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1. Introduction. In a recent paper [1] H. O. Cordes develops a new
method to deal with pseudo-differential operators. He shows, among others,
that if a symbol a(x, ξ) defined on Rn X Rn has bounded derivatives D^D^a for

I a, I , I β I < [ra/2]+ 1, then the associated pseudo-differential operator A=a(X, D)
is L2-bounded. (A similar result was previously given by Calderόn and
Vaillancourt [2].) This result has been partially generalized by A. G. Childs [3],
who shows by the same method that a uniform multiple Holder-continuity of a
with an exponent larger than 1/2 is sufficient for the boundedness of A.

The main purpose of the present paper is to show that the same method
can be used to prove that A is L2-bounded if \D%D*a(x, ξ) \ ^M(l + \ξ \γw-\*\»
for \a\ <[n/2]+l and \/3\ <[n/2]+2y where 0<p<l (see Theorem 5.3 below).
A similar result is contained, as a special case, in Calderόn and Vaillancourt [4]
and H. Kumano-go [5, 6], except that the numbers of the required derivatives
are different. But it may be of some interest to give a new proof, which requires
relatively little amount of computation.

The author is indebted to Professor H. Kumano-go for valuable discussions.

2. A formal identity. We find it convenient to start with formulating
the basic idea of Cordes in a slightly different form.

Given a tempered distribution a on Rn X Rn, the pseudo-differential operator
A=a(X, D) may be defined by

(2.1) <Au, v> = <*, wy , «<*, ξ) = (2πΓM/2e^n(ξ)v(x) ,

where uy v^<S(R") (the Schwartz space) so that w ̂  S(Rn X Rn) here /\ denotes
the Fourier transform, and < , > the pairing between S' and S. A is a conti-
nuous operator on S(R") to S'(R"). As usual, (2.1) may be written symbolically
as

(2.2) Au(x) = a(X, D)u(x) - (2τr)-rt/2 e*x a(x,
"
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In what follows we are interested only in symbols a which are locally integrable
functions on Rn X Rn.

If in particular a(x, ξ)=χJ9 we have A=Xj, the operator of multiplication
with Xj. If a(x, ξ) = ξjy we have A = Dj= — id/dxj. As usual we write
X=(X19 ••-, Xn) and D=(Dly •••, £>„). Also we use the customary multi-index

notation such as X*=a(X) where a(x)=x* = Π x*J, a = (a1, •••, αΛ), |α| =

Note that A'y and Z)y map S(R") into itself and can be extended, in an
obvious way, to operators on S'(Rn) to itself. The same is true of the operators

eiξx and eixD, where ξ and x are in R* and £3Γ=Σ ?/-^/> etc 5 these are given by

A basic tool in this paper is given by the following lemma.

Lemma 2.1. Let b<ΞL°°(R"χR") andg<ΞU(R"κRn). Then

(2.3) (b*g)(X, D)=\\ b(x, ξ)e'^e-ixDg(X, D^e-'&dxdξ ,
JJRnxRn

where * denotes convolution (so that b*g^L°°(RnxRn)).

Because of the properties of the operators e**x and eiXD mentioned above,
the integrand in (2.3) is an operator on <S(Rn) to <S'(Rn). Thus (2.3) makes sense
if the integral is taken in the weak sense. We may omit the straightforward
verification of (2.3).

It may be noted that (2.3) is valid under more general conditions, such
as b^Lp and g^L9, where !</>, q<oo and />~1+g-~1>l, so that

3. An operator calculus. Let H=L2(Rn). We denote by B(H) the
set of all bounded linear operators on H, with the operator norm || ||. B^H)
denotes the trace class of compact operators on H, with the associated trace
norm || ||lβ

The following theorem, essentially due to Cordes [1], gives a meaning to
the expression in (2.3) as an operator on H.

Theorem 3.1. Let G^B^H) and b^L°°(RnxRn). Then

(3.1) B = {( b(x, ξ)e^xe-ixDGeixDe-^xdxdξ^B(H)
J JRnxRn

exists as a strong (improper) integral. The mapping b,G±-*B=b{G} has the
following properties.

(i) l|έ{G}||<(27rΠ|i|Lcβ||G||1.
(ii) b > 0 and G > 0 imply b {G} > 0.
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(iii)
(iv)

REMARK. Here e^x and eixD are regarded as unitary operators on H.

G>0 means that G is nonnegative selfadjoint. / is the identity operator, tr G

is the trace of G^B^H). \ G \ means (G*G)1/2. | b \ is defined by | b \ (x, ξ)=
\b(x, ξ)\. In (iv) we have used the following notation: given three operators

Γ, A, B in B(H) with A>0, 5>0, we write

(3.2) T <(A B) if | (Tu, v) \ 2<(Au, u)(Bv, v) foru,v^H.

The convenience of such a notation is seen from the following lemma, the
proof of which is simple and may be omitted.

Lemma3.2. (i) T<(\T\ | Γ*|)/or any T^B(H).

(ii) T<(A; B) implies Γ*«(B; A).

(iii) T<(A\ B) implies S*TS<(S*AS; S*BS), S<=B(H).

(iv) IfT.<(A.;B.), j= 1,2,-, then

(3.3)

in the sense that whenever the series on the right converge in the strong sense, the
same is true of the left member and the inequality holds. A similar result holds when

the series are replaced by integrals.

Proof of Theorem 3.1. First we consider the case when G>0 and 6=1.

Let

(3.4) G

be the spectral decomposition of GeB^H). Then for

(3.5) j j (e'^e-ixDG^De-^xu, u)dxdξ

= Σ λ* 5 J i (e~iίXu' e~ixDf*> i *dxdξ

= Σ λ* J dξ j I j U(η+ξ )e»x/&)dr, I *dx

= (2*)" Σ λ* J dξ j I fl(*+£) Aθ?) 1 2rfv (Parseval)

Since in this case the integrand in (3.1) is a nonnegative operator, this computa-

tion establishes not only the strong convergence of the integral but also (iii) and
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(i). (The unnecessary detour via ft,fk in (3.5) was made with a later reference
in mind.)

The case of G>0 and general b can be reduced to the above case by
majorizing b by ||6||^eβ. The case of a general G can be dealt with as an

application of Lemma 3.2 by noting that U*GU <C(t7* | G | C7; E7* | G* | U) where
U—.gxDe-&x ^ijjj can ke provecι by writing G as a linear combination of non-

negative operators and using (3.5)

4. Some special symbols. To apply Theorem 3.1 in combination with

Lemma 2. 1 , we need some special symbols g for which g(X, D) has an extension

G^B^H). Such symbols have been constructed by Cordes [1].

Let ψ=ψ*n,s be the unique solution (within <S'(R*)) for

(4.1) (l-Δ) s/V=δ,

where s is a real number, Δ is the Laplacian, and δ is the delta function. Λ/Γ can

be expressed in terms of the modified Hankel function, but we do not need its

precise form. It suffices to know that ty^C°°(Rn— {0}), ψ(x) and its derivatives

decay exponentially as |#|-^oo, and that Da^(x)=O(l+ \x\s~"~\"1) as |*|-^0,

except when s—n— \a\ =0 in which case we have to put a logarithmic function

in the last estimate.

Lemma 4.1. Let g(x, ξ) = ^rn,t(^n>s(ξ\ where sy t>n/2. Then g(X, D)
has an extension G^B^H). The same is true ofg(X>D)DΛfor any multi-index a.

For the proof see [1].

Lemma 4.2. In Lemma 4.1 assume that s>nβ and t>n/2+l. Then the
operators Djg(Xy D) and \D\g(X, D) have extensions belonging to

Proof. We have D.g(X, D)=g1(Xy D)+g2(X, D), where

, &(*, ξ) = g(x, ξ)ξj .

Here gz(X, D)dG2^Bl(H) by Lemma 4.1. Also g^X, D)dG^B^(H), since

d^n,t(x)l®Xj has properties similar to ψn,t-\- F°r \D\g(X>D)> ^ suffices to
note that |Z)|=Σ Dj \D\~1DJ. where Dj \D\~1^B(H).

5. ZΛboundedness. We are now able to consider the ZΛboundedness
of certain pseudo-differential operators. First we state the theorems due to

Cordes [1].

Theorem 5.1. // D%D*a<=L~(RnxRn) for |α|, \β\ < [n/2] + l, then
a(X, D) is L2-bounded.
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Theorem 5.2. Let a(=S'(RnxRn) with b=(l~Δ,xγ
/2(l-Δ,ξ)s/2a^L°°(RnX

Rn)for some s>nβ. Then a(X, D) is L2-bounded.

We shall indicate the proof briefly for later reference. First it is shown

that the assumption of Theorem 5.1 implies that of Theorem 5.2. To prove
Theorem 5.2, let g(x, ξ)=ψ(χ)ψ(ξ) with ψ=ψntS. Then g<=L* and a= b*g

because g is the elementary solution for the operator (l — Δx)
s/2(l — Δ$).s/2 Since

g(X, D)aG^B1(H) by Lemma 4.1, it follows from Theorem 3.1 and Lemma
2.1 that a(X, D)db{G} ^B(H).

Our main result is given by the following theorem.

Theorem 5.3. Assume that

(5.1)

for

where M and p are constants such that 0<p<l. Then a(X, D) is U -bounded.

We do not consider here the case p— 0, since Theorem 5.1 gives a stronger

result in this case.

Our proof of Theorem 5.3 is based on the same idea as that of Theorem
5.1 indicated above. But it appears that a preliminary partition of the symbol

a into small pieces is necessary (a device suggested by Hϋrmander [7]).

Proof of Theorem 5.3, Part I. Let {φy;y=l, 2, 3, •••} be a partition

of unity on [0, oo): 2 Φ/= 1> with the following additional properties.
φ^C rfO, oo) with φ,(r)=l for 0<r<l. If;>2, φyeCo(0, oo) with support

in [j— l,y+l] and φj(j+r)=φ2(2+r). Note that j=l is exceptional. Note
also that all the derivatives of the φy are bounded uniformly in j.

Let If U be a C°°-function of ξ^Rn such that \ξ\*=\ξ \ for \ξ\>l and

0< |£|*<1 for |f |<1. Then |f |*=|f | whenever |?U>1. Set

Then {Φj} is a partition of unity on R", with Φ .̂ e CSΓ(/Ϊ*) and

(5.3) Φy(f) = Φ X I f Γ " p ) for;>2.

An important property of the Φy is that

(5.4) I^ΦΛΏI^IfΓ ", |α|<[«/2]+l,

where cλ is a constant independent of jy as is easily seen from (5.3) and the
remark above about the derivatives of the φy.

Also it follows from (5.3) that f^supp Φy implies
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(5.5) OY2)'/"-p>< I ξ \ <(2/)Ά'-p>, >2,

(5.5') 1 1 ξ I -y/α-p> I £ej>Λi-», y > i ,

where c2 is a constant independent of y.
Set

(5.6) αχ«, I) = Φ/£X«, £), y = 1, 2, 3, -,

so that

(5.7) «(*, I) = ΣX (*, ?)

In view of (5.4) and (5.5), (5.1) implies that

(5.8) |Z>2Dfo(*, ξ) I ̂ /'"-""^.(f), β = P/(1

with c3 independent of y, where %y denotes the characteristic function of supp
and α, yS range over multi-indices specified in (S.I).

It follows from (5.5X) that

(5.9)

where

Γ 1 for /— €2<\ξ\<j
(5.10) κ/(f) = 1 π A .2- | ς |-y

1 0 otherwise.

Set

Then it follows from (5.8) to (5.10) that

(5.12) \DΪD«a/(x,ξ)\<cJ(,/(ξ),

|α|<[n/2]+l, |/3| <[n/2]+2 .

Now define

(5.13) b/(X, ξ) = (l-Δ,Hl-ΔtΓβ/(*, f) >

where s>n/2 and ί>w/2+l are real numbers chosen as

(5.14a) ί = [w/2]+l , * = [n/2]+5/3 , if [»/2] is odd,

(5.14b) ί = [n/2]+2/3 , < = [n/2]+2 , if [»/2] is even.

Lemma 5.4. There is a finite positive measure μ on K£ such that

(5.15) I b/(x, ξ) I <(^*%/)(f )= ω/(ξ) ,

(5.16) \\ξ\dμ(ξ)<oo.
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Proof. If [«/2] = 2&-l is odd, then s = 2k and t = 2k+2β by (5.14a).
Thus we can write (5.13) in the form

Here (1— Δ*)^!— Δg)*0/ and its grad^. are linear combinations of the derivatives
of a.' appearing in (5.12) and are majorized by %/(?). Since, on the other hand,
(1— Δ^)"273 and Dx(\— Δx)~2/* are convolutions by ψM>4/3 and DxψnΛ/z which are
integrable (see section 4), it follows that \b/\ < const %/(£). Thus (5.15) is
true with μ= const, δ, where δ is the delta function.

If [n/2]=2k is even, then s=2k+2/3 and t=2k+2 by (5.14b). In this case
we may write

*/ = [(l-Δ,)-2/3-divξ(l-Δ,)-2/3grad,](l-ΔJcr
ι(l-Δ,)χ/ .

Again (1 — Δx)
k+l(l — Δs)*a/ and its gradξ are majorized by X/(ξ) by (5.12).

Since (1 — Δ$)~2/3 and Dέ(l— Δέ)~2/3 are convolutions on R9^ by -ψ-n>4/3 and DpjrHt4j99

respectively, which are integrable, (5.15) is true if we choose dμ(ξ)=m(ξ)dξ
where m(ξ ) is any positive integrable function that majorizes the convolution
kernels involved. Since these kernels decay exponentially at infinity (see section
4), we can also satisfy (5.16).

Part II. (5.13) implies

(5.17) a/ = b/*g , g(x, ξ) = ψn,t(x)ψn,s(ξ) .

By a scale transformation, it is easy to obtain (note (5.11))

(5.18) a. = bjXgj , where

*/*• *)=*/(/'*, J ~σ« > 8 fa *) = gU'*> J "?)

It follows from Theorem 3.1 and Lemma 2.1 that

(5.19) β/*,Z

note that G^B^H) because s, t>nj2 (Lemma 4.1). Thus

(5.20) Λ,<(|4y |{ |Gy |}; | i y | { |Gf |})

«(ω, { I Gy I } ωy { I GJ I } ) , ωy(f ) = *>/(j-ξ) ,

by Theorem 3.1, Lemma 3.2 and (5.15). Hence

(5.21)

by Lemma 3.2.
To estimate the right member of (5.21), we note that Gj~Dgj(X9 D) is

unitarily equivalent to Gϋg(Xy D) because g. and g are related by the scale
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transformation given in (5.18). Hence | Gy | is unitarily equivalent to | G \ . Let

(5.22) |G| = Σλ*( ,/*)/*

be the canonical spectral representation of |G| (see (3.4)). Then we have

(5.23) |G y | = Σλ*( ,/*,)/*,, M*)=J*"'fM'*)

A computation similar to (3.5) thus gives

(5.24) (ωy{|Gy|}ιι,ιι)

= (2π)" Σ

the only difference of (5.24) from (3.5) is the appearance of the factor ωy(f ) in

the integrand, which was absent in (3.5) because b— I there. Since (5.23)

implies /kj(ri)==j~n<r/2fk(j~<r'ri)> we obtain from (5.24), after changing the integra-
tion variable ξ into ξ—η and then writing η=jσζy

(5.25) (

= (2*)" Σ x* 5 1 β (f ) 1 2dξ j ωχe-yϊr) i }b(ζ) i yf .

Now we use the following lemma, which will be proved in the next section.

Lemma 5.5. There is a constant K such that

(5.26) Σ *>j(ξ-fζ)<K(l+ |f I) , ξ, ξ<=R» .

Using this lemma, we see from (5.25) that

(5.27) Σ K { I G, \}u,u)

= (2n)»K\\u\\* Σ λ*((l+ PI)/*,/*)

Let G= W I G I be the polar decomposition of G, where W is a partial iso-

metry. Then |G|=

(5.28)

But G(1+|Z)|) has an extension belonging to B^(H) (Lemma 4.1). Hence

(1+ I D I )G*^Bl(H) and (5.28) is finite. In view of (5.27), we have proved the
strong convergence of the first series on the right of (5.21).

The convergence of the second series can be proved in the same way. As

above, it reduces to showing that | D \G^B1(H). But this follows from Lemma
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4.2; we have chosen t>n/2-\-l for this purpose.

Thus we conclude from (5.21) that Σ^y converges strongly in B(H). In

view of (5.7), the proof of Theorem 5.3 is complete.

6. Proof of Lemma 5.5. We have by (5.20) and (5.15)

(6.1) ω/f-r£) = ω/O-'f-C)

= J X/(J-*ξ-ζ-

We shall now show that

(6.2) Σ %/0"*£-?-*)£con8t(l+ If I + I
3

from which the desired result follows by (6.1) because \ dμ(ή) and \ \"η\dμ(η)

are finite (Lemma 5.4).

According to (5.10), the left member of (6.2) is equal to the number of

positive integers j such that

(6.3) \\j-σζ-ζ-V\-j\<c2.

But it is easy to show that (6.3) implies

(6.4) l j - .ΓΊ£l l<< 2 +ir i + M.

Now the f unction j*-*j—j~σ \ ζ \ has derivative larger than 1. Hence the number

of integers^' satisfying (6.4) does not exceed 2(£2+ΊSΊ + I9? I )- This proves the

desired result.
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