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Introduction. In [5], Wolf proved that the Dirac operator is essentially
self adojoint over a Riemannian spin manifold M and he used it to give explicit
realization of unitary representations of Lie groups.

Let K be a Lie group and a a Lie group homomorphism of K into SO(n)
which factors through Spin (ή). He defined the Dirac operator on spinors with
values in a certain vector bundle under the assumption that the Riemannian
connection on the oriented orthonormal frame bundle P over M can be reduced
to some principal A>bundle over M by the homomorphism a.

The purpose of this paper is to give the Dirac operator on a homogeneous
space in a more general situation using an invariant connection, and to determine
connections that define the formally self adjoint Dirac operator.

Let G be a unimodular Lie group and K a compact subgroup of G. We
assume GjK has an invariant spin structure. First, we define the Dirac operator
D on spinors using an invariant connection on the oriented orthonormal frame
bundle P over G/K. Next, we introduce an invariant connection V to a
homogeneous vector bundle C{? associated to a unitary representation of K, then
we define the Dirac operator D ® 1 on spinors with values in GJ according

to [4]. As for a metric on spinors, we use a Lemma given by Parthasarathy
in [3], Using this metric and an invariant measure on GjK, we define a
hermitian inner product on the space of spinors with values in ί̂Λ Then we
determine connections that define the formally self adjoint Dirac operator with
respect to this inner product. In some cases (cf. Remarks in 4), D ® 1 is

always formally self adjoint if an invariant connection on ^ is a metic connec-
tion. Moreover, in the same way as Wolf [3], we see that if D ® 1 is formally

self adjoint, then D ® 1 and (D ® I)2 are essentially self adjoint.

1. Spin construction

Let m be an ^-dimensional oriented real vector space with an inner product
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<, >. We define the Clifford algebra Cliff (m) over m by Γ(m)/J, where Γ(m)
is the tensor algebra over m and / is the ideal generated by all elements
v®v+ζv, vy\, υ^m. The multiplication of Cliff(m) will be denoted by x y.
Let p: Γ(m)->Cliff(m) denote the canonical projection. Then Cliff(m) is de-
composed into the direct sum Cliff+(tn)©Cliff"(m) of the />-images of elements
of even and odd degree of T(m), and m is identified with a subspace of Cliff (m)
through the projection^). Let {ely e2y •••, en} be an oriented orthonormal base of

m. The map, eh ei2 eip±-*(—\)peip •• £, 2 £, 1 defines a linear map of Cliff(m)
and the image of # e Cliff(tn) by this linear map is denoted by X. The Spin
group is defined by

Sρin(m) = {#eCliff+(m): x is invertible, x tn-x^am and x x=l}

Sρin(m) is a two fold covering group of *SΌ(tn) through the following map
π: Sρ in(m)^50(m) defined by π(x)v = x v x~1 for #eSρin(m) and v^m.
When n^3y Spin(tn) is the universal covering group of SO(m). Moreover, the
subspace §£>m(tn) of Cliff (tn) spanned by {̂ •^•}t<y becomes a Lie algebra by
the bracket operation [x, y\=χ.y— y.χ. This is identified with the Lie algebra
of Spin(tπ) in such a way that exp: $ptrt(m)->Spin(m) is nothing but the
restriction of the exponential map of the algebra Cliff(m) into Cliff(m). The
differential π of π is given by

(1.1) π(x)v = x v—v x for #e§ptn(m) and

Now, put a£=\/^ΐe2i.1»e2£y 1 ̂ / ^ — I, then α?=l and ai aJ =aJ ai. We

consider the right multiplication by a/s on Cliff(m)®C For a multi-index

9=(9iy ?2, ••', ? r w η ) , where q~ί or — 1 , we .put
L 2 J

These spaces give irreducible representations of Spin(m) by the left multiplica-

tion. When n is odd, these representations are equivalent each other. Any one

of these representations is called the spin representation. Choosing a multi-

index q> we put L=Lq and denote by s the representation of Spin(tn) on L.

When n is even, just two inequivalent irreducible representations appear,

according to the sign of ± Π ?,-• Each of these representations is called the

positive or negative spin representation according to the sign of ± Π <?,-. Choo-

sing a multi-index q with Π # , =l> we put L+=Lq, L~=Lq, L=L++L~ and

denote by s+, s~ and s the representations of Spin(m) on L+, L" and L respec-

tively. We identify each element of m with an element of Cliff(m)!g)C by the
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natural inclusion. Then if n is even, by the left Clifford multiplication the
following symbol maps are induced

M {Γ:
If n is odd, by the left multiplication, we have the following map;

Identifying Lg with L^ through the spin module isomorphism induced by right
multiplication of em we also have the symbol map

(1.2/ S:xn®L->L.

The definition yield the properties (i), (ii) in the following lemma.

Lemma 1. We have
( i ) The symbol maps S commute with the action of Spin(tn), i.e., it holds
S(π(x)v®x l)=X'S(v(g)l) for x^Spin(m), v^m, l^L.
(ii) If S(v®l)=0 (resp. S±(v®l)=0) for some v^m and l^L (resp. for some
©em and /eL*), then v=0 or 1=0.
(iii) (Lemma 5.1, §5 in [3]). There exist a hermίtίan inner product < >, on L
satisfying

<β{v®l\ O+</, £(v®l')y = 0 for v^m

and 1,1ΈL.

REMARK. We give explicitly a base of L^ and an inner product on L satis-
fying the above condition. When n=2m (resp. n=2m+l), let ely e/, -- ,em, ej
(resp. e19 e/, •••, emy em\ en) be an oriented orthonormal base of m Put

f.— ^ L, f[=z— y and α, = —v — l ^ ^ί, then we have

f'ι aj = arf'i if

/ i .β y .= βy.// if

Λ /ί+/5 Λ = 0 if

For a multi-index 5=(ί,, y?» " i ?»») we
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gt l / ί if ?,= - !

and put

Then

(resp.

is a base of Lf. The inner product which makes the above base into an ortho-
normal base satisfies the condition of Lemma l-(iii).

2. Invariant connections on homogeneous spaces

Let G be a Lie group and K a closed subgroup of G. We denote by g, ϊ
their Lie algebras. We assume that the pair (G, K) is reductive, i.e., there
exists a subspace m of g such that g = ϊ + m (direct sum) and Ad(K)mam. We
fix such decomposition g = ϊ + m and identify tπ with the tangent space at the
origin o of G\K. Let

p:K->GL{V)

be a real or complex representation of K. l e G L ( F ) denotes the identity
automorphism of V, The differential of p will be denoted by

Now, we consider G-invariant connections on the principal GL( J^-bundle P—
GxGL(V) over G/K, which is the quotient space of GxGL(V) under the

P

equivalence relation (g, h)~(gk, pQή^h) for ^ E G , k^K and Jκ=GL(V). The
equivalence class in P containing (g9 h)^GxGL(V) will be denoted by {g, h}.
G acts on P as bundle automorphisms by the left translation

Lx: {g,h} -> {xg, h} X G G .

Proposition 1. There exists a one to one correspondence between the set
of G-invariant connections in P=GxGL(V) and the set of R-lίnear mappings
Mm: tn->gI(Γ) such that

(2.1) Mw(a(k)X) = p(k)Mra(X)p(k)-^ for
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andk^K.
The connection form ω of the G-invarίant connection in P corresponding to Mm

is given by

(22) (Mm(X) = coUΰ(X) f o r X e π t ,
\ " / J }\( Y"\ (ίt\ for Y r f

where u0 is the origin {e, 1} ofGx GL(V)=P and X is a vector field on P generated
by Lexptx.

Proof. See [1].
For a linear map M m satisfying the condition (2.1), the corresponding G-

invariant connection will be called the connection induced by Mm.
Let c[7=Gx V be the vector bundle over GjK associated to (p, V), which

P

is the quotient space of Gx Vunder the equivalence relation (g, v)~(gk, p^ifyv)
for g^G, k^K and C E F . We denote by Co o(cl ;) the space of all C°°-sections
to the bundle<^IΛ Then C°°(CV) is identified as follows with the space CQ(G, V)
of all C°°-functions φ: G->V which satisfy φ(gk)=pify^Φig) for all g^G and
k^K; Let p be the natural projection of G onto GjK and q the projection of
GxV onto CVy then the identification C°°(°ίS):Bφ\->φ^Co(G, V) is given by

q(g, Φ(g)) = Φ(P(g)) fo

The principal bundle P=GxGL(V) is identified with the bundle of frames
P

of ^7 in a natural way, and ^ is identified with the vector bundle P X V

associated to P by the natural action of GL(V) on V. Thus, for a linear map
Mm. satisfying (2.1), the connection in P induced by Mm defines the covariant
derivative

on CÎ , where 2* denotes the cotangent bundle of GjK (cf. [1]). We call V
the covariant derivative on C[? induced by Mm.

Now, we calculate explicitly the covariant derivative V . Note that
is identified with the associated bundle G X (tn*®F), where

»*®P

is the representation contragradient to the adjoint representation a of K on m,

and hence, for each ^ G C ° ° ( Φ ) , V^φ defines a C"-function V^φ from G into

m*®F.

Proposition 2. L^ {Xt.}1==1>...n i^ ̂  i β ^ ofm and {ω1*},^..^ its dual base.

For the QQvariant derivative V ^ on φ induced by Mm and ^ e C°°(fV)A we
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(2.3)

where X{φ is the Lie derivative of φ with respect to the vector field X{ on G, and

Mm(Xt)φ is a C"-function on G defined by (Mm(Xi)φ)(g)=Mm(Xi)φ(g) for g<=G.

Proof. Through the identification C[p=p x γ for φζΞ C°°(CP). We define

φ to be a C°°-map from P into V in the same way as φ; precisely, let q: Px V-^CV
and/>: P^G/K be the projections, then φ is defined by the relation

) for

φ satisfies φ(uh) = h-1φ(u) for h(=GL(V)f and φ({#, l})^φ(^) for the class
{g, 1} G P represented by (g, I ) G G X G L ( Γ ) . We denote by lg and L^ the left
translations by g on G/^ and P respectively. For X^m = T0(GIK), the
horizontal lift to P of (lg)*X is (Lg)*XUo—ω(Lg*XUo)fgUo at the point Z ẑ/0, where
ω{Lg*Xu^* is the fundamental vector field on P generated by ω(Lg*XUo). ω is a
G-invariant connection, so that (Lg)^Uo—ω(Lg*XUQ)tgUQ=Lg*lUo—ωUo(X)ϊgu^
Then we have,

exp to>ao(X))\ f=

= 4 Φ( {^ exp tx, 1}) I t=o+ωUo{X)φ\g)
at

= (Xgφ)(g)+Mm(X)φ(g) for each gϊΞ G .

This implies (2.3). q.e.d.

Assume that V has an inner product or a hermitian inner product < , )>
according to F is a real or complex vector space, such that p is an orthogonal or
unitary representation with respect to < , >. Then < , > defines a metric < , >
on the associated vector bundle OJ. The connection in P induced by Mm is
called a metric connection if Mm(tn) is contained in the Lie algebra o(V) of the
orthogonal group O(V) or in the Lie algebra n(V) of the unitary group U(V).
This condition is equivalent to that the metric < , > on C[7 is parallel with respect
to the covariant derivative V ^ on Q? induced by Mm.

3. Dirac operators on homogeneous spaces

In what follows, we a§§ume that G is a connected μnimodular Lie group
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and K is a compact subgroup of G. Then the pair (G, K) is reductive, and
so we retain the notation in the previous section.

We choose a G-invariant Riemannian metric < , > on G/K. This defines an
inner product < , > on tn. We assume that GjK is orientable and the isotropy
representation a of K on m has a lifting δt to Spin(m), i.e., there exists a homo-
morphism a of K into Spin(τn) such that the following diagram is commutative;

Spin(m)

Take the representation (s, L), ($*, L*) of Spin(m) defined in 1 and define the
representations (σ, L), (σ±

y L*) of K by

σ = soct, σ± = s±odt.

The vector bundles over GjK associated to these representations are denoted
by Xy X± respectively.

Let Λm be a linear map of m into o(m) satisfying the condition;

Am(a(k)X) = a(k)hm(X)a{k)-1

for k^K and l E t n .
We define a linear map

Am: πt —> §!ptπ(tπ)

by

Λ m = Π - 1 o Λ w .

Then Am satisfies the condition

Ά.m(a(k)X) = S ^ Λm^.Qί^)- 1 for

We imbed $ptπ(τn) into gl(L) (resp. 91(1/*)) through Clifford left multiplication
(the differential of the spin representations). Then the above condition implies

= σ(k)λm(X)σ(kyl

(resp.

&m(ct(k)X) = σ±(k)λm(X)σ±(k)-1)

for k^Kand X^m.

We denote by 2", 2* the tangent and cotangent bundles over G/K. The iso-

morphism of 2* onto 2 through the Riemannian metric on G\K is denoted by h.

And we denote by μ (resp. μ±) the map from C°°(3^X) (resp. Cw >(2^^> ±)) tQ
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C°°(X) (resp. Coo(β£
I±)) induced by the bundle map defined by the symbol

map (1.2), (1.2)'. This can be well defined by Lemma l-(i). We denote by
V (resp. V*) the covariant derivative induced by Am on X (resp. X^. We
define the Dirac operators D> D± as follows;

D =

D± =

Lemma 2. Let {Xi}i=lt...n be an orthonormal base of m with respect to
< , >, and {ω*'},.=1...M its dual base.

(i) For φ(= C°°(X), we have

(3.1) Dφ =
ί = l

(ii) The same formulas hold for an element of C°°(X±).

Proof. Immediate consequence of Proposition 2 and the definition of the
Dirac operator D.

Let (p, V) be a finite dimensional unitary representation of K and V the
vector bundle associated to (p, V). Then V carries the invariant metric induced
from the hermitian inner product on V. Let Mm be a linear map of m into
gl(F) satisfying the condition (2.1), and V ^ the covariant derivative on C[?
induced by Mm. In order to define our Dirac operators from COO(X®CV)
(resp. COO{X±®C[;)) to C°°(X®C[;) (resp. C00(X±®c\;)) We use the following
theorem.

Theorem P (Theorem 3, §9, Chapter IV in [4]). Let ΊJy C[?y <W be vector

bundles over a C°°-manifold M, D: Coo(ίU)-»Coo(ci^) a first order linear differential

operator on M and V a covariant derivtive for CV. Then there is a unique first

order differential operator

T: C-(^®q7) -^ C-iWQCV)

such that

T(f®h)(x) = (Df®h)(x) whenever (V^h^x) = 0 .

We denote this operator by D ® 1. From (2.3), (3.1) and using the above
y ^ . . •

theorem, we can define a differential operator D ® 1 (resp. D± ® 1), which we
call the Dirac operators. V^ V ^

Proposition 3. For φ(= C°°{X®^V), we have
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where SV=S® 1: xn®L®V-*L®V and {X,}t==1>...n is an orthonormal base of m.

Proof. It suffices to prove that the right hand side of (3.2) is a first order
differential operator from Cca{X®cV) to CCO{X®CV) and satisfies the condition
of theorem P. But it is easy to see these conditions by making use of Pro-
position 2. q.e.d.

4. Formal self adjointness of Dirac operators

We denote by dx the invariant measure on GjK induced by the G-invariant
Riemannian metric. Since G is a unimodular Lie group, there exists a bi-
invarint measure dg on G such that for any C°°-function/with compact support
we have

where/) is the projection G-+G/K. Then we have in virtue of the invariance

of dg

(4.1) ( Xfdg = 0 f o r a l l X e g .
JG

We fix inner products on L and L± satisfying the Lemma l-(iii). Then X and
Jβ± carry the metrics induced from the above inner products and also X®^Vy

X±®CV carry the metrics induced from the metrics of X, X± and OJ% The
inner product ( , ) on the space C°^{X®CV) of all C"-sections with compact
support is defined by

(4.2) (φ, ψ) = \ <φ, ψ>dx = ί <φ, ψ>odg
JG/K JG

where < , > is the metric on the vector bundle, and < , >0 is the inner product of

L®V or L±®V.

Proposition 4. We have the formula for the formal adjoint operator

(D ® 1)* of (D ® 1) as follows;

where M% is the adjoint operator of Mm with respect to the inner product of V.

Proof. For φy ψ e C :
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({D &\)φ, ψ) = ±

1 = 1 JG

+Σ t
i = i JG

- Σ (
ι' = i JG

-Σ
l

= - Σ ( X<<$,
i = l JG

+Σ (
i = i JG

- Σ t <«?,
» = i JG

= Σ t <$, ev
» = i JG

+ Σ

JG

Thus we have the proposition 4. q.e.d.

Theorem. Suppose the connection induced by Mm is a metric connection.
Then a necessary and sufficient condition that D ® 1 is a formal self adjoint operator

(resp. D± ® 1 is the formal adjoint operator of Dτ ® 1) if and only if the following

condition',

(4.4) J2Am{Xi)Xi = 0

holds, where {-XΓ, }, =i...* is an orthonormal base ofxn.

Proof. From our assumption, Mm(X)=—M^(X) for each J f e m . For
, from Proposition 4 we have
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Thus, we see that the condition,

(4.5) Σ βn(Xi)ε(Xi®l)-6(Xi®Km(Xi)l)} = 0 for /εL,

is necessary and sufficient in order that D ® 1 becomes the formal self adjoint

operator. From Lemma l-(ii) and (1.1), the condition (4.5) is equivalent to

Σ Am{X,)X{ = 0 q e d

Corollary. In the following two cases, the condition of theorem is satisfied;

(i) a has no fixed point except 0.

(ii) The connection induced by Am is Riemannian, i.e., it coincides with the Rieman-

nian connection defined by a G-invariant Riemannian metric g on GjK.

Proof, (i) for any k^Kwe have,

± = Σ a
i—1

where the last equality follows from the fact that a(k) is an orthogonal trans-
formation on m. Hence from our assumption, we have

Σ Am(Xi)Xi = 0 .

(ii) We denote by B the inner product on m induced by g. Then the Rieman-
nian connection defined by g is given by

Am(X)Y=^[X, Yh+ U(Xy Y)

where [X> Y] is the m-component of [X, Y] and U(X,Y) is the symmetric

bilinear mapping o fmxm into m defined by

ZB(U(X, Y), Z) = B(Xy [Z, Y]m)+B([Z, X]n, Y)

for all X, F , Z E t n . (cf. Theorem 3.3 Chapter X in [l]-(b)). From the above

formula, we have

= ±B{U{Xi,Xi),Xj)Xί



184 A. IKEDA

i.j

here we extend B to g such that (1) B is an ^4d(β)-invariant metric on g, and (2)

m and I are mutually orthogonal with respect to B. We choose an orthonormal

base {Yly • ••, Yp) of ϊ. Then using [I, m]cm > we have

gB(X£y [XJf Xt]m) = Σ {B(Xi9 [XJfX£])+B(Yiy [XJ9 X,])}

= 0,

where the last equality holds since G is unimodular. Thus we have

o q e d

REMARKS (i) Suppose G is compact and rank G=rank K, then the condition
(i) of Corollary is always satisfied. In feat, let T be a maximal torus of G con-
tained in K. Adjoint representation of T on g is decomposed as follows;

where each p{ is two dimensional subspace of g. On each p t , T act as nontrivial
rotational elements. Thus the isotropy representation has no fixed point except 0.
(ii) Suppose G is semi-simple and GjK is a symmetric space. Let g=ϊ+!p be
a Cartan decomposition. Let H be a non-zero element of p and α a maximal
abelian subspace of p containing H. Then there exist an element w of the Weyl
group of GjK and an element k of K such that Ad(k)H=wH^H. Thus the
condition of Corollary (i) is satisfied,
(iii) If D ® 1 is formally self adjoint, then in the same way as Wolf [5], We

v??
see that D ® 1 and (D ® I)2 are essentially self adjoint operators. Because,
his proof (Theorem 5.1 and Theorem 6.1 in [5]) has no use that the connection
is Riemannian.
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