho^{\prime} S\right)$. Hence the homomorphism which carries the 1 -cocycle ρ to $\operatorname{Hom}_{\text {End }(s)}$ $\left(S,{ }_{\rho} S\right)$ induces the homomorphism $\theta_{1}: H^{1}(S / R, U) \rightarrow \operatorname{Pic}(R)$.

Lemma 3.1. $\quad \theta_{1}$ is a monomorphism.
Proof. Let $\rho=\sum_{i} x_{i} \otimes y_{i}$ be a 1-cocycle and assume that $\operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{\rho} S\right)$ is a free R-module of rank one with a free base g. If we put $g\left(1_{S}\right)=x$ then x is a unit of S since $\operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{p} S\right) \otimes S \simeq_{p} S=S$ as S-modules. The condition $g \in \operatorname{Hom}_{\text {End }(s)}\left(S,{ }_{\rho} S\right)$ claims

$$
g(f(s))=f(s) x=f \cdot(g(s))=\sum_{i} x_{i} f\left(y_{i} s x\right)
$$

for all $f \in \operatorname{End}(S), s \in S$. By Lemma 2.3, we get $\rho=\sum_{i} x_{i} \otimes y_{i}=x \otimes x^{-1}$. Thus ρ is a coboundary.

Next we define $\theta_{2}: \operatorname{Pic}(R) \rightarrow H^{0}(S / R, P i c)$ as the homomorphism induced by tensoring with S over R.

Lemma 3.2. The sequence

$$
H^{1}(S / R, U) \xrightarrow{\theta_{1}} P i c(R) \xrightarrow{\theta_{2}} H^{0}(S / R, P i c)
$$

is exact.
Proof. $\quad \theta_{2} \cdot \theta_{1}=0$ since $\operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{\rho} S\right) \otimes S \cong_{{ }_{\rho}} S$ for a 1-cocycle ρ. Conversely, let P be a finitely generated projective R-module of rank one and assume that $S \otimes P$ is isomorphic to S as S-modules. From the theory of faithfully flat descent, there exists an S^{2}-isomorphism $\eta: S \otimes S \cong S \otimes S$ with property $\eta_{2}=\eta_{3} \eta_{1}$ and P is characterized as $\{s \in S \mid s \otimes 1=\eta(1 \otimes s)$ in $S \otimes S\}$, where $\eta_{i}, i=1,2,3$, is defined similarly as ζ_{i} in $\S 2$. Since η is a homothety, we may put $\eta=\sum_{i} x_{i} \otimes y_{i}, x_{i}, y_{i} \in S$. Then η is a 1 -cocycle by the relation $\eta_{2}=\eta_{3} \eta_{1}$. Define the homomorphisms $\Psi, \Psi^{\prime}, P \underset{\Psi^{\prime}}{\stackrel{\Psi}{\leftrightarrows}} \operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{\eta} S\right)$, by setting $\Psi(p)(s)=s p, \Psi^{\prime}(g)=g\left(1_{s}\right), p \in P, s \in S, g \in \operatorname{Hom}_{\operatorname{End}(s)}\left(S,{ }_{n} S\right)$. By Lemma 2.3 and the characterization of $P=\{s \in S \mid s \otimes 1=\eta(1 \otimes s)\}, \Psi$ and Ψ^{\prime} are welldefined homomorphisms and are inverse to each other. This completes the proof.

Lemma 3.3. The sequence

$$
P i c(R) \xrightarrow{\theta_{2}} H^{0}(S / R, P i c) \xrightarrow{\theta_{3}} H^{2}(S / R, U)
$$

is exact, where θ_{3} is the homomorphism induced by the one which carries a 0 -cocycle $P, \zeta: S \otimes P \cong P \otimes S$ to $v(\zeta)$.

Proof. $\quad \theta_{3} \cdot \theta_{2}=0$ as easily proved. Let P be a finitely generated projective S-module of rank one such that $S \otimes P \stackrel{\zeta}{\cong} P \otimes S$. Further assume that $v(\zeta)=$ $\zeta_{2}^{-1} \zeta_{3} \zeta_{1}$ is a 2 -coboundary. Then we may assume $v(\zeta)=1 \otimes 1 \otimes 1$. Thus ζ is a descent homomorphism. Hence there exists a finitely generated projective R-module P^{\prime} of rank one such that $P \cong P^{\prime} \otimes S$. This completes the proof.

Summing up Corollary 1.8, 2.2, 2.6, Lemma 3.1, 3.2, 3.3 we get
Theorem 3.4. The sequence

$$
\begin{aligned}
0 \rightarrow H^{1}(S / R, U) & \xrightarrow{\theta_{1}} \operatorname{Pic}(R) \xrightarrow{\theta_{2}} H^{0}\left(S / R, P i c \xrightarrow{\theta_{3}} H^{2}(S / R, U)\right. \\
& \xrightarrow{\theta_{4}} \operatorname{Br}(S / R) \xrightarrow{\theta_{5}} H^{1}(S / R, P i c) \xrightarrow{\theta_{6}} H^{3}(S / R, U)
\end{aligned}
$$

is an exact sequence of abelian groups.
Nara Women's University

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.
[2] H. Bass: The Morita theorems, Lecture note at University of Oregon, 1962.
[3] S.U. Chase and A. Rosenberg: Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. 52 (1965), 34-79.
[4] F. DeMeyer and E. Ingraham: Separable algebras over commutative rings, Lecture Notes in Math. 181, Springer, 1971.
[5] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175-188.
[6] M.-A. Knus and M. Ojanguren: Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Math. 389, Springer, 1974.
[7] M.E. Sweedler: Multiplication alteration by two-cocyles, Illinois J. Math. 15 (1971), 302-323.
[8] K. Yokogawa: On $S \bigotimes_{R} S$-module structure of S / R-Azumaya algebras, Osaka J. Math. 12 (1975), 673-690.

