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In this paper we will continue the investigation of integral representations

of finite groups done in [3], [4] and [5]. We will here be concerned mainly

with the projective class group of nilpotent and symmetric groups.

Let Σ be a (finite dimensional) semi-simple ζ)-algebra and let Λ be a Z-order

in Σ. We will mean by the projective class group of Λ the class group defined

by using all locally free, projective Λ-modules and denote it by C(A).

Let 77 be a finite group. A finitely generated Z-free 77-module is briefly

called a 77-module. A /7-module is called a permutation 77-module if it can be

expressed as a direct sum of {Z77/77,-} where each 77, is a subgroup of 77.

Further a 77-module M is called a quasi-permutation 77-module if there exists

an exact sequence: 0->M->5-^5/-^0 where S and S' are permutation 77-
modules.

As is well known, the projective class group C(Z77) of the group algebra Z77

can be written as follows:

C(Z77) = {[Sl]-[Z77] I SI(ΦO) is a projective ideal of Z77} .

We define the subgroups C(ZΠ\ C*(Z77) and Cq(ZΠ) of C(Z77) as follows:

C(ZΠ) = {[Sί]-[Z77]eC(Z77)| W®X^ZΠ®X for some 77-module X},

C9(ZΠ) = {[3η-[Z77]<ΞC(Z77)| ^®S^S2 for some permutation

77-modules S^ and S2} ,

C«(ZΠ)= {[SΪ]-[Z77]EΞC(Z77)| SI®S^ZΠ05 for some permutation

77-module 5} .

Let Ωπ be a maximal Z-order in QΠ containing Z77 and let -ψ :̂ C(ZΠ)-*C(ΩΠ)

be the epimorphism induced by Ωπ® . Then the sequence 0 -*C (Z77) -^

Ϋπ ZΠ

C(Z77) -? C(ΩΠ) -> 0 is exact.

In [3] and [4] we raised the following problem:
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'For a finite group Π C(ZΠ) = C9(ZΠ)(= C*(ZΠ)) ?'

and showed that the answer to this is affirmative for a fairly extensive class of
finite groups but it is negative for the alternating group on 8 symbols.

In §2 we give

[I] // Π is a finite nilpotent group, then C9(ZΠ)=C(ZΠ)=C«(ZΠ).

A finite group Π is said to be of split type over Q if every simple com-
ponent of QΠ is isomorphic to a full matrix algebra over its center. In the
previous paper [4] we proved the assertion [I] under the additional assumption
that 77 is of split type over Q. We will prove [I], using the Mayer-Vietoris
sequence in algebraic jK"-theory ([!]).

Let SM, AΛ denote the symmetric, alternating group on n symbols, respec-
tively. In §3 we give

[II] C«(ZSn) = €(ZSn) = C«(ZSn) = C(ZSn) for any n^ 1 .

Let G(QΠ) be the Grothendieck group of the category of all finitely
generated Q/7-modules and define B(QΠ) to be the subring of G(QΠ) generated
by all the classes of permutation QΠ-modules. It is well known that B(QSn)=
G(QSn) for any »^1. However the following result on the alternating group,
which will be proved in §4, seems new.

[III] B(QAn) = G(QAn) foranyrc^S.

We would like to express our gratitude to H. Hijikata for his valuable
suggestion, and to I. Reiner and S. Ullom for their helpful comments.

1. Some lemmas on special elementary groups

Let C2/, /^O, be the cyclic group of order 2', i.e., C2/=<σ|σ2 / = I>. Let
H2ι, /^2, be the (generalized) quaternion group of order 2/+1, i.e., H2ι =<σ, r \ σ2/

=1, σ*l~1=τ2, r-1στ=σ~
ly and let Z)2/, 7^2, be the dihedral group of order

2l+\ i.e., Z)2/=<σ, τ|σ
2/=τ2=I, r-Vr^σ -1). Define the groups SD2ι and

SC2ι, /^3, of order 2/+1 by S£>2' = O, τ|<r2 ' = τ2=I, r-Vr^a--14-2''1) and

Let H denote one of the groups C2/, H2ι, D2t, SD2ι and SC2ι. Define
Σ(H)=QH/(σ2l~1+l) and Λ(H)^ZHI(σ2l~l+l) and denote the images of σ and
T in Λ(H) by x and y, respectively. Put

/ Q(x) (resp. Z[oc\) when H=C2ι

K(H) (resp. R(H)) =
V y V ^ V ;y δί̂ -^"1) (resp. Z[x-x~1]) when H=SD2ι

Q(x2) (resp. Z[*2]) when H=SC2ι.
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Then Σ(H) is a central simple j?£(/f )-algebra and is the unique ίf-faithful simple
component of QH, and Λ(H) is an R(H)-ordεr in Σ(H). Further let

aH =

2

x—l whenH=C2ι, l^l

x-\-x~l—2 when H=H2ι or D2ι

x—x'1 when H=SD2ι

x2-l

and put $(H)=aHR(H). Then $(H) is the unique prime ideal of R(H) con-
taining 2 and R(H)I\)(H)^ZJ2Z.

Let K be an algebraic number field and let Σ be a central simple jf^-algebra.
We say Σ to be of split type if it is isomorphic to a full matrix algebra over K.

For a (finite or infinite) prime p of K we denote by K~ the completion of K at
A Λ r

p and put Σ^=K^®Σ. We say -Γ to be of locally split type if, for every finite
A A

prime p of K, Σ^ is isomorphic to a full matrix algebra over K$.

Lemma 1.1. (1) // H=C2ι, Z)2/, SD2ι or SC2ι, Σ(H) is of split type.
(2) Σ(H2ι) is of locally split type if and only if I ̂  3.

Proof. The assertion (1) is evident and the assertion (2) may be well

known. But for completeness we here give a proof of (2). It is noted that
Σ(H2ι) is the quaternion algebra over the real field K(H2ι). Accordingly, for a

prime p of K(H2ι\ Σ(H2ι\=M2(K(H2ι\) if and only if the equation X2+ Y2+l
/\ /—I —1\

=0 has a solution in K(H2t)^ i.e., if and only if ( ^ J=l. For every finite

prime t> of K(H2ι) with t>Φ!p(#2/) we have (~1? ~1)=1 On the other hand>

for every real prime p of K(H2ι) we have ί~ ? ~ j= — 1. All infinite primes

of K(H2ι) are real and the number of them is 2l~2. Since Π ( )— 1
p V p /

where £ runs over all primes of K(H2ι), we see that (~ ' ~ )=1 if and only
V \)(Hnl } '

if
For any positive integer n we denote by ΦΛ(0 the n-th cyclotomic poly-

nomial and by ζn a primitive n-th root of 1.
From now we assume that m^l is an odd integer. Let Cm be the cyclic

group of order m, i.e., Cm=<μ \ μm=iy. Define K(Cm)=QCJ(Φm(μ))=Q(ζm)
and R(Cfn)=ZCJ(ΦM(μ))^=Z[ζm]. A finite group E is said to be a special
elementary group if E=CmxH where H=C2t,H2ι, Z>2/, SD2/ orSC2/. Let
E=CmxH where #= C2/ , H2ι , D2/ , SD2ι or 5C2/ . Define Σ(E)=K(Cm) ®Σ(H)

Q
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4(σ)) and Λ(E) = R(Cm)®Λ(H) = ZEI(Φm(μ)9Φif(σ))9 and

further put K(E)=K(Cm)®K(H) and R(E)=R(Cm)®R(H). Since m is odd,
Q 2

K(E) is a field and R(E) is the ring of all algebraic integers in K(E). We see

that Σ(E) is a central simple jf£(Z?)-algebra and is the unique jE-faithful simple
component of QE and that Λ(E) is an Λ^-order in Σ(E).

Lemma 1.2. For any special elementary group Ey Λ(E) is a quasί-permuta-
tίon E-module.

Proof. Let E=CMxH where H=C2ι, H2ιy D2ι9 SD2ι or SC2ι. Then we
have Λ(E)—ZE/(Φ2ιm(σμ)). Hence we can prove the assertion by the argument

using a zigzag path as in the proof of [3], (2.3).

Lemma 1.3. Let E= CmxH where H=H2ι,D2ι or SD2ι. Let Ω(E) be a
maximal R(E)-order in Σ(E) containing Λ(E). Then aHΩ(E) c A(E).

Proof. For brevity we write K=K(E) and R=R(E). Now we have Σ(E)

=K+Kx+Ky+Kxy and Λ(E) =R+Rx+Ry+Rxy. Assume that H=H2ι.
Let z=x2'~2. Then Σ(E)=K+Kz+Ky+Kzy, and z2=y2=-l and zy+yz=0.
Denote by trd the reduced trace of Σ(E). We note that, for any element
v=a1-\-a2z-}-a3y+a4zy of Σ(E), a£^K, we have trd(v)=2a1. Then we can find
the .SC-basis of Σ(E) which is dual to {1, x, y, xy} with respect to trd as follows:

ΛΓ2— 1 x— ΛΓ1 — (x2— l)v —(x—x~l)γ τ^ul= - y u2=- - , u3= — ̂ - ̂ -, z/4— — ̂ - ̂ -. It is easy to
x2+x~2— 2 x2+x'2—2 x2+x~2—2 x2+x~2—2

see that aHuί^Λ(H)2 for l^/^4. Since trd(Ω(E))^R, we have
Ru2+Ruz+Ru, and hence aH^(E)2^A(E)2. It is obvious that Ω(E)P = A(E)P

for any prime ^>Φ 2. Thus we have aHΩ(E)^Λ(E).
For the case where H=D2ι or SD2ι we can prove the assertion in a similar

manner.

We here consider the case where E=CmχH^ Let u= — (l+x+y+xy)
£

and put Γ(E)=A(E)+R(Cm)u. Let c(E)=Γ(E)(l+x)(=(l+x)

Lemma 1.4. (1) c(Cm xHJ^Λ (Cm X Ht) and Γ(Cm X fl«)/c(Cβ X Ht) sx
ZβZ®Z[ζm] ®Z[f J. (2) Γ(CM X H4) is a hereditary R(Cm)-order in Σ(Cm X Ht).

Z Z

Proof. (1) It is evident that c(CmxH4)^Λ(CmχH,). Hence we have

only to prove the second assertion. Now it suffices to show that Γ(H4)/c(H4)
^(Z/2Z)[X]l(X2+X+l), because Γ(CmχH,)=Z[ζm]®Γ(H4) and c(CwX#4)

Z

=Z[ξm]®t(H*) Define the ring homomorphism /: Γ(H,)->(Z/2Z)[X]/(X2+
Z

X+l) by f(l)=f(χ)=f(y)=ϊ and f(u)=Σ where X denotes the image of
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X in (Z/2Z)[X]l(X2+X+l). It is easy to see that / is an epimorphism
and Ker/=c(ίf4). Therefore / induces an isomorphism f:Γ(H4)lc(H4)-^
(ZI2Z)[X]l(X2+X+l). (2) Let p be a prime ideal of R(Cm). If 2ep, it follows
from (1) that c(CmχH4)^ coincides with the Jacobson radical of Γ(CmχH4)^.
Since c(Cm X H,\ is principal in Γ(Cm X #4)p, Γ(CW X H,\ is a hereditary R(Cm\-
order in Σ(CmxH4). On the other hand, if 2$p, then £ is unramified in
Γ(CW X #4) and so Γ(CW X H,\ is a maximal ^(C^-order in Σ(Cm X #4). Con-
sequently Γ(CmxH4) is a hereditary Λ(Cw)-order in Σ(CmxH4).

2. Nilpotent groups

We state without proof a result due to J. Milnor which will play an essential
part in this section.

Proposition 2.1 ([1], X, (1.10)). Let Σ be a semi-simple Q-algebra and let
Λ, Γ be Z-orders in Σ with Λc^Γ. Let c be a two-sided ideal of Γ contained in A
such that cΣ=Σ. Then there exists an exact (Mayer-Vietoris) sequence:

K,(A) -»KWΦKMc)-^(Γ/c) -> K0(A) - K0(Γ)®K0(Λlc) -> ̂ (Γ/c).

Let Σ be a semi-simple ^-algebra and let Λ, Γ be Z-orders in Σ with Λ^Γ.
Let ^Γ

Λ: C(Λ) -> C(Γ) denote the natural epimorphism induced by .Γ® . For
Λ

any ring A we denote by U(A) the group of all units of A.
In the following proposition we use the same notation as in § 1.

Proposition 2.2. Let E=CmxH be any special elementary group. Let
Ω(E) be a maximal R(E)-order in Σ(E) containing Λ(E). Then the map ψ^c

(g:
C(Λ(E))-+C(Ω(E)) is an isomorphism.

Proof. In the case where H=C2ι this is obvious. We first assume that
if Φίf4, C2/, SC2ι or that H=H4 and Q(ξm) is a splitting field for H4. By
(1.3) we have aHΩ(E)^Λ(E), and therefore we can apply (2.1) to Λ(E), Ω(E),

aHΩ(E). Then we get the exact sequence: K1(Ω(E))ΦKl(Λ(E)laH^(E))-^-^

K1(Ω(E)/aHΩ(E))-^K0(Λ(E))^KQ(Ω(E))®K0(A(E)/aHΩ Since, by
(1.1), Σ(E) is of locally split type, we have Ω(E)/aHΩ(E)^M2(R(E)laHR(E))
and so K^(E)/aH^(E))- U(R(E)laHR(E)). The inclusion map R(E)laHR(E)
<^Λ(E)laHΩ(E)<^Ω(E)laHΩ(E) induces a homomorphism φ: U(R(E)/aHR(E))^
Kl(Λ(E)/aHΩ(E))-^Kl(Ω(E)/aHΩ(E)) = U(R(E)laHR(E)). Then it is easy to
see that Im φ- U(R(E)/aHR(E))2. However, since R(E)laHR(E)=Z[ζm]/2Z[ζm],
the order of U(R(E)laHR(E)) is odd, hence U(R(E)laHR(E))2=U(R(E)/aHR(E)).
Therefore φ is an epimorphism and then so is /. Since Ker ψ$l»= Ker h=
Img, this implies that ψ$|>: C(Λ(E))-+C(Ω(E)) is an isomorphism.
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Next assume that H=SC2ι. In this case we have Σ (E)^ M2(K(E)).
Define Ω'(E)=EndjχE,(A(E)(y+l))^M2(R(E)). Then we can regard Ω'(E) as
a maximal Λ(£)-order in Σ(E) containing Λ(E). Because C(Ω(E)}^C(Ω'(E))

we may assume that Ω(E) = Ω'(E). Now we have

a,b,c,deR(E)}^Ω(E)=M2(R(E)). Hence 2Ω(E)^Λ(E) and Λ(E)/2Ω(E)

= {[f*2 9 * ϊ>^R(E)βR(E) }. Applying (2.1) to Λ(£), β(E), 2β(£), we get

the exact sequence: K1(Ω(E))φK1(A(E)l2Ω(E))^K1(Ω(E)/2Ω(E))-K0(A(E))

- >K0(Ω(E))®K0(Λ(E)/2Ω(E)). Since Ω(E}βΩ(E) = M2(R(E)βR(E)\ we

have K,(Ω(E)βΩ(E))^U(R(E)βR(E)). We see that the composed map
U(A(E)βΩ (E)) -> Kl(Λ(E)βΩ(E)} -+ K,(Ω(E)βΩ (E)) « U(R(E)/2R(E)) coincides
with the determinant map det: U(A(E)/2Ω(E)) (^M2(R(E)/2R(E))-+U(R(E)I

2R(E)). As in the preceding case, in order to show that ψj(

(g: C(A(E))->
C(Ω(E)) is an isomorphism, it suffices to show that det: U(A(E)/2Ω(E))-+

U(R(E)/2R(E)) is an epimorphism. Let be oί the image of aH=χ2— 1 m

R(E)/2R(E) and let t=2l~\ Let w be any element of U(R(E)βR(E)). Then

we can write ΰ=a0+a1ά+ά2a
2-\ ----- h<z2ί_1ff2ί~1, af.eZ[fw]/2Z[fJ. Since m is

odd, there exist 5,, c, eZ[?J/2Z[?J such that (fto + fc^H ----- hδ*-ια'"1)2 =
^0+^^2+...+^_2α

2ί-2and(c0+?1α+...+cί_1α
ί-1)2-5+^^

Let a=50+?β)+*ι+?ιαH ----- ̂ -i+^-i^'1 and 6=

Then we have U=ά2+b2x2=detl^2 Jl. This proves that det: U(Λ(E)βΩ(E))

-> U(R(E)/2R(E)) is an epimorphism.

Finally we will treat the case where H=H4. We have C(Ω(E))^C(Ω'(E))

for any other maximal order Ω'(E) in Σ(E) containing A(E). Hence we may

assume that Γ(E)^Ω(E). By (1.4) Γ(E) is a hereditary order in Σ(E) and so,

according to [4], (2.4), ψ^(g: C(Γ(E))-*C(Ω(E)) is an isomorphism. Because

^(I^Ψfcl^'^cf^ Ψ^(I) ίs an isomorphism if and only if -ψ ftfg is an isomor-
phism. If Q(^w) is a splitting field for /f4, it has already been shown that

Λ/ΓjcI) is an isomorphism, and hence ^cl) is also an isomorphism. Assume

that ^(?w) is not a splitting field for /ί4. Now it suffices to show that ψ$fj:

is an isomorphism. Applying (2.1) to Λ(Έ), Γ(E), c(E),

we get the exact sequence: K1(Γ(E))®K1(A(E)/c(E))-^Kl(Γ(E)/c(E))-^

KQ(A(E)) - » K,(Γ(E))®K0(Λ(E)lc(E)). Since by (1.4) Γ(E)/c(E)^ ZβZ®

Z[ζm}®Z[ζ,l the order of U(Γ(E)/c(E)) is odd and K^E^E))^ U(Γ(E)/c(E)).
z

Therefore the order of KerA^Im^ is odd. Because Kerψ^f^KerA, it

follows that the order of Ker ι/r£(

(f \ is odd. It is well known that Q(ξ3) is a
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splitting field for H4, and so we have 3^m. Let E=C3χE. Then we have
Λ(E)=Z[ζz]®Λ(E) and Γ(E)=Z[ζ3]®Γ(E). Therefore we can construct the

z z

commutative diagram:

^^ΓCE)

C(Λ(E))

C(Λ(E))

where φΛ and φr denote the homomorphisms induced by Z[ζ3]® . Since
z

Q(ζ3m) is a splitting field for H4, -ψ^fp is an isomorphism as shown above and
AtE)

hence Ker ψ^I) <Ξ Ker φΛ. Composing φA with the restriction map C(Λ(E))^>
C(Λ(E))y we see that the exponent of Ker φΛ is at most 2 and therefore the order
of Ker ψ$|ϊ is a power of 2. However the order of Ker -ψ f̂ J is odd. Thus
we must have Ker ψ$g=0. This shows that ψ^g: C^E1)) -> C(Γ(E)) is an
isomorphism, which completes the proof of the proposition.

We give, as a slight generalization of [4], (2.5),

Lemma 2.3. Let Π be a finite group. Let Λπ be a Z-order in QΠ contain-
ing ZΠ which is a quasi-permutation Π-module and let Ωπ be a maximal Z-order in
QΠ containing Λπ. Assume that ^ΓΩ

Λ

Π\ C(ΛΠ)-^C(ΩΠ] is an isomorphism. Then

&(ZΠ)=C(ZΠ).

Proof. Let [SI]—[ZΠ] be an element of C(ZΠ). Since ψ ̂ g ίs an isomor-

phism, we have ^,®ΛΠ®ΛΠ^ZΠ®ΛΠ®ΛΠ. There exists an exact sequence:
Q-+ΛΠ®ΛΠ-+S-^>S'-*Q where 5 and S' are permutation 77-modules. Then we
easily see that *&®S®S'^ZΠ®S®S'. This shows that [3ϊ]-[Z77]eΞ<>(Z77).

We are now ready to prove our main theorem.

Theorem 2.4. Let Π be any finite nilpotent group. Then Cq(ZΠ)=C(ZΠ)
= C«(ZΠ).

Proof. It has been proved in [4], (3.2) that C9(ZΠ)=Cg(ZΠ). Hence we

only need to show that C«(ZΠ)=C(ZΠ). Let QΠ=^Σf be the decomposition
i = l

of QΠ into imple algebras. Applying [6], (14.3) or (14.5) to every Σ{ we
can find a subgroup Π{ of Π and a simple component Σ/ of £λ/7t such that
EndΣ'^QΠξQΣi^^Σj and /7t /Ker(Π^Σ/) is a special elementary group. Let

1 QΠi

E^Πf/Ker^^Σ/). Then Σ/ can be identified with Σ(E{). By (1.2) Λ(Et)
is a quasi-permutation /7t-module, and therefore, if we put Li=ZΠ®A(Ei)y

ZΠi

then Li is a quasi-permutation 77-module. Let Ω(E£) be a maximal JR(£'ί )-order
i) containing A(E{). Define ^f=End><CΛi)(L/) and βί=
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Then Λf and Ω{ are JR(JE", )-orders in Σt with A^Qf. Since L{ is a free

module, Λ, (resp. Ωg) is Morita equivalent to Λ(Ei) (resp. £?(£",-)), and hence β,

is a maximal /?(l?f )-order in Σf. Furthermore we see that Λ{ is a quasi-per-

mutation ///-module. By the Morita theorem we have C(At)^C(A(E{)) and

C(0,)»C(β(£,)) However, according to (2.2), ψ$f{>: C(Λ(Ei))^>C(Ω(Ei)) is
an isomorphism. Therefore ψ^j: C(Λi)->C(Ωi) is also an isomorphism. We

further put Λ/7=ΘΛ and ΩIj=&)Ωi. Then Λ# and Ωπ are Z-orders in O//
»=1 1=1

with ZΠ^Λπ^Ωπ and Ωπ is a maximal order in QΠ. Here Λ// is a quasi-

permutation //-module and ^Ω

Λ

Π: C(ΛΠ)^C(ΩΠ) is an isomorphism. Thus we

conclude by (2.3) that Cg(ZΠ) = C(ZΠ), which completes the proof of the

theorem.

3. Symmetric groups

Let Π be a finite group and let Ωπ denote a maximal order in QΠ con-

taining ZΠ . For a /7-module Λf we denote by \rγM \ the number of all isomor-

phism types of //-modules, L, such that, for each prime p\ |// | , LP^MP and
ΩΠL®ΩΠ^ΩΠM®ΩΠ. For each prime p\ \Π\ we denote by //c/0 a p-Sylovt
subgroup of Π.

We here prove the following proposition which will play a central part in
§3 and §4.

Proposition 3.1. Let Π be a finite group which is a direct product of a sub-

group Π1 and a p-subgroup Pr . Assume that Πr is a semίdirect product of a cyclic
group C of order prime to p by an abelian p-group P such that the action of P on C
induces an isomorphism ofP onto (Aut C)(/0 In the case where p=2, assume further

that P' is of split type over Q. Then C (ZΠ)=C(ZΠ) and B(QΠ)=G(QΠ).

Proof. In order to show that Cg(ZΠ)=-C(ZΠ) it suffices by [4], (2.2) to
show that there exists a Z77-faithful, quasi-permutation 77-module N with
\γN\=l. We will construct such 77-modυle N. Let C=<σ> and n=\C\.

Let n=q[ιqϊp ql* be the decomposition of n into primes where q19 q2, "> <?* are

distinct primes. Then | Aut C \= Π q\ί~l(qi— 1). Here we may assume that
ί =1

p\qi— 1 for lίg/ίg s butp^qf—l for s-}-l<^i<^t. For every l<^i^s let c{ be a
positive integer such that pci \ #,— 1 but pc^Xqi—\ . Since QC/(Φn(σ))^ Q(ξn)

-Q(ζ^)Q(M' Q(M we have P^ (Aut O)^ = (A\ιtQQ(ςqιiί)Q(ξgj^
Q(ζgt

l*)Yp\ and therefore P can be expressed as the direct product of the cyclic
groups <τ, > of order pci f , 1^/g s, such that <7ί>/Q(ξgiii)=(A.utQQ(ζg.ιi)Yp:> but

/)= W for y Φί, i ̂ y ̂ t.
We now have QΠ^®QΠ/(Φm(σ)). We easily see that QΠ/(Φn(σ))=

m\n
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QΠ'l(Φn(σ))®QP' and Z///(ΦΛ(σ))®ZP'. Define Σn=QΠ'l(ΦJ(σ)) and Λn=
Q Z

ZΠ'l(Φn(σ)). Then Λn is a quasi-permutation //'-module (cf. [4]). Because
P=(Aut Cγp\ Σn (resp. Λn) is isomorphic to the trivial crossed product of Q(ζn)
(resp. Z[fJ) and P. Further define Ln=An\Λn(τ,-\, τ2-I, ..., τ,-I)=Z|£J.
Then LΛ is also a quasi-permutation //'-module and EndZIJ'(Ln)^Z[ζn]

p. Let
d

be the decomposition of QP' into simple algebras. For each

denote by P* the center of Σ'k and by /?£ the ring of all algebraic
integers in F'k. In the proof of (2.5) we have shown that there exists a quasi-
permutation P'-module Li such that EndZP'(L'k)=R'k. Since ρ\n, Q(ζn)

p®F'k
Q

is a field and Z[ξn]
p®R'k is the ring of all algebraic integers in Q(ζn)

p®F'k.

We have EndQΠ(QLn®QL'k)^Q(ζn)
p®F'k and Endzπ(LM®L'k)^Z[ζn]

p® /?£,

and therefore, by [3], §3, (£')> 17/^/1=1. Let ΛΓΛ=0(LΛ®Lί). Then JVΛ
# * * = 1 Z

is a Z///(ΦΛ(σ))-faithful, quasi-permutation //-module with \Ί Nn\ =1

Let m|w, wO and let w=?ίi/ ?5j/?Jj// ?5;// be the decomposition of m
into primes where l^iί< <ir^s and s + lίίjι< <ju^ίt We define

Πm=Π !<?»>, CM^C/<σw>=<O, P^= Π <τ,,> and P4- ( Π <τ,» X P'.
*-l ίΦΊ.-.ίr

Further let //4 be the semidirect product of Cm by Pm with the action of Pm

on Cw induced by that of P on C. Then Πm can be identified with the direct
product of Πf

m and P ,̂ and the action of Pm on COT induces an isomorphism of
Pm onto (Aut Cmy*\ We here have ZΠI(Φm(σ))^ZΠm/(Φm(σm)). Therefore,
applying the preceding method to //„,, we can construct a Z7//(Φm(σ))-faithful,
quasi-permutation //-module Nm with \γN | — 1. If we put N=@Nm, then ΛΓ

m m\n

is a Z//-faithful, quasi-permutation //-module with \γN \ =1 as required. This
proves that C«(ZΠ)=C(ZΠ).

Let V be any simple ^//-module. In the above proof we see that there
exists a quasi-permutation //-module L such that QL^ V. Hence the class of
V in G(QΠ) is contained in B(QΠ). This shows that B(QΠ)=G(QΠ), which

completes the proof.

Lemma 3.2. Let Sn be the symmetric group on n symbols. Let E be a
maximal hyper elementary subgroup of Sn at a prime p. Then:

E^Hx S%> X S% x - x S%> ,

where H is a semidirect product of a cyclic group C of order prime to p by an abelίan
p-group P such that the action of P on C induces an isomorphism of P onto
(Aut C)c/>), and every Slf denotes the symmetric group on /,- symbols.

Proof. This lemma may be well known. However, for completeness, we
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will give a proof of it. Since E is hyperelementary at p, there exists a cyclic
normal subgroup C=<(<r)> of E of order prime to p such that E/C is a ^>-group.
We have E ^NSn(C) and therefore E is conjugate to C NSn(Cy» in NSn(C) be-
cause Z? is maximal hyperelementary. Let σ=σjrι) σ(

z![ι)σjr2) σζ2) σ jr/) σζ')

be the decomposition of σ into cycles which do not contain common symbols
where w^r1>r2> « >r^l and every σ(/V is an recycle. We denote the Euler
function by φ( ). Let m=\C\ and let {k1=ly k2, •• ,Λf,(m)} be the set of all
integers k such that (A, »/)=! and l^k<m. Then, for every kh, l^h^φ(m),
there exists τkh<=Sn such that T^V/'V^^σ'/'')** for all l^i^ί and l^j^lf.
Put *=<σ?ι>, -, <>, -, σf ", -, <<>, r^, ..., r^^ciΛ^C) and P=*™

Then the action of P on C induces an isomorphism of P onto (Aut C)c/0.
Further, for each l^/<^£, let Sf. denote the symmetric group on 7, symbols
{σir<), σ2r<), •••, σ^'0}. Each S,. can be regarded as a subgroup of NSn(C), and
we have NSn(C)=Kx Sgl X S/2 x - x S,, . Hence NsJ(Cy»=PxS% xS% X -
χS<f, and so JSeC-^iCJ^eCPxS^xS^x-.-xS^. This concludes
the proof of the lemma.

We now come to the main theorem of this section.

Theorem 3.3. Let Sn, n^l, be the symmetric group on n symbols. Then

Proof. Since 0 is a splitting field for Sn, we have C(£?Sjι) = 0, hence
C(ZSn)=C(ZSn). Therefore we only need to show that Cq(ZSn) = C(ZSn).
According to the induction theorem ([4], §1), it suffices to prove that, for every
maximal hyperelementary subgroup E of Suy C9(ZE) = C(ZE). However Q is

also a splitting field for S?\ /^ l (e.g. [8], (5.9)). Therefore this follows
immediately from (3.1) and (3.2).

REMARK 3.4. (1) C(ZSn) = 0 for n^4. (2) For every odd prime p

\ - \ a n d

Proof. The assertion (1) is well known. We will prove the assertion

(2) only on Sp because we can prove the one on Sp+1 in the same way. Let σ

be a p-cycle in Sp and define K=NSp «o"». Then K can be expressed as a

semidirect product of the cyclic subgroup <(σ^> by a cyclic subgroup H of order

p — 1 such that the action of H on <σ> induces an isomorphism of H onto

Aut <σ>. We have NSp(K)=K, and, if K^p^Kp, p(ΞSp, then K Π ρ~'Kp^

μ'Ήμ for some μ^K. Let/: C(ZH)-*C(ZK) and g: C(ZK)-+C(ZSP) be

the natural homomorphism induced by ZK ® and ZSP ® , respectively.
ZS ZK.

Using the Mackey's subgroup theorem we see that Ker^cilm/, and so
I C(ZK) \ I \ C(ZH) \ ̂  \ C(ZSP) \ . By virtue of [7], (1.2) we have | C(ZK) \ =
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±-(p-\)\C(ZH)\. This shows that \C(ZSp)\^(p-\).
£ Δί

4. Alternating groups

In this section we will be concerned with alternating groups.

Proposition 4.1. Let Any n^3, be the alternating group on n symbols. Then
both C(ZAn)l&(ZAn) and G(QAn)/B(QAn) are 2-groups.

Proof. Let E' be a maximal hyperelementary subgroup of An at a prime p.
Then there exists a maximal hyperelementary subgroup E of Sn at p such that

E'=EΓ\An. We can write E=CP where C is a cyclic normal subgroup of E

with/) ^|C I and P is a ^-subgroup of E. Assume that p is odd. If \C \ is
odd, then E' = E and therefore, by (3.1) and (3.2), Cq(ZE'} = C(ZE'} and
B(QE')=G(QE'). If |C I is even, then C is expressible as a direct product of
a subgroup fCx with 2 >μCJ and a 2-subgroup C2. Let C^C2{\Ef . Then
E'-^PxC/ and so, again by (3.1), C«(ZE')=C(ZE') and B(QE') = G(QE').
Next assume thatp=2. Then the Artin exponent of E' is a power of 2 ([9], §7),
and therefore, by the Artin induction theorem ([4], §1), both C(ZE')/C«(ZE')

and G(QE')/B(QE') are 2-groups. Applying the Witt-Berman induction theorem

([4], §1), we can conclude that both C(ZAn)IC\ZAn) and G(QAn)/B(QAn) are
2-groups.

REMARK 4.2. (1) C(ZAn) = 0 for n^5. (2) For every prime p with ρ=3

4 \C(ZAP)

withp=lmod4

mod 4 \C(ZAP)\ ^-(p—1) and \C(ZAp+l)\ ^— (p-l) and for every prime p

l .

=C(ZA7)=C«(ZA7)=C(ZA7)*Q and C«(ZA8)=C(ZA8)^C«(ZAB)=C(ZA6).

Proof. The assertion (1) can easily be shown, using the induction theorem,
and the assertion (2) can be shown in the same way as in (3.4), (2). The assertion
(3) follows from the induction theorem and [4], (5.5).

Lemma 4.3. Let 77=<V> be a cyclic group of order n and let n=p[ιpl

2

2 plt

be the decomposition of n into primes where ply p2> ~,pt are distinct primes. Let
%x and X2 be rational characters of Π. Assume that, for every proper subgroup Uf

Then:

/v 1 \ /v 1 \ /v / \ v /'^-\\ TT / 1 1 \v^ι> A//J — ̂ A,2, in) — (ΛtΛσ")—&2\σ)) 111 A />
ί = l \ p{ /

where lπ denotes the one dimensional trivial character of Π.

Proof. For every m | n let am denote the character of Π afforded by the
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irreducible QΠ-module Q(ζm). Then we can write

Restricting both sides to the subgroup <<r**>, we see that cm=0 when p\\m.

Hence X1—X2= Σ cm&m Furthermore, restricting both sides to the sub-

group <σ^;<>, we see that ^+(/>,— l)cp.=Q and CP^PJ P) +(Pi—fypiph_pj =0

whenever ^>, <$ {p/19 pj2, •• ,^ys} Clearly am(σ) coincides with the Mϋbius
function μ(m). Therefore we have

•= Σ pcmμ(m)

-+•••}p,-l isfiSs/ (Pί-l)(p.-l)

However (%,, !#)— (%2, 1/7) = ( Σ ^«w, al) = cl. Thus we get (%„ !//)-

Let 5M, ^4M be the symmetric, alternating group on n symbols, respectively.
Let In denote the image of the restriction map G(QSn)^G(QAn) and let

τ=(l, 2)eSΛ. For X<EG(£L4M), %$/* if and only if %TΦ%. Therefore
G(QAn)/In is a free abelian group generated by all the classes of irreducible
rational characters, %, of An with %TΦ%. Every irreducible rational character %

of An with %TΦX is absolutely irreducible. Hence there is a one to one corres-

pondence between pairs, (%, %τ), %TΦ%, of irreducible rational characters of An

and partitions,

n = c1+ί:2H ----- \-cty (*)

/
such that £i<£2 <•"<£/> 2^^- and Π ^t is square. Let % be an irreducible

ί = l

rational character of An with %TΦ% and let n=cl+c2-\ ----- \-ct be the partition

corresponding to (%, %τ). Define σχ=(l, 2,. ,c1)(^1+l,- ,^1+^2) (Σι^+l, ,

Σ ^») and let Cχ, CJ denote the conjugate classes of An containing σx, τ<rχτ,
/ = !

respectively. Then we have

%(σ) = %τ(σ) = — %s»(σ) for every σ φ Cχ U Q ,

τ
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t
where d denotes the positive integer with </2=Π Q Let ίfx=<(σχ)>, let K( be

ι = l

a 2-Sylow subgroup of NSn(H%) (=NAtt(H^) and put K^=H%Kί. Let % be the
odd part of φ(d). Then \Hy> \ =d2 and \K% \ =φ(d)/n^. We can here prove

Lemma 4.4. Let % be an irreducible rational character of An with

Then n* %—\

Proof. We may assume that χ(σx)=— (!+</) and %τ(σx) =—(!-</). For

every proper subgroup Rr of #x, %/#'=%τ/#' and %(<rx)— κτ(σx)==έ/. Therefore
by (4.3) and the Frobenius reciprocity theorem we get (%, 1/h)— (%τ, !#")=

(*/#x, l*χ)-(%τ/#χ> 1*XH ?>W> and so (%, ̂ ) %-l^)-(%τ,V(rf) X-4«).

Since generators of proper subgroups of H% are not of type (*), for any
irreducible rational character %' of An with %'ΦX, %τ we have (%', φ(d) X— 1£»)

=(%/T,^)(rf).%-l^). Therefore ^(rf) %-l^e/Λ. On the other hand, ap-

plying the Brauer coefficient theorem ([2], Satz 1) to K%, we get

where H' runs over all cyclic subgroups Φ#x of K*. S^nce generators of sub-
groups, ίf'Φ/ίx, of -ίΓx are not of type (*), we have lA»^In and so ̂  bH'

H - f-g f

Therefore \H*\ Λfy- \K*\ l^e/.. Thus we have |ίCχ|(«χ.%- 1^») =

Because G(QAn)/In is torsion-free, this shows that wx %— l^»

We now establish the following:

Theorem 4.5. L£/ ^4M, n^3, be the alternating group on n symbols. Then
B(QAn)=G(QAn).

Proof. Since B(QSn)= G(QAn) as is well known, we see that In^B(QAn).
It follows immediately from (4.4) that [G(QAn)ι B(QAn)] is odd. However, by
(4.1), G(QAn)IB(QAn) is a 2-group. Thus we
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