Miyanishi, M. Osaka J. Math. 13 (1976), 513-522

UNIRATIONAL QUASI-ELLIPTIC SURFACES IN CHARACTERISTIC 3

Dedicated to the memory of Taira Honda

MASAYOSHI MIYANISHI

(Received September, 1, 1975)

0. A non-singular projective surface X is called a *quasi-elliptic* surface if there exists a morphism $f: X \to C$, a curve, with almost all fibres irreducible singular rational curves E with $p_a(E)=1$ (cf. [4]). According to Tate [5], such surfaces can occur only in the case where the characteristic p of the ground field k is either 2 or 3, and almost all fibres E have single ordinary cusps. Let \mathbf{t} be the function field of C. Then the generic fibre of f with the unique singular point taken off is an elliptic \mathbf{t} -form of the affine line A^1 (cf. [2], [3]); if this form has a \mathbf{t} -rational point^(*) it is birational over \mathbf{t} to one of the following affine plane curves:

- (i) If p=3, $t^2=x^3+\gamma$ with $\gamma \in t-t^3$.
- (ii) If p=2, $t^2=x^3+\beta x+\gamma$ with β , $\gamma \in t^2$ and $\beta \notin t^2$ or $\gamma \notin t^2$.

On the other hand, if X is unirational C must be a rational curve. Conversely if C is a rational curve X is unirational. Indeed, $k(X) \otimes_t t^{1/3}$ is rational over k in the first case, and $k(X) \otimes_t t^{1/2}$ is rational over k in the second case. In this article we consider a unirational quasi-elliptic surface with a rational cross-section only in characteristic 3. Thus X is birational to a hypersurface $t^2 = x^3 + \phi(y)$ in the affiine 3-space A^3 , where $\phi(y) \in t = k(y)$. If $\phi(y)$ is not a polynominal, write $\phi(y)=a(y)/b(y)$ with a(y), $b(y) \in k[y]$. Substituting t, x by $b(y)^3t$, $b(y)^2x$ respectively and replacing $\phi(y)$ with $b(y)^5a(y)$ we may assume that $\phi(y) \in k[y]$. Moreover, after making suitable birational transformations we may assume that $\phi(y)$ has no monomial terms whose degree are congruent to 0 modulo 3; especially that $d=\deg_y \phi$ is prime to 3. It is easy to see that under this assumption $f(x, y)=x^3+\phi(y)$ is irreducible.

A main result of this article is:

Theorem. Let k be an algebraically closed field of characteristic 3. Then

^(*) This is equivalent to saying that f has a rational cross-section which is different from the section formed by the (movable) singular points of the fibres.

any unirational quasi-elliptic surface with a rational cross-section defined over k is birational to a hypersurface in $A^3: t^2 = x^3 + \phi(y)$ with $\phi(y) \in k[y]$. Let K = k(t, x, y) be an algebraic function field of dimension 2 generated by t, x, y over k such that $t^2 = x^3 + \phi(y)$ with $\phi(y) \in k[y]$ and $d = \deg_y \phi$ prime to 3. Let m be the quotient of d divided by 6, and let H_0 be the (non-singular) minimal model of K when K is not rational over $k^{(*)}$. Moreover if $d \ge 7$ assume that the following conditions hold^(***):

(1) For every root α of $\phi'(y)=0$, $v_{\alpha}(\phi(y)-\phi(\alpha))\leq 5$, where v_{α} is the $(y-\alpha)$ -adic valuation of k[y] with $v_{\alpha}(y-\alpha)=1$.

(2) If, moreover, $\phi(y) - \phi(\alpha) = a(y-\alpha)^3 + (\text{terms of higher degree in } y-\alpha)$ for some root α of $\phi'(y) = 0$ and $a \in k - (0)$ then $v_{\alpha}(\phi(y) - \phi(\alpha) - a(y-\alpha)^3) \leq 5$.

Then we have the following:

(i) If m=0, i.e., $d \leq 5$, then K is rational over k. If $d \geq 7$, K is not rational over k, and the minimal model H_0 exists.

(ii) If m=1, i.e., $7 \leq d \leq 11$, then H_0 is a K3-surface.

(iii) If m > 1, i.e., $d \ge 13$, then $p_a(H_0) = p_g(H_0) = m$, $q = \dim H^1(H_0, \mathcal{O}_{H_0}) = 0$, the r-genus $P_r(H_0) = r(m-1) + 1$ for every positive integer r, and $\kappa(H_0) = 1$.

We use the following notations: Let X be a non-singular projective surface. Then K_X =the canonical divisor class on X, $p_g(X)$ =dim $H^0(X, K_X)$ = the geometric genus, q=dim $H^1(X, \mathcal{O}_X)$ =the irregularity, $p_a(X)=p_g(X)-q$ =the arithmetic genus, $\kappa(X)$ =the Kodaira dimension of X, and $P_r(X)$ =dim $H^0(X, K_X^{\otimes r})$ =the r-genus for a positive integer r. For divisors D, D' etc. on X, $(D \cdot D')$ or (D^2) is the intersection number. We use sometimes the notation $D \cdot D'$ or D^2 to indicate the intersection number if there is no fear of confusion.

1. Let k be an algebraically closed field of characteristic p=3, let $\phi(y)$ be a polynomial in y with coefficients in k of degree d>0 and let $f(x, y)=x^3+\phi(y)$. Consider a hypersurface $t^2=x^3+\phi(y)$ in the projective 3-space P^3 , which is birational to a double covering^(***) of $F_0=P^1\times P^1$. After a birational transformation of type $(x, y, t)\mapsto (x+\rho(y), y, t)$ with $\rho(y)\in k[y]$ we may assume that (d,3)=1 and moreover that $\phi(y)$ does not contain monomial terms whose degrees are congruent to zero modulo 3. Since K is apparently rational if d=1 or 2 we may assume that d>3.

The equation $x^3 + \phi(y) = 0$ defines a closed irreducible curve C in F_0 . First of all, we shall look into singular points of C and the normalization \overline{C} of C. Let $P: (x, y) = (\beta, \alpha)$ be a singular point of C lying on the affine part $A^2 = F_0 - (x = \beta)$

^(*) Note that if K is ruled and unirational then K is rational. Hence if K is not rational K has the minimal model.

^(**) If either one of these conditions is violated we can drop the degree d by 6 by a suitable birational transformation.

^(***) A morphism $f: X' \to X$ of complete integral algebraic surfaces is called a double covering if f induces a separable quadratic extension of function fields k(X')/k(X).

 $(\infty) \cup (y=\infty)$. Then $\phi'(\alpha)=0$ and $\beta^3 + \phi(\alpha)=0$. Conversely every root of $\phi'(y)=0$ gives rise to a singular point of C lying on A^2 . Since $\phi'(y)=0$ has at least one root, C has at least one singular point on $A^2 \subset F_0$. The point Q of C, which is situated outside of A^2 , is given by $(\xi, u)=(0, 0)$, where $x=1/\xi, y=1/u$ and $u^d + \xi^3 \psi(u)=0$ with $\psi(u)=u^d \phi(1/u)$ and $\psi(0)=0$. Hence Q is a cuspidal singular point with multiplicity $(3, 3, \dots, 3, 1, \dots)^{(*)}$ if d=3n+1; and $(3, 3, \dots, 3, n)$

2, 1, …) if d=3n+2.

Here we introduce the following notations: Consider a fibration $\mathcal{F} = \{l_{\omega}: l_{\omega} \text{ is defined by } y = \alpha\}$ on F_0 . We denote by l_{∞} the fibre $y = \infty$, and by S_{∞} the cross-section $x = \infty$. We denote by l a general fibre of \mathcal{F} .

Let $\sigma: F \to F_0$ be the smallest blowings-up of F_0 with centers at all singular points of C and their infinitely near singular points, by which the proper transform $\overline{C} = \sigma' C$ of C on F becomes non-singular. Let $\overline{S}_{\infty} = \sigma' S_{\infty}$, and let $\overline{l}_{\infty} = \sigma' l_{\infty}$. The following figures will indicate the configuration of F in a neighbourhood of $\sigma^{-1}(l_{\infty} \cup C \cup S_{\infty})$.

where d=3n+1 and $(\bar{C}\cdot\bar{E}_n)=3$;

where d=3n+2 and $(\overline{C}\cdot\overline{E}_{n+1})=2$. Since $(f)_{\infty}|_{F_0}=3S_{\infty}+dl_{\infty}$, we have

$$(f)|_{F} = \bar{C} + (3\bar{E}_{1} + 6\bar{E}_{2} + \dots + 3n\bar{E}_{n}) + D - 3(\bar{S}_{\infty} + \bar{E}_{1} + 2\bar{E}_{2} + \dots \\ + n\bar{E}_{n}) - d(\bar{I}_{\infty} + \bar{E}_{1} + \dots + \bar{E}_{n}) = \bar{C} - 3\bar{S}_{\infty} + D - d(\bar{I}_{\infty} + \bar{E}_{1} + \dots + \bar{E}_{n})$$

^(*) By this notation we mean that Q is a point with multiplicity 3, the infinitely near point of C in the first neighborhood (which is a single point in this case) has multiplicity 3, etc.

M. MIYANISHI

if d=3n+1, where D is a positive divisor with support in the union \mathcal{E} of exceptional curves which arise from the blowings-up with centers at the singular points and their infinitely near singular points of C in the affine part $A^2 \subset F_0$; and also

$$\begin{aligned} (f)|_{F} &= \bar{C} + (3\bar{E}_{1} + 6\bar{E}_{2} + \dots + 3n\bar{E}_{n} + (3n+2)\bar{E}_{n+1}) \\ &+ D - 3(\bar{S}_{\infty} + \bar{E}_{1} + 2\bar{E}_{2} + \dots + n\bar{E}_{n} + (n+1)\bar{E}_{n+1}) - d(\bar{l}_{\infty} + \bar{E}_{1} + \dots \\ &+ \bar{E}_{n+1}) = \bar{C} - 3\bar{S}_{\infty} - \bar{E}_{n+1} - d(\bar{l}_{\infty} + \bar{E}_{1} + \dots + \bar{E}_{n+1}) + D \end{aligned}$$

if d=3n+2.

On the other hand since $K_{F_0} \sim -2S_{\infty} - 2l_{\infty}$, we have

$$K_{F} \sim -2(\bar{S}_{\infty} + \bar{E}_{1} + 2\bar{E}_{2} + \dots + n\bar{E}_{n}) - 2(\bar{l}_{\infty} + \bar{E}_{1} + \dots + \bar{E}_{n}) + \bar{E}_{1} + 2\bar{E}_{2} + \dots + n\bar{E}_{n} + D_{3} \quad \text{if } d = 3n + 1;$$

and

$$K_{F} \sim -2(\bar{S}_{\infty} + \bar{E}_{1} + \dots + (n+1)\bar{E}_{n+1}) - 2(\bar{l}_{\infty} + \bar{E}_{1} + \dots + \bar{E}_{n+1}) + \bar{E}_{1} + 2\bar{E}_{2} + \dots + n\bar{E}_{n} + (n+1)\bar{E}_{n+1} + D_{3} \quad \text{if } d=3n+2,$$

where D_3 is a positive divisor with support in \mathcal{E} .

We are now going to consider four cases separately.

(I) If d=6m+1 then d=3n+1 with n=2m. Let $B=\bar{C}+\bar{S}_{\infty}+(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n})+D_{1}$ and let $Z=2\bar{S}_{\infty}+(3m+1)$ $(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n})-D_{2}$, where D_{1} and D_{2} are the divisors uniquely determined by the conditions that $D_{1}\geq 0$, every irreducible component of D_{1} has multiplicity 1, $D_{2}\geq 0$, $D_{1}+2D_{2}=D$, and Supp $(D_{1})\cup \text{Supp}(D_{2})\subset \mathcal{E}$. Then (f)=B-2Z, and $K_{F}+Z\sim(3m-1)(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n})-(\bar{E}_{1}+2\bar{E}_{2}+\cdots+n\bar{E}_{n})+(D_{3}-D_{2})\sim(3m-1)\sigma^{-1}(l)-(\bar{E}_{1}+2\bar{E}_{2}+\cdots+n\bar{E}_{n})+(D_{3}-D_{2})\sim(3m-1)-2n+D_{2}\cdot(D_{2}-D_{3})=2m-2+D_{2}\cdot(D_{2}-D_{3}),$ and $p_{a}(Z)=Z\cdot(K_{F}+Z)/2+1=m+D_{2}\cdot(D_{2}-D_{3})/2.$

(II) If d=6m+2 then d=3n+2 with n=2m. Let $B=\bar{C}+\bar{S}_{\infty}+\bar{E}_{n+1}+D_1$, and let $Z=2\bar{S}_{\infty}+\bar{E}_{n+1}+(3m+1)$ $(\bar{I}_{\infty}+\bar{E}_1+\dots+\bar{E}_{n+1})-D_2$, where D_1 and D_2 are divisors chosen as in the case (I). Then (f)=B-2Z, and $K_F+Z\sim(3m-1)$ $(\bar{I}_{\infty}+\bar{E}_1+\dots+\bar{E}_{n+1})-(\bar{E}_1+2\bar{E}_2+\dots+n\bar{E}_n+n\bar{E}_{n+1})+(D_3-D_2)\sim(3m-1)\sigma^{-1}(l)-(\bar{E}_1+2\bar{E}_2+\dots+n\bar{E}_n+n\bar{E}_{n+1})+(D_3-D_2)$. Hence $Z\cdot(K_F+Z)=2(3m-1)-2n-n+n+D_2\cdot(D_2-D_3)=2m-2+D_2\cdot(D_2-D_3)$, and $p_a(Z)=m+D_2\cdot(D_2-D_3)/2$.

(III) If d=6m+4 then d=3n+1 with n=2m+1. Let $B=\bar{C}+S_{\infty}+D_1$ and let $Z=2\bar{S}_{\infty}+(3m+2)$ $(\bar{l}_{\infty}+\bar{E}_1+\dots+\bar{E}_n)-D_2$, where D_1 and D_2 are divisors chosen as above. Then (f)=B-2Z, and $K_F+Z\sim 3m\sigma^{-1}(l)-(\bar{E}_1+\dots+n\bar{E}_n)$ $+(D_3-D_2)$. Hence $Z \cdot (K_F+Z)=6m-2n+D_2 \cdot (D_2-D_3)=2m-2+D_2 \cdot (D_2-D_3)$, and $p_a(Z)=m+D_2 \cdot (D_2-D_3)/2$.

(IV) If d=6m+5 then d=3n+2 with n=2m+1. Let $B=\bar{C}+\bar{S}_{\infty}+(\bar{l}_{\infty}+\bar{E}_{1}+\dots+\bar{E}_{n})+D_{1}$ and let $Z=2\bar{S}_{\infty}+(3m+3)$ $(\bar{l}_{\infty}+\bar{E}_{1}+\dots+\bar{E}_{n+1})-D_{2}$, where D_{1} and D_{2} are divisors chosen as above. Then (f)=B-2Z, and $K_{F}+Z\sim(3m+1)$ $\sigma^{-1}(I)-(\bar{E}_{1}+\dots+n\bar{E}_{n}+(n+1)\bar{E}_{n+1})+(D_{3}-D_{2})$. Hence $Z\cdot(K_{F}+Z)=2(3m+1)$

516

 $-2(n+1)+D_2 \cdot (D_2-D_3)=2m-2+D_2 \cdot (D_2-D_3)$, and $p_a(Z)=m+D_2 \cdot (D_2-D_3)/2$. In each case, $p_a(Z)=m+D_2 \cdot (D_2-D_3)/2$. Let $\overline{F} \to F$ be the smallest blowings-up which make the branch locus of the double covering on \overline{F} non-singular, let H be the normalization of \overline{F} in the function field K=k(t, x, y) and let $\pi: H$ $\to F$ be the canonical morphism. Then H is a non-singular projective surface called the *canonical model* of K, which is a double covering of F with branch locus $B^{(*)}$ in each of the above four cases (cf. Artin [1]). Let K_H be the canonical divisor of H. By Artin [1], we know that $K_H \sim \pi^{-1}(K_F + Z)$ and $p_a(H)=2p_a(F)$ $+p_a(Z)$, since the singular points on the branch locus B on F are all negligible singularities^(**) and since $p_a(F)=0$.

Thus we proved:

Lemma 1. Let m be the quotient of d divided by 6. Then $p_a(H) = m + D_2 \cdot (D_2 - D_3)/2$.

Now we show:

Lemma 2. With the notations and assumptions as above, H is a rational surface if $d \leq 5$.

Proof. First of all, we may assume that $d \le 4$. In effect, if d=5 we may assume that $\phi(y)$ has no constant and degree 1 terms after a suitable change of variables x and y. Then by a change of variables : $t'=t/y^3$, $x'=x/y^2$, y'=1/y, we have

$$t'^2 = x'^3 + \overline{\phi}(y')$$
 with $\deg_{y'}\overline{\phi}(y') \leq 4$.

Now assuming that $d \leq 4$ and $\phi(y)$ has no monomial terms whose degrees are congruent to zero modulo 3, we are going to compute D_2-D_3 and K_H explicitly. Let ν be the number of distinct roots of $\phi'(y)=0$. If $\nu=1$, we may assume that $\phi(y)=y^d$ after a suitable change of variables. Let P: (x, y)=(0, 0). P is a singular point of C with multiplicity $(2, 1, \cdots)$ if d=2; $(3, 1, \cdots)$ if d=4. Then D=2E with $E=\sigma^{-1}(P)$ if d=2; D=3E if d=4. Then $D_1=0$, $D_2=D_3=E$ if d=2; $D_1=D_2=D_3=E$ if d=4. In each case $D_2-D_3=0$. If $\nu=2$, let α_1 and α_2 be distinct roots. We have two possible casse: (i) Both α_1 and α_2 are simple roots; (ii) One of α_1 and α_2 is a double root and the other one is a simple root. However neither case can occur. Indeed, d=3 in the first case, and the second case is impossible. If $\nu=3$, let α_1 , α_2 and α_3 be distinct roots. Then d=4, and

^(*) A point P of F is a branch point, *i.e.*, $P \in B$ if the normalization of $\mathcal{O}_{P,F}$ in K is a local ring.

^(**) A point P of B has negligible singularity if and only if it is of one of the following types:
(i) a simple point of B, (ii) a double point of B, (iii) a triple point of B with at most a double point (not necessarily ordinary) infinitely near (cf. Artin [1]). For the arithmetic genus formula, see also [B. Iversen: Numerical invariants and multiple planes, Amer. J. Math., 92 (1970), 968-996].

 α_1, α_2 and α_3 are all simple roots. Let $P_i(i=1, 2, 3)$ be the singular point of C with y-coordinate α_i . The multiplicity of P_i is $(2, 1, \cdots)$. Hence $D=2(\sigma^{-1}(P_1) + \sigma^{-1}(P_2) + \sigma^{-1}(P_3))$, $D_1=0$ and $D_2=D_3=\sigma^{-1}(P_1) + \sigma^{-1}(P_2) + \sigma^{-1}(P_3)$. Thus $D_2-D_3=0$. Therefore $p_a(H)=0$.

On the other hand, since $K_H \sim \pi^{-1}(K_F + Z)$, we see from the above observations on $K_F + Z$ that $K_F + Z < 0$ if $d \leq 4$. Hence $K_H < 0$ and $P_2(H) = 0$. Therefore H is rational by virtue of Castelnuovo's criterion of rationality. Q.E.D.

2. Let us consider the following conditions on $\phi(y)$:

(1) For every root α of $\phi'(y)=0$, $v_{\alpha}(\phi(y)-\phi(\alpha))\leq 5$, where v_{α} is the $(y-\alpha)$ -adic valuation of k[y] with $v_{\alpha}(y-\alpha)=1$.

(2) If, moreover, $\phi(y) - \phi(\alpha) = a(y-\alpha)^3 + (\text{terms of higher degree in } y-\alpha)$ for some root α of $\phi'(y) = 0$ and $a \in k - (0)$ then $v_a(\phi(y) - \phi(\alpha) - a(y-\alpha)^3) \leq 5$.

Assume that $v_{\alpha}(\phi(y)-\phi(\alpha)) \ge 6$ for some root α of $\phi'(y)=0$. Since d>0, this assumption implies $d\ge 6$. Then by a birational transformation $(t, x, y) \mapsto (t_1=t/(y-\alpha)^3, x_1=(x+\phi(\alpha)^{1/3})/(y-\alpha)^2, y_1=y-\alpha)$, we have

$$t_1^2 = x_1^3 + \phi_1(y_1)$$
 with $\deg_{y_1}\phi_1 = \deg_y\phi - 6$.

Assume next that $\phi(y) - \phi(\alpha) = a(y-\alpha)^3 + (\text{terms of higher degree in } y-\alpha)$ for some root α of $\phi'(y) = 0$ and that $v_a(\phi(y) - \phi(\alpha) - a(y-\alpha)^3) \ge 6$. Then by a birational transformation $(t, x, y) \mapsto (t_1 = t, x_1 = x + a^{1/3}(y-\alpha), y_1 = y)$ we have

 $t_1^2 = x_1^3 + \phi_1(y_1)$ with $\deg_{y_1}\phi_1 = d$ and $v_a(\phi_1(y_1) - \phi_1(\alpha)) \ge 6$.

Therefore the argument in the former case applies, and we can drop the degree of ϕ_1 by 6. Therefore we may assume that $d \ge 7$ and that the conditions (1) and (2) hold. Hereafter we assume these conditions for $\phi(y)$. Then we have:

Lemma 3. With the notations as above, $D_2=D_3$.

Proof. Let α be a root of $\phi'(y)=0$, and let $P: (x, y)=(-\phi(\alpha)^{1/3}, \alpha)$ be the corresponding singular point of C. Let $e=v_{\alpha}(\phi(y)-\phi(\alpha))$. Since the conditions (1) and (2) hold, we may assume that e=2, 4 or 5. In fact, the case where e=3 can be reduced to the case where e=4 or 5 by a birational transformation $(t, x, y) \mapsto (t, x+a^{1/3}(y-\alpha), y)$, which is biregular at P. P is then a cuspidal singular point with multiplicity (2, 1, ...) if e=2; (3, 1, ...) if e=4; (3, 2, 1, ...) if e=5. Hence $\sigma^{-1}(P)=E_1$ (irreducible) if e=2 or 4; $\sigma^{-1}(P)=E_1+E_2$ (E_1 and E_2 are irreducible) if e=5. Then $D_2=D_3=E_1$ if e=2 or 4; $D_2=D_3=E_1+2E_2$ if e=5. In both cases, $D_2=D_3$. Q.E.D.

Corollary. Let m be the quotient of d divided by 6. If one assumes the conditions (1) and (2) on $\phi(y)$, $p_a(H)=m$.

The canonical model H of K might contain the exceptional curves of the first kind. When $p_a(H) = m > 0$ (*i.e.*, $d \ge 7$), let H_0 be the minimal non-singular model of K, which is, needless to say, obtained from H by contracting all exceptional curves of the first kind. We shall describe the canonical divisor K_{H_0} of H_0 .

Lemma 4. Assume that d=6m+1 with m>0. Three we have:

(i) $\pi^{-1}(\overline{l}_{\omega} \cap \overline{E}_{1}) = L'_{0}, \pi^{-1}(\overline{E}_{1} \cap \overline{E}_{2}) = L'_{1}, \dots, \pi^{-1}(\overline{E}_{n-1} \cap \overline{E}_{n}) = L'_{n-1}$ where L'_{i} ($0 \leq i \leq n-1$) is an irreducible non-singular rational curve with $(L'^{2}) = -2$ and n=2m.

(ii) $\pi^{-1}(\bar{l}_{\infty})=2L_{0}+L_{0}', \pi^{-1}(\bar{E}_{i})=L_{i-1}'+2L_{i}+L_{i}'(1 \le i \le n-1), \text{ where } L_{i}(0 \le i \le n-1) \text{ is an irreducible non-singular rational curve such that } (L_{0}^{2})=-1, (L_{i}^{2})=-2 (1 \le i \le n-1).$

(iii)
$$K_H \sim \pi^{-1} (K_F + Z) \sim (m-1) \pi^{-1} \sigma^{-1} (l) + 4m L_0 + (4m-1) L'_0 + (4m-2) L_1 + (4m-3) L'_1 + \dots + 3L'_{2m-2} + 2L_{2m-1} + L'_{2m-1}.$$

(iv) $W:=L_0+L'_0+L_1+\cdots+L'_{2m-1}$ is contractible. Let $\tau: H \to H_0$ be the contraction of W. Then H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\tau \pi^{-1} \sigma^{-1}(l)$.

(v) For every positive integer r the r-genus $P_r(H_0)$ of H_0 is r(m-1)+1. In particular, $p_x(H_0) = p_a(H_0) = m$ and q=0.

(vi) If m=1, i.e., d=7, H_0 is a K3-surface. If m>1, $\kappa(H_0)=1$.

Proof. First of all note that $B = \overline{C} + \overline{S}_{\infty} + (\overline{l}_{\infty} + \overline{E}_1 + \dots + \overline{E}_n) + D_1$ and $K_F + Z \sim (m-1)\sigma^{-1}(l) + (2m\overline{l}_{\infty} + (2m-1)\overline{E}_1 + \dots + \overline{E}_{2m-1})$. Let $\sigma_1 \colon F_1 \to F$ be the blowings-up with centers at $\overline{l}_{\infty} \cap \overline{E}_1$, $\overline{E}_1 \cap \overline{E}_2$, \dots , $\overline{E}_{n-1} \cap \overline{E}_n$ (cf. Fig. 1). Then $\pi \colon H \to F$ factors as $\pi \colon H \xrightarrow{\pi_1} F_1 \xrightarrow{\sigma_1} F$, *i.e.*, $\pi = \sigma_1 \pi_1$. Since the branch locus B_1 on F_1 is of the form $B_1 = \sigma'_1(\overline{l}_{\infty}) + \sigma'_1(\overline{E}_1) + \dots + \sigma'_1(\overline{E}_{n-1}) + B'_1$ with B'_1 having no intersections with $\sigma'_1(\overline{l}_{\infty} + \overline{E}_1 + \dots + \overline{E}_{n-1})$, π_1 conicides with $\overline{\pi} \colon H \to \overline{F}$, which is the canonical normalization morphism, on a small open neighbourhood of $\sigma_1^{-1}(\overline{l}_{\infty} \cap \overline{E}_1) \cup \dots \cup \overline{E}_{n-1})$. Now writing locally the equations of $\pi^{-1}(\overline{l}_{\infty} \cap \overline{E}_1) = \pi_1^{-1}(\sigma_1^{-1}(\overline{l}_{\infty} \cap \overline{E}_1)), \pi^{-1}(\overline{E}_1 \cap \overline{E}_2), \dots, \pi^{-1}(\overline{E}_{n-1} \cap \overline{E}_n)$, it is not hard to show that L'_0, \dots, L'_{n-1} are irreducible non-singular rational curves. For $0 \leq i \leq n-1$, $(L'_i) = 2(\sigma_1^{-1}(\overline{E}_i \cap \overline{E}_{i+1})^2) = -2$. This proves the assertion (i).

To show the assertion (ii), note that \bar{l}_{∞} , \bar{E}_{1} , \cdots , \bar{E}_{n-1} are components of the branch locus *B*. Therefore $\pi^{-1}(\bar{l}_{\infty})=2L_0+L'_0$ and $\pi^{-1}(\bar{E}_i)=L'_{i-1}+2L_i+L'_i$ $(1 \le i \le n-1)$ with non-singular irreducible rational curves L_i $(0 \le i \le n-1)$. Since $(\sigma'_1(\bar{l}_{\infty})^2)=-2$ and $\pi_1^{-1}(\sigma'_1(\bar{l}_{\infty}))=2L_0$, we have $4(L_0^2)=-4$. Hence $(L_0^2)=-1$.

M. MIYANISHI

Similarly, $(\sigma'_1(\bar{E}_i)^2) = -4$ and $\pi_1^{-1}(\sigma'_1(\bar{E}_i)) = 2L_i$ for $1 \le i \le n-1$. Hence $(L_i^2) = -2$ for $1 \le i \le n-1$.

By virtue of the assertions (i) and (ii), $K_H \sim \pi^{-1} (K_F + Z) \sim (m-1)\pi^{-1}\sigma^{-1}(l)$ $+\pi^{-1} (2m\bar{l}_{\infty} + (2m-1)\bar{E}_1 + \dots + \bar{E}_{2m-1}) = (m-1)\pi^{-1}\sigma^{-1}(l) + 4mL_0 + (4m-1)L'_0 + (4m-1)L$

Let us show that $P_r(H_0) = (m-1)r+1$ for every positive integer r. There exists a non-singular irreducible rational curve \tilde{S}_{∞} on H such that $\pi(\tilde{S}_{\infty}) = \bar{S}_{\infty}$, $\pi^{-1}(\bar{S}_{\infty}) > 2\tilde{S}_{\infty}$ and $\tilde{S}_{\infty} \cap \operatorname{Supp}(W) = \phi$. Let $\hat{S}_{\infty} = \tau(\tilde{S}_{\infty})$. Then \hat{S}_{∞} is a non-singular irreducible rational curve. Since dim $|rK_{H_0}| = \dim Tr_{S_{\infty}}|rK_{H_0}| + \dim |rK_{H_0}|$ $\hat{S}_{\infty}|+1$, we compute dim $Tr_{\hat{S}_{\infty}}|rK_{H_0}|$ and dim $|rK_{H_0}-\hat{S}_{\infty}|$. Suppose that $|rK_{H_0} - \hat{S}_{\infty}| \neq \phi$, and let $M \in |rK_{H_0}|$ be such that $M > \hat{S}_{\infty}$. Then $\tau^{-1}M > \tau^{-1}\hat{S}_{\infty}$ $= \widetilde{S}_{\infty}$, and $\tau^{-1}M \sim r(m-1)\pi^{-1}\sigma^{-1}(l)$. Then $\sigma\pi(\tau^{-1}M) > \sigma\pi\widetilde{S}_{\infty} = S_{\infty}$, and $\sigma\pi(\tau^{-1}M)$ $\sim 2r(m-1)l$. This is a contradiction since no members of |2r(m-1)l| on $F_0 = \mathbf{P}^1 \times \mathbf{P}^1$ contain S_∞ . Thus dim $|\mathbf{r}K_{H_0} - \hat{S}_\infty| = -1$. On the other hand, since $\hat{S}_{\infty} \cong \mathbf{P}^1$ and deg $Tr_{\hat{S}_{\infty}} | rK_{H_0} | = r(m-1)^{(*)}$ and $Tr_{\hat{S}_{\infty}} | rK_{H_0} |$ is apparently complete we have dim $Tr_{S_{\infty}}|rK_{H_0}| = r(m-1)$. Therefore $P_r(H_0) = r(m-1)+1$. In particular, $p_{\alpha}(H_0) = P_1(H_0) = m = p_{\alpha}(H_0)$. Hence $q = \dim H^1(H_0, \mathcal{O}_{H_0}) = p_{\alpha}(H_0)$ $-p_a(H_0)=0$. Thus H_0 is a regular surface. If $m=1, H_0$ is a K3-surface. If m>1, $\kappa(H_0)=1$ since $P_r(H_0)$ is a linear polynomial in r. This completes the proof of the assertions (v) and (vi). Q.E.D.

In a similar fashion we can show:

Lemma 5. Assume that d=6m+2 with m>0. Then we have: (i) $\pi^{-1}(\overline{l}_{\infty})=L_0+L'_0, \pi^{-1}(\overline{E}_i)=L_i+L'_i \ (1\leq i\leq 2m-1)$ where L_i 's and L'_i 's are irreducible non-singular rational curves such that $(L^2_0)=(L'^2_0)=-1$ and $(L^2_i)=(L'^2_i)=-2$ $(1\leq i\leq 2m-1)$. They have the following configuration:

(*) Cf. $2(\hat{S}_{\infty} \cdot \tau \pi^{-1} \sigma^{-1}(l)) = 2(\tilde{S}_{\infty} \cdot \pi^{-1} \sigma^{-1}(l)) = (2\tilde{S}_{\infty} \cdot \pi^{-1} \sigma^{-1}(l)) = 2(\bar{S}_{\infty} \cdot \sigma^{-1}(l)) = 2.$

520

(ii)
$$K_H \sim \pi^{-1} (K_F + Z) \sim (m-1) \pi^{-1} \sigma^{-1} (l) + 2m L_0 + (2m-1) L_1 + \dots + L_{2m-1} + 2m L_0' + (2m-1) L_1' + \dots + L_{2m-1}'$$

(iii) Let $W:=L_0+L_1+\cdots+L_{2m-1}+L'_0+L'_1+\cdots+L'_{2m-1}$. Then W is contractible, and if $\tau: H \to H_0$ is the contraction of W, H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\tau \pi^{-1}\sigma^{-1}(l)$.

(iv) For every positive integer r, $P_r(H_0) = r(m-1)+1$. In particular, $p_g(H_0) = p_a(H_0) = m$ and q=0.

(v) If
$$m=1$$
, i.e., $d=8$, H_0 is a K3-surface. If $m>1$, $\kappa(H_0)=1$.

Lemma 6. Assume that d=6m+4 with m>0. Then we have:

(i) $\pi^{-1}(\overline{l}_{\infty}) = L_0 + L'_0, \pi^{-1}(\overline{E}_i) = L_i + L'_i \ (1 \le i \le 2m)$, where L_i 's and L'_i 's are irreducible non-singular rational curves such that $(L_0^2) = (L'_0^2) = -1, (L_i^2) = (L'_i^2) = -2$ $(1 \le i \le 2m)$. They have the following configuration:

(ii) $K_H \sim \pi^{-1} (K_F + Z) \sim (m-1) \pi^{-1} \sigma^{-1} (l) + (2m+1) L_0 + 2m L_1 + \dots + L_{2m} + (2m+1) L_0' + 2m L_1' + \dots + L_{2m}'$

(iii) Let $W:=L_0+L_1+\cdots+L_{2m}+L'_0+L'_1+\cdots+L'_{2m}$. Then W is contractible, and if $\tau: H \to H_0$ is the contraction of W, H_0 is a minimal model of K. Hence $K_{H_0} \sim (m-1)\tau \pi^{-1} \sigma^{-1}(l)$.

(iv) For every positive integer r, $P_r(H_0) = r(m-1)+1$. In particular, $p_g(H_0) = p_a(H_0) = m$ and q=0.

(v) If m=1, i.e., d=10, H_0 is a K3-surface. If m>1, $\kappa(H_0)=1$.

Lemma 7. Assume that d=6m+5 with m>0. Then we have:

(i) $\pi^{-1}(\overline{l}_{\infty} \cap \overline{E}_{1}) = L'_{0}, \pi^{-1}(\overline{E}_{1} \cap \overline{E}_{2}) = L'_{1}, \dots, \pi^{-1}(\overline{E}_{n} \cap \overline{E}_{n+1}) = L'_{n}, \text{ where } n = 2m+1 \text{ and } L'_{i} (0 \leq i \leq n) \text{ is an irreducible non-singular rational curve with } (L'^{2}_{i}) = -2.$

(ii) $\pi^{-1}(\bar{l}_{\infty})=2L_0+L'_0$ and $\pi^{-1}(\bar{E}_i)=L'_{i-1}+2L_i+L'_i$ $(1 \le i \le n)$, where L_i $(0 \le i \le n)$ is an irreducible non-singular rational curve such that $(L^2_0)=-1$ and $(L^2_i)=-2$ $(0 < i \le n)$. L_i 's and L'_i 's have the following configuration:

M. MIYANISHI

(iii)
$$K_H \sim \pi^{-1} (K_F + Z) \sim (m-1) \pi^{-1} \sigma^{-1} (l) + (4m+4) L_0 + (4m+3) L'_0 + \dots + 2L_{2m+1} + L'_{2m+1}.$$

(iv) Let $W:=L_0+L'_0+\cdots+L_{2m+1}+L'_{2m+1}$. Then W is contractible. If $\tau: H \to H_0$ is the contraction of W, H_0 is the minimal model of K. Hence $K_{H_0} \sim (m-1)\tau \pi^{-1}\sigma^{-1}(l)$.

(v) For every positive integer r, $P_r(H_0) = r(m-1)+1$. In particular, $p_g(H_0) = p_a(H_0) = m$ and q=0.

(vi) If m=1, i.e., d=11, H_0 is a K3-surface. If m>1, $\kappa(H_0)=1$.

Combining the above results, we have our main theorem.

REMARK. If m>1, H_0 is not birational to an elliptic surface. Assume the contrary, and let $\rho: H' \to H_0$ be a birational morphism with a non-singular projective surface H' endowed with an elliptic pencil $\mathcal{L}=\{C_{\alpha}; \alpha \in \mathbf{P}^1\}$. Then $K_{H'}\sim (m-1)\rho^{-1}\tau\pi^{-1}\sigma^{-1}(l)+E$, where $E \ge 0$ with Supp(E) the union of exceptional curves arising from ρ . For a general member C of \mathcal{L} we have $(C^2)=0$, and $C \cdot K_{H'} \ge 0$ because C is a non-singular irreducible curve distinct from components of E. Since $1=p_{\alpha}(C)=(C^2+C\cdot K_{H'})/2+1$ we have $C \cdot K_{H'}=0$. Hence C coincides with a component of a member of $|(m-1)\rho^{-1}\tau\pi^{-1}\sigma^{-1}(l)|$, *i.e.*, C= $\rho^{-1}\tau\pi^{-1}\sigma^{-1}(l)\cong\tau\pi^{-1}\sigma^{-1}(l)$ for some l. This is absurd because $\tau\pi^{-1}\sigma^{-1}(l)$ is rational.

OSAKA UNIVERSITY

References

- [1] M. Artin: On Enriques' surfaces, Thesis. (Unpublished).
- [2] T. Kambayashi, M. Miyanishi and M. Takeuchi: Unipotent Algebraic Groups, Lecture Notes in Mathematics 414. Berlin-Heidelberg-New York: Springer 1974.
- [3] T. Kambayashi and M. Miyanishi: On forms of the affine line, forthcoming.
- [4] D. Mumford: Enriques' classification of surfaces in char. p : I. Global Analysis. Papers in honor of K. Kodaira. University of Tokyo Press-Princeton University Press, 1969.
- [5] J. Tate: Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400-406.

522