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In this paper we will continue the investigation of integral representations
of finite groups done in [3], [4] and [5]. We will here be concerned mainly
with the projective class group of nilpotent and symmetric groups.

Let X be a (finite dimensional) semi-simple Q-algebra and let 4 be a Z-order
in ¥. We will mean by the projective class group of 4 the class group defined
by using all locally free, projective 4-modules and denote it by C(4).

Let IT be a finite group. A finitely generated Z-free II-module is briefly
called a [I-module. A IT-module is called a permutation /7-module if it can be
expressed as a direct sum of {ZII|Il;} where each II; is a subgroup of II.
Further a IT-module M is called a quasi-permutation /7-module if there exists
an exact sequence: 0—>M—.S—.S"—0 where S and S’ are permutation II-
modules.

As is well known, the projective class group C(ZIT) of the group algebra ZI1
can be written as follows:

C(ZIT) = {N]—[ZHI]| A(=0) is a projective ideal of ZII} .
We define the subgroups C(ZII), C%(ZII) and C%(ZII) of C(ZII) as follows:

€z = {A]—-[ZzmMeCZO)| APX=ZIIPDX for some IT-module X},

CUZIl) = {N]—[ZHeC(ZIl)| ADS,=S, for some permutation
IT-modules S, and S;},

CuZIl) = {N—[ZHeC(ZI)| ADS=ZII DS for some permutation
II-module S}.

Let 2;; be a maximal Z-order in QII containing ZII and let vr;: C(ZIT)—C(2y)
be the eplmorphlsm induced by .Q”® Then the sequence 0—C(ZIT)—

c(zi ) - C(Q,,) —0 is exact.
In [3] and [4] we raised the following problem:
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“For a finite group I C(ZIT) = CY(ZIT)(= CY(ZIT))?’

and showed that the answer to this is affirmative for a fairly extensive class of
finite groups but it is negative for the alternating group on 8 symbols.
In §2 we give

[11 If I is a finite nilpotent group, then CY(ZI)=C(ZI1)=C*(ZII).

A finite group 7 is said to be of split type over Q if every simple com-
ponent of QII is isomorphic to a full matrix algebra over its center. In the
previous paper [4] we proved the assertion [I] under the additional assumption
that /7 is of split type over Q. We will prove [I], using the Mayer-Vietoris
sequence in algebraic K-theory ([1]).

Let S,, A, denote the symmetric, alternating group on 7 symbols, respec-
tively. In §3 we give

(1] C%ZS,) = C(ZS,) = CYZS,) = C(ZS,)  for any n=1.

Let G(QII) be the Grothendieck group of the category of all finitely
generated QI7-modules and define B(QIT) to be the subring of G(QIT) generated
by all the classes of permutation QI7-modules. It is well known that B(QS,)=
G(QS,) for any n=1. However the following result on the alternating group,
which will be proved in §4, seems new.

[III] B(QA4,) = G(QA,) for any n=3 .

We would like to express our gratitude to H. Hijikata for his valuable
suggestion, and to I. Reiner and S. Ullom for their helpful comments.

1. Some lemmas on special elementary groups

Let Cy, [ =0, be the cyclic group of order 2/, i.e., Czl=<0'|0'zl=1>. Let
H,,1=2, be the (generalized) quaternion group of order 2+, i.e., Hy =<{o, 7| o
=I, 0¥ =7, 77'%6T=0"") and let Dy, [=2, be the dihedral group of order
241 je., Dy={a, T|¢¥ =1"=I, 77'¢r=0"">. Define the groups SD, and
SC,i, 1=3, of order 2/** by SDy=<o, 7|c* =7'=1, 7 'er=0""**""> and
SCy={a, 7|o? =7=I, 77 ler=0"*"",

Let H denote one of the groups Cy, Hy, Dy, SDy and SC,. Define
3(H)=QH|/(c* "+1) and A(H)=ZH/(c* '+1) and denote the images of ¢ and
7 in A(H) by x and y, respectively. Put

O(x) (resp. Z[x]) when H=Cy
O(x+x7") (resp. Z[x+x"']) when H=H, or D,
O(x—x7") (resp. Z[x—x"']) when H=S8D,
O(x% (resp. Z[x%]) when H=SC, .

K(H) (resp. R(H)) =
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Then X'(H) is a central simple K(H)-algebra and is the unique H-faithful simple
component of QH, and A(H) is an R(H)-order in 3J(H). Further let

2 when H=C,= {I}
x—1 when H=C,, =1
oy =4 x+x'—2 when H=H, or Dy

x—x* when H=SD,

x*—1 when H=SCy
and put p(H)=ayxR(H). Then p(H) is the unique prime ideal of R(H) con-
taining 2 and R(H)/p(H)=Z|2Z.

Let K be an algebraic number field and let X' be a central simple K-algebra.

We say X' to be of split type if it is isomorphic to a full matrix algebra over K.

For a (finite or infinite) prime p of K we denote by IA{p the completion of K at
p and put 2)=K,®F. We say 2 to be of locally split type if, for every finite
K

prime p of K, ﬁ’p is isomorphic to a full matrix algebra over KAP.
Lemma 1.1. (1) If H=Cy, D,, SDy or SCy, X(H) is of split type.
(2) 2(Hy) is of locally split type if and only if 1=3.

Proof. The assertion (1) is evident and the assertion (2) may be well
known. But for completeness we here give a proof of (2). It is noted that
J(Hy) is the quaternion algebra over the real field K(Hy). Accordingly, for a

AN N
prime p of K(Hy), E(Ijzr\)pzMz(K(sz )p) if and only if the equation X*+ ¥*+1
=0 has a solution in K(H,)y, i.e., if and only if <—1’ =

p
—1, —1>=1. On the other hand,

1):1. For every finite

prime b of K(Hy) with p3=p(H, ) we have (
-1, —1

for every real prime p of K(H,) we have ( ):—1. All infinite primes

of K(H,) are real and the number of them is 2’72 Since [I (;I;J—-i)zl
P

where b runs over all primes of K(H,), we see that (—Dz}{_)l):l if and only
Py
if 1=3.

For any positive integer n we denote by ®,(t) the n-th cyclotomic poly-
nomial and by &, a primitive n-th root of 1.

From now we assume that m>1 is an odd integer. Let C,, be the cyclic
group of order m, i.e., C,,=<u|p™=I>. Define K(C,,)=0C,,/(P,,(1))=0(,s)
and R(C,,)=ZC,/(®.(r)=Z[t,.]- A finite group E is said to be a special
elementary group if E=C,,Xx H where H=Cy, Hy, Dy, SDy or SC;. Let
E=C,, x Hwhere H=C,, H,:, D,;, SD,: or SC,. Define Z'(E):K(C,,,)(ZJE(H)
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= QE/(®,,(r)), ®,(cs)) and A(E)=R(C,,,)§)A(H )= ZE|(®,,(1), @z(c)), and
further put K(E):K(C,,,)?K(H) and R(E)=R(C,,,)§)R(H). Since m is odd,

K(FE) is a field and R(E) is the ring of all algebraic integers in K(E). We see
that 3(E) is a central simple K(E)-algebra and is the unique E-faithful simple
component of QF and that A(E) is an R(E)-order in 3(E).

Lemma 1.2. For any special elementary group E, A(E) is a quasi-permuta-
tion E-module.

Proof. Let E=C,,x H where H=C,, H,, D,;, SD,: or SC,. Then we
have A(E)=ZE|(®,,,(cn)). Hence we can prove the assertion by the argument
using a zigzag path as in the proof of [3], (2.3).

Lemma 1.3. Let E=C,, <X H where H=H,,Dy or SD,. Let 2(E) be a
maximal R(E)-order in 2(E) containing A(E). Then ayS2(E)C A(E).

Proof. For brevity we write K=K(E) and R=R(E). Now we have (E)
=K+ Kx+Ky+Kxy and A(E)=R+Rx+Ry+Rxy. Assume that H=H,.
Let z=x*"". Then 3(E)=K+Kz+Ky+Kzy, and 2>=y’=—1 and zy+yz=0.
Denote by trd the reduced trace of X(E). We note that, for any element
v=a,+a,2+a,y+azy of 3(E), a;K, we have trd(v)=24,. Then we can find
the K-basis of 3(E) which is dual to {1, x, y, xy} with respect to trd as follows:

X1 o x—uxt _—(x*=1)y u_—(x—x‘l)y. It is easy to

_x"—l—x‘z—Z’ Tttt 2 xrpx2 2" xtpx22
see that au;,eA(H), for 1<i<4. Since trd(2(E))SR, we have Q(E)< Ru,+
Ru,~+Ru,+ Ru, and hence ayQ(E),SA(E),. It is obvious that 2(E),= A(E),
for any prime p=+=2. Thus we have ay2(E) S A(E).

For the case where H=D, or SD, we can prove the assertion in a similar
manner.

We here consider the case where E=C,,x H,. Let uzé(l—}—x—i—y—}-xy)

€3(H,)(C 2(E)) and put I'(E)=A(E)+R(C,)u. Let ¢(E)=I"(E)(1+x)(=(1+%)
I'(E)).

1

Lemma 14. (1) ¢(C,xH)SA(C, x H) and I'(C,xH,)[c(CpnxH,)==
Z/2Z§Z[§,,,]®Z[§3]. (2) I'(C,nx H,) is a hereditary R(C,,)-order in 3(C,, X H,).

Proof. (1) It is evident that ¢(C,,x H,)SA4(C,,x H,). Hence we have
only to prove the second assertion. Now it suffices to show that I"(H,)/c(H,)
=(Z[2Z)[X]/(X*+X+1), because ['(C,,x H)=Z[{,JQI'(H,) and ¢(C,, X H,)

3

=Z [§m]§c(H4). Define the ring homomorphism f: I'(H,)— (Z[2Z) [ X]/(X*+
X+1) by f(1)=f(x)=f(»)=1 and f(u)=X where X denotes the image of
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X in (Z)2Z)[X]/(X?+X-+1). It is easy to see that f is an epimorphism
and Ker f=c(H,). Therefore f induces an isomorphism f: I'(H,)/c(H,)—
(Z2Z)[ X][(X?*+X+1). (2) Letdp be a prime ideal of R(C,,). If 2&p, it follows
from (1) that ¢(C,, X H,), coincides with the Jacobson radical of I'(C,, X H.,),.
Since ¢(C,, X H,), is principal in I'(C,, X H,),, I'(C,, X H,), is a hereditary R(C,,),-
order in X(C,,xH,). On the other hand, if 2&p, then p is unramified in
I'(C,x H,) and so I'(C, x H,), is a maximal R(C,,),-order in 3(C,,x H,). Con-
sequently I'(C,, X H,) is a hereditary R(C,,)-order in 3(C,, X H,).

2. Nilpotent groups

We state without proof a result due to J. Milnor which will play an essential
part in this section.

Proposition 2.1 ([1], X, (1.10)). Let 3 be a semi-simple Q-algebra and let
A, I" be Z-orders in 3 with ACI". Let ¢ be a two-sided ideal of I" contained in A
such that cX=2%. Then there exists an exact (Mayer-Vietoris) sequence:

K(4) = K(IDK(4]e)— K(I'[e) = K (4) = K (I DK (4¢) > K(I[c) .

Let X be a semi-simple Q-algebra and let 4, I" be Z-ordersin 3 with ACT".
Let 4j: C(4)— C(I") denote the natural epimorphism induced by I'®-. For
4

any ring 4 we denote by U(A4) the group of all units of A4.
In the following proposition we use the same notation as in §1.

Proposition 2.2. Let E=C, X H be any special elementary group. Let
AE) be a maximal R(E)-order in 3(E) containing A(E). Then the map V5 :
C(A(E))— C(82(E)) is an isomorphism.

Proof. In the case where H=C, this is obvious. We first assume that
H=H,, Cy, SCy or that H=H, and Q(¢,,) is a splitting field for H,. By
(1.3) we have ayR(E)SA(E), and therefore we can apply (2.1) to A(E), 2(E),

ap2(E). Then we get the exact sequence: K,(2(E)) @Kl(A(E)/aHQ(E))—-f—+

() an@(E) S K A(E) —> K (@(E) DK (A(E)an(E). Since, by
(1.1), 3(E) is of locally split type, we have Q2(E)/ayS2(E)=M,(R(E)/anR(E))
and so K,(2(E)/au2(E))=U(R(E)/auR(E)). The inclusion map R(E)/azR(E)
CAE)|ay2E)S2(E)|ayl(E) induces a homomorphism ¢: U(R(E)/agR(E))—
K(A(E)|ag2(E))— K(2(E)|oan2(E))=U(R(E)/agR(E)). Then it is easy to
see that Im ¢=U(R(E)/ayR(E))>. However, since R(E)/anR(E)=Z[{,, /22 H],
the order of U(R(E)/axR(E)) is odd, hence U(R(E)/apR(E))’= U(R(E)/axR(E)).
Therefore ¢ is an epimorphism and then so is f. Since Ker Y45 = Ker h=
Im g, this implies that 98 : C(A(E))— C(£2(E)) is an isomorphism.
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Next assume that H=SCy;. In this case we have Y (E)=< M,(K(E)).
Define 2'(E)=Endgg(A(E)(y+1))=M,(R(E)). Then we can regard 2'(E) as
a maximal R(E)-order in X(E) containing A(E). Because C(2(E))= C(2'(E))

we may assume that Q(E)=£'(E). Now we have A(E)z{[?c—l;bd)xz fl—l__‘;]‘
a,b, ¢, deR(E)}QQ(E):MZ(R(E)). Hence 20(E)C A(E) and A(E)/22(E)
={[I‘—fx_z Z]{ a, be R(E)/2R(E) } Applying (2.1) to A(E), (E), 29(E), we get
the exact sequence: Ky(Q(E))@K,(A(E)22(E))-» K (0(E)22(E)-K (A(E))

-L o(Q(E)) D K(A(E)/22(E)). Since R(E)[22(E)= M,R(E)[2R(E)), we
have K,(2(E)/22(E))=U(R(E)/2R(E)). We see that the composed map
U(A(E)[22(E))— K (A(E)|2AE)) — K,(2(E)[22(E)) = U(R(E)/2R(E)) coincides
with the determinant map det: U(A(E)/22(E)) (S M,(R(E)/2R(E))— U(R(E)/
2R(E)). As in the preceding case, in order to show that 9&: C(A(E))—
C(2(E)) is an isomorphism, it suffices to show that det: U(A(E)/22(E))—
U(R(E)/2R(E)) is an epimorphism. Let be & the image of ay=x*—1 in
R(E)/2R(E) and let t=2'"°. Let # be any element of U(R(E)/2R(E)). Then
we can write #=a,+ &0+ a8+ +a,_,a*"', a;=Z[,,]/2Z[¢,.). Since m is
odd, there exist b;, ¢; € Z[£,,]/2Z[¢,,] such that (b,+ b,@+ - +b, @ )=
do+dza2+“'+dzt—2a’2t—zand (Eo‘l’ald‘l’"'+Et_1dt_l)2=d1+ﬁaaz+'“+dzt—1a2t—2-
Let a=(b,+,)+ (b, +c)a+--+B,_,+c,_)at ™ and b=c,4c,@+ -+, .
Then we have ﬁ=d2+l—)zx2=det[gx, 2] This proves that det: U(A(E)/22(E))
— U(R(E)/2R(E)) is an epimorphism.

Finally we will treat the case where H=H,. We have C(2(E))=C(2'(E))
for any other maximal order 2'(E) in Y(E) containing A(E). Hence we may
assume that I'(E)CQ(E). By (1.4) I'(E) is a hereditary order in Y(E) and so,
according to [4], (2.4), ¥#E: C(I'(E))— C(R2(E)) is an isomorphism. Because

UB =B B 9B is an isomorphism if and only if (& is an isomor-
phism. If Q(t,) is a splitting field for H,, it has already been shown that
V9B is an isomorphism, and hence (& is also an isomorphism. Assume
that Q(¢,,) is not a splitting field for H,. Now it suffices to show that \/(E:
C(A(E))— C(I'(E)) is an isomorphism. Applying (2.1) to A(E), I'(E), ¢(E),
we get the exact sequence: K,(F(E))EBKl(/1(E)/c(E))—Ji—)Kl(F(E)/c(E))i
K,,(/I(E))—fg K(I'(E)DK(A(E)[c(E)). Since by (1.4) F(E)/c(E)zZ/ZZ?
Z[{,,J(?Z[{a], the order of U(I'(E)/c(E)) is odd and K,(I'(E)/¢(E))=U(I'(E)[c(E)).

Therefore the order of Kerh~=Img is odd. Because Ker ¢4E=Ker#h, it
follows that the order of Ker //(f is odd. It is well known that Q(¢;) is a
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splitting field for H,, and so we have 3 ¥m. Let E=C,xE. Then we have
AE)=Z[£]JRAE) and I'(E)=Z[t,JRI'(E). Therefore we can construct the
z z

commutative diagram:

C(A(E)) —=> C(I'(E))
P4 ‘J/_ru’g) lfbl‘

CAE) —=> C(I(E))
where ¢, and ¢, denote the homomorphisms induced by Z[¢,)®-. Since
Z

O(Csm) is a splitting field for H,, 4" :g; is an isomorphism as shown above and
hence Ker 4B CKer ¢,. Composing ¢, with the restriction map C(A(E))—
C(A(E)), we see that the exponent of Ker ¢, is at most 2 and therefore the order
of Ker 4¢E) is a power of 2. However the order of Ker 48 is odd. Thus
we must have Ker ¢/(8=0. This shows that J/{&: C(A(E))— C(I'(E)) is an
isomorphism, which completes the proof of the proposition.

We give, as a slight generalization of [4], (2.5),

Lemma 2.3. Let II be a finite group. Let Ay be a Z-order in QII contain-
ing ZII which is a quasi-permutation II-module and let 2 be a maximal Z-order in
OII containing Ay. Assume that x}fﬁg : C(An)— C(2y) is an isomorphism. Then
Cyzm=C(zn).

Proof. Let [A]—[ZII] be an element of C(ZII). Since V31 is an isomor-

phism, we have APA;PAp=ZITPA;PAn. There exists an exact sequence:
0—>Ap®DA47—>S—>S’—0 where S and S’ are permutation /7-modules. Then we
easily see that APSPS'=ZIPSDHS’. This shows that [N]—[ZTCYZII).

We are now ready to prove our main theorem.

Theorem 2.4. Let II be any finite nilpotent group. Then CY(ZIT)=C(ZIT)
=CYZI).

Proof. It has been proved in [4], (3.2) that CYZII)=C%ZII). Hence we
only need to show that C4(ZI1)=C(ZII). Let QI =é92 ; be the decomposition

of QI into imple algebras. Applying [6], (14.3) or (14.5) to every X; we
can find a subgroup /I; of II and a simple component X, of QII; such that
Ends(QlI Q2 /)=2; and II;/Ker(I];,—2) is a special elementary group. Let
QIl;
E;=II;/Ker(Il,—~2). Then ¥/ can be identified with X(E;). By (1.2) A(E;)
is a quasi-permutation //;-module, and therefore, if we put L,=ZII Q A(E;),
zIl;

then L; is a quasi-permutation /7-module. Let 2(E;) be a maximal R(E;)-order
in 3(E;) containing A(E;). Define 4,=Endg,,(L;) and 2,=Endgg,(L:2(E;)).
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Then 4; and 2; are R(E;)-orders in X; with 4,CQ;. Since L; is a free A(E;)-
module, A;(resp. £2;) is Morita equivalent to A(E;) (resp. 2(E;)), and hence £,
is a maximal R(E;)-order in ¥;. Furthermore we see that /; is a quasi-per-
mutation /7;-module. By the Morita theorem we have C(4;)=C(A(E;)) and
C(2,)=C(2(E;)). However, according to (2.2), iE3: C(A(E;))—> C((Ey)) is
an isomorphism. Therefore 5i: C(4;)— C(£;) is also an isomorphism. We

further put An=é9A; and Q5= ESBQ,-. Then Ap and 2 are Z-orders in QII
i=1 i=1

with ZIIC Az <82y and 2y is a maximal order in QII. Here Ay is a quasi-
permutation /7-module and ¥41: C(47)—>C(2y) is an isomorphism. Thus we
conclude by (2.3) that C%(ZIT)=C(ZII), which completes the proof of the
theorem.

3. Symmetric groups

Let II be a finite group and let £; denote a maximal order in QII con-
taining ZII. For a IT-module M we denote by |v,,| the number of all isomor-
phism types of I7-modules, L, such that, for each prime p||II|, L,=M, and
QuLDRy=2y;MDR2;. For each prime p| |II| we denote by I’ a p-Sylow
subgroup of II.

We here prove the following proposition which will play a central part in
§3 and §4.

Proposition 3.1. Let II be a finite group which is a direct product of a sub-
group Il and a p-subgroup P’'. Assume that II’ is a semidirect product of a cyclic
group C of order prime to p by an abelian p-group P such that the action of P on C
induces an isomorphism of P onto (Aut C)® In the case where p=2, assume further
that P’ is of split type over Q. Then C4(ZI1)=C(ZII) and B(QI1)=G(QII).

Proof. In order to show that C{(ZI1)=C(ZII) it suffices by [4], (2.2) to
show that there exists a ZI/-faithful, quasi-permutation I7-module N with
lynl=1. We will construct such I7-module N. Let C=<{¢> and n=|C|.
Let n=g}1932+--¢;* be the decomposition of 7 into primes where ¢,, ¢,,***, ¢, are

distinct primes. Then |Aut C|= ]j g+ (¢;—1). Here we may assume that

plgi—1for 1=i< sbutp fq,—1 for s+1=<i<t. Forevery 1<i<sletc;bea
positive integer such that p°i|g;—1 but p%*' ¥'g;—1. Since QC|(P,(c))=0O(Lx)
= Q(Co)Qtays) ++ Q(Eos), we have P= (Aut C)» = (Auto O (¢an)Q (£ayt)
O(L4,4))?, and therefore P can be expressed as the direct product of the cyclic
groups <r;> of order pi, 1<i< s, such that <r5/Q(¢q)=(Aute O(¢e))® but
IO ays)= {1} for joi, 1= <t.

We now have QIT= %QH [(®m(c)). We easily see that QI [(P,(c))=
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OIT'|(@u(e))®QP’ and ZIT(@u(e)QZP'. Define Z,=QII'[(®y(<)) and du=

ZIl'|(®4(c)). Then 4, is a quasi-permutation II’-module (cf. [4]). Because
P=(Aut C)?», X, (resp. 4,) is isomorphic to the trivial crossed product of O(&,)
(resp. Z[¢,]) and P. Further define L,=A4,[4,(7,—1, 7,—1, .-+, 7,—1)=Z[{,]-
Then L, is also a quasi-permutation /7’-module and Endzn/(L,)=Z[¢,]°. Let

QP = éZ’ 4 be the decomposition of QP’ into simple algebras. For each
k=1

1<k=<d we denote by F; the center of X'/} and by R} the ring of all algebraic

integers in Fj. In the proof of (2.5) we have shown that there exists a quasi-

permutation P’-module L} such that Endzp/(L})=R;. Since p|n, O(¢,)° QF}
e

is a field and Z[¢,]P@R; is the ring of all algebraic integers in Q({.)F QF7}.
7 e
We have Endg;(QL,Q0QLj) == O(t,.)* ?F + and Endz;(L,Q L})=Z[¢.JFQR;,
Q Z z
and therefore, by [3], §3, (E), |7L,er;l=1. Let N,.=d€B(L,,®L§,). Then N,
z k=1 z

is a ZII|(®,(c))-faithful, quasi-permutation /7-module with |yy, |=1.

Let m|n, m<n and let m=g}!---gi”' ¢}{"---¢%" be the decomposition of m
into primes where 1=7,<--<7,<s and s+1=<;,<--<j,<¢t. We define
11,=1T Ko™, Co=CKo">=C0, Pp= T <> and Ph=( TT <rd)x P.

E= idiy,eed,
Further let 11}, be the semidirect product of C,, by P,, with the action of P,
on C,, induced by that of P on C. Then /I, can be identified with the direct
product of 11}, and Py, and the action of P,, on C,, induces an isomorphism of
P,, onto (Aut C,,)?. We here have ZIl |(®,,(c))=ZIl,,/(®Pn(c,s)). Therefore,

applying the preceding method to I7,,, we can construct a ZII|(D,,(c))-faithful,
quasi-permutation I7-module N,, with |y ~,l=1. If we put N=@N,,, then N

mn
is a ZII-faithful, quasi-permutation /7-module with |y, |=1 as required. This
proves that C{(ZI1)=C(ZII).

Let V be any simple QIT-module. In the above proof we see that there
exists a quasi-permutation //-module L such that QL=V. Hence the class of
V in G(QII) is contained in B(QII). This shows that B(QII)=G(QII), which
completes the proof.

Lemma 3.2. Let S, be the symmetric group on n symbols. Let E be a
maximal hyperelementary subgroup of S, at a prime p. Then:

Ex HXSPXSPX XS,

where H is a semidirect product of a cyclic group C of order prime to p by an abelian
p-group P such that the action of P on C induces an isomorphism of P onto
(Aut C)?, and every S,, denotes the symmetric group on l; symbols.

Proof. This lemma may be well known. However, for completeness, we
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will give a proof of it. Since E is hyperelementary at p, there exists a cyclic
normal subgroup C=<c) of E of order prime to p such that E/C is a p-group.
We have E C N (C) and therefore E is conjugate to C- N (C)” in N (C) be-
cause E is maximal hyperelementary. Let o=g¢{V::-6{|P¢{"?+-c{1?::-¢P...a{}P
be the decomposition of o into cycles which do not contain common symbols
where n=r,>7,> - >r,21 and every ¢ is an r;-cycle. We denote the Euler
function by ¢(+). Let m=|C| and let {k,=1, k,, -**, Ry} be the set of all
integers k such that (k, m)=1 and 1<k<m. Then, for every k,, 1 <h=gp(m),
there exists 7, €S, such that 7;'¢¥77,, =(c§?)k for all 1<i<t and 1<j </,
Put K={o{?, -+, 017, ++, 0P, oo, 04, Thyy =+, T DS N5 (C) and P=K?.
Then the action of P on C induces an isomorphism of P onto (Aut C)*®.
Further, for each 1<7<¢, let S,, denote the symmetric group on /; symbols
{oy?, a§?, .-+, 0¥}, Each S, can be regarded as a subgroup of N (C), and
we have N (C)=KXxS;; X S;,% -+ X S;,. Hence Ng (C)P=PXSPX S X -
X S, and so E=C-N; (C)P=CPxXSPXS®x-+xS#. This concludes
the proof of the lemma.
We now come to the main theorem of this section.

Theorem 3.3. Let S,, n=1, be the symmetric group on n symbols. Then
CZS,)=C(ZS,)=CUZS,)=C(ZS,).

Proof. Since Q is a splitting field for S,, we have C(25)=0, hence
C(ZS,)=C(ZS,). Therefore we only need to show that C%ZS,)=C(ZS,).
According to the induction theorem ([4], §1), it suffices to prove that, for every
maximal hyperelementary subgroup E of S,, C{ZE)= C(ZE). However Q is
also a splitting field for S®, /=1 (e.g. [8], (5.9)). Therefore this follows
immediately from (3.1) and (3.2).

RemARk 3.4. (1) C(ZS,)=0 for n=<4. (2) For every odd prime p
(0S| 24 (p=1) and |C(ZS,.)| 25 (p—1).

Proof. The assertion (1) is well known. We will prove the assertion
(2) only on S, because we can prove the one on S,,, in the same way. Leto
be a p-cycle in S and define K=Ng, ({¢>). Then K can be expressed as a
semidirect product of the cyclic subgroup {o)> by a cyclic subgroup H of order
p—1 such that the action of H on <{¢) induces an isomorphism of H onto
Aut{c>. We have Ns,(K)=K, and, if K=+p~'Kp, pES), then KNp"'KpC
p ‘Hy for some p€K. Let f: C(ZH)— C(ZK) and g: C(ZK)— C(ZS,) be
the natural homomorphism induced by ZK ;8; - and ZS, § ., respectively.

Using the Mackey’s subgroup theorem we see that Ker g &Im f, and so
|C(ZK)|[|C(ZH)| < |C(ZSp)|. By virtue of [7], (1.2) we have |C(ZK)|=
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_;_(p—l)|C(ZH)I. This shows that |C(ZS,)| 2%(‘0—1)-

4. Alternating groups

In this section we will be concerned with alternating groups.

Proposition 4.1. Let A,, n=3, be the alternating group on n symbols. Then
both C(ZA,)|C(ZA,) and G(QA,)|B(QA,) are 2-groups.

Proof. Let E’ be a maximal hyperelementary subgroup of 4, at a prime p.
Then there exists a maximal hyperelementary subgroup E of S, at p such that
E'=ENA4,. We can write E=CP where C is a cyclic normal subgroup of E
with p +|C| and P is a p-subgroup of E. Assume that p is odd. If [C] is
odd, then E’=E and therefore, by (3.1) and (3.2), C?(ZE')=C(ZE’) and
B(QE)=G(QE’). 1If |C] is even, then C is expressible as a direct product of
a subgroup ‘C, with 2 {|C,| and a 2-subgroup C,. Let C,/=C,NE’. Then
E'~CPxC, and so, again by (3.1), CY(ZE')=C(ZE’) and B(QE’)= G(QFE').
Next assume that p=2. Then the Artin exponent of E’ is a power of 2 ([9], §7),
and therefore, by the Artin induction theorem ([4], §1), both C(ZE")|CYZE’)
and G(QE’)/B(QE’) are 2-groups. Applying the Witt-Berman induction theorem
([4], §1), we can conclude that both C(Z4,)/C%(ZA4,) and G(QA4,)/B(QA4,) are

2-groups.
Remark 4.2. (1) C(ZA,)=0 for n<5. (2) For every prime p with p=3
mod 4 |C(ZA,)| g%(p—l) and |C(ZAp.,)| g%(p—l) and for every prime p

with p=1mod 4 |C(ZA)| Z-(p—1) and |C(ZA,.,)| 2-(p—1). (3) C*(Z4)
=C(ZA)=CYZA,)=C(ZA,) %0 and C(ZA)=C(ZA)S CY(ZA)=C(ZA,).

Proof. The assertion (1) can easily be shown, using the induction theorem,
and the assertion (2) can be shown in the same way as in (3.4), (2). The assertion
(3) follows from the induction theorem and [4], (5.5).

Lemma 4.3. Let [I=<{c) be a cyclic group of order n and let n=pi1ps2--- pi+
be the decomposition of n into primes where p;, p,, +-+, p, are distinct primes. Let
X, and X, be rational characters of II. Assume that, for every proper subgroup I’
of I, X, [II"=X,[II'.  Then:

t 1
(1)~ (% 1n) = (o)Xl 11 (1),

where 1 denotes the one dimensional trivial character of II.

Proof. For every m|n let «,, denote the character of II afforded by the
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irreducible Q/7-module Q(¢,,). Then we can write
XI—X:,:;cmam, nEZ.

Restricting both sides to the subgroup <{c?:>, we see that ¢,,=0 when pZ|m.

Hence X,—X,= 2} ¢uam Furthermore, restricting both sides to the sub-
M| piby-by

group {a?'">, we see that ¢, +(pi—1)cp,=0 and c,h,h.ut,h—l—(p,‘—l)cp’.pjl__.ph:O
whenever p;&{p;, p;, = P;,}. Clearly an(c) coincides with the Mobius
function p(m). Therefore we have

X)X = 3T com)

Dby

1
_61(1+122P.—1 lsgjgt (P'_—l)(p]—l)—*— )
= b 23
¢, .Hlp,—l

However (X,, 17)— (X, 117)=(W§] , EmClm a,)=c¢,. Thus we get (X,, 17)—
G,

fro 1
(X In)=(X(o)—Xe()) T1 (1 —P_).

Let S,, A, be the symmetric, alternating group on z symbols, respectively.
Let I, denote the image of the restriction map G(OS,)— G(Q4,) and let
7=(1, 2)eS,. For X&G(Q4,), X &1, if and only if X"X. Therefore
G(QA4,)/1, is a free abelian group generated by all the classes of irreducible
rational characters, X, of 4, with X"%X. Every irreducible rational character X
of A, with X"#X is absolutely irreducible. Hence there is a one to one corres-
pondence between pairs, (X, X"), X"#=X, of irreducible rational characters of 4,
and partitions,

n=c+ect+e, (*)
such that ¢, <c¢,<---<¢,, 2%¢; and i[c,- is square. Let X be an irreducible
rational character of A, with X"+X ‘;rlxd let n=c,+c,++++¢, be the partition
corresponding to (X, X"). Define oy=(1, 2,:++,¢,) (¢,+1,*+, ¢,+¢;)- (Z ¢+1,--
Z‘c,) and let Cy, Cy denote the conjugate classes of A4, containing oy, ToyT,

respectlvely. Then we have
X(o) = X"(0) = ?Xsﬂ(a-) for every o C, U Cy ,

X(e) = 2 (14d), X(e) = L(1Fd)
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where d denotes the positive integer with d 2=_Ii[ ¢;. Let Hy=<{ay, let K} be

a 2-Sylow subgroup of N (Hy) (=N 4,(H,)) and put K,=H,K;. Let n, be the
odd part of ¢(d). Then |Hy|=d? and |K}|=¢(d)/ny. We can here prove

Lemma 4.4. Let X be an irreducible rational character of A, with X&1,.
Then ny-X—1grE 1,

Proof. We may assume that X(ax)=%(1+d) and XT(a'x)=-%—(l——d). For
every proper subgroup H’ of Hy, X/H’=X"[H’ and X(oyx)—X"(cx)=d. Therefore
by (4.3) and the Frobenius reciprocity theorem we get (X, 1;};)—(x*, 1,‘3;):
(X[Hx, 11,)—(X"[Hy, 15,)=@(d), and so (X, p(d)-X—152)=(X", p(d)-X—1f).

Since generators of proper subgroups of H, are not of type (x), for any
irreducible rational character X’ of 4, with X'==X, X" we have (X/, q)(d)-X—l,"};)

=(X"", p(d)-X—1§). Therefore @(d)-X—1fzEl,. On the other hand, ap-
plying the Brauer coefficient theorem ([2], Satz 1) to K, we get

|Kx|-lgy = |Hy| 15*+23 b 155, bweZ
H’

HI b
where H’ runs over all cyclic subgroups #H, of K,. Since generators of sub-
groups, H’' = Hy, of K, are not of type (*), we have 11‘:76],, and so D>\ by - 1,“};61,,.
a7’
Therefore |H,|- 1,‘};— | Ky - 1,’}; e€1,. Thus we have |Ky|(ny-X— 1;‘};):
|Hy|p(d) X — | Ky | - 157 = | Hy|((d)- X — 182) + (| Hy| - 1112— | Kx | - 1#2) € I,
Because G(QA,)/I, is torsion-free, this shows that n,-X—1gr€1,.
We now establish the following:

Theorem 4.5. Let A,, n=3, be the alternating group on n symbols. Then

Proof. Since B(QS,)=G(QA4,) as is well known, we see that I,CB(QA4,).
It follows immediately from (4.4) that [G(QA4,): B(QA4,)] is odd. However, by
(4.1), G(QA,)/B(QA,) is a 2-group. 'Thus we have B(QA4,)=G(Q4,).
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