# UNIRATIONAL QUASI-ELLIPTIC SURFACES IN CHARACTERISTIC 3 

Dedicated to the memory of Taira Honda

Masayoshi MIYANISHI

(Received September, 1, 1975)
0. A non-singular projective surface $X$ is called a quasi-elliptic surface if there exists a morphism $f: X \rightarrow C$, a curve, with almost all fibres irreducible singular rational curves $E$ with $p_{a}(E)=1$ (cf. [4]). According to Tate [5], such surfaces can occur only in the case where the characteristic $p$ of the ground field $k$ is either 2 or 3 , and almost all fibres $E$ have single ordinary cusps. Let be the function field of $C$. Then the generic fibre of $f$ with the unique singular point taken off is an elliptic ${ }^{\text {t-form }}$ of the affine line $\boldsymbol{A}^{1}$ (cf. [2], [3]); if this form has a $\mathfrak{l}$-rational point ${ }^{(*)}$ it is birational over $\mathfrak{t}$ to one of the following affine plane curves:
(i) If $p=3, t^{2}=x^{3}+\gamma$ with $\gamma \in \mathfrak{f}-\mathfrak{t}^{3}$.
(ii) If $p=2, t^{2}=x^{3}+\beta x+\gamma$ with $\beta, \gamma \in \neq$
and $\beta \notin \mathscr{E}^{2}$ or $\gamma \notin \mathbb{E}^{2}$.
On the other hand, if $X$ is unirational $C$ must be a rational curve. Conversely if $C$ is a rational curve $X$ is unirational. Indeed, $k(X) \otimes_{\mathrm{t}} \mathrm{t}^{1 / 3}$ is rational over $k$ in the first case, and $k(X) \otimes_{\mathrm{f}} \mathrm{t}^{1 / 2}$ is rational over $k$ in the second case. In this article we consider a unirational quasi-elliptic surface with a rational crosssection only in characteristic 3 . Thus $X$ is birational to a hypersurface $t^{2}=x^{3}$ $+\phi(y)$ in the affiine 3 -space $\boldsymbol{A}^{3}$, where $\phi(y) \in \boldsymbol{t}=k(y)$. If $\phi(y)$ is not a polynominal, write $\phi(y)=a(y) / b(y)$ with $a(y), b(y) \in k[y]$. Substituting $t, x$ by $b(y)^{3} t$, $b(y)^{2} x$ respectively and replacing $\phi(y)$ with $b(y)^{5} a(y)$ we may assume that $\phi(y)$ $\in k[y]$. Moreover, after making suitable birational transformations we may assume that $\phi(y)$ has no monomial terms whose degree are congruent to 0 modulo 3 ; especially that $d=\operatorname{deg}_{y} \phi$ is prime to 3 . It is easy to see that under this assumption $f(x, y)=x^{3}+\phi(y)$ is irreducible.

A main result of this article is:
Theorem. Let $k$ be an algebraically closed field of characteristic 3. Then
(*) This is equivalent to saying that $f$ has a rational cross-section which is different from the section formed by the (movable) singular points of the fibres.
any unirational quasi-elliptic surface with a rational cross-section defined over $k$ is birational to a hypersurface in $A^{3}: t^{2}=x^{3}+\phi(y)$ with $\phi(y) \in k[y]$. Let $K=$ $k(t, x, y)$ be an algebraic function field of dimension 2 generated by $t, x, y$ over $k$ such that $t^{2}=x^{3}+\phi(y)$ with $\phi(y) \in k[y]$ and $d=\operatorname{deg}_{y} \phi$ prime to 3 . Let $m$ be the quotient of $d$ divided by 6 , and let $H_{0}$ be the (non-singular) minimal model of $K$ when $K$ is not rational over $k^{*}$. Moreover if $d \geqq 7$ assume that the following conditions hold ${ }^{(* *)}$ :
(1) For every root $\alpha$ of $\phi^{\prime}(y)=0, v_{w}(\phi(y)-\phi(\alpha)) \leqq 5$, where $v_{a}$ is the $(y-\alpha)$ adic valuation of $k[y]$ with $v_{a}(y-\alpha)=1$.
(2) If, moreover, $\phi(y)-\phi(\alpha)=a(y-\alpha)^{3}+$ (terms of higher degree in $y-\alpha$ ) for some root $\alpha$ of $\phi^{\prime}(y)=0$ and $a \in k-(0)$ then $v_{a}\left(\phi(y)-\phi(\alpha)-a(y-\alpha)^{3}\right) \leqq 5$.

Then we have the following:
(i) If $m=0$, i.e., $d \leqq 5$, then $K$ is rational over $k$. If $d \geqq 7, K$ is not rational over $k$, and the minimal model $H_{0}$ exists.
(ii) If $m=1$, i.e., $7 \leqq d \leqq 11$, then $H_{0}$ is a $K 3$-surface.
(iii) If $m>1$, i.e., $d \geqq 13$, then $p_{a}\left(H_{0}\right)=p_{g}\left(H_{0}\right)=m, q=\operatorname{dim} H^{1}\left(H_{0}, \mathcal{O}_{H_{0}}\right)=0$, the $r$-genus $P_{r}\left(H_{0}\right)=r(m-1)+1$ for every positive integer $r$, and $\kappa\left(H_{0}\right)=1$.

We use the following notations: Let $X$ be a non-singular projective surface. Then $K_{X}=$ the canonical divisor class on $X, p_{g}(X)=\operatorname{dim} H^{0}\left(X, K_{X}\right)=$ the geometric genus, $q=\operatorname{dim} H^{1}\left(X, \mathcal{O}_{X}\right)=$ the irregularity, $p_{a}(X)=p_{g}(X)-q=$ the arithmetic genus, $\kappa(X)=$ the Kodaira dimension of $X$, and $P_{r}(X)=\operatorname{dim} H^{0}\left(X, K_{X}^{\otimes r}\right)$ $=$ the $r$-genus for a positive integer $r$. For divisors $D, D^{\prime}$ etc. on $X,\left(D \cdot D^{\prime}\right)$ or $\left(D^{2}\right)$ is the intersection number. We use sometimes the notation $D \cdot D^{\prime}$ or $D^{2}$ to indicate the intersection number if there is no fear of confusion.

1. Let $k$ be an algebraically closed field of characteristic $p=3$, let $\phi(y)$ be a polynomial in $y$ with coefficients in $k$ of degree $d>0$ and let $f(x, y)=x^{3}+$ $\phi(y)$. Consider a hypersurface $t^{2}=x^{3}+\phi(y)$ in the projective 3 -space $\boldsymbol{P}^{3}$, which is birational to a double covering ${ }^{(* * *)}$ of $F_{0}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$. After a birational transfromation of type $(x, y, t) \mapsto(x+\rho(y), y, t)$ with $\rho(y) \in k[y]$ we may assume that $(d, 3)=1$ and moreover that $\phi(y)$ does not contain monomial terms whose degrees are congruent to zero modulo 3 . Since $K$ is apparently rational if $d=1$ or 2 we may assume that $d>3$.

The equation $x^{3}+\phi(y)=0$ defines a closed irreducible curve $C$ in $F_{0}$. First of all, we shall look into singular points of $C$ and the normalization $\bar{C}$ of $C$. Let $P:(x, y)=(\beta, \alpha)$ be a singular point of $C$ lying on the affine part $\boldsymbol{A}^{2}=F_{0}-(x=$
${ }^{(*)}$ Note that if $K$ is ruled and unirational then $K$ is rational. Hence if $K$ is not rational $K$ has the minimal model.
${ }^{(* *)}$ If either one of these conditions is violated we can drop the degree $d$ by 6 by a suitable birational transformation.
${ }^{(* * *)}$ A morphism $f: X^{\prime} \rightarrow X$ of complete integral algebraic surfaces is called a double covering if $f$ induces a separable quadratic extension of function fields $k\left(X^{\prime}\right) / k(X)$.
$\infty) \cup(y=\infty)$. Then $\phi^{\prime}(\alpha)=0$ and $\beta^{3}+\phi(\alpha)=0$. Conversely every root of $\phi^{\prime}(y)=0$ gives rise to a singular point of $C$ lying on $\boldsymbol{A}^{2}$. Since $\phi^{\prime}(y)=0$ has at least one root, $C$ has at least one singular point on $A^{2} \subset F_{0}$. The point $Q$ of $C$, which is situated outside of $A^{2}$, is given by $(\xi, u)=(0,0)$, where $x=1 / \xi, y=1 / u$ and $u^{d}+\xi^{3} \psi(u)=0$ with $\psi(u)=u^{d} \phi(1 / u)$ and $\psi(0) \neq 0$. Hence $Q$ is a cuspidal singular point with multiplicity $(\underbrace{3,3, \cdots, 3}_{n}, 1, \cdots)^{(*)}$ if $d=3 n+1$; and $(\underbrace{3,3, \cdots, 3}_{n}$, $2,1, \cdots)$ if $d=3 n+2$.

Here we introduce the following notations: Consider a fibration $\mathscr{F}=$ $\left\{l_{\alpha}: l_{\alpha}\right.$ is defined by $\left.y=\alpha\right\}$ on $F_{0}$. We denote by $l_{\infty}$ the fibre $y=\infty$, and by $S_{\infty}$ the cross-section $x=\infty$. We denote by $l$ a general fibre of $\mathscr{F}$.

Let $\sigma: F \rightarrow F_{0}$ be the smallest blowings-up of $F_{0}$ with centers at all singular points of $C$ and their infinitely near singular points, by which the proper transform $\bar{C}=\sigma^{\prime} C$ of $C$ on $F$ becomes non-singular. Let $\bar{S}_{\infty}=\sigma^{\prime} S_{\infty}$, and let $\bar{l}_{\infty}=\sigma^{\prime} l_{\infty}$. The following figures will indicate the configuration of $F$ in a neighbourhood of $\sigma^{-1}\left(l_{\infty} \cup C \cup S_{\infty}\right)$.

where $d=3 n+1$ and $\left(\bar{C} \cdot \bar{E}_{n}\right)=3$;

where $d=3 n+2$ and $\left(\bar{C} \cdot \bar{E}_{n+1}\right)=2$.
Since $\left.(f)_{\infty}\right|_{F_{0}}=3 S_{\infty}+d l_{\infty}$, we have

$$
\begin{aligned}
\left.(f)\right|_{F} & =\bar{C}+\left(3 \bar{E}_{1}+6 \bar{E}_{2}+\cdots+3 n \bar{E}_{n}\right)+D-3\left(\bar{S}_{\infty}+\bar{E}_{1}+2 \bar{E}_{2}+\cdots\right. \\
& \left.+n \bar{E}_{n}\right)-d\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)=\bar{C}-3 \bar{S}_{\infty}+D-d\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)
\end{aligned}
$$

${ }^{(*)}$ By this notation we mean that $Q$ is a point with multiplicity 3 , the infinitely near point of $C$ in the first neighborhood (which is a single point in this case) has multiplicity 3 , etc.
if $d=3 n+1$, where $D$ is a positive divisor with support in the union $\mathcal{E}$ of exceptional curves which arise from the blowings-up with centers at the singular points and their infinitely near singular points of $C$ in the affine part $A^{2} \subset F_{0}$; and also

$$
\begin{aligned}
\left.(f)\right|_{F} & =\bar{C}+\left(3 \bar{E}_{1}+6 \bar{E}_{2}+\cdots+3 n \bar{E}_{n}+(3 n+2) \bar{E}_{n+1}\right) \\
& +D-3\left(\bar{S}_{\infty}+\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}+(n+1) \bar{E}_{n+1}\right)-d\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots\right. \\
& \left.+\bar{E}_{n+1}\right)=\bar{C}-3 \bar{S}_{\infty}-\bar{E}_{n+1}-d\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n+1}\right)+D
\end{aligned}
$$

if $d=3 n+2$.
On the other hand since $K_{F_{0}} \sim-2 S_{\infty}-2 l_{\infty}$, we have

$$
\begin{gathered}
K_{F} \sim-2\left(\bar{S}_{\infty}+\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}\right)-2\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right) \\
+\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}+D_{3} \quad \text { if } d=3 n+1 ;
\end{gathered}
$$

and

$$
\begin{aligned}
K_{F} \sim & -2\left(\bar{S}_{\infty}+\bar{E}_{1}+\cdots+(n+1) \bar{E}_{n+1}\right)-2\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n+1}\right) \\
& +\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}+(n+1) \bar{E}_{n+1}+D_{3} \quad \text { if } d=3 n+2,
\end{aligned}
$$

where $D_{3}$ is a positive divisor with support in $\mathcal{E}$.
We are now going to consider four cases separately.
(I) If $d=6 m+1$ then $d=3 n+1$ with $n=2 m$. Let $B=\bar{C}+\bar{S}_{\infty}+\left(\bar{l}_{\infty}+\bar{E}_{1}\right.$ $\left.+\cdots+\bar{E}_{n}\right)+D_{1}$ and let $Z=2 \bar{S}_{\infty}+(3 m+1)\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)-D_{2}$, where $D_{1}$ and $D_{2}$ are the divisors uniquely determined by the conditions that $D_{1} \geqq 0$, every irreducible component of $D_{1}$ has multiplicity $1, D_{2} \geqq 0, D_{1}+2 D_{2}=D$, and Supp $\left(D_{1}\right) \cup \operatorname{Supp}\left(D_{2}\right) \subset \mathcal{E}$. Then $(f)=B-2 Z$, and $K_{F}+Z \sim(3 m-1)\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)$ $-\left(\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}\right)+\left(D_{3}-D_{2}\right) \sim(3 m-1) \sigma^{-1}(l)-\left(\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}\right)+\left(D_{3}-\right.$ $\left.D_{2}\right)$. Hence $Z \cdot\left(K_{F}+Z\right)=2(3 m-1)-2 n+D_{2} \cdot\left(D_{2}-D_{3}\right)=2 m-2+D_{2} \cdot\left(D_{2}-D_{3}\right)$, and $p_{a}(Z)=Z \cdot\left(K_{F}+Z\right) / 2+1=m+D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$.
(II) If $d=6 m+2$ then $d=3 n+2$ with $n=2 m$. Let $B=\bar{C}+\bar{S}_{\infty}+\bar{E}_{n+1}+D_{1}$, and let $Z=2 \bar{S}_{\infty}+\bar{E}_{n+1}+(3 m+1)\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n+1}\right)-D_{2}$, where $D_{1}$ and $D_{2}$ are divisors chosen as in the case (I). Then $(f)=B-2 Z$, and $K_{F}+Z \sim(3 m-1)$ $\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n+1}\right)-\left(\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}+n \bar{E}_{n+1}\right)+\left(D_{3}-D_{2}\right) \sim(3 m-1) \sigma^{-1}(l)-$ $\left(\bar{E}_{1}+2 \bar{E}_{2}+\cdots+n \bar{E}_{n}+n \bar{E}_{n+1}\right)+\left(D_{3}-D_{2}\right)$. Hence $Z \cdot\left(K_{F}+Z\right)=2(3 m-1)-2 n-$ $n+n+D_{2} \cdot\left(D_{2}-D_{3}\right)=2 m-2+D_{2} \cdot\left(D_{2}-D_{3}\right)$, and $p_{a}(Z)=m+D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$.
(III) If $d=6 m+4$ then $d=3 n+1$ with $n=2 m+1$. Let $B=\bar{C}+\bar{S}_{\infty}+D_{1}$ and let $Z=2 \bar{S}_{\infty}+(3 m+2)\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)-D_{2}$, where $D_{1}$ and $D_{2}$ are divisors chosen as above. Then $(f)=B-2 Z$, and $K_{F}+Z \sim 3 m \sigma^{-1}(l)-\left(\bar{E}_{1}+\cdots+n \bar{E}_{n}\right)$ $+\left(D_{3}-D_{2}\right)$. Hence $Z \cdot\left(K_{F}+Z\right)=6 m-2 n+D_{2} \cdot\left(D_{2}-D_{3}\right)=2 m-2+D_{2} \cdot\left(D_{2}-D_{3}\right)$, and $p_{a}(Z)=m+D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$.
(IV) If $d=6 m+5$ then $d=3 n+2$ with $n=2 m+1$. Let $B=\bar{C}+\bar{S}_{\infty}+\left(\bar{l}_{\infty}+\bar{E}_{1}\right.$ $\left.+\cdots+\bar{E}_{n}\right)+D_{1}$ and let $Z=2 \bar{S}_{\infty}+(3 m+3)\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n+1}\right)-D_{2}$, where $D_{1}$ and $D_{2}$ are divisors chosen as above. Then $(f)=B-2 Z$, and $K_{F}+Z \sim(3 m+1)$ $\sigma^{-1}(l)-\left(\bar{E}_{1}+\cdots+n \bar{E}_{n}+(n+1) \bar{E}_{n+1}\right)+\left(D_{3}-D_{2}\right)$. Hence $Z \cdot\left(K_{F}+Z\right)=2(3 m+1)$
$-2(n+1)+D_{2} \cdot\left(D_{2}-D_{3}\right)=2 m-2+D_{2} \cdot\left(D_{2}-D_{3}\right)$, and $p_{a}(Z)=m+D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$.
In each case, $p_{a}(Z)=m+D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$. Let $\bar{F} \rightarrow F$ be the smallest blow-ings-up which make the branch locus of the double covering on $\bar{F}$ non-singular, let $H$ be the normalization of $\bar{F}$ in the function field $K=k(t, x, y)$ and let $\pi: H$ $\rightarrow F$ be the canonical morphism. Then $H$ is a non-singular projective surface called the canonical model of $K$, which is a double covering of $F$ with branch locus $B^{(*)}$ in each of the above four cases (cf. Artin [1]). Let $K_{H}$ be the canonical divisor of $H$. By Artin [1], we know that $K_{H} \sim \pi^{-1}\left(K_{F}+Z\right)$ and $p_{a}(H)=2 p_{a}(F)$ $+p_{a}(Z)$, since the singular points on the branch locus $B$ on $F$ are all negligible singularities ${ }^{(* *)}$ and since $p_{a}(F)=0$.

Thus we proved:
Lemma 1. Let $m$ be the quotient of $d$ divided by 6. Then $p_{a}(H)=m+$ $D_{2} \cdot\left(D_{2}-D_{3}\right) / 2$.

Now we show:
Lemma 2. With the notations and assumptions as above, $H$ is a rational surface if $d \leqq 5$.

Proof. First of all, we may assume that $d \leqq 4$. In effect, if $d=5$ we may assume that $\phi(y)$ has no constant and degree 1 terms after a suitable change of variables $x$ and $y$. Then by a change of variables : $t^{\prime}=t / y^{3}, x^{\prime}=x / y^{2}, y^{\prime}=1 / y$, we have

$$
t^{\prime 2}=x^{\prime 3}+\bar{\phi}\left(y^{\prime}\right) \quad \text { with } \operatorname{deg}_{y^{\prime}} \bar{\phi}\left(y^{\prime}\right) \leqq 4
$$

Now assuming that $d \leqq 4$ and $\phi(y)$ has no monomial terms whose degrees are congruent to zero modulo 3 , we are going to compute $D_{2}-D_{3}$ and $K_{H}$ explicitly. Let $\nu$ be the number of distinct roots of $\phi^{\prime}(y)=0$. If $\nu=1$, we may assume that $\phi(y)=y^{d}$ after a suitable change of variables. Let $P:(x, y)=(0,0)$. $P$ is a singular point of $C$ with multiplicity $(2,1, \cdots)$ if $d=2 ;(3,1, \cdots)$ if $d=4$. Then $D=2 E$ with $E=\sigma^{-1}(P)$ if $d=2 ; D=3 E$ if $d=4$. Then $D_{1}=0, D_{2}=D_{3}=E$ if $d=2 ; D_{1}=D_{2}=D_{3}=E$ if $d=4$. In each case $D_{2}-D_{3}=0$. If $\nu=2$, let $\alpha_{1}$ and $\alpha_{2}$ be distinct roots. We have two possible casse: (i) Both $\alpha_{1}$ and $\alpha_{2}$ are simple roots; (ii) One of $\alpha_{1}$ and $\alpha_{2}$ is a double root and the other one is a simple root. However neither case can occur. Indeed, $d=3$ in the first case, and the second case is impossible. If $\nu=3$, let $\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$ be distinct roots. Then $d=4$, and
${ }^{(*)}$ A point $P$ of $F$ is a branch point, i.e., $P \in B$ if the normalization of $\mathcal{O}_{P, F}$ in $K$ is a local ring.
${ }^{(* *)}$ A point $P$ of $B$ has negligible singularity if and only if it is of one of the following types: (i) a simple point of $B$, (ii) a double point of $B$, (iii) a triple point of $B$ with at most a double point (not necessarily ordinary) infinitely near (cf. Artin [1]). For the arithmetic genus formula, see also [B. Iversen: Numerical invariants and multiple planes, Amer. J. Math., 92 (1970), 968-996].
$\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$ are all simple roots. Let $P_{i}(i=1,2,3)$ be the singular point of $C$ with $y$-coordinate $\alpha_{i}$. The multiplicity of $P_{i}$ is $(2,1, \cdots)$. Hence $D=2\left(\sigma^{-1}\left(P_{1}\right)\right.$ $\left.+\sigma^{-1}\left(P_{2}\right)+\sigma^{-1}\left(P_{3}\right)\right), D_{1}=0$ and $D_{2}=D_{3}=\sigma^{-1}\left(P_{1}\right)+\sigma^{-1}\left(P_{2}\right)+\sigma^{-1}\left(P_{3}\right)$. Thus $D_{2}-$ $D_{3}=0$. Therefore $p_{a}(H)=0$.

On the other hand, since $K_{H} \sim \pi^{-1}\left(K_{F}+Z\right)$, we see from the above observations on $K_{F}+Z$ that $K_{F}+Z<0$ if $d \leqq 4$. Hence $K_{H}<0$ and $P_{2}(H)=0$. Therefore $H$ is rational by virtue of Castelnuovo's criterion of rationality. Q.E.D.
2. Let us consider the following conditions on $\phi(y)$ :
(1) For every root $\alpha$ of $\phi^{\prime}(y)=0, v_{\alpha}(\phi(y)-\phi(\alpha)) \leqq 5$, where $v_{\alpha}$ is the $(y-\alpha)$ adic valuation of $k[y]$ with $v_{a}(y-\alpha)=1$.
(2) If, moreover, $\phi(y)-\phi(\alpha)=a(y-\alpha)^{3}+$ (terms of higher degree in $y-\alpha$ ) for some root $\alpha$ of $\phi^{\prime}(y)=0$ and $a \in k-(0)$ then $v_{a}\left(\phi(y)-\phi(\alpha)-a(y-\alpha)^{3}\right) \leqq 5$.

Assume that $v_{a}(\phi(y)-\phi(\alpha)) \geqq 6$ for some root $\alpha$ of $\phi^{\prime}(y)=0$. Since $d>0$, this assumption implies $d \geqq 6$. Then by a birational transformation $(t, x, y) \mapsto$ $\left(t_{1}=t /(y-\alpha)^{3}, x_{1}=\left(x+\phi(\alpha)^{1 / 3}\right) /(y-\alpha)^{2}, y_{1}=y-\alpha\right)$, we have

$$
t_{1}^{2}=x_{1}^{3}+\phi_{1}\left(y_{1}\right) \text { with } \operatorname{deg}_{y_{1} \phi_{1}}=\operatorname{deg}_{y} \phi-6
$$

Assume next that $\phi(y)-\phi(\alpha)=a(y-\alpha)^{3}+($ terms of higher degree in $y-\alpha)$ for some root $\alpha$ of $\phi^{\prime}(y)=0$ and that $v_{0}\left(\phi(y)-\phi(\alpha)-a(y-\alpha)^{3}\right) \geqq 6$. Then by a birational transformation $(t, x, y) \mapsto\left(t_{1}=t, x_{1}=x+a^{1 / 3}(y-\alpha), y_{1}=y\right)$ we have

$$
t_{1}^{2}=x_{1}^{3}+\phi_{1}\left(y_{1}\right) \text { with } \operatorname{deg}_{y_{1}} \phi_{1}=d \text { and } v_{x}\left(\phi_{1}\left(y_{1}\right)-\phi_{1}(\alpha)\right) \geqq 6 .
$$

Therefore the argument in the former case applies, and we can drop the degree of $\phi_{1}$ by 6 . Therefore we may assume that $d \geqq 7$ and that the conditions (1) and (2) hold. Hereafter we assume these conditions for $\phi(y)$. Then we have:

Lemma 3. With the notations as above, $D_{2}=D_{3}$.
Proof. Let $\alpha$ be a root of $\phi^{\prime}(y)=0$, and let $P:(x, y)=\left(-\phi(\alpha)^{1 / 3}, \alpha\right)$ be the corresponding singular point of $C$. Let $e=v_{\alpha}(\phi(y)-\phi(\alpha))$. Since the conditions (1) and (2) hold, we may assume that $e=2,4$ or 5 . In fact, the case where $e=3$ can be reduced to the case where $e=4$ or 5 by a birational transformation $(t, x, y)$ $\mapsto\left(t, x+a^{1 / 3}(y-\alpha), y\right)$, which is biregular at $P . \quad P$ is then a cuspidal singular point with multiplicity $(2,1, \cdots)$ if $e=2 ;(3,1, \cdots)$ if $e=4 ;(3,2,1, \cdots)$ if $e=5$. Hence $\sigma^{-1}(P)=E_{1}$ (irreducible) if $e=2$ or $4 ; \sigma^{-1}(P)=E_{1}+E_{2}\left(E_{1}\right.$ and $E_{2}$ are irreducible) if $e=5$. Then $D_{2}=D_{3}=E_{1}$ if $e=2$ or $4 ; D_{2}=D_{3}=E_{1}+2 E_{2}$ if $e=5$. In both cases, $D_{2}=D_{3}$.
Q.E.D.

Corollary. Let $m$ be the quotient of $d$ divided by 6 . If one assumes the conditions (1) and (2) on $\phi(y), p_{a}(H)=m$.

The canonical model $H$ of $K$ might contain the exceptional curves of the first kind. When $p_{a}(H)=m>0$ (i.e., $d \geqq 7$ ), let $H_{0}$ be the minimal non-singular model of $K$, which is, needless to say, obtained from $H$ by contracting all exceptional curves of the first kind. We shall describe the canonical divisor $K_{H_{0}}$ of $H_{0}$.

Lemma 4. Assume that $d=6 m+1$ with $m>0$. Thren we have:
(i) $\pi^{-1}\left(\bar{l}_{\infty} \cap \bar{E}_{1}\right)=L_{0}^{\prime}, \pi^{-1}\left(\bar{E}_{1} \cap \bar{E}_{2}\right)=L_{1}^{\prime}, \cdots, \pi^{-1}\left(\bar{E}_{n-1} \cap \bar{E}_{n}\right)=L_{n-1}^{\prime}$ where $L_{i}^{\prime}$ $(0 \leqq i \leqq n-1)$ is an irreducible non-singular rational curve with $\left(L_{i}^{\prime 2}\right)=-2$ and $n=2 m$.
(ii) $\pi^{-1}\left(\bar{l}_{\infty}\right)=2 L_{0}+L_{0}^{\prime}, \pi^{-1}\left(\bar{E}_{i}\right)=L_{i-1}^{\prime}+2 L_{i}+L_{i}^{\prime}(1 \leqq i \leqq n-1)$, where $L_{i}(0 \leqq$ $i \leqq n-1)$ is an irreducible non-singular rational curve such that $\left(L_{0}^{2}\right)=-1,\left(L_{i}^{2}\right)=-2$ ( $1 \leqq i \leqq n-1$ ).

(Fig. 3)
(iii) $K_{H} \sim \pi^{-1}\left(K_{F}+Z\right) \sim(m-1) \pi^{-1} \sigma^{-1}(l)+4 m L_{0}+(4 m-1) L_{0}^{\prime}+(4 m-2) L_{1}$ $+(4 m-3) L_{1}^{\prime}+\cdots+3 L_{2 m-2}^{\prime}+2 L_{2 m-1}+L_{2 m-1}^{\prime}$.
(iv) $W:=L_{0}+L_{0}^{\prime}+L_{1}+\cdots+L_{2 m-1}^{\prime}$ is contractible. Let $\tau: H \rightarrow H_{0}$ be the contraction of $W$. Then $H_{0}$ is a minimal model of $K$. Hence $K_{H_{0}} \sim(m-1) \tau \pi^{-1} \sigma^{-1}(l)$.
(v) For every positive integer $r$ the $r$-genus $P_{r}\left(H_{0}\right)$ of $H_{0}$ is $r(m-1)+1$. In particular, $p_{g}\left(H_{0}\right)=p_{a}\left(H_{0}\right)=m$ and $q=0$.
(vi) If $m=1$, i.e., $d=7, H_{0}$ is a K3-surface. If $m>1, \kappa\left(H_{0}\right)=1$.

Proof. First of all note that $B=\bar{C}+\bar{S}_{\infty}+\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n}\right)+D_{1}$ and $K_{F}+Z \sim(m-1) \sigma^{-1}(l)+\left(2 m \bar{l}_{\infty}+(2 m-1) \bar{E}_{1}+\cdots+\bar{E}_{2 m-1}\right)$. Let $\sigma_{1}: F_{1} \rightarrow F$ be the blowings-up with centers at $\bar{l}_{\infty} \cap \bar{E}_{1}, \bar{E}_{1} \cap \bar{E}_{2}, \cdots, \bar{E}_{n-1} \cap \bar{E}_{n}$ (cf. Fig. 1). Then $\pi: H \rightarrow F$ factors as $\pi: H \xrightarrow{\pi_{1}} F_{1} \xrightarrow{\sigma_{1}} F$, i.e., $\pi=\sigma_{1} \pi_{1}$. Since the branch locus $B_{1}$ on $F_{1}$ is of the form $B_{1}=\sigma_{1}^{\prime}\left(\bar{l}_{\infty}\right)+\sigma_{1}^{\prime}\left(\bar{E}_{1}\right)+\cdots+\sigma_{1}^{\prime}\left(\bar{E}_{n-1}\right)+B_{1}^{\prime}$ with $B_{1}^{\prime}$ having no intersections with $\sigma_{1}^{\prime}\left(\bar{l}_{\infty}+\bar{E}_{1}+\cdots+\bar{E}_{n-1}\right), \pi_{1}$ conicides with $\bar{\pi}: H \rightarrow \bar{F}$, which is the canonical normalization morphism, on a small open neighbourhood of $\sigma_{1}^{-1}\left(\bar{l}_{\infty} \cup \bar{E}_{1} \cup \cdots \cup \bar{E}_{n-1}\right)$. Now writing locally the equations of $\pi^{-1}\left(\bar{l}_{\infty} \cap \bar{E}_{1}\right)=$ $\pi_{1}^{-1}\left(\sigma_{1}^{-1}\left(\bar{l}_{\infty} \cap \bar{E}_{1}\right)\right), \pi^{-1}\left(\bar{E}_{1} \cap \bar{E}_{2}\right), \cdots, \pi^{-1}\left(\bar{E}_{n-1} \cap \bar{E}_{n}\right)$, it is not hard to show that $L_{0}^{\prime}, \cdots, L_{n-1}^{\prime}$ are irreducible non-singular rational curves. For $0 \leqq i \leqq n-1,\left(L_{i}^{\prime 2}\right)$ $=2\left(\sigma_{1}^{-1}\left(\bar{E}_{i} \cap \bar{E}_{i+1}\right)^{2}\right)=-2$. This proves the assertion (i).

To show the assertion (ii), note that $\bar{l}_{\infty}, \bar{E}_{1}, \cdots, \bar{E}_{n-1}$ are components of the branch locus $B$. Therefore $\pi^{-1}\left(\bar{l}_{\infty}\right)=2 L_{0}+L_{0}^{\prime}$ and $\pi^{-1}\left(\bar{E}_{i}\right)=L_{i-1}^{\prime}+2 L_{i}+L_{i}^{\prime}$ ( $1 \leqq i \leqq n-1$ ) with non-singular irreducible rational curves $L_{i}(0 \leqq i \leqq n-1)$. Since $\left(\sigma_{1}^{\prime}\left(\bar{l}_{\infty}\right)^{2}\right)=-2$ and $\pi_{1}^{-1}\left(\sigma_{1}^{\prime}\left(\bar{l}_{\infty}\right)\right)=2 L_{0}$, we have $4\left(L_{0}^{2}\right)=-4$. Hence $\left(L_{0}^{2}\right)=-1$.

Similarly, $\left(\sigma_{1}^{\prime}\left(\bar{E}_{i}\right)^{2}\right)=-4$ and $\pi_{1}^{-1}\left(\sigma_{1}^{\prime}\left(\bar{E}_{i}\right)\right)=2 L_{i}$ for $1 \leqq i \leqq n-1$. Hence $\left(L_{i}^{2}\right)=-2$ for $1 \leqq i \leqq n-1$.

By virtue of the assertions (i) and (ii), $K_{H} \sim \pi^{-1}\left(K_{F}+Z\right) \sim(m-1) \pi^{-1} \sigma^{-1}(l)$ $+\pi^{-1}\left(2 m \bar{l}_{\infty}+(2 m-1) \bar{E}_{1}+\cdots+\bar{E}_{2 m-1}\right)=(m-1) \pi^{-1} \sigma^{-1}(l)+4 m L_{0}+(4 m-1) L_{0}^{\prime}+(4 m$ $-2) L_{1}+\cdots+3 L_{2 m-2}^{\prime}+2 L_{2 m-1}+L_{2 m-1}^{\prime}$. Since $L_{i}^{\prime} ' s$ and $L_{i}^{\prime \prime} s(0 \leqq i \leqq 2 m-1)$ have the configuration as indicated in the Fig. 3, it is easy to show that $W$ is contractible, and $(m-1) \pi^{-1} \sigma^{-1}(l)$ is the moving part of $\left|K_{H}\right|$. Let $\tau: H \rightarrow H_{0}$ be the contraction of $W$. Then $K_{H_{0}}=\tau\left((m-1) \pi^{-1} \sigma^{-1}(l)\right)$. Hence $\operatorname{dim}\left|K_{H_{0}}\right| \geqq 0$ and $\left|K_{H_{0}}\right|$ has no fixed components if $m \geqq 1$. This implies that $H_{0}$ is a minimal model of $K$. Thus the assertions (iii) and (iv) are proven.

Let us show that $P_{r}\left(H_{0}\right)=(m-1) r+1$ for every positive integer $r$. There exists a non-singular irreducible rational curve $\widetilde{S}_{\infty}$ on $H$ such that $\pi\left(\widetilde{S}_{\infty}\right)=\bar{S}_{\infty}$, $\pi^{-1}\left(\bar{S}_{\infty}\right)>2 \widetilde{S}_{\infty}$ and $\widetilde{S}_{\infty} \cap \operatorname{Supp}(W)=\phi$. Let $\hat{S}_{\infty}=\tau\left(\widetilde{S}_{\infty}\right)$. Then $\hat{S}_{\infty}$ is a non-singular irreducible rational curve. Since $\operatorname{dim}\left|r K_{H_{0}}\right|=\operatorname{dim} T r_{\hat{S}_{\infty}}\left|r K_{H_{0}}\right|+\operatorname{dim} \mid r K_{H_{0}}-$ $\hat{S}_{\infty} \mid+1$, we compute $\operatorname{dim} \operatorname{Tr}_{\hat{S}_{\infty}}\left|r K_{H_{0}}\right|$ and $\operatorname{dim}\left|r K_{H_{0}}-\hat{S}_{\infty}\right|$. Suppose that $\left|r K_{H_{0}}-\hat{S}_{\infty}\right| \neq \phi$, and let $M \in\left|r K_{H_{0}}\right|$ be such that $M>\hat{S}_{\infty}$. Then $\tau^{-1} M>\tau^{-1} \hat{S}_{\infty}$ $=\widetilde{S}_{\infty}$, and $\tau^{-1} M \sim r(m-1) \pi^{-1} \sigma^{-1}(l)$. Then $\sigma \pi\left(\tau^{-1} M\right)>\sigma \pi \widetilde{S}_{\infty}=S_{\infty}$, and $\sigma \pi\left(\tau^{-1} M\right)$ $\sim 2 r(m-1) l$. This is a contradiction since no members of $|2 r(m-1) l|$ on $F_{0}=\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ contain $S_{\infty}$. Thus $\operatorname{dim}\left|r K_{H_{0}}-\hat{S}_{\infty}\right|=-1$. On the other hand, since $\hat{S}_{\infty} \cong \boldsymbol{P}^{1}$ and $\operatorname{deg} \operatorname{Tr}_{\hat{S}_{\infty}}\left|r K_{H_{0}}\right|=r(m-1)^{(*)}$ and $\operatorname{Tr}_{\hat{S}_{\infty}}\left|r K_{H_{0}}\right|$ is apparently complete we have $\operatorname{dim} T r_{\hat{s}_{\infty}}\left|r K_{H_{0}}\right|=r(m-1)$. Therefore $P_{r}\left(H_{0}\right)=r(m-1)+1$. In particular, $p_{g}\left(H_{0}\right)=P_{1}\left(H_{0}\right)=m=p_{a}\left(H_{0}\right)$. Hence $q=\operatorname{dim} H^{1}\left(H_{0}, \mathcal{O}_{H_{0}}\right)=p_{g}\left(H_{0}\right)$ $-p_{a}\left(H_{0}\right)=0$. Thus $H_{0}$ is a regular surface. If $m=1, H_{0}$ is a $K 3$-surface. If $m>1, \kappa\left(H_{0}\right)=1$ since $P_{r}\left(H_{0}\right)$ is a linear polynomial in $r$. This completes the proof of the assertions (v) and (vi).
Q.E.D.

In a similar fashion we can show:
Lemma 5. Assume that $d=6 m+2$ with $m>0$. Then we have:
(i) $\pi^{-1}\left(\bar{l}_{\infty}\right)=L_{0}+L_{0}^{\prime}, \pi^{-1}\left(\bar{E}_{i}\right)=L_{i}+L_{i}^{\prime}(1 \leqq i \leqq 2 m-1)$ where $L_{i}^{\prime}$ 's and $L_{i}^{\prime \prime} s$ are irreducible non-singular rational curves such that $\left(L_{0}^{2}\right)=\left(L_{0}^{\prime 2}\right)=-1$ and $\left(L_{i}^{2}\right)=$ $\left(L_{i}^{\prime 2}\right)=-2(1 \leqq i \leqq 2 m-1)$. They have the following configuration:

$\left(^{*}\right)$ Cf. $2\left(\hat{S}_{\infty} \cdot \tau \pi^{-1} \sigma^{-1}(l)\right)=2\left(\tilde{S}_{\infty} \cdot \pi^{-1} \sigma^{-1}(l)\right)=\left(2 \tilde{S}_{\infty} \cdot \pi^{-1} \sigma^{-1}(l)\right)=2\left(\bar{S}_{\infty} \cdot \sigma^{-1}(l)\right)=2$.
(ii) $K_{H} \sim \pi^{-1}\left(K_{F}+Z\right) \sim(m-1) \pi^{-1} \sigma^{-1}(l)+2 m L_{0}+(2 m-1) L_{1}+\cdots+L_{2 m-1}$ $+2 m L_{0}^{\prime}+(2 m-1) L_{1}^{\prime}+\cdots+L_{2 m-1}^{\prime}$.
(iii) Let $W:=L_{0}+L_{1}+\cdots+L_{2 m-1}+L_{0}^{\prime}+L_{1}^{\prime}+\cdots+L_{2 m-1}^{\prime}$. Then $W$ is contractible, and if $\tau: H \rightarrow H_{0}$ is the contraction of $W, H_{0}$ is a minimal model of $K$. Hence $K_{H_{0}} \sim(m-1) \tau \pi^{-1} \sigma^{-1}(l)$.
(iv) For every positive integer $r, P_{r}\left(H_{0}\right)=r(m-1)+1$. In particular, $p_{g}\left(H_{0}\right)$ $=p_{a}\left(H_{0}\right)=m$ and $q=0$.
(v) If $m=1$, i.e., $d=8, H_{0}$ is a $K 3$-surface. If $m>1, \kappa\left(H_{0}\right)=1$.

Lemma 6. Assume that $d=6 m+4$ with $m>0$. Then we have:
(i) $\pi^{-1}\left(\bar{l}_{\infty}\right)=L_{0}+L_{0}^{\prime}, \pi^{-1}\left(\bar{E}_{i}\right)=L_{i}+L_{i}^{\prime}(1 \leqq i \leqq 2 m)$, where $L_{i}^{\prime}$ 's and $L_{i}^{\prime \prime}$ 's are irreducible non-singular rational curves such that $\left(L_{0}^{2}\right)=\left(L_{0}^{\prime 2}\right)=-1,\left(L_{i}^{2}\right)=\left(L_{i}^{\prime 2}\right)=-2$ $(1 \leqq i \leqq 2 m)$. They have the following configuration:

(Fig. 5)
(ii) $\quad K_{H} \sim \pi^{-1}\left(K_{F}+Z\right) \sim(m-1) \pi^{-1} \sigma^{-1}(l)+(2 m+1) L_{0}+2 m L_{1}+\cdots+L_{2 m}$
$+(2 m+1) L_{0}^{\prime}+2 m L_{1}^{\prime}+\cdots+L_{2 m}^{\prime}$.
(iii) Let $W:=L_{0}+L_{1}+\cdots+L_{2 m}+L_{0}^{\prime}+L_{1}^{\prime}+\cdots+L_{2 m}^{\prime}$. Then $W$ is contractible, and if $\tau: H \rightarrow H_{0}$ is the contraction of $W, H_{0}$ is a minimal model of $K$. Hence $K_{H_{0}} \sim(m-1) \tau \pi^{-1} \sigma^{-1}(l)$.
(iv) For every positive integer $r, P_{r}\left(H_{0}\right)=r(m-1)+1$. In particular, $p_{g}\left(H_{0}\right)$ $=p_{a}\left(H_{0}\right)=m$ and $q=0$.
(v) If $m=1$, i.e., $d=10, H_{0}$ is a K3-surface. If $m>1, \kappa\left(H_{0}\right)=1$.

Lemma 7. Assume that $d=6 m+5$ with $m>0$. Then we have:
(i) $\pi^{-1}\left(\bar{l}_{\infty} \cap \bar{E}_{1}\right)=L_{0}^{\prime}, \pi^{-1}\left(\bar{E}_{1} \cap \bar{E}_{2}\right)=L_{1}^{\prime}, \cdots, \pi^{-1}\left(\bar{E}_{n} \cap \bar{E}_{n+1}\right)=L_{n}^{\prime}$, where $n=$ $2 m+1$ and $L_{i}^{\prime}(0 \leqq i \leqq n)$ is an irreducible non-singular rational curve with $\left(L_{i}^{\prime 2}\right)=-2$.
(ii) $\pi^{-1}\left(\bar{l}_{\infty}\right)=2 L_{0}+L_{0}^{\prime}$ and $\pi^{-1}\left(\bar{E}_{i}\right)=L_{i-1}^{\prime}+2 L_{i}+L_{i}^{\prime}(1 \leqq i \leqq n)$, where $L_{i}$ $(0 \leqq i \leqq n)$ is an irreducible non-singular rational curve such that $\left(L_{0}^{2}\right)=-1$ and $\left(L_{i}^{2}\right)=-2(0<i \leqq n) . \quad L_{i}$ 's and $L_{i}^{\prime \prime}$ 's have the following configuration:


(iii) $\quad K_{H} \sim \pi^{-1}\left(K_{F}+Z\right) \sim(m-1) \pi^{-1} \sigma^{-1}(l)+(4 m+4) L_{0}+(4 m+3) L_{0}^{\prime}$

$$
+\cdots+2 L_{2 m+1}+L_{2 m+1}^{\prime}
$$

(iv) Let $W:=L_{0}+L_{0}^{\prime}+\cdots+L_{2 m+1}+L_{2 m+1}^{\prime}$. Then $W$ is contractible. If $\tau$ : $H \rightarrow H_{0}$ is the contraction of $W, H_{0}$ is the minimal model of $K$. Hence $K_{H_{0}} \sim$ $(m-1) \tau \pi^{-1} \sigma^{-1}(l)$.
(v) For every positive integer $r, P_{r}\left(H_{0}\right)=r(m-1)+1$. In particular, $p_{g}\left(H_{0}\right)$ $=p_{a}\left(H_{0}\right)=m$ and $q=0$.
(vi) If $m=1$, i.e., $d=11, H_{0}$ is a K3-surface. If $m>1, \kappa\left(H_{0}\right)=1$.

Combining the above results, we have our main theorem.
Remark. If $m>1, H_{0}$ is not birational to an elliptic surface. Assume the contrary, and let $\rho: H^{\prime} \rightarrow H_{0}$ be a birational morphism with a non-singular projective surface $H^{\prime}$ endowed with an elliptic pencil $\mathcal{L}=\left\{C_{\sigma} ; \alpha \in \boldsymbol{P}^{1}\right\}$. Then $K_{H^{\prime}} \sim(m-1) \rho^{-1} \tau \pi^{-1} \sigma^{-1}(l)+E$, where $E \geqq 0$ with $\operatorname{Supp}(E)$ the union of exceptional curves arising from $\rho$. For a general member $C$ of $\mathcal{L}$ we have $\left(C^{2}\right)=0$, and $C \cdot K_{H^{\prime}} \geqq 0$ because $C$ is a non-singular irreducible curve distinct from components of $E$. Since $1=p_{a}(C)=\left(C^{2}+C \cdot K_{H^{\prime}}\right) / 2+1$ we have $C \cdot K_{H^{\prime}}=0$. Hence $C$ coincides with a component of a member of $\left|(m-1) \rho^{-1} \tau \pi^{-1} \sigma^{-1}(l)\right|$, i.e., $C=$ $\rho^{-1} \tau \pi^{-1} \sigma^{-1}(l) \cong \tau \pi^{-1} \sigma^{-1}(l)$ for some $l$. This is absurd because $\tau \pi^{-1} \sigma^{-1}(l)$ is rational.

Osaka University

## References

[1] M. Artin: On Enriques' surfaces, Thesis. (Unpublished).
[2] T. Kambayashi, M. Miyanishi and M. Takeuchi: Unipotent Algebraic Groups, Lecture Notes in Mathematics 414. Berlin-Heidelberg-New York: Springer 1974.
[3] T. Kambayashi and M. Miyanishi: On forms of the affine line, forthcoming.
[4] D. Mumford: Enriques' classification of surfaces in char. p : I. Global Analysis. Papers in honor of K. Kodaira. University of Tokyo Press-Princeton University Press, 1969.
[5] J. Tate: Genus change in inseparable extensions of function fields, Proc. Amer. Math. Soc. 3 (1952), 400-406.

