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1. Introduction

This paper deals with compact complex solvmanifolds. Our main purpose
is to generalize the theory on the divisor group of a complex torus to these
manifolds. By a solvmanifold we mean a homogeneous space of solvable Lie
group. Let G be a simply connected complex solvable Lie group and T" be a
lattice of G, that is, a discrete subgroup of G such that G/T" is compact. The
de Rham cohomology group and the Dolbeault cohomology group of a compact
complex manifold G/T" play an important role in studying the divisor group of
a complex manifold G/T'. The de Rham cohomology group of a compact
solvmanifold G/T" has been discussed by Matsushima [7], Nomizu [10] and
Mostow [8].

Let M be a compact connected complex manifold and H%//(M) denote the
Dolbeault cohomology group of M of type (p, q). Let g be a complex Lie
algebra and I be the canonical complex structure of g. Then g¢=g*Pg", where
g*={X €g°|IX=4+/—1X}. In section 2, we prove:

Theorem 1. Let G be a simply connected complex nilpotent Lie group and
T be a lattice of G. Then there is a canonical isomorphism

Hz}GIT) = HYg )QA?(g+)*

where H?(g~) denotes the Lie algebra cohomology group of g~ and (g*)* denotes the
dual vector space of g*.

Let G be a simply connected complex solvable Lie group and T be a lattice
of G which has the following property:

(M) Ad(G) and Ad(T") have the same Zariski closure in the group Aut(gC).

This condition has been used by Mostow in his study of lattices of solvable

1) This work was presented to the Graduate School of the University of Notre Dame in
partial fulfillment of the requirement for the Ph. D. degree.
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Lie group [8]. Denote by [G, G] the commutator group of G and let z: G—
G/[G, G] be the projection. Then I'N[G, G] is a lattice of [G, G], so that z(T")
is a lattice of G/[G, G] and (G/T, =, (G/[G, G])[=(T), [G, G]/([G, G]NT)) is a
homlomorphic fiber bundle. Let T denote the complex torus (G/[G, G])/=(T).
In section 3, we study Chern classes of holomorphic line bundles over these
compact complex solvmanifolds.

Let M and N be complex manifolds and ¢: M — N be a surjective holo-
morphic map. For a divisor D on N let ¢*(D) denote the divisor on M defined
by ¢ (Decrr) for all xeM. We call the divisor ¢p*(D) on M the pull back of
the divisor D on N [15]. In section 4, we prove:

Theorem 2. Let G be a simply connected complex solvable Lie group and T'
be a lattice of G. Assume that T' satisfies the condition (M) and that H3}(G|T)==
H'(g") canonically. Then, under the notation introduced above, for each positive
divisor D on G|T', there exists a positive divisor D on the complex torus T such that
the divisor D is the pull back of the divisor D on T by the projection =: G/T—T,
ie., D=x*D.

Note that our assumption in Theorem 2 is always satisfied if G is a simply
connected complex nilpotent Lie group and T is a lattice of G.

If M is a compact connected complex manifold, K (M) will denote the
field of all meromorphic functions on M.

Corollary. Under the condition of Theorem 2, there is a canonical isomor-
phism
n*: K(T)= K(G|T).

In particular, the transcendence degree of K(G|T') over C is not larger than the
complex dimension of the complex torus T.

The author would like to express his deep appreciation to Professor Yozo
Matsushima for his thoughtfull guidence and encouragement given during the
completion of this paper.

2. Dolbeault cohomology groups of compact complex nilmanifolds

Let M be a complex manifold and H%?(M) denote the Dolbeault coho-
mology of M of type (p,q). Let G be a simply connected complex Lie group
and T be a uniform lattice of G. Let g denote the Lie algebra of all right
invariant vector fields on G, I denote the complex structure of g and g* (resp. g~)
denote the vector space of the \/—1 (resp. —\/—1) eigenvectors of I in the
complexification g€ of g. We identify g* to the Lie algebra of all right invariant
holomorphic vector fields on G and the dual space (g*)* to the space of all right
invariant holomorphic 1-forms on G. Moreover we may identify an element of
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g* (resp. (g*)*) to a holomorphic vector field (resp. a holomorphic 1-form) on
G|T. Let A?T*(G|T") be the p-th exterior product bundle of the holomorphic
cotangent bundle 7*(G/T") of G/T. Since G/T is a compact complex paralleli-
sable manifold, the holomorphic vector bundle A?T*(G|T) on G/T is the trivial
vector bundle G/T' X A?(g*)*. 'Thus we have an isomorphism

(2.1) H2%(GT) = HY(GT)@Ag*)* .

Theorem 1. Let G be a simply connected complex nilpotent Lie group and
T be a lattice of G. Then we have a canonical isomorphism

H2(GIT) = Hg )QA?(g+)*

where H?(g™) denoted the q-th Lie algebra cohomology of with the trivial representa-
tion p,: g"—C.

We need some preparations to prove Theorem 1. Consider the descending
central series {C*(G)} of G, where C¥G)=[G, C*¥}(G)] and C°(G)=G. Since
G is nilpotent, there is an integer m& N such that C™(G)=(e) and C™*(G)=(e).
Let A4 denote the group C™(G). Then 4 is contained in the center Z(G) of G.
Since G is a simply connected nilpotent Lie group and A is connected, 4
is a simply connected closed Lie subgroup. Let I'" be a lattice of G. Then
ANT is a lattice of A ([11] p. 31 Corollary 1) and AT is closed in G ([11] p. 23
Theorem 1.13). Let z: G—G/A4 be the canonical map. Then #(T") is a lattice
of G/A. Since A|(ANT)== ATT" is a complex torus, we have a holomorphic
principal fiber bundle (G/T", (G/4)/=(T'), =, A|(ANTY)).

Let C~(G, C) be the vector space of all complex valued C~-functions on
G. Define the subspaces C and C’ of C*(G, C) by

C= {feC~(G,C)lflgv)=flg) forall yET}
and

C'= {feC|f(ga)=f(g) forall ac A} .
For a right invariant vector field X g and feC=(G, C), put

(EP(D) = 2 fa(0) 1

where a(?) is the one parameter subgroup corresponding to X. Then C=(G, C)
is a g-module, and hence C and €’ are g¢-submodules of C=(G, C).

Let a be the Lie subalgebra of g corresponding to the complex Lie sub-
group A of G. Then a¢ has the decomposition a®=a*@a~ with respect to the
complex structure I, and C and C’ are a”-modules. Let {4%a", C), d} (resp.
{4%(a~, "), d} denote the cochain complex of a“-module C (resp. C’) and
H*(a™, C) (resp. H*(a™, C’)) denote the Lie algebra cohomology of a--module
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C (resp. C’). Since a~ is an ideal of g-, 4%a-, C) (resp. A%(a-, C’) is g~-module
by

(Lzo(X,, -+ Xg) = X(o(X,, -+, X)) — 2 o(X,, -+, [X, X ], -+, Xo)

q
i=1
where Xeg-, o€4%a", C) (resp. v A4%a-, €’)) and X,, -+, X,€a~. More-
over Lzod=doLx for all Xeg-. Thus H*(a~, C) and H*(a", C’) are g--
modules.

Proposition 2.1. The inclusion map ¢,: C’' — C induces an isomorphism ¢§ of
g~ -modules

&:H% ", C)—> H%a~, C).

This follows from Kodaira and Spencer [6] §2, but we shall give an ele-
mentary proof (cf. [11] VII §4).

Let {X,, .-, X;} be a basis of a* and {w,, -, w;} be the dual basis. We
reagrd »; (j=1, ---, ) as the holomorphic invariant 1-forms on the complex
torus A/(ANT). Define an invariant hermitian metric 2 on A/(ANT) by

h= EI yw;+w;. LetQ be the associated form of type (1,1). Then
=
Ea——4
0=v=130,Aa,,
=

and —ll'—.(),’ defines a Haar measure da on A/ANT. We may assume that

g ) ll-'ﬂ’ =1 by changing the choice of a basis of a* if necessary. For feC
AlAnr ]!
and x=G, let f,(a)=f(xa) for ac A. Then we can define a gé-module homo-

morphism H: C—~C’ by

H(f)(x) = SA npf”(“)% = S f(xa)da .

/A A/ANT

1 - —1 - .
Let Y,=%5(X;+X,) and Yj+,=!2—1(Xj—Xj) for j=1,-+,l. Then
{Y,, -+, Y,;} is a basis of a. Let {0,, ---, 0,;} be its dual basis. Let A" (a, C)
denote the vector space of all C-valued r-forms on A/ANT. Note that each

element o= A"(a, C) can be written uniquely as
w = 2 fkl...kﬂkl/\ "'Aek’ Where fkr..k'EQ .
By <<k,
For simplicity, let @x=0, A\ --A0, and fx=fy..,, for K=(k,, -, k,)
(1 §k1< "'<kr§21). Then wzszGK.
K

Let A#9a, C) denote the vector space of all C-valued forms of type (p, q)
on A/ANT. Each element w=A4?%a, C) can be written uniquely as
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© = IE}fITwz/\'ﬁl

where I=(i}, -+, 1) (1S4, <-<ip< D, J=0p js) ASH<<jg= D,
JeCl, vr=0; A Ay, and @;=,,A A,
Define operators d: A’(a, C)—>A"*(a, C) by
2!

for 0=31fx0x € A'(a, C), d': A*%(a, C)~A4*""*(a, C) by

1
d,CO = g (z; kajj)a)k/\ﬂ)[/\a]

for o=3 fiyw; Aw; & A#%(a, C) and d”: A2%(a, C)—A***(a, C) by
W

! -
d’w= 12.1 (,Zl] Xifin)oe Ny Nwy
for m=lz;f1]w,/\6,e/.l?'”(a, C). Then dod=d'od’=d" od"’=0.
Define <w, 7>’ for o, n= A#%a, C) by

{w, M(%) = 2]

1,0 SA/Anl"

foeagseada={  orem,

Al/AnT
where w=3 frjo; AN@;, 7=2)grjo; Aw; and * is the operation defined by the
1,7 1,7

natural orientation of A/ANT and the metric # on A/ANT.
Let f €C=(G/AT, C) denote the function corresponding to f C’. Define
a hermitian inner product ( , ) on 4#%(a, C) by

@ =

where dx denotes an invariant measure on G/AT.

Define (o, 7)=0 if we& 4?7(a, C), n< 4?7 (a, C) for (p, q) * (¢, 7).
Since A"(a, C)= >3 A?%a, C), we have thus an hermitian inner product ( , )
on A(a,C). 7

Now define the adjoint operators 8, &', 8" of d, d’, d’ by §=—xd*, &=
—xd”*, §""=—xd’+ respectively. We then have

G/AT <;;7>(x)dx

(do, 7) = (w, &)  for wsAd’(a,C) and n€Ad™Y(a, (),
(@w, 1) = (0, 81) for weA?%a,C) and ncA?*a, C),
(@0, 1) = (w, 81) for wsA?%a,C) and ncA?*(a,C).
with respect to the hermidian inner product ( , ).
Define Laplacians A, [V, [ ] by
A=ds+8d, [ =d8+8d, [1"=ds"+8"d".
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Then, by a direct computation we get
Ao = =3 (3} Y3l
for w=§}f,{6‘x, and
o= =~ (XX e Aw
for w=§f17w1/\6,.

Since X ;X ; f=(Y 3+ Y3.,)f for each fEC, we see A=[1=[1".

Since A is abelian and simply connected, we may identify 4 (resp. the
lattice A N T of 4) with Euclidean space (R", {, )) (resp. a lattice D in R"). For
a fixed x€G and fEC, f, can be regarded as a function on the torus R”*/D.
Consider the Fourier expansion of f,,

f(a) = f(xa) =¢§/Ca(x) exp 27V — Ka, @>

where D'= {aeR"|{a,d>= Z for any d=D} and Ca(x)=SA/ f(xa) exp

Anr
—2n/ —1{a, a>da for acD’. Note that H(f)(x)=C,(x)= SA/A N f(xa)da.
n
For Yea, feC and x=G, we have

(YN) = 2 fla(t)sa) o

where a(#) is the one parameter subgroup corresponding to Y. Since 4 is con-
tained in the center of G,

(Y)(xa) = L1, f(sa(t)a)
= ), {ZCul) exp 20V " ey, alt)ad}

= 4 (510.6) exp 2/ TG -+ alt))}
= Z”\/:Twélcu(xxa, Y> exp 272/ —1Ka, @ .

Since <Y, Y,,>=—i—8,k for j, k=1, ---, 2l, it follows that 4(Af)(xa)=
—4 2 (V3f)(xa)=(27)* 2 Ca@lall* exp 227/ —1<a, @) where llalP=<at, .
Define an operator G: C— C by
1 C.()
G(f)(xa) = 2
(f)( a) (27[2) e~ ”a“g

for x&€G and feC. We can show that G(f)(xa)=G(f)(yb) if xa=yb where
a,be A ([11] p. 118). Thus G(f)=C=(G, C). We also have G(f)(xv)=G(f)(x)
for any yeT. Hence, G(f)eC. Itis obvious that

exp 27 \/ —Ka, a>
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40G(f) = 4GA(N=f i H()=0,
and Go H(f)=HoG(f)=0 for any f&C. Therefore

f= H(f)+4AG(f) = H(f)+4GA(f)  forany feC.
Define H: A?%(a, C)—A?“(a, C’) and G: A?%a, C)—A?%a, C) by

H(w) = g H(ff._f)wl/\aj for o= ;J]fﬁa’z/\al
and

G(w) = ‘ZJ G(fi7)orNwy for o= gfﬁw;/\aj .
Then we have

o = H(w)+4GA(0) = H(0)+4AG(w)

and

© = H()+46[1"(0) = H(w)+41'G(w) .

Obviously d”c H=d'o- H=0. Since S (X;f )(xa)da:S (X, f)(xa)da
A/AnT A/AnT
=0 for j=1, .-,/ and fEC, Hod""=Hod’=0. By the definition of H, it is
obvious that xo H= Ho*, so that 8"’oc H= Ho§"=0.
Let A*(a, C)=>) A?%(a, C).
b9

Lemma 4.2. Let F: A*(a, C)— A*(a, C) be an additive operator which
commutes with [ 1". Then F commutes with H and G. In particular, G commutes

with d”’ and 8" .
Proof. See [15] Chapter IV lemma 3.

Proof of Proposition 2.1. Note that the cochain complex {4>%a, C), d”’}
is exactely the cochain complex of a--module C. The inclusion map ¢,: C'—C
induces a cochain map ¢§: 4*(a~, C')—>A*(a~, C). In particular, the following
diagram commutes

%
A%(a, €') —> 4°(a, C)
dl/ ld!l
%

A“"”‘(a, g/) Lo , Ao-q+1(a’ Q) .

Since d”(w)=0 for any o= A4*%(a, C’), H%a", C")=A"%a, C’).

Let &: Ha~, C')—H?%a", C) denote the map induced from the cochain
map «§: A*(a-, C")—A*(a", C). Since Hod"=d" oH, H: A”(a, C)—A"%(a, ")
induces a linear map H: H%a-, C)—H%a", C’).

We claim that §fo H=id and How¥=id. By definition H ou[w]= [w] for
[]leH%a, C’). Since w=H(w)+ 4G [ (0)= H(0)+4Gd"8"w= H(w)+
4d"Gd"w for any weA”Y(a, C) such that d’w=0, § H[w]=[w] for any [w]=
H?%a-, C). Itis now obvious that ¢ is a g"-module homomorphism.  q.e.d.
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Proof of Theorem 1. Let A*%G|T, C) be the space of all C-valued C~-dif-
ferential forms on G|T" of type (0, ¢). Take a basis {X|, ---, X,} of g* and let
{ew,, =, ®,} be the dual basis of (g*)*. We regard an element ws(g*)* as a
holomorphic 1-form on G/T. Then any element w € A”?(GT, C) can be
written as w=72) ffw; where ;=& ; A\ - A\®

iq
J= U 5j) 125, < <j,=n) and freC.
The operator d”7: A*?(G|T", C)—~A*?*(G|T, C) can be written as
"o =3 (kz X 7)o Ao+ frdo;

for 0=>]frw,.
J
Therefore the Dolbeault cohomology group H:#(G/T") can be regarded as
the Lie algebra cohomology H?(g~, C) of g~-module C.

2.2) HYYGIT)=~H%g", C).

Regarding C as constant functions on G, we have the inclusion map
¢: C—C of g~-modules. Now by (2.1), Theorem 1 is equivalent to assert that ¢
induces an isomorphism on the cohomology groups

& HYg™)—> H%g", C).

We prove th the isomorphism *: H%g~)— H%g", C) by the induction on
the dimension of G/T'. If G is abelian, G/T" is a complex torus and our claim
is well-known. As before, let 4 be the normal subgroup of G contained in
the center of G and a be the ideal in g corresponding to 4. Consider the
Hochschild and Serre spectral sequences for g--modules C and C, and a homo-
morphism of these spectral sequences induced by the inclusion map ¢: C—C [2];

E,(c): H(g"a~, H(a", C)) — H'(g"[a", H*/(a, C))

for t, s=0, 1, 2, ---.
Consider also the g~-module €’. Then we have a commutative diagram of
g -modules

C;g

N /e

Cl

This commutative diagram induces the corresponding commutative diagram of
spectral sequences
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- ta- H(am. 0N 2 e la Ho(a-
H(g/a’H(avC))—’H(g/a’H(arg))

EGDN\, /B

H'(g"[a~, H(a", C)).

By proposition 2.1, we have an isomorphism of g~-modules «§: H*(a", C’')—
H*(a, C). Hence,

Ey(w): H'(g"/a", H*(a", €")) = H'(g"/a", H*(a", C))
is an isomorphism.

We shall show that E,(j) is an isomorphism. Since a- is contained in the
center of g~, g~ acts trivially on H*(a~, C)=A°(a", C). Hence,

H(g™[a~, H*(a", C)) = H¥(g"/a", C)®H?*(a", C).
Since a~ acts trivially on €’, H*(a", C’)=A4°(a~, C’). Consider the action
of g~ on H%a, C’). For an s-cochain o=3)f;w,4%a", C’) and Xeg-,

J
Lzxo=3) (Xf7)®,, since a~ is contained in the center of g-. Hence, H*(a", C’)
J
and C'®H*(a, C) are isomorphic as g"-modules. Hence, we have
H'(g"/a~, H(a", C")) = H'(g"[a", C'QH"(a", C))
= H'(g"/a”, C)®H"*(a", C).

We now regard C’ as the vector space of all C-valued C ~-functions on
(G/A)/=(T"). It is easy to see that this identification is compatible with g~/a"-
module structure. Thus we have

H(g"[a~, C=((G/4)/=(T), C)) = H(g"[a", C").
By the assumption of the induction, we get
H(g"[a~, C=(G/4)[=(T), C)) = H'(g7[a", C).
Hence, we have an isomorphism
E,(j): H'(g"[a~, H(a™, C)) = H'(g"/a", H*(a", C")).

Thus E,(¢): H(g"/a~, H*(a", C))—H*(~g/a~, H°(a", C)) is an isomorphism.
By a theroem on spectral sequence ([13] Chapter 9, §1 Theorem 3), this implies
an existence of an isomorphism

*:H%g-,C)= H%g", C).
Combining this (2.1) and (2.2), we get
Hz3(GT) = Hg )QA?(g*)*. » q.e.d.
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Corollary 1 (Kodaira [9]). Let r be the dimension of the vector space of all
closed holomorphic 1-forms on a compact complex parallelisable nilmanifold G|T.
Then dim H3;}(G|T)=r.

Proof. Let w be a closed holomorphic 1-form on G/T'. Then w=2l fid;

where (¢,, -+, ¢a) is a basis of (g*)* and f; (j=1, -+-, n) are holomorphic func-
tions on G/T'. Since G/T' is compact, f; are constant. Hence, w&(g*)*.
Moreover dw=0 if and only if o([g*, g*])=(0). Thus r=dim(g*/[g*, g*]). Since
dim H'(g")=dim(g"/[g", ¢"]) = dim(g*/[g*, g*]), we have r=dimHg}(G/T)
by Theorem 1. q.e.d.

Let M be a compact connected complex manifold. Let b, (resp. h?'?)
denote dimp H"(M, R) (resp. dimcH%(M)).

Corollary 2. If M is a compact complex parallelisable nilmanifold G|T',

bzk+1 — 2(h0,2h+1+ho.2kho.1+,_,_|__ho,k+1ho,k)
bzk — 2(h0v2k+h0»2k—1h0;1+ .._+h0-k+1h0;k—l)+(h0,k)2
Jor 2k+1, 2k<n=dim.G.

Proof. By a theorem of Nomizu [10] (See [11] Corollary 7.28.), H"(G/T', R)
=H"(g, R). Thus H’(G|T, C)=~H"(g, C)=~H’(g°). Since g¢=g*Bg~ and
[8% 871=(0), H'(g9)= 3> H*g")QHg"). Since dimH*(g")=dim H*(g")

pri=r

=h"? and dim H"(g%)=b,, b,= 3 k" ?h*", q.e.d.
p¥a=r
ExampLE. Let G be a nilpotent Lie group defined by
1 2 =2
G=40 1 sz lzl, 2, 2,EC
0 0 1

Let T be a lattice in G, for example,

1 a a,
=40 1 a (a,l a, e, Z+\ —1Z} .
0 0 1

We can take a basis {X,, X,, X;} of g* such that
[Xn Xz] = Xs ’ [Xm Xs] = [Xn Xs] =0.
Then the dual basis {w,, w,, w,;} satisfies that

do;= —w,Nw,, do,=dow,=0.






