SOME NILPOTENT H-SPACES

Victor P. SNAITH

(Received January 27, 1975)
(Revised July 7, 1975)

0. Introduction

In this note we give two generalisations, (Proposition $1.2 \&$ Theorem 1.3), of Stasheff's criterion for homotopy commutativity of H-spaces, [11, Theorem 1.9], and apply them to produce examples of nilpotent H-spaces and to demonstrate the vanishing of certain Samelson-Whitehead products.

In §1.2 we give a necessary and sufficient condition for the vanishing of the Samelson-Whitehead product of $f: S A \rightarrow Y$ and $g: S B \rightarrow Y$. In Theorem 1.3 a criterion for the vanishing of the j-th iterated commutator map in an H-space, X, is given in terms of a space, $X(j)$. As a corollary it is shown that if the projective plane of X, (resp. the space X), has a finite Postnikov system then X, (resp. ΩX), is nilpotent. In $\S 2$ the nilpotency of loop spaces of spheres and projective spaces is discussed. Many of the results of $\S 2$ are known to other authors and I am grateful to G.J. Porter for drawing my attention to the results of T. Ganea, [3]. However, for completeness, the results of [3] have been included here, as corollaries of Proposition 1.2. The nilpotency of $\Omega S^{2 n}$ and $\Omega C P^{2 n}$ do not appear in [3] although the former was previously known to M.G. Barratt, I. Berstein and T. Ganea. Since our estimate of the nilpotency of $\Omega C P^{2 n}$ is large we include a corollary of Theorem 1.3 on the vanishing of a family of triple Samelson-Whitehead products on $C P^{2 n}$.

I am grateful to Peter Jupp for helpful conversations about homotopy operations.

In this paper we work in the category of based, countable $C W$ complexes. A connected complex in this category is called special. The following notation is used:-
$X \wedge Y=$ smash product of X and $Y .$,
$\vee^{j} X, \stackrel{j}{\wedge} X$ and X^{j} are respectively the j-fold wedge, smash and product of X, $I=[0,1]$ with basepoint, $*=0$,
$S X=S^{1} \wedge X, \Omega X=$ the space of loops on X,
and (eval: $S \Omega X \rightarrow X$) = the evaluation map.

1. Let X be a homotopy associative H-space and let $\phi_{2}: X \times X \rightarrow X$ be the cummutator map.

Definition 1.1. For ($n>2$) put $\phi_{n}: X^{n}=X^{n-1} \times X \rightarrow X$ be $\phi_{2} \circ\left(\phi_{n-1} \times 1\right)$, then the nilpotency of X is the least integer, n, such that ϕ_{n+1} is nullhomotopic. Nilpotency of X is denoted by nil (X).

Proposition 1.2. Let $f: A \rightarrow \Omega Y$ and $g: B \rightarrow \Omega Y$ be maps. Then $\phi_{2} \circ(f \times g)$: $A \times B \rightarrow \Omega Y$ is nullhomotopic if and only if adj $(f) \vee \operatorname{adj}(g): S A \vee S B \rightarrow Y($ adj $=$ adjoint) extends to a map $S A \times S B \rightarrow Y$.

Theorem 1.3. For $(j \geq 2)$ there exist complexes, $X(j)$, and inclusions i_{j} : ${ }^{j} S X \rightarrow X(j)$ satisfying the following properties.
(i) $X(2)=S X \times S X$.
(ii) $X(j) /\left(\vee^{j} S X\right) \cong S^{2} \wedge\left(\wedge^{j} X\right)$.
(iii) If (fold $)_{j}: \vee^{j} S X \rightarrow V^{j-1} S X$ is the map which folds the j-th factor onto the $(j-1)$-st factor there is a commutative diagram

(iv) $\Gamma_{j}^{*}\left(H^{*}\left(X(j-1), \bigvee^{j-1} S X ; \pi\right)\right)=0,(j>2)$.
(v) There exists a map $\Delta_{j}:(X \times Y)(j) \rightarrow X(j) \times Y(j),(j \geq 2)$, such that the k-th factor $S(X \times Y$) is mapped to (k-th $S X) \times(k$-th $S Y$) by

$$
\begin{aligned}
\Delta_{j} \circ i_{j}([t, x, y])= & \left(i_{j}[t, x], i_{j}[t, y]\right), \\
& (t \in I, x \in X, y \in Y) .
\end{aligned}
$$

(vi) If X is an H-space let $X P(2)$ be the projective plane of X and $w ; X \rightarrow$ $\Omega X P(2)$ be the H-map of [11, Proposition 3.5.]. If ϕ_{j} is nullhomotopic then $\stackrel{j}{\vee}$ adj $(w): \stackrel{i}{\vee} S X \rightarrow X P(2)$ extends over $X(j)$. The converse is true if X is homotopy associative and right translation is a homotopy equivalence.
(vii) The commutator $\phi_{j}:(\Omega Y)^{j} \rightarrow \Omega Y$ is nullhomotopic if and only if

$$
\dot{j}^{\prime}(\text { eval }): \dot{V} S \Omega Y \rightarrow Y
$$

extends over $(\Omega Y)(j)$.
Remark 1.4. Proposition 1.2 and Theorem 1.3 are generalisations of Stasheff's criterion for homotopy commutativity, [11, Theorem 1.9], which is

Theorem 1.3 with $j=2$. The proof of Proposition 1.2 will be omitted. It may be proved by the same method as [11, Theorem 1.9] or deduced from [13, Theorem 7] and [11, Propositions 3.5, 4.2] and is closely related to [14, Theorem 3]. The proof of Theorem 1.3 is postponed to $\S 3$. Of course, Theorem 1.3 has a minor generalisation to give a criterion for maps $\phi_{n} \circ\left(\prod_{1}^{n} f_{i}\right): \prod_{1}^{n} A_{i} \rightarrow X^{n} \rightarrow X$ to be nullhomotopic.

Corollary 1.5. (i) If right translation is a homotopy equivalence in X and $X P(2)$ has only n non-trivial homotopy groups then nil $(X) \leq n$.
(ii) If Y has only n non-trivial groups then $n i l(\Omega Y) \leq n$.

Proof. (i) Since $w: X \rightarrow \Omega X P(2)$ is an H-map, if $f: X P(2) \rightarrow E_{1}$ is the map to the first space in the Postnikov system, Proposition 1.2 implies an extension of

$$
\vee^{2} \operatorname{adj}(\Omega f) \circ w: \stackrel{2}{ }^{2} S X \rightarrow E_{1}
$$

to $(S X)^{2}$. Hence the result follows, by induction up the Postnikov system, using composition with Γ_{j} to kill the obstructions.

Part (ii) is proved similarly.
2. In this section we consider H-spaces, ΩX. The commutator $\phi_{2}:(\Omega X)^{2}$ $\rightarrow \Omega X$ induces a map, also denoted by $\phi_{2}, \phi_{2}: \stackrel{2}{\wedge} \Omega X \rightarrow \Omega X$. The SamelsonWhitehead operation derived from $\phi_{2},[2, \S 4.2]$, will be denoted by

$$
[,-]:[A, \Omega X] \times[B, \Omega X] \rightarrow[A \wedge B, \Omega X]
$$

An element of $[S A, X]$ and its adjoint in $[A, \Omega X]$ will be denoted by the same symbol.

Proposition 2.1 [15; 16, Example 1.3].
If X is a special complex then $S \Omega S X \simeq \bigvee_{k=1}^{\infty} S\left({ }^{k} X\right)$.
Proof. From [8, §5] we have a homotopy equivalence, $\Omega S X \simeq X_{\infty}$, where X_{∞} is the reduced product of X. In the notation of $[8, \S 1]$ if X^{m} is the m-fold product of X let X_{m} denote its image in X_{∞}. The canonical map $X^{m} \rightarrow \wedge^{m} X$ factors through X_{m} and sends X_{m-1} to the basepoint, inducing a homeomorphism $X_{m} / X_{m-1} \simeq \wedge^{m} X$. The map $X_{m} \rightarrow\left(\wedge^{m} X\right)=\left(\wedge^{m} X\right)_{1} \subset\left(\wedge^{m} X\right)_{\infty}$ has a continuous combinatorial extension, [8,§1.4], $\pi: X_{\infty} \rightarrow(\stackrel{m}{\wedge} X)_{\infty}$. Define π_{m} as the composition

$$
S\left(X_{\infty}\right) \underset{S(\pi)}{\longrightarrow} S\left((\stackrel{m}{\wedge} X)_{\infty}\right) \simeq S \Omega S(\stackrel{m}{\wedge} X) \underset{\mathrm{eval}}{ } S\left(\wedge_{\wedge}^{m} X\right)
$$

Now define $\alpha: S\left(X_{\infty}\right) \rightarrow \bigvee_{k=1}^{\infty} S\left(\wedge^{k} X\right)$ by

$$
\alpha[t, x]= \begin{cases}\pi_{n}\left[2^{n} \cdot t-1, x\right] & \left(t \in\left[1 / 2^{n}, 1 / 2^{n-1}\right] ; x \in X_{\infty}\right) \\ * & \text { otherwise }\end{cases}
$$

It is clear that α respects the obvious filtrations and induces homotopy equivalences $S\left(X_{m} / X_{m-1}\right) \rightarrow\left(\bigvee_{1}^{m} S\left(\wedge^{k} X\right)\right) /\left(\vee^{m-1} S\left(\bigvee_{1}^{k} X\right)\right)$.

Remark 2.2. Using the work of May, [9], a similar proof shows that stably $S^{n} \Omega^{n} S^{n} X$ is homotopy equivalent to a wedge of n-fold suspensions of equivariant half-smash products.

For classes $\alpha_{i} \in \pi_{m_{i}}\left(\left(\Omega S^{q}\right) \wedge S^{1}\right)$,

$$
\left(1 \leq i \leq k ; \sum m_{i}=n\right)
$$

let $\left\{\alpha_{1}\left\{\alpha_{2}\left\{\cdots\left\{\alpha_{k-1}, \alpha_{k}\right\}\right\} \cdots\right\} \in \pi_{n-k+1}\left(S^{q}\right)\right.$ be the class of the composition

$$
\begin{aligned}
S^{1} \wedge S^{m_{1}-1} \wedge \cdots \wedge S^{m_{k}-1} & \overrightarrow{\alpha_{1} \wedge 1} \Omega S^{q} \wedge S^{1} \wedge \cdots \wedge S^{m_{k}-1} \rightarrow \cdots \\
& \underset{1 \wedge \alpha_{k}}{ }\left(\wedge \Omega S^{q}\right) \wedge S^{1} \underset{\phi_{k}}{\longrightarrow} \wedge S^{q}
\end{aligned}
$$

A similar operation is defined on classes in $\pi_{*}(S \Omega X)$.
Lemma 2.3. For $(q \geq 1)$ let $\alpha_{1} \in \pi_{m_{1}}\left(S^{q}\right), \alpha_{i} \in \pi_{m_{i}}\left(S \Omega S^{q}\right),(i=2,3,4)$, and $r=\left(\sum_{1}^{3} m_{i}\right)-2, s=\left(\sum_{1}^{4} m_{i}\right)-3$. If q is odd the Whitehead product $\left[\alpha_{1},\left\{\alpha_{2}, \alpha_{3}\right\}\right]$ $\in \pi_{r}\left(S^{q}\right)$ is zero and if q is even $\left[\alpha_{1},\left\{\alpha_{2}\left\{\alpha_{3}, \alpha_{4}\right\}\right\}\right] \in \pi_{s}\left(S^{q}\right)$ is zero.

Proof.
Case (i): q even.
Let $S_{1}^{q} \vee S_{2}^{q}$ be the wedge of two coipes of S^{q} and let $i_{t}: S^{q} \rightarrow S_{1}^{q} \vee S_{2}^{q}$, ($t=1,2$), be the inclusions. The class

$$
z=\left\{S \Omega i_{1} \circ \alpha_{2}\left\{S \Omega i_{1} \circ \alpha_{3}, S \Omega i_{2} \circ \alpha_{4}\right\}\right\}
$$

maps to $\left\{\alpha_{2}\left\{\alpha_{3}, \alpha_{4}\right\}\right\}$ under the folding map $S_{1}^{q} \vee S_{2}^{q} \rightarrow S^{q}$. Collapsing S_{i}^{q}, ($t=1,2$), kills z and by [4, Theorems A and 6.6] there exist classes $\sigma \in \pi_{t}\left(S^{2 q-1}\right)$ and $\tau \in \pi_{t}\left(S^{3 q-2}\right)$, where $t=m_{2}+m_{2}+m_{4}-2$, such that

$$
\left\{\alpha_{2}\left\{\alpha_{3}, \alpha_{4}\right\}\right\}=[\iota, \iota] \circ \sigma+[\iota[\iota, \iota]] \circ \tau,\left(\iota=\left[1_{S^{q}}\right] \in \pi_{q}\left(S^{q}\right)\right)
$$

Hence, by [2, §4.3 et seq; 4, Theorem 6.10; 12, §§3.2, 3.3],

$$
\left[\alpha_{1},\left\{\alpha_{2}\left\{\alpha_{3}, \alpha_{4}\right\}\right\}\right]=\left[\alpha_{1},[\iota, \iota] \circ \sigma\right]
$$

Now consider $z \in \pi_{t}\left(S_{1}^{q} \vee S_{2}^{q}\right)$. Since the composition

$$
\Omega S_{1}^{q} \wedge \Omega S_{\phi_{2} \circ}^{q}\left(\overrightarrow{\Omega i_{1} \wedge} \Omega i_{2}\right), ~ \Omega\left(S_{1}^{q} \vee S_{2}^{q}\right) \longrightarrow \Omega\left(S_{1}^{q} \times S_{2}^{q}\right)
$$

is nullhomotopic the factorisation of $\left\{S \Omega i_{1} \circ \alpha_{3}, S \Omega i_{2} \circ \alpha_{4}\right\}$,

$$
S^{1} \wedge S^{m_{3}-1} \wedge S^{m_{4}-1} \longrightarrow S \Omega\left(S_{1}^{q} \vee S_{2}^{q}\right) \underset{\text { eval }}{\longrightarrow} S_{1}^{q} \vee S_{2}^{q}
$$

extends to a factorisation

$$
S^{1} \wedge S^{m_{3}-1} \wedge S^{m_{4}-1} \wedge I \xrightarrow{f} S \Omega\left(S_{1}^{q} \times S_{2}^{q}\right) \underset{e v a l}{\longrightarrow} S_{1}^{q} \times S_{2}^{q}
$$

Hence, if $\phi_{2}: \wedge^{3} \Omega\left(S_{1}^{q} \times S_{2}^{q}\right) \rightarrow \Omega\left(S_{1}^{q} \times S_{2}^{q}\right)$ is the three-fold commutator and q : ($\left.S_{1}^{q} \times S_{2}^{q}, S_{1}^{q} \vee S_{2}^{q}\right) \rightarrow\left(S_{1}^{q} \wedge S_{2}^{q}, *\right)$ is the collapsing map, then the map of pairs, $q^{\circ} \phi_{3} \circ(1 \wedge f) \circ\left(\alpha_{2} \wedge 1\right)$ is nullhomotpic. In the notation of [4, §6; 5, Lemma 3] this represents $\chi \cdot\left(d^{-1}\right)(z)$. Hence, as in [4, Theorem 6.10, and Lemma 6.11] $\left[\alpha_{1},[\iota, \iota] \circ \sigma\right]$ has two-primary order. However, by [4, Theorem 6.10], 3. [α_{1}, $[\iota, \iota] \circ \sigma]=0$.

Case (ii): q odd. This follows from [4, Theorem $6.10 ; 12, \S \S 3.2,3.3$] and the fact that $\left\{\alpha_{2}, \alpha_{3}\right\}=[\iota, \iota] \circ \sigma$.

Corollary 2.4.

(a) $\operatorname{nil}\left(\Omega S^{2 n+1}\right) \leq 2, \quad(n \geq 0)$.
(b) $n i l\left(\Omega S^{2 n}\right) \leq 3, \quad(n \geq 1)$.
(c) $n i l\left(\Omega S^{n}\right)=1$ if and only if $n=1,3$ or 7 .
(d) $\operatorname{nil}\left(\Omega S^{2}\right)=2$.

Proof. Parts (a) and (b) are proved using Lemma 2.3 and Proposition 1.2. For (b) it suffices to extend the map

$$
(e v a l) \vee(e v a l) \circ \phi_{3}: S \Omega S^{2 n} \vee S\left(\left(\Omega S^{2 n}\right)^{3}\right) \rightarrow S^{2 n} \text { over } S \Omega S^{2 n} \times S\left(\left(\Omega S^{2 n}\right)^{3}\right)
$$

Since $S(A \times B) \simeq S A \vee S B \vee S(A \wedge B)$, Proposition 2.1 implies that both factors are wedges of spheres. Hence the obstructions to the extension are Whitehead products. These obstructions are clearly of the form $\left[\alpha_{1},\left\{\alpha_{2}\left\{\alpha_{2}, \alpha_{4}\right\}\right\}\right]$. Parts (c) and (d) follow from well-known properties of Whitehead products.

Let F denote the real field, (R), the complex field, (C), or the quaternions, (H). Let d be the real dimension of F. If $F P^{n}$ is the projective n-space over $F,(n \geq 1)$, let $\beta: S^{d^{-1} \rightarrow \Omega F P^{n}}$ be the adjoint of the inclusion of $F P^{1}$ and let $\pi: S^{d \cdot(n+1)-1} \rightarrow F P^{n}$ be the canonical projection, then

$$
\mu(F, n)=\beta \cdot \Omega \pi: S^{d-1} \times \Omega S^{d \cdot(n+1)-1} \rightarrow \Omega F P^{n} \times \Omega F P^{n} \rightarrow \Omega F P^{n}
$$

is a homotopy equivalence, [11, Proposition 14].
Proposition 2.5. If $F=R$ or $C, \mu(F, n)$ is an H-equivalence if and only if $n \geq 3$ and n is odd. Also $\mu(H, 24 k-1)$ is an H-equivalence, $(k \geq 1)$.

Proof. The map, $\mu(F, n)$, is an H-map if and only if β and $\Omega \pi$ have zero "commutator".

By Proposition 1.2, to demonstrate this we need only extend $\operatorname{adj}(\beta) \vee$ $\operatorname{adj}(\Omega \pi): S^{d} \vee S \Omega S^{d .(n+1)-1} \rightarrow F P^{n}$ in the cases indicated. The obstructions to this are all Whitehead products of the third kind which are zero by $[1, \S 4 ; 6$, Theorem 2.1]. The converses follow from the behaviour of Whitehead products of the third kind, $[1, \S 4]$.

Corollary 2.6.
(i) $\operatorname{nil}\left(\Omega R P^{2 n}\right)=\infty, \quad(n \geq 1)$.
(ii) $n i l\left(\Omega R P^{2 n+1}\right)=\left\{\begin{array}{cc}\leq 2 & (n \geq 0) \\ =1 & \text { if and only if } \quad n=0,1 \text { or } 3 \text {. }\end{array}\right.$
(iii) $\quad n i l\left(\Omega C P^{2 n+1}\right)= \begin{cases}\leq 2 & (n \geq 0) \\ =1 & \text { if and only if } \quad n=1\end{cases}$
(iv) $\operatorname{nil}\left(\Omega H P^{24 k-1}\right)=3, \quad(k \geq 1)$.

Proof. (i) By [1, §4.1] there are arbitrarily long, non-zero iterated Whitehead products in $\pi_{*}\left(R P^{2 n}\right)$.

Parts (ii)-(iv) follow from Proposition 2.5, the behaviour of Whitehead products and the fact that $\operatorname{nil}\left(S^{3}\right)=3,[10]$.

For the rest of this section we concentrate on $\Omega C P^{2 n}$. Let $\mu: S^{1} \times \Omega S^{4 n+1} \rightarrow$ $\Omega C P^{2 n}$ be the homotopy equivalence of [11, Proposition 1.14] and let ν be an inverse equivalence. Let β and $\Omega \pi$ be as above and let $\pi_{i}(i=1,2)$ be the projections from $S^{1} \times \Omega S^{4 n+1}$. Also denote by β and $\Omega \pi$ the compositions $\beta \circ \pi_{1} \circ \nu$ and $\Omega \pi \circ \pi_{2} \circ \nu$ respectively. In the group [$\Omega C P^{2 n}, \Omega C P^{2 n}$] the homotopy class of the identity is the product $\beta \cdot \Omega \pi$. The n-fold commutator, ϕ_{n}, for $\Omega C P^{2 n}$ is nullhomotopic if the n-fold iterated Samelson-Whitehead product of $1_{\Omega C P^{2 n}}$ is zero. Before proving that $\Omega C P^{2 n}$ is nilpotent we derive some preliminary results about Samelson-Whitehead products in $\left[\Omega C P^{2 n}, \Omega C P^{2 n}\right],(n>0)$.

Proposition 2.7. The class, $\left[1_{\Omega C P^{2 n}}, 1_{\mathrm{QCP}}{ }^{2 n}\right]$, is represented by a map which factors through $\Omega \pi: \Omega S^{4 n+1} \rightarrow \Omega C P^{2 n}$.

Proof. We have to show that

$$
\left(S^{1} \times S^{4 n+1}\right)^{2} \underset{\mu \times \mu}{\longrightarrow}\left(\Omega C P^{2 n}\right)^{2} \underset{\pi_{1} \circ \nu \circ \phi_{2}}{\longrightarrow} S^{1}
$$

is nullhomotopic. It is nullhomotopic on $S^{1} \times S^{1}$, since S^{1} is abelian. However, further obstructions to extending the nullhomotopy from $S^{1} \times S^{1}$ to $\left(S^{1} \times \Omega S^{4 n+1}\right)^{2}$ lie in zero groups, by Proposition 2.1.

Corollary 2.8. $\quad\left[\left[\left[1_{\mathrm{a} C P^{2 n}}, 1_{\mathrm{aC} P^{2 n}}\right] \Omega \pi\right] \Omega \pi\right]=0$.
Proof. By Proposition. 2.7 and Corollary 2.4(a).

Proposition 2.9. $[[\Omega \pi, \Omega \pi] \beta]=0$.
Proof. By Proposition 1.2 this is so if $\beta \vee\left(\phi_{2} \circ(\Omega \pi)^{2}\right)$ extends over $S^{2} \times S$ $\left(\left(\Omega S^{4 n+1}\right)^{2}\right)$. Since $S\left(\left(\Omega S^{4 n+1}\right)^{2}\right)$ is a wedge of spheres the obstructions are Whitehead products of the form $[\beta, \pi \circ x] \in \pi_{*}\left(C P^{2 n}\right)$. However, by the argument of Lemma 2.3 (proof), $x \in \pi_{*}\left(S^{4 n+1}\right)$ is a Whitehead product of the form [σ_{1}, σ_{2}] $=[\iota, \iota] \circ \sigma$. Since $[\beta[\pi, \pi]]=0$, by the Jacobi identity, [4, Theorem B]; then $[\beta, \pi \circ x]=0$ by [6, Theorem 2.1].

Let $a: A \rightarrow \Omega C P^{2 n}, b_{i}: B \rightarrow \Omega C P^{2 n},(i=1,2)$, be maps and define $\Delta_{1}: A \wedge B \rightarrow$ $B \wedge A \wedge B, \Delta_{2}: B \wedge A \rightarrow A \wedge B \wedge B$ by $\Delta_{1}(a \wedge b)=b \wedge a \wedge b$ and $\Delta_{2}(b \wedge a)=a \wedge b \wedge b$. The commutator identity in a group,

$$
\begin{aligned}
& {[x, y, z]=[x, y] \cdot[y,[x, z]] \cdot[x, z] \text { implies, }(\text { c.f. }[2, \S 4]),} \\
& {\left[a, b_{1} \cdot b_{2}\right]=\left[a, b_{1}\right] . \quad\left\{\left[b_{1}\left[a, b_{2}\right]\right] \circ \Delta_{1}\right\} \cdot\left[a, b_{2}\right]}
\end{aligned}
$$

and

$$
\begin{equation*}
\left[b_{1} \cdot b_{2}, a_{2}\right]=\left[b_{2}, a\right] \cdot\left\{\left[\left[a, b_{2}\right] b_{1}\right] \circ \Delta_{2}\right\} \cdot\left[b_{1}, a\right] \tag{2.10}
\end{equation*}
$$

Notice that if $A=B=\Omega C P^{2 n}$ then

$$
\left[\left[a, b_{2}\right] \beta\right] \circ \Delta_{2}=\left[\left[a, b_{2} \circ \Omega \pi\right] \beta\right] \circ \Delta_{2}
$$

and

$$
\left[\beta\left[a, b_{2}\right]\right] \circ \Delta_{1}=\left[\beta\left[a, b_{2} \circ \Omega \pi\right]\right] \circ \Delta_{1}
$$

since the diagonal $S^{1} \rightarrow S^{1} \times S^{1}$ deforms onto $S^{1} \vee S^{1}$.
Using (2.10) and $\beta \cdot \Omega \pi=1_{\mathrm{QCP}}{ }^{2 n}$ it is straightforward to deduce the following result from Corollary 2.8 and Proposition 2.9.

Proposition 2.11. Let x_{m} be the m-fold iterated Samelson-Whitehead product,

$$
x_{m}=\left[1_{\Omega C P^{2 n}}\left[1_{\Omega C P^{2 n}}\left[\cdots\left[\Omega C P 12 n, 1_{\left.\Omega C P^{2 n}\right]}\right]\right] \cdots\right]\right]
$$

and y_{m} be the $(m+2)$-fold product,

$$
\begin{aligned}
& y_{m}=\left[\beta\left[\beta\left[\cdots\left[\beta\left[1_{\Omega C P^{2 n}}, 1_{\left.\Omega C P^{2 n}\right]}\right]\right] \cdot\right]\right] . \quad\right. \text { Then } \\
& x_{m+2}=\left[\Omega \pi, y_{m-1}\right] \cdot y_{m}, \quad(m \geq 2) .
\end{aligned}
$$

Proposition 2.12. In the notation of (2.11), $y_{5}=0$.
Proof. By Proposition 2.7, y_{1} factors through a map $S \Omega S^{4 n+1} \rightarrow \Omega C P^{2 n}$. However, $S \Omega S^{4 n+1}$ is a wedge of spheres, by Proposition 2.1. Hence it suffices to show that $[\beta[\beta[\beta[\beta, \alpha]]]]=0$, where $\alpha: S^{4 k n+2} \rightarrow C P^{2 n}$ and $\alpha=\pi \circ \xi$. From [1, §4.2],

$$
[\beta[\beta[\beta[\beta, \pi]]]]=\pi \circ \eta \circ S \eta \circ S^{2} \eta \circ S^{3} \eta,\left(0 \neq \eta \in \pi_{4 n+2}\left(S^{4 n+1}\right)\right),
$$

which is zero by [7, pp. 328-331]. Now if $i_{t},(t=1,2)$ are the inclusions of the
factors in the wedge $S^{2} \vee S^{4 n+1}$ then $[\beta[\beta[\beta[\beta, \pi \circ \xi]]]]=(\beta \vee \pi) \circ\left[i_{1}\left[i_{1}\left[i_{1}\left[i_{1}, i_{2} \circ \xi\right]\right]\right]\right]$. It is now straightforward to show $[\beta[\beta[\beta[\beta, \alpha]]]]=0$, using $[1, \S 4.2 ; 12, \S \S 3.2$ and 3.3].

Corollary 2.13. $3 \leq \operatorname{nil}\left(\Omega C P^{2 n}\right) \leq 7,(n \geq 1)$.
Since the upper bound in Corollary 2.13 is large we prove the vanishing of another triple product.

Proposition 2.14. Let n_{1}, n_{2} be integers and let $n_{1}: S^{1} \rightarrow S^{1}, n_{2}: S^{4 n+1} \rightarrow S^{4 n+1}$ be maps of those degrees. Let x be represented by the composition

$$
\Omega C P^{2 n} \underset{\nu}{\longrightarrow} S^{1} \times \Omega S^{4 n+1}\left(\beta \circ n_{1}\right) \times \Omega\left(\pi \circ n_{2}\right)\left(\Omega C P^{2 n}\right)^{2} \underset{m}{\longrightarrow} \Omega C P^{2 n},
$$

where m is the multiplication, and $(n>1)$.
If $n_{1} \cdot n_{2} \equiv 0\left(\right.$ mod 2) then $0=[[x, x] x] \in\left[\wedge^{3}\left(\Omega C P^{2 n}\right), \Omega C P^{2 n}\right]$. In particular $\left[\left[\beta \cdot 1_{\Omega C P^{2 n}}, \beta \cdot 1_{\Omega C P^{2 n}}\right] \beta \cdot 1_{\Omega C P^{2 n}}\right]=0$.

Proof. By Theorem 1.3 (iii) and (vi) we have a map $\gamma: S^{1}(3) \rightarrow S^{1} P(2)=$ $C P^{2} \subset C P^{2 n}$ extending $\vee^{3}\left(\beta \circ n_{1}\right)$ on $\left(V^{3} S^{2}\right)$. Consider the problem of extending $\gamma \vee \pi \circ n_{2}$ over $S^{1}(3) \times S^{4 n+1}$. This map extends over $E=\left(\vee^{3} S\right) \times S^{24 n+1} \cup S^{1}(3) \vee$ $S^{4 n+1}$, since the obstructions are Whitehead products, [$\beta \circ n_{1}, \pi \circ n_{2}$], which are zero by [1, §4.2]. By Theorem 1.3 (ii), the only other obstruction lies in

$$
H^{4 n+6}\left(S^{1}(3) \times S^{4 n+1}, E ; \pi_{4 n+5}\left(C P^{2 n}\right)\right)=0 .
$$

If $\delta: S^{1}(3) \times S^{4 n+1} \rightarrow C P^{2 n}$ is the extension, consider $\delta \circ(1 \times f) \circ \Delta_{3}$ where Δ_{3} is as in Theorem 1.3(v) and f is derived from Theorem 1.3 (vii) and Corollary 2.4(a). Since the map $g: S\left(S^{1} \times \Omega S^{4 n+1}\right) \rightarrow S^{2} \times S^{4 n+1}$ given by $g([t,(z, h)])=([t, z], h(t))$ is homotopic to the map, g_{1}, given by

$$
g_{1}([t,(z, h)])= \begin{cases}([2 t, z], *) & (0 \leq t \leq 1 / 2) \\ (*, h(2 t-1)) & (1 / 2 \leq t \leq 1)\end{cases}
$$

then $\left(\delta \circ(l \times f) \circ \Delta_{2} \mid \vee^{3} S\left(S^{1} \times \Omega S^{4 n+1}\right)\right)$ is homotopic to $\vee^{3}\left(\beta \circ n_{1}\right) .\left(\Omega\left(\pi \circ n_{2}\right)\right)$. Hence, by Theorem 1.3 (vii) and Remark 1.4, $[[x, x], x]=0$.

3. The spaces, $X(\boldsymbol{j})$

Let $\left\{m_{j}, j \geq 1\right\}$ be the sequence of integers $m_{1}=1, m_{j+1}=2 .\left(m_{j}+1\right)$. Let $P_{j},(j \geq 2)$, be the 2 -disc represented as a regular (plane) m_{j}-gon with vertices $a_{1}, \cdots, a_{m_{j}}$ and base point $a_{1}=*$. If S is a finite set in the plane let $\operatorname{ch}(S)$ denote its closed convex hull. Write

$$
P_{j}=Q_{j} \cup R_{j} \cup Q_{j}^{\prime},(j>2), \text { where } Q_{j}=\operatorname{ch}\left(a_{1}, \cdots, a_{1+m_{j-1}}\right)
$$

$$
Q_{j}^{\prime}=\operatorname{ch}\left(a_{2+m_{j-1}}, \cdots, a_{m_{j}}\right) \text { and } R_{j}=\operatorname{ch}\left(a_{1}, a_{1+m_{j-1}}, a_{2+m_{j-1}}, a_{m_{j}}\right)
$$

Let $k_{j}: Q_{j}^{\prime} \rightarrow Q_{j}$ be the linear homeomorphisms given by $k_{j}\left(a_{1-r+m_{j}}\right)=a_{r}$. Also let $\gamma_{j}:\left(Q_{j}, \operatorname{ch}\left(a_{1}, a_{1+m_{j-1}}\right)\right) \rightarrow\left(P_{j-1}, *\right)$ be a relative homeomorphism such that $\gamma_{j}\left(a_{i}\right)=a_{i},\left(1 \leq i \leq m_{j-1}\right)$, and γ_{j} is linear on each edge. Put $P_{2}=I^{2}$ with vertices $a_{1}=(0,0), a_{2}=(0,1), a_{3}=(1,1)$ and $a_{4}=(1,0)$. Let $h_{j}: R_{j} \rightarrow I^{2}$ be the linear homeomorphism given by

$$
h_{j}\left(a_{1}\right)=a_{1}, h_{j}\left(a_{1+m_{j-1}}\right)=a_{2}, h_{j}\left(a_{2+m_{j-1}}\right)=a_{3} \text { and } h_{j}\left(a_{m_{j}}\right)=a_{4} .
$$

Now let $\left\{X_{i}, i \geq 1\right\}$ be an indexed set of copies of a space X. Define $\delta: I^{2} \times\left(X_{1} \vee X_{2}\right) \rightarrow S X_{1} \vee S X_{2}$ by

$$
\delta(t, s, *, y)=[s, y]_{2}, \delta(t, s, x, *)=[t, x]_{1}
$$

($x, y \in X ; s, t \in I$ and the suffix indicates the wedge factor).
We now inductively construct the spaces, $X(j),(j \geq 2)$. Put $X(2)=I^{2} \times X_{1}$ $\times X_{2} \cup \beta_{2}\left(S X_{1} \vee S X_{2}\right)$ where

$$
\begin{aligned}
& \beta_{2}: I^{2} \times\left(X_{1} \vee X_{2}\right) \cup \partial I^{2} \times X_{1} \times X_{2} \rightarrow S X_{1} \vee S X_{2} \text { is given by } \\
& \beta_{2}(t, \varepsilon, x, y)=[t, x]_{1}, \beta_{2}(\varepsilon, s, x, y)=[s, y]_{2},(\varepsilon=0 \text { or } 1)
\end{aligned}
$$

and $\beta_{2}=\delta$ otherwise. Thus $X(2)=S X_{1} \times S X_{2}$.
Now let

$$
\begin{aligned}
& \pi_{1}: \underset{1}{\underset{1}{\times}} X_{i} \rightarrow \underset{1}{\dot{j}-1} X_{i}, \pi_{2}: \underset{1}{\dot{j}} X_{i} \rightarrow X_{j}, \\
& i_{1}: \bigvee_{1}^{j-1} S X_{i} \rightarrow \underset{1}{j} S X_{i}, i_{2}: S X_{j} \rightarrow \bigvee_{1}^{j} S X_{i}
\end{aligned}
$$

be the canonical projections and inclusions. Define

$$
X(j)=P_{j} \times\left(\underset{1}{\dot{1}} X_{i}\right) \cup \beta_{j}\left(\bigvee_{1}^{j} S X_{i}\right), \quad(j>2),
$$

where $\beta_{j}: \partial P_{j} \times\left(\underset{1}{\dot{x}} X_{i}\right) \cup P_{j} \times\left(\bigvee_{1}^{j} X_{i}\right) \rightarrow \bigvee_{1}^{j} S X_{i}$ is defined by the following com-positions:-

$$
\begin{aligned}
& \beta_{j} \mid\left(\partial P_{j} \cap Q_{j}\right) \times\left(\underset{1}{\dot{1}} X_{i}\right)=i_{1} \circ \beta_{j-1} \circ\left(\gamma_{j} \times \pi_{1}\right), \\
& \beta_{j} \mid\left(\partial P_{j} \cap Q_{j}^{\prime}\right) \times\left(\underset{1}{\dot{1}} X_{i}\right)=i_{1} \circ \beta_{j-1} \circ\left(\left(\gamma_{j} \circ k_{j}\right) \times \pi_{1}\right), \\
& \beta_{j} \mid\left(\partial P_{j} \cap R_{j}\right) \times\left(\underset{1}{j} \times X_{i}\right)=i_{2} \circ\left(\delta \mid I^{2} \times\left(X_{j} \vee *\right)\right) \circ\left(h_{j} \times \pi_{2}\right), \\
& \beta_{j}\left|R_{j} \times\left(\bigvee_{1}^{j-1} X_{i}\right)=*=\beta_{j}\right|\left(Q_{j} \cup Q_{j}^{\prime}\right) \times X_{j}, \\
& \beta_{j} \mid R_{j} \times X_{j}=i_{2} \circ\left(\delta \mid I^{2} \times\left(X_{j} \vee *\right)\right) \circ\left(h_{j} \times 1\right), \\
& \beta_{j} \mid Q_{j} \times\left(\bigvee_{1}^{j-1} X_{i}\right)=i_{1} \circ \beta_{j-1} \circ\left(\gamma_{j} \times 1\right),
\end{aligned}
$$

and

$$
\beta_{j} \mid Q_{j}^{\prime} \times\left(\bigvee_{1}^{j-1} X_{i}\right)=i_{1} \circ \beta_{j-1} \circ\left(\left(\gamma_{j} \circ k_{j}\right) \times 1\right)
$$

The map Δ_{j} of Theorem 1.3 (v) is induced by

$$
P_{j} \times X \times Y \underset{\Delta \times 1 \times 1}{\longrightarrow} P_{j}{ }^{2} \times X \times Y \cong P_{j} \times X \times P_{j} \times Y
$$

We now prove Theorem 1.3 (vi); part (vii) is similar. Consider the problem of extending ${\underset{i}{j}}_{j}^{j} a d j(w): V_{1}^{j} S X_{i} \rightarrow X P(2)$ over $X(j)$. The map $\left(\vee_{1}^{j} a d j(w)\right) \circ \beta_{j}$ sends $\partial P_{j} \vee_{1}\left(\stackrel{j}{\times} X_{i}\right)$ to the basepoint and induces
$\mu_{j}: \partial P_{j} \wedge\left(\underset{1}{\dot{1}} \dot{X}_{i}\right)=S\left(\stackrel{j}{\times} X_{i}\right) \rightarrow X P(2)$ with adjoint
$\mu_{j}: \underset{1}{\dot{x}} X_{i} \rightarrow \Omega X P(2)$. Let $f: C\left(\partial P_{j}\right) \xrightarrow{\cong} P_{j}$ be a cone-wise homeomorphism which is the identity on ∂P_{j}. Also let f have cone-point, $z_{0} \in P_{j}$, such that
$\left(\left(\vee_{1}^{j} \operatorname{adj}(w)\right) \circ \beta_{j}\right)\left(z_{0} \times \bigvee_{1}^{j} X_{i}\right)=*,($ if $j=2)$ this can be arranged by altering $\operatorname{adj}(w)$ by a homotopy). Suppose that μ_{j} is nullhomotopic then there exists a nullhomotopy,
$G_{u}(u \in I)$, of $\left(\underset{V_{1}^{j}}{ } \operatorname{adj}(w)\right) \circ \beta_{j}$ such that
$G_{u}(q, x)=\left(\left(\underset{1}{\dot{j}} a d j(w) \circ \beta_{j}\right)(f[u, q], x),\left(q \in \partial P_{j} ; x \in \underset{1}{\stackrel{j}{\times}} X_{i}\right)\right.$.
Thus defining $H: P_{j} \times\left(\stackrel{j}{\times} X_{i}\right) \rightarrow X P(2)$ by $H(q, x)=G_{u}\left(q^{\prime}, x\right)$, where $f\left(\left[u, q^{\prime}\right]\right)$ $=q\left(q^{\prime} \in \partial P_{j} ; q \in P_{j} ; u \in I ; x \in \dot{x}_{1}^{j} X_{i}\right)$, induces a map $X(j) \rightarrow X P(2)$ extending $\underset{1}{j} \operatorname{adj}(w)$. Conversely, if $\underset{1}{\dot{*}} \operatorname{adj}(w)$ extends, we have
$H: P_{j} \times\left(\underset{1}{\dot{j}} X_{i}\right) \rightarrow X P(2)$ extending $\left(\vee_{1}^{j} a d j(w)\right) \circ \beta_{j}$ and we may assume $H\left(P_{j}\right.$ $\times *)=*$. Now let $G_{u}: \partial P_{j} \rightarrow P_{j}$ be a based homotopy from the inclusion to the constant map. Thus
$H \circ(G \times 1): I \times \partial P_{j} \times\left(\underset{1}{\dot{j}} X_{i}\right) \rightarrow X P(2)$ induces a nullhomotopy of μ_{j}. However, the map $\mu_{j}: \underset{1}{\dot{j}} X_{i} \rightarrow X P(2)$ is the composition of $(\underset{1}{\dot{j}} \underset{1}{x} w)$ and the j-fold commutator on $\Omega X P(2)$, Since w is an H-map we have $w \circ \phi_{j} \simeq \mu_{j}$. Thus if ϕ_{j} is nullhomotopic the extension exists. If right translation is a homotopy equivalence in X there exists a map $r: \Omega X P(2) \rightarrow X,[11$, Lemma 4.2], such that $r \circ w \simeq 1$.

The maps, Γ_{j}, of Theorem 1.3 (iii) are induced by maps $G_{j}: P_{j} \times\left(\underset{1}{j} X_{i} \rightarrow\right.$ $P_{j-1} \times\left(\underset{1}{j-1} X_{i}\right)$ which are defined in the following manner. Let proj: $R_{j} \rightarrow R_{j-1}$ be such that $h_{j-1} \circ \operatorname{proj} \circ\left(h_{j}\right)^{-1}$ is projection on the first factor in I^{2} and let p_{2} be $p_{2}: \underset{1}{\dot{j}} X_{i} \xrightarrow[\pi_{2}]{\longrightarrow} X_{j}=X=X_{j-1}$.

Put

$$
\begin{aligned}
& G_{j} \mid Q_{j} \times\left(\underset{1}{\stackrel{j}{1}} X_{i}\right)=\gamma_{j} \times \pi_{1}, \\
& G_{j} \mid Q_{j}^{\prime} \times\left(\underset{1}{\dot{j}} X_{i}\right)=\left(\gamma_{j} \circ k_{j}\right) \times \pi_{1} \text { and } \\
& G_{j} \mid R_{j} \times\left(\underset{1}{j} \times X_{i}\right)=p r o j \times p_{2} .
\end{aligned}
$$

It is clear that there exist homeomorphisms

$$
\begin{aligned}
X(j) /\left(\vee^{j} S X\right) & \cong D^{2} \times X^{j} /\left(\partial D^{2} \times X^{j} \cup D^{2} \times\left(\vee^{j} X\right)\right) \\
& \cong S^{2} \times X^{j} /\left(* \times X^{j} \cup S^{2} \times\left(\vee^{j} X\right)\right)
\end{aligned}
$$

Also $G_{j}\left(R, \times\left(\underset{1}{j} \times X_{i}\right)\right) \subset\left(\partial P_{j-1} \cap R_{j-1}\right) \times X_{j-1}$ which goes to the basepoint in $X(j-1) /\left(\vee^{j-1} S X\right)$. Let $q: S^{2} \rightarrow \bigvee^{3} S^{2}$ be the standard pinching map and put $A_{j}: S^{2} \wedge X^{j} \rightarrow S^{2} \wedge X^{j-1}$ as the composition (fold $\left.\wedge 1\right) \circ\left((1 \vee * \vee-1) \wedge \pi_{1}\right) \circ(q \wedge 1)$. We have a commutative diagram in which the rows are cofibrations

Hence Theorem 1.3 (iv) is proved.
Purdue University

References

[1] M.G. Barratt, I.M. James \& N. Stein: Whitehead products and projective spaces, J. Math. Mech. 9 (1960), 813-819.
[2] J.M. Boardman \& B. Steer: On Hopf invariants, Comment. Math. Helv. 42 (1967), 180-221.
[3] T. Ganea: On the loop spaces of projective spaces, J. Math. Mech. 16 (8) (1967), 853-858.
[4] P.J. Hilton: On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154-172.
[5] P.J. Hilton: On the Hopf invariant of a composition element, J. London Math. Soc. 29 (1954), 165-171.
[6] P.J. Hilton \& J.H.C. Whitehead: Note on the Whitehead product, Ann. of Math. 58 (1953), 429-442.
[7] S-T Hu: Homotopy Theory, Academic Press, 1959.
[8] I.M. James: Peduced product spaces, Ann. of Math. 62 (1953), 170-197.
[9] J.P. May: Geometry of iterated loop spaces, mimeographed preprint, Chicago

Univ. 1972.
[10] G.J. Porter: Homotopical nilpotence of S^{3}, Proc. Amer. Math. Soc. 15 (1964), 681-682.
[11] J.D. Stasheff: On homotopy abelian H-spaces, Proc. Cambridge Philos. Soc. 57 (1961), 734-745.
[12] B. Steer: Generalised Whitehead products, Quart. J. Math. Oxford (2) 14 (1963), 29-40.
[13] P.J. Hilton: Note on a theorem of Stasheff, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 127-130.
[14] C.S. Hoo: A generalisation of a theorem of Hilton, Canad. Math. Bull. 11 (1968), 663-669.
[15] J. Milnor: The construction FK, mimeographed notes, Princeton University.
[16] T. Ganea: On the homotopy suspension, Comment. Math. Helv. 43 (1968), 225234.

