AN APPLICATION OF THE THEORY OF DESCENT TO THE $S \otimes_R S$ -MODULE STRUCTURE OF S/R-AZUMAYA ALGEBRAS

KENJI YOKOGAWA

(Received December 17, 1976) (Revised March 4, 1977)

Introduction. Let R be a commutative ring and S a commutative R-algebra which is a finitely generated faithful projective R-module. An R-Azumaya algebra A is called an S/R-Azumaya algebra if A contains S as a maximal commutative subalgebra and is left S-projective. S-S-bimodule structure (for which we shall call $S \otimes_R S$ -module structure) of S/R-Azumaya algebras is determined in [5] when S/R is a separable Galois extension and in [8] when S/R is a Hopf Galois extension, both are connected with one which is so called seven terms exact sequence due to Chase, Harrison and Rosenberg [3].

In this paper we shall investigate the $S \otimes_R S$ -module structure of S/R-Azumaya algebras assuming only that S is a finitely generated faithful projective R-module. So S/R-Azumaya algebras are not necessarily $S \otimes_R S$ -projective (c.f. [8] Th. 2.1). But in §1 we shall show for any S/R-Azumaya algebra A, there exists a unique finitely generated projective $S \otimes_R S$ -module P of rank one with certain cohomological properties such that A is $S \otimes_R S$ -isomorphic to $P \otimes_{S \otimes_R S} \operatorname{End}_R(S)$. In §2, we shall investigate S/R-Azumaya algebras resulting from Amitsur's 2-cocycles. Finally we shall deal with the seven terms exact sequence in §3.

Throughout R will be a fixed commutative ring with unit, a commutative R-algebra S is a finitely generated faithful projective as R-module, each \otimes , End, etc. is taken over R unless otherwise stated. Repeated tensor products of S are denoted by exponents, $S^q = S \otimes \cdots \otimes S$ with q-factors. We shall consider S^q as an S-algebra on first term. To indicate module structure, we write if necessary, $S_1 \otimes S_2$ instead of $S^2 = S \otimes S$, $s_1 M_{S_2}$ instead of $S^2 = S_1 \otimes S_2$ -module M etc.. $H^q(S/R, U)$ and $H^q(S/R, Pic)$ denote the q-th Amitsur's cohomology groups of the extension S/R with respect to the unit functor U and Picard group functor Pic respectively.

1. S/R-Azumaya algebras and $H^1(S/R, Pic)$

First we prove the following, which clarify the S^2 -module structure of

split S/R-Azumaya algebras.

Lemma 1.1. Let M be a finitely generated projective S-module of rank one, then End (M) is isomorphic to $(M \otimes S) \otimes_{S^2} (S \otimes M^*) \otimes_{S^2} End(S)$ as S²-modules, where $M^* = Hom_s(M, S)$.

Proof. We define ψ : $(M \otimes S) \otimes_{S^2} (S \otimes M^*) \otimes_{S^2} \operatorname{End}(S) \to \operatorname{End}(M)$ as follows;

$$\psi((m \otimes s) \otimes (t \otimes f) \otimes g)(n) = tg(f(sn))m$$

 $m,n \in M, s, t \in S, f \in M^*, g \in End(S)$. Then ψ is a well-defined S²-homomorphism and by localization we get ψ is an isomorphism.

REMARK. By ψ , the multiplication of $(M \otimes S) \otimes_{S^2} (S \otimes M^*) \otimes_{S^2} End(S)$ is given by the formula

$$((m \otimes s) \otimes (t \otimes f) \otimes g) \cdot ((n \otimes u) \otimes (v \otimes p) \otimes q)$$

= $(m \otimes u) \otimes (t \otimes p) \otimes g \cdot f(n) \cdot s \cdot vq$.

Now let A be an S/R-Azumaya algebra then A is split by S. Hence there exists a finitely generated faithful projective S-module M such that $S \otimes A$ is isomorphic to $\operatorname{End}_{S}(M)$ as S-algebras. As is well known, M inherits the S²-module structure and is S²-projective of rank one. By Lemma 1.1, $S \otimes A \cong \operatorname{End}_{S}(M) \cong$ $(M \otimes_S S^2) \otimes_{S^3} (S^2 \otimes_S M^*) \otimes_{S^3} \operatorname{End}_S (S^2) = ({}_{S_1}M_{S_2} \otimes S_3) \otimes_{S^3} ({}_{S_1}M^*{}_{S_3} \otimes S_2) \otimes_{S^3} \operatorname{End}_S$ $(S^2), M^* = \operatorname{Hom}_{S^2}(M, S^2)$. If we put $P = ((M \otimes_S S^2) \otimes_{S^3} (S^2 \otimes_S M^*)) \otimes_{S^3} S^2 =$ $((_{s} M_{s_{2}} \otimes S_{3}) \otimes_{s^{3}} (_{s_{1}} M^{*}_{s_{3}} \otimes S_{2})) \otimes_{s^{3}} S^{2} = ((M \otimes_{s^{2}} S_{1}) \otimes S_{2}) \otimes_{s^{2}} S_{1} M^{*}_{s_{2}}$, where we ragard S² (resp. S) as an S³(resp. S²)-module by $\mu \otimes 1: S^3 \rightarrow S^2$ (resp. $\mu: S^2 \rightarrow S$), μ is the multiplication of S, then $A \cong P \otimes_{S^2} \text{End}(S)$ as S²-modules. Define the S^2 -algebra isomorphism Φ : End_{S^2} $(M \otimes S) =$ End_{$S, \otimes S_2$} $(s, M_{S_4} \otimes S_2) \rightarrow$ End_{S^2} $(S \otimes M)$ = End_{$s_1 \otimes s_2$} ($S_1 \otimes S_2 M_{s_3}$) by the composite of the isomorphisms End_{$s_1 \otimes s_2$} ($s_1 M_{s_3} \otimes S_2$) $\simeq S_1 \otimes A \otimes S_2 \simeq S_1 \otimes S_2 \otimes A \simeq \text{End}_{S_1 \otimes S_2}(S_1 \otimes_{S_2} M_{S_3})$, where the middle isomorphism is the one induced from the twisting homomorphism $A \otimes S_2 \rightarrow S_2 \otimes A(a \otimes s \mapsto s \otimes a)$ and the others are induced from $S \otimes A \cong \operatorname{End}_{S}(M)$. Then from Morita theory there exists a finitely generated projective S^2 -module Q of rank one such that $(s_1M_{s_3}\otimes S_2)\otimes_{s_1\otimes s_2} S_1 Q_{s_2} \cong S_1 \otimes_{s_2} M_{s_3}$ as $\operatorname{End}_{S^2}(S_1 \otimes_{s_2} M_{s_3})$ -modules, hence as S³-modules. Tensoring with S^2 over S^3 (regarding S^2 as an S^3 -module by $1\otimes$ $\mu: S^3 \rightarrow S^2$), we get an S^2 -isomorphism ${}_{S_1}M_{S_2} \otimes_{S_1 \otimes S_2} {}_{S_2} \cong S_1 \otimes (M \otimes_{S^2} S_2)$. Therefore,

$$S \otimes P = (S \otimes (M \otimes_{S^2} S) \otimes S) \otimes_{S^3} (S \otimes M^*)$$

$$\approx ((M \otimes_{S^2} Q) \otimes S) \otimes_{S^3} (S \otimes M^*)$$

$$= (M \otimes S) \otimes_{S^3} (Q \otimes S) \otimes_{S^3} (S \otimes M^*)$$

$$\approx (M \otimes S) \otimes_{S^3} (S^2 \otimes_S M^*)$$

$$\cong (M \otimes S) \otimes_{S^3} ((M^* \otimes_{S^2} S) \otimes S^2) \otimes_{S^3} (S^2 \otimes_S M^*) \otimes_{S^3} ((M \otimes_{S^2} S) \otimes S^2)$$

$$= (M \otimes S) \otimes_{S^3} ((M^* \otimes_{S^2} S) \otimes S^2) \otimes_{S^3} (S^2 \otimes_S M^*) \otimes_{S^3} (S^2 \otimes_S (M \otimes_{S^2} S) \otimes S)$$

$$= (P^* \otimes S) \otimes_{S^3} (S^2 \otimes_S P), P^* = \operatorname{Hom}_{S^2} (P, S^2) .$$

This means P is a 1-cocycle of the extension S/R with respect to the functor *Pic* (we call simply 1-cocycle). Since $P^* = ((M^* \otimes_{S^2} S) \otimes S) \otimes_{S^2} M$, $\operatorname{End}_S(P^*) \cong \operatorname{End}_S(M)$ as S-algebras.

If $S \otimes A \cong \operatorname{End}_{S}(N)$ for another N, then $\operatorname{End}_{S}(M) \cong \operatorname{End}_{S}(N)$ as S-algebras. So there exists a finitely generated projective S-module Q' of rank one such that $s_1 M_{S_2} \otimes s_1 Q' \cong N$ as S²-modules. Easy calculation shows that the 1-cocycles obtained from M and N are S²-isomorphic.

To prove the uniqueness of 1-cocycle P, we prepare the following

Lemma 1.2. Let T be a commutative R-algebra, which is a finitely generated faithful projective R-module. And let P, Q be finitely generated projective T-modules of rank one. Then

$$\operatorname{Hom}_{T\otimes T}(P\otimes Q, Q\otimes P)\cong \operatorname{Hom}_{T\otimes T}(\operatorname{End}(P), \operatorname{End}(Q))$$

Especially, $\operatorname{Iso}_{T\otimes T}(P\otimes Q, Q\otimes P)$ corresponds to $\operatorname{Iso}_{T\otimes T}(\operatorname{End}(P, \operatorname{Ecd}(Q)))$.

Proof. For any T-module M_i , N_i (i=1, 2), we have the following isomorphism ρ : Hom_{$T \otimes T$} $(M_1 \otimes M_2$, Hom (N_2, N_1)) \cong Hom_{$T \otimes T$} $(M_1 \otimes N_2$, Hom (M_2, N_1)) given by $(\rho(\varphi)(m_1 \otimes n_2))(m_2) = (\varphi(m_1 \otimes m_2))(n_2), m_i \in M_i, n_i \in N_i, \varphi \in$ Hom_{$T \otimes T$} $(M_1 \otimes M_2,$ Hom (N_2, N_1)), ([6] I.4.2). Put $M_1 = P, M_2 = N_1 = Q, N_2 =$ Hom(P, R), then we get easily. Further assertion follows easily by localization.

Let P, P' be 1-cocycles such that $P \otimes_{S^2} \operatorname{End}(S) \cong P' \otimes_{S^2} \operatorname{End}(S) \cong A$ as S^2 modules. Then $\operatorname{End}_S(P^*) \cong \operatorname{End}_S(P'^*)$ as S^3 -modules by Lemma 1.1 and the cocycle condition of P, P'. From Lemma 1.2 we get an S^3 -isomorphism $P^* \otimes_S$ $P'^* = (s_1 P^* s_2 \otimes S_3) \otimes_{S^3} (s_1 P' s_3 \otimes S_2) \cong P'^* \otimes_S P^* = (s_1 P' s_2 \otimes S_3) \otimes_{S^3} (s_1 P^* s_3 \otimes S_2)$. Thus $(s_1 P^* s_2 \otimes S_3) \otimes_{S^3} (s_1 P s_3 \otimes S_2) \cong (s_1 P'^* s_2 \otimes S_3) \otimes_{S^3} (s_1 P' s_3 \otimes S_2)$, the left side is isomorphic to $S_1 \otimes_{S_2} P_{S_3}$ and the right side is isomorphic to $S_1 \otimes_{S_2} P' s_3$ by the cocycle condition of P, P'. Tensoring with S^2 over S^3 (regarding S^2 as an S^3 module by $\mu \otimes 1: S^3 \to S^2$), we get $P \cong P'$. Summing up we get

Theorem 1.3. Let A be an S/R-Azumaya algebra, then there exists a unique 1-cocycle P such that A is isomorphic to $P \otimes_{S^2} \text{End}(S)$ as S^2 -modules and $S \otimes A$ is isomorphic to $\text{End}_S(P^*)$ as S-algebras, where $P^* = \text{Hom}_{S^2}(P, S^2)$.

REMARK. In proving the above theorem, we used the S-algebra isomorphism

 $S \otimes A \cong \operatorname{End}_{S}(M)$. If we assume this isomorphism is only an S^{3} -module isomorphism, then by using Lemma 1.2 in suitable situations we shall get Theorem 1.3 only replaceing "S-algebras" to "S³-modules" in the last statement. So Theorem 1.3 does not fully characterize S/R-Azumaya algebras.

Proposition 1.4. Let A, B be S/R-Azumaya algebras, P, Q be 1-cocycles obtained from A, B respectively. Then the 1-cocycle obtained from $A \cdot B = \operatorname{End}_{A \otimes B}$ $(S \otimes_{S^2}(A \otimes B))$ is $P \otimes_{S^2} Q$.

Proof. $S \otimes A \cong \operatorname{End}_{S}(P^{*})$ and $S \otimes B \cong \operatorname{End}_{S}(Q^{*})$, so $S \otimes (A \cdot B) = (S \otimes A) \cdot (S \otimes B) \cong \operatorname{End}_{S}(P^{*} \otimes_{S^{2}} Q^{*})$, (c.f. [3] 2.13.). Thus the 1-cocycle obtained from $A \cdot B$ equals to $P \otimes_{S^{2}} Q$.

Next we shall start from a 1-cocycle P and an S^3 -isomorphism $\phi: S^2 \otimes_S P^* = {}_{S_1}P^*{}_{S_3} \otimes S_2 \cong (S_1 \otimes_{S_2}P^*{}_{S_3}) \otimes_{S^3} ({}_{S_1}P^*{}_{S_2} \otimes S_3) = (S \otimes P^*) \otimes_{S^3} (P^* \otimes S)$. Define the S^4 -isomorphisms ϕ_1, ϕ_2, ϕ_3 as follows;

$$\begin{split} \phi_1 &= 1 \otimes \phi \colon S_1 \otimes_{S_2} P^*_{S_4} \otimes S_3 \cong (S_1 \otimes S_2 \otimes_{S_3} P^*_{S_4}) \otimes_{S^4} (S_1 \otimes_{S_2} P^*_{S_3} \otimes S_4), \\ \text{identity on } S_1 \\ \phi_2 & : \ {}_{S_1} P^*_{S_4} \otimes S_2 \otimes S_3 \cong (S_1 \otimes S_2 \otimes_{S_3} P^*_{S_4}) \otimes_{S^4} ({}_{S_1} P^*_{S_3} \otimes S_2 \otimes S_4), \\ \text{identity on } S_2 \\ \phi_3 & : \ {}_{S_1} P^*_{S_4} \otimes S_2 \otimes S_3 \cong (S_1 \otimes_{S_2} P^*_{S_4} \otimes S_3) \otimes_{S^4} ({}_{S_1} P^*_{S_2} \otimes S_3 \otimes S_4), \\ \text{identity on } S_3 \, . \end{split}$$

Further we define $u(\phi) \in \operatorname{End}_{S^4}(s, P^*_{S_4} \otimes S_2 \otimes S_3)$ by the composite

$$s_{1}P^{*}{}_{s_{4}}\otimes S_{2}\otimes S_{3} \xrightarrow{\phi_{2}} (S_{1}\otimes S_{2}\otimes_{s_{3}}P^{*}{}_{s_{4}})\otimes_{s^{4}}(s_{1}P^{*}{}_{s_{3}}\otimes S_{2}\otimes S_{4})$$

$$1 \xrightarrow{\phi_{3}} (S_{1}\otimes S_{2}\otimes_{s_{3}}P^{*}{}_{s_{4}})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{3}}\otimes S_{4})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{3}}\otimes S_{4})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{3}}\otimes S_{4})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{4}}\otimes S_{3})\otimes_{s^{4}}(S_{1}P^{*}{}_{s_{2}}\otimes S_{3}\otimes S_{4})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{4}}\otimes S_{3})\otimes_{s^{4}}(S_{1}P^{*}{}_{s_{2}}\otimes S_{3}\otimes S_{4})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{4}}\otimes S_{3})\otimes_{s^{4}}(S_{1}\otimes_{s_{2}}P^{*}{}_{s_{4}}\otimes S_{3})\otimes_{s^{4}}(S_{1}\otimes_{s_{4}}P^{*}{}_{s_{4}}\otimes S_{3})\otimes_{s^{4}}(S_{1}\otimes_{s_{4}}P^{*}{}_{s_{$$

Then we may think $u(\phi)$ is a unit of S^4 by homothety. As easily checked, $u(\alpha\phi)=\delta(\alpha^{-1})u(\phi)$ for a unit $\alpha\in S^3$, where δ is the coboundary operator in Amitsur's complex with respect to the unit functor U.

Lemma 1.5. $u(\phi)$ is a 3-cocycle.

Proof. By localization it follows readily.

Theorem 1.6. Let P be a 1-cocycle with a S³-isomorphism $\phi: {}_{s_1}P^*{}_{s_3}\otimes S_2 \cong (S_1 \otimes_{s_2}P^*{}_{s_3}) \otimes_{s^3}({}_{s_1}P^*{}_{s_2}\otimes S_3)$. Then $A = P \otimes_{s^2} \operatorname{End}(S)$ has an S/R-Azumaya algebra structure, if and only if, $u(\phi)$ is a coboundary. If $u(\phi) = \delta(\beta)$ where β is a

unit of S³, then $(\beta \phi)^*$ induces a S-algebra isomorphism $S \otimes A \cong \operatorname{End}_{S}(P^*)$, where $(\beta \phi)^*$ is the isomorphism $S \otimes P \cong (P^* \otimes S) \otimes_{S^3}(S_1, P_{S_3} \otimes S_2)$ induced from $\beta \phi$.

Proof. First we assume $A=P\otimes_{S^2} \operatorname{End}(S)$ is an S/R-Azumaya algebra, then $S\otimes A\cong \operatorname{End}_{S}(P^*)$ as S-algebras from the uniqueness of 1-cocycle. Define the S^2 -algebra isomorphism

$$\Phi \colon \operatorname{End}_{s_1 \otimes s_2}(s_1 P^*_{s_3} \otimes S_2) = S_1 \otimes A \otimes S_2 \to S_1 \otimes S_2 \otimes A = \operatorname{End}_{s_1 \otimes s_2}(S_1 \otimes s_2 P^*_{s_3})$$

by the twisting homomorphism $A \otimes S_2 \rightarrow S_2 \otimes A$. Φ is a descent homomorphism, that is if we put $\Phi_1 = 1 \otimes \Phi$: $S_1 \otimes \operatorname{End}_s(P^*) \otimes S \rightarrow S_1 \otimes S \otimes \operatorname{End}_s(P^*)$ identity on S_1, Φ_2 : $\operatorname{End}_s(P^*) \otimes S_2 \otimes S \rightarrow S \otimes S_2 \otimes \operatorname{End}_s(P^*)$ identity on $S_2, \Phi_3 = \Phi \otimes 1$: $\operatorname{End}_s(P^*) \otimes S \otimes S_3 \rightarrow S \otimes \operatorname{End}_s(P^*) \otimes S_3$ identity on S_3 , then $\Phi_2 = \Phi_1 \cdot \Phi_3$. Since Φ is an S^2 -algebra isomorphism, there exists a finitely generated projective S^2 -module Q of rank one such that ${}_{S_1}P^*{}_{S_3} \otimes S_2$ is isomorphic to $(S_1 \otimes_{S_2}P^*{}_{S_3}) \otimes_{S_1 \otimes S_2} {}_{S_1}Q_{S_2} = (S_1 \otimes_{S_2}P^*{}_{S_3}) \otimes_{S^3}({}_{S_1}Q_{S_2} \otimes S_3)$ as S^3 -modules and Φ is induced by this isomorphism ϕ' . From the cocycle condition of P, Q is isomorphic to P^* . From the definition of Φ_1, Φ_2, Φ_3 , the following diagram is commutative for any $f \in \operatorname{End}_{S_1 \otimes S_2 \otimes S_3}$ $(s P^*{}_{S_4} \otimes S_2 \otimes S_3)$.

Thus $(1 \otimes_{S^4} (\phi' \otimes 1)) \cdot \phi'_2 \cdot f \cdot \phi'_2^{-1} \cdot (1 \otimes_{S^4} (\phi'^{-1} \otimes 1)) = (\phi'_1 \otimes_{S^4} 1) \cdot \phi'_3 \cdot f \cdot \phi'_3^{-1} \cdot (\phi'_1^{-1} \otimes_{S^4} 1)$. Hence $f \cdot u(\phi') = u(\phi') \cdot f$ for any $f \in \operatorname{End}_{S_1 \otimes S_2 \otimes S_3}(S_1 P^*_{S_4} \otimes S_2 \otimes S_3)$. Therefore 3-cocycle $u(\phi')$ is contained in the center of $\operatorname{End}_{S_1 \otimes S_2 \otimes S_3}(S_1 P^*_{S_4} \otimes S_2 \otimes S_3)$, which is $S_1 \otimes S_2 \otimes S_3$. Easily we get $u(\phi')$ is a coboundary. Thus $u(\phi) = u(\phi') = u(\phi') = u(\phi') = u(\phi')$. $u(\alpha^{-1}\phi') = \delta(\alpha)u(\phi')$ is a coboundary.

Conversely let $u(\phi)$ be a coboundary then we may assume $u(\phi)=1\otimes 1\otimes 1\otimes 1\otimes 1$. Let ϕ^* be the isomorphism $S \otimes P \cong (P^* \otimes S) \otimes_{S^3} (s_1 P_{S_3} \otimes S_2)$ induced from ϕ by duality pairing. We consider $S \otimes A = (S \otimes P) \otimes_{S_3} \operatorname{End}_S(S^2)$ equals $\operatorname{End}_S(P^*)$ $=(P^*\otimes S)\otimes_{S^3}(s_P_{S_3}\otimes S_2)\otimes_{S^3}\operatorname{End}_S(S^2)$ by $\phi^*\otimes_{S^3}1$. Thus $S\otimes A$ has an Salgebra structure. Define $\Phi: S \otimes A \otimes S \cong S \otimes S \otimes A$ by the twisting homomorphism $A \otimes S \rightarrow S \otimes A$. Clearly $\Phi_2 = \Phi_1 \cdot \Phi_3$. From the theory of faithfully flat descent, if Φ is an S²-algebra isomorphism, then the descented module A has an R-algebra structure (necessarily an S/R-Azumaya algebra structure) such that the induced S-algebra structure of $S \otimes A$ coincides the original one of $S \otimes A$. Therefore all is settled if we show Φ is an S^2 -algebra homomorphism. So we may assume R is a local ring. Thus $P=S^2$, A=End (S) and ϕ^* is the homothety by $\sum_{i} x_i \otimes_i y_i \otimes z_i$. Since $u(\phi) = 1 \otimes 1 \otimes 1 \otimes 1$, $\sum_{i} x_i \otimes y_i \otimes z_i$ is a 2-cocycle. The multiplication in $S \otimes \text{End}(S) \otimes S$ is given by $(s \otimes f \otimes t) \cdot (u \otimes g \otimes v)$ $= (\sum_{i} x_i \otimes y_i \otimes z_i \otimes 1)^{-1} \cdot (\sum_{i,i} x_i x_j s u \otimes y_i f z_i y_j g z_j \otimes t v), s \otimes f \otimes t, u \otimes g \otimes v \in S \otimes \text{End}$ $(S)\otimes S$, which is equal to $\sum_{i} su \otimes x_i fy_i gz_i \otimes tv$ since $\sum_{i} x_i \otimes y_i \otimes z_i$ is a 2-cocycle. The multiplication in $S \otimes S \otimes \text{End}(S)$ is given similarly. As easily checked, Φ is an S^2 -algebra homomorphism. This completes the proof.

Proposition 1.7. If P is a 1-coboundary then $u(\phi)$ is a 3-coboundary.

Proof. Since $P=(Q \otimes S) \otimes_{S^2}(S \otimes Q^*)$ for some finitely generated projective S-module Q of rank one, $Q^*=\operatorname{Hom}_{S}(Q,S)$, $A=P \otimes \operatorname{End}(S) \cong \operatorname{End}(Q)$ has an algebra structure. Hence $u(\phi)$ is a coboundary by Theorem 1.6.

Let Br(S/R) denotes the Brauer group of *R*-Azumaya algebras split by *S*. For an element of Br(S/R), we can choose an S/R-Azumaya algebra as its representative, and this representative is uniquely determined modulo {End (Q) | Q is a finitely generated projective *S*-module of rank one} (c.f. [3] 2.13). Thus summing up the results of this section, we get

Corollary 1.8. The following sequence is exact

$$Br(S/R) \xrightarrow{\theta_5} H^1(S/R, Pic) \xrightarrow{\theta_6} H^3(S/R, U)$$

where θ_5 is the homomorphism induced from the one which carries S/R-Azumaya algebras to 1-cocycles determined by Theorem 1.3, θ_6 is the one induced by Lemma 1.5.

2. S/R-Azumaya algebras and $H^2(S/R, U)$

Let $\sigma = \sum_{i} x_i \otimes y_i \otimes z_i$ be an Amitsur's 2-cocycle (of the extension S/R with respect to the unit functor U). We shall define a new multiplication "*"

on End(S) by setting

$$(f*g)(s) = \sum_{i} x_i f(y_i g(z_i s))$$

for all $f, g \in \text{End}(S)$, $s \in S$. Then Sweedler [7] proved this algebra $A(\sigma)$ is isomorphic to the Rosenberg Zelinsky central separable algebra coming from the 2-cocycle σ^{-1} .

We shall call that a 2-cocycle σ is normal if $\sum_{i} x_i y_i \otimes z_i = \sum_{i} x_i \otimes y_i z_i = 1 \otimes 1$.

As can be easily proved, every 2-cocycle σ is cohomologeous to a normal 2cocycle σ' and $A(\sigma) \cong A(\sigma')$. For a normal 2-cocycle σ' , the S/R-Azumaya algebra $A(\sigma')$ is isomorphic to End(S) as S^2 -modules. The following asserts the converse is true.

Proposition 2.1. An S/R-Azumaya algebra A is obtained from a normal 2-cocycle, if and only if, A is isomorphic to End(S) as S^2 -modules.

Proof. If A is isomorphic to End(S), then the 1-cocycle P obtained from A is isomorphic to S^2 . The method of the proof of the well-known fact that " $H^2(S/R, U) \cong Br(S/R)$ if $Pic(S \otimes S) = 0$ " can be applied in this case (c.f. [6] V.2.1).

Corollary 2.2. The sequence $H^2(S/R, U) \xrightarrow{\theta_4} Br(S/R) \xrightarrow{\theta_5} H^1(S/R, Pic)$, where θ_4 is induced from the homomorphism which carries a 2-cocycle σ to $A(\sigma)$, is exact.

Lemma 2.3. The homomorphisms $\rho: S \otimes \operatorname{End}(S) \to \operatorname{End}_{S}(\operatorname{End}(S)), \rho': S \otimes S \otimes \operatorname{End}(S) \to \operatorname{Hom}_{S}(\operatorname{End}(S) \otimes_{S} \operatorname{End}(S), \operatorname{End}(S))$ defined by setting $(\rho(s \otimes f))$ (g))=sg \cdot f, $(\rho'(s \otimes t \otimes f))$ (g \otimes h)=sg \cdot th \cdot f, f, g, h \in End(S), s, t \in S, are isomorphisms.

Proof. σ is nothing else the well-known isomorphism $S \otimes \operatorname{End}(S)^{\circ} \cong$ End_s(End(S)). The composite of the isomorphisms $S \otimes S \otimes \operatorname{End}(S) \cong S \otimes$ End_s(End(S)) \cong Hom_s(End(S), $S \otimes \operatorname{End}(S)$) \cong Hom_s(End(S), End_s(End(S)) \cong Hom_s(End(S) \otimes_{s} End(S), End(S)) is ρ' .

Poroposition 2.4. Let $\sigma = \sum_{i} x_i \otimes y_i \otimes z_i$, $\tau = \sum_{i} x'_i \otimes y'_i \otimes z'_i$ be normal 2cocycles, then $A(\sigma) \cong A(\tau)$ as S/R-Azumaya algebras (that is isomorphic as Ralgebras and compatible with the maximal commutative imbeddings of S), if and only only if, σ is cohomologeous to τ .

Proof. "If part" is trivial. Let $\Psi: A(\sigma) \cong A(\tau)$ be the given isomorphism, then by Lemma 1.2 with T=P=Q=S, Ψ corresponds to the homothety by the unit $\sum_{i} u_i \otimes v_i \in S^2$.

K. Yokogawa

$$\Psi(f)(s) = \sum_{i} u_i f(v_i s), f \in \operatorname{End}(S) = A(\sigma), s \in S.$$

Since Ψ is an algebra isomorphism,

$$\begin{split} \Psi(f*g)(s) &= \sum_{i} u_{i}(f*g)(v_{i}s) = \sum_{i,j} u_{i}x_{j}f(y_{j}g(z_{j}v_{i}s)) \\ &= (\Psi(f)*\Psi(g))(s) = \sum_{i,j,k} u_{i}x_{k}'f(v_{i}y_{k}'u_{j}g(v_{j}z_{k}'s)) \end{split}$$

for all $f, g \in \text{End}(S) = A(\sigma), s \in S$. Hence by Lemma 2.3

$$\sum_{i,j} u_i x_j \otimes y_j \otimes z_j v_i = \sum_{i,j,k} u_i x_k' \otimes v_i u_j y_k' \otimes v_j z_k' \,.$$

Thus σ is cohomologeous to τ .

Now let P be a finitely generated projective S-module of rank one with the S²-isomorphism $\zeta: S \otimes P \cong P \otimes S$, (this means that P is a 0-cocycle with respect to the functor Pic). Define S³-isomorphisms $\zeta_1, \zeta_2, \zeta_3$ as follows;

$$\begin{split} \zeta_1 &= 1 \otimes \zeta \colon S_1 \otimes S \otimes P \cong S_1 \otimes P \otimes S & \text{identity on } S_1 \\ \zeta_2 &: S \otimes S_2 \otimes P \cong P \otimes S_2 \otimes S & \text{identity on } S_2 \\ \zeta_3 &= \zeta \otimes 1 \colon S \otimes P \otimes S_3 \cong P \otimes S \otimes S_3 & \text{identity on } S_3 \end{split}$$

Define the S³-automorphism of $S \otimes S \otimes P$ by $\zeta_2^{-1} \cdot \zeta_3 \cdot \zeta_1$ then $\zeta_2^{-1} \cdot \zeta_3 \cdot \zeta_1$ is the homothety by the unit $v(\zeta) \in S^3$. By localization we can easily check that $v(\zeta)$ is a 2-cocycle.

Proposition 2.5. Let σ be a normal 2-cocycle and assume that $A(\sigma)=0$ in Br(S|R). Then there exists a finitely generated projective S-module P such that $S \otimes P \stackrel{\zeta}{\cong} P \otimes S$, and σ is cohomologeous to $v(\zeta)$ or equivalently $A(\sigma) \cong A(v(\zeta))$.

Proof. Since $A(\sigma) = 0$ in Br(S/R), $A(\sigma) \cong End(P)$ for some finitely generated faithful projective *R*-module *P*. *P* inherits the *S*-module structure and *S*-projective of rank one. $End(P) \cong (P \otimes S) \otimes_{S^2} (S \otimes P^*) \otimes_{S^2} End(S)$ as S^2 -modules and $(P \otimes S) \otimes_{S^2} (S \otimes P^*)$ is a 1-cocycle. From the uniqueness of 1-cocycle (Theorem 1.3), there exists an S^2 -isomorphism $\zeta: S \otimes P \cong P \otimes S$. We may assume $v(\zeta)$ is a normal 2-cocycle. Therefore by Proposition 2.4, all is settled if we prove $A(v(\zeta)) \cong End(P)$. Define $\Psi: A(v(\zeta)) = End(S) \rightarrow$ End(P) by the following commutative diagram

$$P \longrightarrow S \otimes P \stackrel{\xi}{\simeq} P \otimes S$$

$$\downarrow \Psi(f) \qquad \qquad \downarrow 1 \otimes f$$

$$P \stackrel{cont.}{\leftarrow} S \otimes P \stackrel{\xi}{\simeq} P \otimes S$$

where "cont." is the contraction homomorphism, $f \in A(v(\zeta)) = \text{End}(S)$. By localization technique, we get that Ψ is an S/R-algebra isomorphism.

Corollary 2.6. The sequence $H^0(S/R, Pic) \xrightarrow{\theta_3} H^2(S/R, U) \xrightarrow{\theta_4} Br(S/R)$, where θ_3 is induced from the homomorphism which carries a 0-cocycle $P, \zeta: S \otimes P \cong P \otimes S$, to $v(\zeta)$ is exact.

Proof. The only thing that we must show is that θ_3 is a homomorphism. But it follows readily.

3. The seven terms exact sequence

Let $\rho = \sum_{i} x_i \otimes y_i \in S^2$ be a 1-cocycle of the extension S/R with respect to the unit functor U. From the cocycle condition of ρ , $\sum_{i} x_i y_i = 1$. We make a new End (S)-module $_{\rho}S$ as follows;

 $_{\rho}S=S$ as S-modules, $f \cdot s = \sum_{i} x_{i}f(y_{i}s), f \in End(S), s \in S$. By the cocycle condition of ρ , $_{\rho}S$ is in fact an End(S)-module. From Morita theory

$$\operatorname{Hom}_{\operatorname{End}(S)}(S,\,{}_{\rho}S)\otimes S\cong{}_{\rho}S.$$

And $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S)$ is a finitely generated projective *R*-module of rank one. If ρ is a coboundary (that is $\rho = x \otimes x^{-1}, x \in S$), then the homomorphism $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S) \to \operatorname{Hom}_{\operatorname{End}(S)}(S, S) (\cong R)$ which carries $g \in \operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S)$ to $x^{-1}g \in \operatorname{Hom}_{\operatorname{End}(S)}(S, S)$ is an isomorphism. For another 1-cocycle ρ' , we have a canonical isomorphism $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S) \otimes \operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho'}S) \cong \operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho'}S)$. Hence the homomorphism which carries the 1-cocycle ρ to $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S)$ induces the homomorphism $\theta_1: H^1(S/R, U) \to Pic(R)$.

Lemma 3.1. θ_1 is a monomorphism.

Proof. Let $\rho = \sum_{i} x_i \otimes y_i$ be a 1-cocycle and assume that $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S)$ is a free *R*-module of rank one with a free base *g*. If we put $g(1_S) = x$ then *x* is a unit of *S* since $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S) \otimes S \cong {}_{\rho}S = S$ as *S*-modules. The condition $g \in \operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S)$ claims

$$g(f(s)) = f(s)x = f \cdot (g(s)) = \sum x_i f(y_i s x)$$

for all $f \in End(S)$, $s \in S$. By Lemma 2.3, we get $\rho = \sum_{i} x_i \otimes y_i = x \otimes x^{-1}$. Thus ρ is a coboundary.

Next we define θ_2 : $Pic(R) \rightarrow H^0(S/R, Pic)$ as the homomorphism induced by tensoring with S over R.

Lemma 3.2. The sequence

$$H^{1}(S/R, U) \xrightarrow{\theta_{1}} Pic(R) \xrightarrow{\flat \theta_{2}} H^{0}(S/R, Pic)$$

is exact.

Proof. $\theta_2 \cdot \theta_1 = 0$ since $\operatorname{Hom}_{\operatorname{End}(S)}(S, {}_{\rho}S) \otimes S \cong_{\rho}S$ for a 1-cocycle ρ . Conversely, let P be a finitely generated projective R-module of rank one and assume that $S \otimes P$ is isomorphic to S as S-modules. From the theory of faithfully flat descent, there exists an S^2 -isomorphism $\eta \colon S \otimes S \cong S \otimes S$ with property $\eta_2 = \eta_3 \eta_1$ and P is characterized as $\{s \in S \mid s \otimes 1 = \eta(1 \otimes s) \text{ in } S \otimes S\}$, where $\eta_i, i = 1, 2, 3$, is defined similarly as ζ_i in $\S 2$. Since η is a homothety, we may put $\eta = \sum_i x_i \otimes y_i, x_i, y_i \in S$. Then η is a 1-cocycle by the relation $\eta_2 = \eta_3 \eta_1$. Define the homomorphisms $\Psi, \Psi', P \stackrel{\Psi}{\Psi'}$ $\operatorname{Hom}_{\operatorname{End}(S)}(S, \eta S)$, by setting $\Psi(p)(s) = sp, \Psi'(g) = g(1_S), p \in P, s \in S, g \in \operatorname{Hom}_{\operatorname{End}(S)}(S, \eta S)$. By Lemma 2.3 and the characterization of $P = \{s \in S \mid s \otimes 1 = \eta(1 \otimes s)\}, \Psi$ and Ψ' are welldefined homomorphisms and are inverse to each other. This completes the proof.

Lemma 3.3. The sequence

$$Pic(R) \xrightarrow{\theta_2} H^0(S/R, Pic) \xrightarrow{\theta_3} H^2(S/R, U)$$

is exact, where θ_3 is the homomorphism induced by the one which carries a 0-cocycle $P, \zeta: S \otimes P \cong P \otimes S$ to $v(\zeta)$.

Proof. $\theta_3 \cdot \theta_2 = 0$ as easily proved. Let P be a finitely generated projective S-module of rank one such that $S \otimes P \cong P \otimes S$. Further assume that $v(\zeta) = \zeta_2^{-1} \zeta_3 \zeta_1$ is a 2-coboundary. Then we may assume $v(\zeta) = 1 \otimes 1 \otimes 1$. Thus ζ is a descent homomorphism. Hence there exists a finitely generated projective *R*-module P' of rank one such that $P \cong P' \otimes S$. This completes the proof. Summing up Corollary 1.8, 2.2, 2.6, Lemma 3.1, 3.2, 3.3 we get

Summing up Coronary 1.8, 2.2, 2.0, Lemma 5.1, 5.2,

Theorem 3.4. The sequence

$$0 \to H^{1}(S/R, U) \xrightarrow{\theta_{1}} Pic(R) \xrightarrow{\theta_{2}} H^{0}(S/R, Pic \xrightarrow{\theta_{3}} H^{2}(S/R, U)$$
$$\xrightarrow{\theta_{4}} Br(S/R) \xrightarrow{\theta_{5}} H^{1}(S/R, Pic) \xrightarrow{\theta_{6}} H^{3}(S/R, U)$$

is an exact sequence of abelian groups.

NARA WOMEN'S UNIVERSITY

References

[1] M. Auslander and O. Goldman: The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.

30

- [2] H. Bass: The Morita theorems, Lecture note at University of Oregon, 1962.
- [3] S.U. Chase and A. Rosenberg: Amitsur cohomology and the Brauer group, Mem. Amer. Math. Soc. 52 (1965), 34-79.
- [4] F. DeMeyer and E. Ingraham: Separable algebras over commutative rings, Lecture Notes in Math. 181, Springer, 1971.
- [5] T. Kanzaki: On generalized crossed product and Brauer group, Osaka J. Math. 5 (1968), 175-188.
- [6] M.-A. Knus and M. Ojanguren: Théorie de la descente et algèbres d'Azumaya, Lecture Notes in Math. 389, Springer, 1974.
- [7] M.E. Sweedler: Multiplication alteration by two-cocyles, Illinois J. Math. 15 (1971), 302–323.
- [8] K. Yokogawa: On S⊗_RS-module structure of S/R-Azumaya algebras, Osaka J. Math. 12 (1975), 673-690.