MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

SHÔRÔ ARAKI

(Received June 27, 1974)

Introduction. In the present work we study multiplicative operations in BP cohomology. In §1 we show that all multiplicative operations in BP* are automorphisms (Theorem 1.3). Thus they form the group Aut (BP). In §2 we define Adams operations in BP* by the formal group μBP of BP cohomology and study the basic properties of them. These operations are primarily defined for units in Zp and then extended to p-adic units. Thereby we discuss BP* by extending the ground ring Zp to the ring of p-adic integers Zp. To achieve this extension simply by tensoring with Zp we restrict our cohomologies to the category of finite CW-complexes. Correspondingly we consider all multiplicative operations in BP*() ⊗ Zp whenever it becomes necessary to do so. Adams operations could be defined also for non-units, but we are not interested in such a case in this paper. In §3 we prove that the center of Aut (BP) consists of all Adams operations (Theorem 3.1).

We regard the lecture note [2] as our basic reference and use the results contained there rather freely.

1. Multiplicative operations in BP*.

Let BP* denote the Brown-Peterson cohomology for a specified prime p. By a multiplicative operation in BP* we understand a stable, linear and degree-preserving cohomology operation

\[\Theta_a: BP*() \to BP*() \]

which is multiplicative and Θ(1) = 1. The set of all multiplicative operations in BP* forms a semi-group by composition, which will be denoted by Mult (BP).

With respect to the standard complex orientation of BP* [1], [2], [7], we denote by eBP(L) the Euler class of a complex line bundle L and by μBP the associated formal group. Let Θ_a ∈ Mult (BP). Putting

\[\Theta_a(e^{BP}(L)) = \sum_{i \geq 0} \theta_i(e^{BP}(L))^i \]

for an arbitrary line bundle L, by naturality we obtain a well-determined power
series
\[\theta_a(T) = \sum_{i \geq 0} \theta_i T^i, \quad \theta_i \in BP^{2-2i}(T). \]
By naturality \(\theta_0 = 0 \) and by stability \(\theta_1 = 1 \). In particular \(\theta_a \) is invertible.

Put
\[\phi_a(T) = \theta_a^{-1}(T). \]
Then
\[(1.2) \quad \Theta_a(pt) \ast \mu_{BP} = \mu_a, \quad \mu_a = \mu_{BP}^{a \ast}. \]
Recall that \(\mu_{BP} \) is typical. Hence \(\mu_a \) is a typical formal group and \(\phi_a \) is a typical curve over \(\mu_{BP} \).

Conversely, given a typical curve \(\phi_a \) over \(\mu_{BP} \), by the universality of \(BP^* \), [2], Theorem 7.2, \(\phi_a \) determines uniquely a multiplicative operation \(\Theta_a \) in \(BP^* \) satisfying
\[(1.3) \quad \Theta_a(e^{BP}(L)) = \phi_a^{-1}(e^{BP}(L)). \]
Thus, via (1.3) multiplicative operations \(\Theta_a \) in \(BP^* \) correspond bijectively with typical curves \(\phi_a \) over \(\mu_{BP} \) such that
\[(1.4) \quad \phi_a(T) \equiv T \text{ mod deg 2 and } \dim \phi_a^{-1}(e^{BP}(L)) = 2 \]
for complex line bundles \(L \).

Recall that a typical curve \(\phi_a \) satisfying (1.4) can be expressed uniquely as a Cauchy series
\[(1.5) \quad \phi_a(T) = \sum_{k \geq 0} a_k T^k, \quad a_0 = 1, \quad a_k \in BP^{2(1-\rho^k)}(pt), \]
where \(\mu = \mu_{BP} \) (cf., [2], [3]). Thus multiplicative operations \(\Theta_a \) correspond bijectively with sequences
\[(1.6) \quad a = (a_1, a_2, \ldots, a_n, \ldots), \quad a_n \in BP^{2(1-\rho^n)}(pt), \]
via (1.3) and (1.5). The identity operation corresponds to the zero sequence \(0 = (0, 0, \ldots) \).

First we remark

Proposition 1.1. Let \(\Theta_a \) and \(\Theta_b \) be multiplicative operations in \(BP^* \) such that
\[\Theta_a(pt) = \Theta_b(pt). \]
Then \(a = b \) as sequences (1.6). Hence \(\Theta_a = \Theta_b \).

Proof. By (1.2) we see that
\[\mu_a = \mu_b. \]
Then, by the uniqueness of logarithm we see that
\[\log_{\mu_B} = \log_{\mu} \]
or
\[\log_{BP} \circ \phi_a = \log_{BP} \circ \phi_b. \]
thus \(\phi_a = \phi_b. \) q.e.d.

Let \(\Theta_a \subseteq \text{Mult}(BP) \). We have
\[\Theta_a(pt) \circ \log_{BP} = \log_{BP} \circ \phi_a(T) \]
over \(BP^*(pt) \otimes \mathbb{Q} \). Putting
\[\log_{BP}(T) = \sum_{k \geq 0} n_k T^{p^k}, \quad n_k = [CP_{p^k-1}]_{p^k}, \]
expanding both sides of the above formula as power series of \(T \) and comparing coefficients of \(T^{p^k} \) we get
\begin{equation}
(1.7) \quad \epsilon \sum_{j=0}^{k} n_j a_j \epsilon_{-j}, \quad k \geq 0.
\end{equation}
This is a recursive formula to describe \(\Theta_a(n_k) \), hence determines \(\Theta_a(pt) \). We discuss another formula to describe \(\Theta_a(pt) \).

Denote by \(f_p \) and \(f_p^a \) the Frobenius operators for the prime \(p \) on curves over \(\mu_{BP} \) and \(\mu_a \) respectively. Recall that, if we put
\begin{equation}
(1.8) \quad (f_p^a \gamma_0)(T) = f_p^a f_p\gamma_0(T), \quad \gamma_0(T) = T,
\end{equation}
then \(v_k \in BP^{2(p-1)p^k}(pt) \) and the sequence \((v_1, v_2, \cdots, v_n, \cdots) \) forms a polynomial basis of \(BP^*(pt) \), [2].

Since \(\Theta_a(pt) \star \mu_{BP} = \mu_a \), we have
\[\Theta_a(pt) \star \mu_{BP} = \mu_a, \]
\begin{equation}
(f_p^a \gamma_0)(T) = \sum_{k \geq 1} \Theta_a(v_k) T^{p^{k-1}}.
\end{equation}
Using the fact that \(\phi_a : \mu_B \cong \mu_{BP}, \) a strict isomorphism, we compute \((\phi_a f_p^a \gamma_0)(T) \) in two ways as follows:
\[(\phi_a f_p^a \gamma_0)(T) = (f_p^a \phi_a \gamma_0)(T) \]
\[= (f_p^a \phi_a)(T) = \sum_{k \geq 0} f_p(a_k T^{p^k}) \]
\[= (f_p \gamma_0)(T) \sum_{k \geq 1} [\mu_{BP}(a_k T^{p^{k-1}})]_{p^k} \]
\[= \sum_{k \geq 1} v_k T^{p^k} + \sum_{k \geq 1} \sum_{l \geq 1} w_l a_k^{p^l} T^{p^{k+l-1}}, \]
by [2], Propositions 2.4, 2.5 and 2.9, on one hand, where
\[[\mu_{BP}(T) = \sum_{l \geq 0} w_l T^{p^l}, \quad w_0 - p, \quad w_k \in BP^{p-1-p^k}(pt); \]
on the other hand
Thus we obtain

\[(1.9) \quad \sum_{k \geq 1} \sum_{l \geq 0} \Theta_a(v_k) T^{\rho^k} \equiv \sum_{k \geq 1} \sum_{l \geq 0} \Theta_a(v_k) T^{\rho^k + l} \mod I^2.\]

This is a recursive formula to describe \(\Theta_a(v_k) \).

Let \(I = BP^*(p^j) \), the kernel of the augmentation \(\xi : BP^*(pt) \rightarrow \mathbb{Z}/(p) \). By [2], §10, we see that "the left hand side of (1.9)"

\[\equiv \sum_{k \geq 1} \Theta_a(v_k) T^{\rho^k} \quad \text{mod } I^2\]

\[= \Theta_a(v_1) T + \Theta_a(v_2) T^p + \cdots \mod I^2,\]

and "the right hand side of (1.9)"

\[\equiv \sum_{k \geq 1} v_k T^{\rho^k} \quad \text{mod } I^2\]

\[= (v_1 + p a_1) T + (v_2 + p a_2) T^p + \cdots \mod I^2.\]

Hence (1.9) implies

\[(1.10) \quad \Theta_a(v_k) = v_k + p a_k \mod I^2\]

for all \(k \geq 1 \). In particular

\[\Theta_a(v_k) \equiv v_k \mod (p + I^2)\]

for \(k \geq 1 \). This shows that \(\{ \Theta_a(v_k), k \geq 1 \} \) forms a polynomial basis of \(BP^*(pt) \).

Thus we obtain

Proposition 1.2. For any \(\Theta_a \in \text{Mult}(BP) \)

\[\Theta_a(pt) : BP^*(pt) \cong BP^*(pt), \text{ an isomorphism}.\]

Let \(\Theta_a \) and \(\Theta_b \) be two multiplicative operations in \(BP^* \) with corresponding sequences \(a = (a_1, a_2, \cdots) \) and \(b = (b_1, b_2, \cdots) \). Putting

\[\Theta_c = \Theta_a \circ \Theta_b, \quad c = (c_1, c_2, \cdots),\]

we shall discuss the sequence \(c \). Put

\[\tilde{\phi}_b(T) = \Theta_a(pt) \circ \phi_b(T) = \sum_{k \geq 0} \Theta_a(b_k) T^{\rho^k}.\]

Then
MULTIPLICATIVE OPERATIONS IN BP COHOMOLOGY

On the other hand

\[\Theta_a(pt) \ast \mu_b = \Theta_a(pt) \ast (\phi_b^{-1} \circ \phi_a \times \phi_b) = \phi_b^{-1} \circ \phi_a \circ \phi_b = \mu_{BP}^{e_{a,b}}. \]

Thus, likewise in the proof of Proposition 1.1, we have

\[(1.11) \quad \phi_c = \phi_a \circ \phi_b, \]

or equivalently

\[(1.12) \quad \sum_{k \geq 0} \epsilon_k T^{p^k} = \phi_a \left(\sum_{k \geq 0} \Theta_a(b_k) T^{p^k} \right) = \sum_{i=0}^{n} a_i (b_k) \epsilon_i T^{p^k+i}. \]

This is a recursive formula to describe \(\epsilon_k \).

A multiplicative operation \(\Theta_a \) in \(BP^* \) is called an automorphism of \(BP^* \) if

\[\Theta_a(X, A) : BP^*(X, A) \cong BP^*(X, A), \]

isomorphic for all finite CW-pair \((X, A) \). Clearly a multiplicative operation \(\Theta_a \) is an automorphism of \(BP^* \) iff it has an inverse. The set of all automorphisms of \(BP^* \) forms a group, which will be denoted by \(\text{Aut}(BP) \).

Theorem 1.3. \(\text{Aut}(BP) = \text{Mult}(BP) \).

Proof. It is sufficient to prove that every multiplicative operation \(\Theta_a \) has a right inverse.

Let \(t=(t_1, t_2, \cdots) \) and \(s=(s_1, s_2, \cdots) \) be sequences of indeterminates with \(\dim t_k = \dim s_k = 2(1-p^k) \). Put

\[(*) (1) \quad \sum_{k \geq 0} u_k T^{p^k} = \sum_{k \geq 0} \sum_{l \geq 0} t_k s^l T^{p^k+l}, \]

where \(s_0 = t_0 = u_0 = 1 \). Then over \(BP^*(pt)[t, s] \) we have

\[\sum_{k \geq 0} u_k T^{p^k} \equiv T + u_1 T^p + u_2 T^{p^2} + \cdots \mod \hat{I}, \]

and

\[\sum_{k \geq 0} \sum_{l \geq 0} t_k s T^{p^k+l} \equiv T + (s_1 + t_1) T^p + (s_2 + t_2) T^{p^2} + \cdots \mod \hat{I}, \]

where \(\hat{I} = (s, t) \), the ideal of \(BP^*(pt) \) generated by \(s_1, s_2, \cdots, t_1, t_2, \cdots \). Thus we can put

\[(*) (2) \quad u_k = t_k + s_k + P_k(t_1, \cdots, t_{k-1}, s_1, \cdots, s_{k-1}), \quad k \geq 1. \]

Here \(P_k \) is a polynomial of \(t_1, \cdots, t_{k-1}, s_1, \cdots, s_{k-1} \) with \(\dim P_k = 2(1-p^k) \) and
We want to find a right inverse of Θ_a. Putting

\[(\ast 3) \quad \Theta_a \circ \Theta_b = id \]

with undecided sequence $b=(b_1, b_2, \ldots)$, we shall decide the sequence b. By (1.12), (\ast 1) and (\ast 2), we get

\[(\ast 4) \quad a_k + \Theta_a(b_k) + P_k(a_1, \ldots, a_{k-1}, \Theta_a(b_1), \ldots, \Theta_a(b_{k-1})) = 0 \]

for all $k \geq 1$. Since the coefficients of P_k depend neither on (a_1, a_2, \ldots) nor on $(\Theta_a(b_1), \Theta_a(b_2), \ldots)$ we may use (\ast 4) as a recursive formula to obtain $\Theta_a(b_k)$, so we get $\Theta_a(b_k)$ as polynomials of a_1, \ldots, a_k successively for $k \geq 1$. By Proposition 1.2 $\Theta_a(pt)$ is an isomorphism. Thus we get a sequence (b_1, b_2, \ldots) so that it satisfies (\ast 4). Thereby Θ_b is obtained to satisfy (\ast 3). q.e.d.

Let \mathbb{Z}_p be the ring of integers localized at the prime p and \mathbb{Z}_p its completion, i.e., the ring of p-adic integers. As is well known the endomorphism

\[[\alpha]_{BP} \in \text{End} (\mu_{BP}) \]

is defined for each $\alpha \in \mathbb{Z}_p$ so that

\[[\alpha]_{BP}(T) = \alpha T + \text{higher terms}. \]

It is convenient for us to extend these endomorphisms $[\alpha]_{BP}$ to $\alpha \in \mathbb{Z}_p$. For this purpose we extend the ground ring \mathbb{Z}_p of BP^* to \mathbb{Z}_p by tensoring, i.e., we consider $BP^*(_ \otimes \mathbb{Z}_p)$ whenever it is necessary to talk of p-adic integers.

Let $A=BP^*(pt) \otimes \mathbb{Z}_p$. Let F and G be formal groups over A. Let

\[c : \text{Hom}_A(F, G) \to A \]

be the homomorphism sending f to a_1 when $f(T)=a_1T + \text{higher terms}$. Since A is an integral domain of characteristic zero, c is injective as is well known (cf., [4], [5]).

Since A is a direct sum of copies of \mathbb{Z}_p (corresponding to each monomials of v_i’s) we give a direct limit topology to A. (Each direct summand is given the topology of \mathbb{Z}_p). Then, using the argument of Lubin [5], Lemma 2.1.1, we see that c is an isomorphism onto a closed subgroup of A.

In case $F=G=\mu_{BP}$,

\[\text{Im} \ c \cong \mathbb{Z}_p, \]

because $c([\alpha]_{BP})=\alpha$ for $\alpha \in \mathbb{Z}_p$. Hence

\[\text{Im} \ c \cong \bar{\mathbb{Z}}_p = \mathbb{Z}_p. \]
Since c is injective, for each $\alpha \in \mathbb{Z}$ there exists a unique
$$[\alpha]_{BP} \in \text{End}_A(\mu_{BP})$$
such that $c([\alpha]_{BP})=\alpha$. Thus the definition of $[\alpha]_{BP}$ is extended to \mathbb{Z}_p.

Since $c: \text{End}_A(\mu_{BP}) \to A$ is a ring homomorphism, for any p-adic integers a and β we have the following relations:

(2.1) $[\alpha]_{BP}(T)=\alpha T + \text{higher terms},$

(2.2) $[\alpha]_{BP}+[\beta]_{BP}=[\alpha+\beta]_{BP}, \quad \mu = \mu_{BP} ,$

(2.3) $[\alpha]_{BP} \cdot [\beta]_{BP} = [\alpha \beta]_{BP}.$

Let $\alpha \in \mathbb{Z}_{(p)}$ (or $\in \mathbb{Z}_p$) be a unit. Put
$$\Psi_{\alpha}(T) = [\alpha^{-1}]_{BP}(\alpha T).$$

Since
$$(f_\gamma \Psi_{\alpha})(T) = f_\gamma([\alpha^{-1}]_{BP}(\alpha T)) = [\alpha^{-1}]_{BP}([\alpha^\varphi]f_\gamma \gamma_\varphi(T)) = 0$$
for every $q > 1$ such that $(p,q)=1$ by [2], Propositions 2.3 and 2.9, where $\gamma_\varphi(T)=T$, we see that Ψ_{α} is a typical curve over μ_{BP}. Moreover Ψ_{α} satisfies (1.4) as is easily seen. Thus there corresponds a multiplicative operation in BP^* to Ψ_{α}. We denote this multiplicative operation by Ψ^* and call Adams operations in BP^*.

REMARK 1. Even for non-units a Adams operations can be defined in the same way as above. But these operations are defined in $BP^*(\bigotimes \mathbb{Q})$ or $BP^*(\bigotimes \mathbb{Q}_p)$. And these cohomology theories are essentially ordinary cohomologies (corresponding to generalized Eilenberg-MacLane spectra), so we are not interested in these operations in the present work.

REMARK 2. Adams operations in complex cobordism are defined by Novikov [6]. When we regard BP^* as a direct summand of $U^*(\bigotimes \mathbb{Q}_p)$, our Adams operations will be the restrictions of Novikov's Adams operations to BP^*.

Let a be a unit of $\mathbb{Z}_{(p)}$ (or of \mathbb{Z}_p). Since
$$\Psi_{\alpha}([\alpha]_{BP}(T)) = [\alpha^{-1}]_{BP}[\alpha]_{BP}(T)=T,$$
we see that

(2.4) $\Psi^*(e_{BP}(L)) = \alpha^{-1}[\alpha]_{BP}(e_{BP}(L))$

for any complex line bundle L.

Since $\Psi^*(pt)_*\mu_{BP} = \mu_{BP}$, we see that
\[\Psi^a(\phi_t) \log_{BP} \alpha = \log_{BP} \Psi^a \\cdot \]

Here

\[(\log_{BP} \Psi^a)(T) = \log_{BP}[\alpha^{-1}]_{BP}(\alpha T) = \alpha^{-1} \cdot \log_{BP}(\alpha T) = \sum_{k \geq 0} \alpha^{b^k - 1} n_k T^{b^k} . \]

Thus

\[\sum_{k \geq 0} \Psi^a(n_k) T^{b^k} = \sum_{k \geq 0} \alpha^{b^k - 1} n_k T^{b^k} , \]

or

(2.5) \[\Psi f_0 = \alpha^{b^k - 1} n_k , \quad k \geq 1 , \]

after extending \(\Psi^a(\phi_t) \) to \(\Psi^a(\phi_t) \otimes 1_Q \).

Proposition 2.1. \(\Psi^a(\phi_t) BP^{-2s}(\phi_t) = c \cdot \text{id.} \)

Proof. \((k_1, n_2, \ldots) \) is a polynomial basis of \(BP^*(\phi_t) \otimes Q \). Since \(\Psi^a \) is linear and multiplicative, for every polynomials \(x_s \) of \(n_k \)'s with \(\text{dim} x_s = -2s \) by (2.5) we see easily that

\[\Psi^a(x_s) = \alpha^s x_s . \quad \text{q.e.d.} \]

Corollary 2.2. If we put

\[\mu_{BP}(X, Y) = \sum_{i,j} a_{ij} X^i Y^j , \]

them

\[\mu_{BP}^a(X, Y) = \sum_{i,j} \alpha^{i+j-1} a_{ij} X^i Y^j . \]

Next we prove

Proposition 2.3. \(\Psi^a \Psi^b = \Psi^{ab} = \Psi^b \Psi^a \).

Proof. Put

\[[\alpha]_{BP}(T) = \sum_{\ell \geq 0} \alpha_{\ell} T^{\ell \cdot 3^{\ell + 1}} , \quad \alpha_{\ell} \in BP^{-2s-1 \cdot 3^\ell}(\phi_t) . \]

For any complex line bundle \(L \) we have

\[\Psi^b(\Psi^a(e_{BP}(L))) = \Psi^b(\alpha^{-1}[\alpha]_{BP}(e_{BP}(L))) = \alpha^{-1} \Psi^b(\sum_{\ell \geq 0} \alpha_{\ell} e_{BP}(L)) \]

\[= \alpha^{-1} \beta \Psi^b(e_{BP}(L)) \]

by Proposition 2.1

\[= \alpha^{-1} \beta^{-1} \sum_{\ell \geq 0} \alpha_{\ell} (\beta \Psi^b(e_{BP}(L)))^{\ell \cdot 3^{\ell + 1}} \]

by (2.4)

\[= (\alpha \beta)^{-1} [\alpha]_{BP}(e_{BP}(L)) \]

by (2.3)

\[= \Psi^{ab}(e_{BP}(L)) . \]
Therefore, by the universality of BP^*, [2], Theorem 7.2, we conclude the Proposition.

Let a and β be p-adic units. By Propositions 1.1 and 2.1 we see that

\[(2.6) \quad \Psi^a = \Psi^\beta \iff \alpha^{p^{-1}} = \beta^{p^{-1}}.\]

Let $U(Z_p)$ be the multiplicative group of p-adic units and $U_i(Z_p)$ be its subgroup consisting of p-adic integers a such that

$$\alpha \equiv 1 \mod p.$$

As is well known

$$U_i(Z_p) = \{\alpha^{p^{-1}} ; \alpha \in U(Z_p)\}.$$

By Proposition 2.3 all Adams operations (for p-adic units) form a multiplicative subgroup of Aut(BP). We denote this subgroup by $Ad(BP)$. Then, (2.6) implies that

Proposition 2.4. $Ad(BP) \cong U_i(Z_p)$.

And also

Proposition 2.5. $\Psi^\lambda = 1 \iff \lambda^{p^{-1}} = 1$.

Next we discuss the relations of Adams operations with Quillen operations (of Landweber-Novikov type). We recall the definition of Quillen operations, [2], [7]. Let $t = (t_1, t_2, \ldots)$ be a sequence of indeterminates such that $\dim t_k = 2(1 - p^k)$ and

$$\phi_t(T) = \sum_{\ell \geq 0} r(\mu_{BP} \otimes T^\ell) \cdot t_0 = 1,$$

a typical curve over μ_{BP} by extending the ground ring of μ_{BP} to $BP^*(pt)[t]$. Then

$$r_t : BP^*(\) \to BP^*(\) [t]$$

is the multiplicative operation such that

$$r_t(e^{BP}(L)) = \phi_t^{-1}(e^{BP}(L))$$

for any complex line bundle L. Putting

$$r_t(x) = \sum_E r_E(x)t^E, \quad x \in BP^*(X, A),$$

where $E = (e_1, e_2, \ldots)$ runs over all sequences of non-negative integers such that all e_k but a finite are zero, we get linear stable operations

$$r_E : BP^*(\) \to BP^{* + \ell(E)}(\)$$
of degree $2|E|$, where $|E| = \sum_i e_i (p^i - 1)$.

Now for a p-adic unit α we have

$$ (2.7) \quad r, \circ \psi \left(e_{BP}(L) \right) = r, \left(\psi_{\alpha^{-1}}(e_{BP}(L)) \right) $$
$$ = (r, (pt) \circ \psi_{\alpha})^{-1}(r, (e_{BP}(L))) $$
$$ = (\phi_{\alpha} \circ r, (pt) \circ \psi_{\alpha})^{-1}(e_{BP}(L)). $$

And

$$ (r, (pt) \circ \psi_{\alpha}) (T) = r, (pt) \circ ([\alpha^{-1}]_{BP}(\alpha T)) = [\alpha^{-1}]_{\mu'}(\alpha T), $$

where $\mu' = \mu_{BP^*}$. Thus

$$ (2.8) \quad \langle \phi_{\alpha} \circ r, (pt) \circ \psi_{\alpha} \rangle (T) = \phi_{\mu}([\alpha^{-1}]_{\mu'}(\alpha T)) $$
$$ = [\alpha^{-1}]_{BP}(\phi_{\alpha}(\alpha T)) = [\alpha^{-1}]_{BP}(\sum_{k \geq 0} \alpha^k \phi_{\alpha} t_k T^p k). $$

Let

$$ \sigma_{\alpha}: \mathbb{Z}_{(p)}[t] \to \mathbb{Z}_{(p)}[t] $$

be an algebra homomorphism such that

$$ \sigma_{\alpha}(t_k) = \alpha^{k^{-1}} t_k, \quad k \geq 1, $$

and define an operation

$$ \widetilde{\Psi}^{\alpha^{*}}: BP^*() [i] \to BP^*() [i] $$

by $\widetilde{\Psi}^{\alpha} = \Psi^{\alpha} \otimes \sigma_{\alpha}$. Then

$$ (2.9) \quad (\Psi^{\alpha} \circ r,) (e_{BP}(L)) = \widetilde{\Psi}^{\alpha}(\phi_{\alpha}^{-1}(e_{BP}(L))) $$
$$ = (\widetilde{\Psi}^{\alpha}(pt) \circ \phi_{\alpha})^{-1}(\widetilde{\Psi}^{\alpha}(e_{BP}(L))) $$
$$ = (\Psi^{\alpha} \circ \widetilde{\Psi}^{\alpha}(pt) \circ \phi_{\alpha})^{-1}(e_{BP}(L)). $$

Remark that

$$ \widetilde{\Psi}^{\alpha}(pt) \circ \mu_{BP} = \mu_{BP^*}^{\psi_{\alpha}}. $$

Thus

$$ (\widetilde{\Psi}^{\alpha}(pt) \circ \phi_{\alpha}) (T) = \sum_{k \geq 0} \alpha^k \phi_{\alpha} t_k T^p k, $$

where $\mu'' = \mu_{BP^*}\psi_{\alpha}$. And

$$ (2.10) \quad (\phi_{\alpha} \circ \widetilde{\Psi}^{\alpha}(pt) \circ \phi_{\alpha}) (T) = \phi_{\alpha}(\sum_{k \geq 0} \alpha^k \phi_{\alpha} t_k T^p k) $$
$$ = \sum_{k \geq 0} \phi_{\alpha} (\alpha^k \phi_{\alpha} t_k T^p k) $$
$$ = \sum_{k \geq 0} [\alpha^{-1}]_{BP}(\alpha^k t_k T^p k) $$
$$ = [\alpha^{-1}]_{BP}(\sum_{k \geq 0} \alpha^k t_k T^p k). $$
Thus by (2.8) and (2.10) we see that
\[\phi_t \circ r_t(pt) \circ \psi_a = \psi_a \circ \overline{\psi}_a(pt) \circ \phi_t, \]
then, by (2.7) (2.9) and the universality of BP^* we obtain

Proposition 2.6. For any unit of \mathbb{Z}_p there holds the commutativity
\[r_t \circ \psi_a = \overline{\psi}_a \circ r_t. \]

Corollary 2.7. Let $E=(e_1, e_2, \ldots)$ be a sequence of non-negative integers of which all but a finite terms are zero. There holds the commutativity
\[r_E \circ \psi_a = \alpha^{|E|} \psi_a \circ r_E. \]

Corollary 2.8. For any linear stable cohomology operation
\[\Xi_s: BP^*(\) \to BP^*+2s(\) \]
of degree $2s$ there holds the commutativity
\[\Xi_s \circ \psi_a = \alpha^s \psi_a \circ \Xi_s. \]

Remark that every stable cohomology operation in BP^* can be expressed as linear combinations of Quillen operations r_E over $BP^*(pt)$. Then Corollary 2.8 follows from Proposition 2.1 and Corollary 2.7.

Corollary 2.9. Adams operations in BP^* commute with all multiplicative operations.

REMARK. Properties of Adams operations in complex cobordism which correspond to Propositions 2.1, 2.2, 2.3, 2.7 and 2.8 are obtained in Novikov [7] by different arguments.

3. The center of $Aut(BP)$.

For any $b \in BP^{2(1-p^k)}(pt)$ we define a sequence
\[(b, k) = (0, \ldots, 0, b, 0, \ldots) \]
with b as the k-th term and with all other terms zero. By (1.9) we obtain
\[\sum_{i=1}^k \Theta_{b, k}(\psi_i)T^{p^i-1} + \mu \sum_{i=1}^k bT^{p^i+1-1} = \sum_{i=1}^k \psi_i T^{p^i-1} + \mu \sum_{i=1}^k b^i T^{p^i+1-1}. \]

In particular
\[\sum_{i=1}^k \Theta_{b, k}(\psi_i)T^{p^i-1} \equiv \sum_{i=1}^k \psi_i T^{p^i-1} + \mu pbT^{p^k-1} \text{ mod } \deg p^{k-1} + 1. \]
Recursively on /, \(1 \leq l < k\), and deleting the same terms successively we see that

\[
\Theta_{(b, k)}(v_l) = v_l, \quad 1 \leq l < k,
\]

and

\[
\Theta_{(b, k)}(v_k) = v_k + pb.
\]

These imply that

\[
\Theta_{(b, k)}(x) = x \quad \text{for any } x \in BP^{-2x}(pt), s < p^k - 1,
\]

and

\[
\Theta_{(b, k)}(y) = y + pcb \quad \text{for } y \in BP^{2x(1-p^k)}(pt)
\]

when \(y = cv_k \text{ mod decomposables, } c \in \mathbb{Z}_p\).

Let \(\Theta_a\) be in the center of \(\text{Aut}(BP)\). Then

\[
\Theta_{(v_k, b)} \circ \Theta_a = \Theta_a \circ \Theta_{(v_k, b)}
\]

for all \(k \geq 1\). And by (1.12) we have

\[
\sum_{i \in \mathbb{Z}_b} \Theta_{(v_k, b)}(a_i) T^{p^i} + \sum_{i \in \mathbb{Z}_b} a_i \cdot \Theta_{(v_k, b)}(a_i) T^{p^i}
\]

\[
= \sum_{i \in \mathbb{Z}_b} a_i T^{p^i} + \sum_{i \in \mathbb{Z}_b} \Theta_a(v_k) T^{p^i}.
\]

In particular

\[
\Theta_{(v_k, b)}(a_k) T^{p^k} + u v_k T^{p^k} = \Theta_a(v_k) T^{p^k} \quad \text{mod deg } p^k + 1.
\]

Thus

\[
\Theta_{(v_k, b)}(a_k) + v_k = a_k + \Theta_a(v_k).
\]

Put

\[
a_k \equiv \lambda_k v_k \quad \text{mod decomposables, } \lambda_k \in \mathbb{Z}_p.
\]

Then by (3.4) and (3.5) we obtain

\[
\Theta_a(v_k) = (1 + p \lambda_k) v_k, \quad k \geq 1.
\]

Next, putting

\[
v_k' = v_k + v_1^{(p^k - 1)/p - 1}
\]

for \(k > 1\), by commutativity

\[
\Theta_{(v_k', b)} \circ \Theta_a = \Theta_a \circ \Theta_{(v_k', b)}
\]
and by the same argument as (3.5) we obtain

\[\Theta_{\varphi_k'}(a_k + v'_k) = a_k + \Theta_{\varphi_k'}(v'_k). \]

Applying (3.4) and (3.7) to (3.8) we obtain

\[(1 + p\lambda)\varphi_1^{(p^k-1)/p^{k-1}} = (1 + p\lambda)\varphi_1^{(p^k-1)/p^{k-1}}. \]

thus

\[1 + p\lambda_k = (1 + p\lambda_1)^{(p^k-1)/p^{k-1}}. \]

Let \(\lambda \) be a \(p \)-adic unit such that

\[\lambda^{p-1} = 1 + p\lambda_1. \]

Then (3.9) implies that

\[1 + p\lambda_k = \lambda^{p^k-1} \]

for all \(k \geq 1 \). Thus, by (3.7), (3.10) and Proposition 2.1 we see that

\[\Theta^a \BP^*(pt) = \Psi^a \BP^*(pt). \]

Then by Proposition 1.1

\[\Theta^a = \Psi^a. \]

In other words every multiplicative operation which is in the center of \(\text{Aut}(\BP) \) is a suitable Adams operation. Let \(Z(\text{Aut}(\BP)) \) denote the center of \(\text{Aut}(\BP) \). The above result and Corollary 2.9 imply

Theorem 3.1. \(\text{Ad}(\BP) = Z(\text{Aut}(\BP)). \)

Corollary 3.2. \(Z(\text{Aut}(\BP)) = U_r(Z_p). \)

OSAKA CITY UNIVERSITY

References

