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1. Introduction and the statement of result

Let Z, , be the metacyclic group {x, y|x?=y?=1, yxy~'=x"} where p>2 is
a prime integer, ¢>>3 is an odd integer and 7 is a primitive p-th root of 1 mod ¢
such that (r—1, g)=1 (see Shibata [15], 1. Introduction). The object of the
present article is to determine the oriented and weakly complex cobordism
algebra Q¥(Z, ») (L=S0, U) of the classifying space of Z, ,. Our main result
is the following.

Theorem. Let p>3in case L=SO and p>2 in case L=U.
(1) Q¥(Z,») is a sum of two Qf-subalgebras whose intersection is the scalars Qf.
These subalgebras are the quotients of power series rings over QUf generated respec-
tively by the cobordism Euler classes e(v,, ,) and e(7 ,).

Here #, is the pull-back of the Hopf line bundle 1, over Bz, and v, , is a certain
complex vector bundle of dimension p whose “restriction” on Bz, is 1,Dn,D D
75" ™" with m, the Hopf line bundle over B Z,

(2) Q¥(Zq)=0FII( j[i [1-(X)), YINXY, [q)n(X), [p]HY), (Tor Qf)X,

(Tor QF)Y), where [ |5 indicates the formal multiplication with respect to the formal
group law F(X, Y') of complex cobordism theory (or its canonical reduction to oriented
cobordism for L=SO0) (see Quillen [12]), Tor QF=0 and Tor Q¥, consists of
elements of order 2.  This isomorphism is realized by the correspondence; e(v,, p)—

TL[716(X) and e(,)> Y.

(3) Incase L=SO and p=2, the Q¥-subalgebra generated by e(,) in (1) is replaced
by w*Q¥o(Z,), where =* is the monomorphism induced by the projection n: Bz ,—
Bz,. And (2) is modified as

Oo(Z0,)= oIl TT [7] (0T (X)) (Tor Q%) X)DOZAZ,).

ReMarg. QH[[Y/([2) (Y )=Q&[[Y]]/(2Y) is contained in Q¥,(Z,) as a
proper Q¥,-subalgebra, ¥ being the reduction of e(n,) to Q¥,(Z,)=Q¥,(Bz,).
This is easily derived from the results of Shibata [14] via the Atiyah-Poincaré
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duality (Atiyah [1]).

By virtue of the Conner-Floyd isomorphism
Mot Q?}(X)§Z = K*(X)
178

for finite CW complexes [4], we obtain the following corollary, using the same
inverse limit arguments as in section 5.

Corollary. (1) Ky(Bg,,)=0.
(2) K?J(qu,p)zZ[ji;I:(l—nzj), 1—2,)[(1—ng)(1—2,), (1—2%), (1—m5))

the isomorphism being realized by the correspondence;
p-1 :
P(ves) = D (DN - T A—7) and 1—7,-1-n,.

Kamata [7] determined the group structure of Q¥(Z,,) by the use of the
spaces D(2k+1, 4n+3) whose direct limit become a classifying space for Z, , (see
also Kamata-Minami [8]). We also construct analogous spaces with their direct
limit being a classifying space for Z; ,. But our construction slightly deviates
from that of Kamata-Minami [8] in case p=2 (the dihedral case). The difference
is essential for our computation, since every homology class of our spaces can be
represented by an L-submanifold (L=U, SO). Because of this, the Atiyah-
Poincaré duality plays an important role in several occasions in the present
article.

I am greatly indebted to Professor Masayoshi Kamata for stimulating
discussions on his work in [7]. Thanks are also due to Professors Minoru
Nakaoka and Fuichi Uchida for helpful conversations.

2. A classifying space for Z, ,

Following the line of Kamata-Minami [8], we construct a classifying space
for Z; p.

Consider the product space S?”~!x S§*~! and define an action +» of Z, ,
on S%m-1x §%*! by the rule

Y, (), 2) = (pF'%;), %),
V(35 ((25), ) = ((Roep)s Pp3"); 0<j<pm—1

where  p, = exp (2z\/—1/g), p, = exp (2n/—1[p) and ¢:{0,1,2, . -}—
{0, 1,2, .-} denotes the mapping of period p sending ap+¢ (0<t<p—2) to
ap+t+1 and ap+(p—1) to ap.

Then we see that this action is free. Denote by M(m, k) the quotient space
S2m271x 8%+, Then the direct limit space of M(m, m) with respect to the
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natural inclusions M(m, m) C M(m-1, m+-1) becomes a classifying space of Z, ,.
Let L™?~%(q;(r’)) denote the quotient space of S*”#~* by the Z,-action
Vi (Zoy 1y o0y Zjy %5 Bonpo1) = (PaZ0r Po21y ***5 P Zjy *0y p;"lzmp_l). Consider the

product space L™?7%(q; (7)) X S*~* and define a periodic map of period p
T: Lm2=Y(q; (r7)) X S?%*-' — L™#7(gq; (r/)) x S*

by T([z;], 2') = ([2ej5» p,’]). Clearly the quotient space L™~%(g; (1)) X
S*=YT is M(m, k).

The inclusion map i: L™?-%(q; (r/))—>M(m, k) defined by i([z])=[[z],
(1,0, --+,0)] corresponds to the inclusion i: Z,CZ,,. The projection
w: M(m, k)—L¥(p)=L*'(p; 1, ---, 1) sending [[2], &’] to [2’] corresponds to
the projection #:Z, ,—~Z, Finally the cross-section s: L¥~'(p)—M(m, k)
defined by

slz1=11/v/p, -+ 1/\/P, 0, -+, 0], 2]

p coordinates

corresponds to the cross-section s: Z ,—Z, , with s(7)=y.

3. H(M(m,k); Z) (see Lazarov [9])
Consider the spectral sequence
t9=HAZ,; Hy(L™"X(g; (M)xS*"; Z))
associated to the p-fold covering

Lmp=(gs (M) X 5% — L0 (g; (7)) X ST
= M(m, k)

(see Cartan [2]). Then E? ;=0 unless =0, or j=0, 2(mp—1)+1, 2k—1 or
2(mp+k—1). In case j=0, 2(mp—1)+1, 2k—1 or 2(mp-+k—1), E} ;=0 or Z,
depending upon whether positive 7 is even or odd. To computc Ej ; we use the
resolution

N D
Z[Z,)—> Z[Z ) — Z|Z ]

where D=1—3, N=14-5+..-577", where y is the generator of Z,=Z, »/Z,.
Tensoring on the right with H ;(L™*~(q; (r"))x S*™*; Z), we find that E} ;=
cokernel (D®1). Now Hy(L™?=Y(q; (r"))x S*1; Z)=H «(L"*7(q; (r)); Z)Q
H(S*'; Z) and the generator § of Z, acts trivially on H(S*™'; Z)=
H(S*"; ZYDH o (S*7"; Z), Hy(L"?7(q; (r")); Z) (s=0) and H,,, (L™}
(4; (™); Z).
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Lemma 3.1.
The generator § of Z , acts on Hzs_1(L™?7(q; (r")); Z)=Z , as the multiplication
by r* (1<s<mp).

Proof. A generator of His_y(L™?7'(q; (r*)); Z)=Z, (1<s<mp) can be
chosen as the image of the fundamental class [L*7(g; (*))]€H - (L
(g; (r")); Z) by the homomorphism induced by the canonical inclusion map

701 L g; () L™ gs ().

Let T: L*?*-Y(g; (r"))—L"*"(g; (r")) be the restriction of T, re. T([24])=[%sun]
(1<n<m). Then (T)* is the identity homomorphism on Hazp_1(L"?"}
(g; (r); Z) and so § acts on Ha,p_1(L™?7(q; (r*); Z)=Z, as the multiplication
by (r)”?=1mod ¢(1<n<m). In case(s,p)=1, define amap ()": L°"'(q; (r*))—
L*Y(g; (") by ()([z:])=[(2s)"]. Then ~Po( )" is homotopic to Toc“~" be-
cause H: L** (q; (r*)) x I—L™?*(q; (r*)) defined by

H(l2], ) = [{U(E2000+(1—0) 20) 2o+ (1—1) 20)]
gives a desired homotopy. This proves the lemma.
As a consequence
Fa B ZJL7 (g (M)DZILm g5 ()]
B ZJL™g; () X SHIBZIL™ 7 g; () X 5]
DZ[pIDZ[S*].

From dimensional reasons, it is easy to determine the differentials (c.f.
Théoreme 4 of Cartan [2]), and we obtain the following result.

Proposition 3.2.
Bo(Mom, B); 2) = & Zd[L"*(g; (PNIDZIL™ (g ()]

& Z[Mn, KD Z[Mm, F)]
B 7L (B2 (p)
B Z,[M(m, )]

Corollary 3.3.

The Thom homomor phism

i QEM(m, 1) — Hy(M(m, B); Z)

is epic.  Equivalently, the bordism spectral sequence for M(m, k) collapses (c.f.
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Conner-Smith [5], Conner-Floyd [3]).

Corollary 3.4. Except for the case p=2, L=SO, Q%(M(m, k)) is generated
as an Qg-module by the bordism classes of the canonical inclusion maps to M(m, k) of
the L-submanifolds (L=U, SO);

(L™7(g; (), 2); 1<n<m,
(M(n, k), ¢); 1<n<m,
(L77(p), ); 1<j<k and (M(m,j), 0); 1<j<k.

Proof. Except for the case p=2, L=2SO0,
Ho(M(m, k); QF) = Ho(M(m, k); Z)@0%

by Proposition 3.2. 'Therefore the arguments of Conner-Floyd [3], Theorem
18.1 work well in this case to prove the corollary.

4. Cobordism algebra QF(M(m, k)); L=U, SO

Now we turn from bordism to cobordism via the Atiyah-Poincar¢ duality

(Atiyah [1], Conner-Floyd [3]);

D
QL(M(m, k)) — QF 2 rk=D=i( M(m, k))

B D B
H (M(m, k); Z) —> H**™?*#"27i(M(m, k); Z) .

Let 7,;,,, be the normal bundle of the embedding M(m, k)C M(m, k+1).

Lemma 4.2. Letm, k>1.
(1) Fpime=n*n,; 4 wheren,;, is the Hopf line bundle over L*~*(p).
(2) DI[M(m, j), d=e(fi,; ms)*7 (1<j<k).
(3) (iiys mal=0.
(4) D[M(m—1, k), (J=D[M(m—j, k), (] (0<j<m—1).
(5) D[M(m—1, k), (]"=0.

Proof. The projection z: (M(m, k+1), M(m, k))—(L*¥(p), L*7'(p)) induces
a bundle map between the normal bundles, and hence follows (1). For j=&,
(2) is obvious from the definition of the duality D. From (1) we have e(7,; )=
m*e(n,;:), and we know that e(n,;,)=D[L**(p)CL*'(p)] (Kamata [6]).
(Notice that for k=1, L*"*(p)=¢ and e(7,,,)=0. This implies (3) for k=1.)
The projection 7z: M(m, k)—L*'(p) being t-regular on L*"*(p), we see that
w*e(n,; ))=D[x(L**(p))=M(m, k—1)C M(m, k)]. 'This proves (2) for
j=k—1. For k=2, let /: M(m, k—1)—M(m, k) be the embedding defined by
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([[g), ()] = gl (0, (2))]

while

[[ug)s (vn)]) = [[ue], ((2), O)] -

Then ¢ and " are homotopic and ¢-regular (Kamata [7]). Therefore e(%,; )=
D([M(m, k—1), ]-[M(m, k—1), (J=D[(")"*((M(m, k—1)), /1=D[M(m, k—2),¢']
=D[M(m, k—2), :]. This proves (2) for j=k—2. Repeting this procedure,
we inductively obtain (2) and then (3). Parts (4) and (5) are proved similarly.
Q.E.D.

Let us denote by Q¥(L*~'(p)) the intersection S2F(L*Y(p)) N D(QL(L*(p)).
So it holds that QF(L+'(p))=O*(L*(p))D Ao (D[ pt]), where the second term
in the right hand side is the exterior algebra over QF generated by the dual class
of an inclusion map of a point (Shibata [14]).

Lemma 4.3. Letm, k>1.

QF(M(m, k) = Q¥(D[M(m—1, k), )P Doi, QL™ (q; (r7)))
B F(LE(p)) D DosyOk(LE(p))

as Qf-modules, where by QF(D[M(m—1, k), (]) we mean the QF-subalgebra generated
by D[M(m—1, k), «].

Proof. By 4.2 (1) and (2), the dual cohomology class of [M(m, j)] is
7*c(n,;.)* 7. Therefore, applying the Poincaré duality to 3.2, we see that the
E,-term H*(M(m, k); QF) of the cobordism spectral sequence is additively
generated by the submodules QF(D[M(m—1, R)]), DoixH «(L™?7*(q; (r7)); QF),
w*H*(LF'(p); QF) and Dosy H «(L*'(p); Q%), where Q¥(D[M(m—1, k)]) means
the QF-subalgebra of H*(M(m, k); QF) generated by D[M(m—1, k)]. By virtue
of the Atiyah-Poincaré duality (4.1), corollary 3.3 implies the collapsibility of the
cobordism spectral sequence for M(m, k). Together with this, the naturality of
the spectral sequences and the arguments of [3], 18.1 imply that QF(M(m, k)) is
additively generated by the submodules Qf(D[M(m—1, k), ¢]), DoixQ&(L™?"*
(g5 (7)), =*QF(LF'(p)) and Dos,QF(L**(p)). Note that we may replace
w*QF(LE(p)) by n*QF(LE-(p)) since z*D[ pt]=Dois[L™*~(g; (r")), c]. Thus
we have

(44)  QFM(m, k) = QFD[M(m—1, k), J)+Doix QL™ (g; (7))
+m*OF(LE(p))+Doss (LA (p)) 5

and it remains to prove that the above sums are direct.

Case 1.  even dimensional case for p>3 or L=U
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Let u be an even dimensional element of Q¥(M(m, k)). Then, by 4.4, we
can express u as

U= § [V;]-D[M(m—1, k), )7+ [W]- D[ pt]+=*v

with 'z)efli"(L"“( ?)), taking account of the fact that Qi¢=0, that Q¥, contains
no odd torsion and that QJ, is a 2-torsion group unless j=0 mod 4 (Milnor [11]).

Suppose u=0. Then 0=s*u=[V ]4s*z*v=[V,]+v, and so [V,]=0 and
9=0 (Notice that s is homotopic to s": [x]—[[0, ---, 0, 1/\/P, ---, 1/x/P], 2]
with Image s’ M(m—1, k)=¢ when m>1, while D[M(m—1, k), ]=0 when
m=1 by 4.2 (5).) And so ,2>1 [V;][M(m—j, k), JJ+[W][pt]=0. Taking the
augmentation homomorphism, we see that [W]=0 since [M(m—j, k)]=
[L=927Y(q; (7)) x S*7*|Z ,]=0 in Qf and hence also in Q§°. Therefore the
sums in 4.4 are direct in this case.

Case 2. even dimensional case for p=2, L=SO.

Slightly deviating from the preceding case, an even dimensional element u
is expressed as

u= 31 [V,]-D[M(m—1, k), -+ [W]-D[pt]-+ n*o-+ Dossw,

where w belongs to QSO(RP(2k—1)).

Since s=s, is homotopic to s,: [z]—[[—1/\/p, =*, —1/\/P, 0, -+, 0], 2] by
the homotopy s,: [2]—[[(exp #t\/—1)/\/ P> ..., (exp mtn/—1)/\/ P, O, -+, 0], 2]
and since Image s, N Image s=¢, it follows that s*oDos,w=/s,)*oDos, =0 and
so u=0 implies 0=s*u=[V]+v. Hence [V]=0 and v=0 as in the preceding
case. Consequently, g [V ][M(m—j, k), (]+[W]-[pt]+s4w=0. Again we

obtain [I#]=0 by considering the augmentation. Now
0= Z—‘{ [Vlm«[M(m—j, k), (J+mxosw
= DV Jwu Mm—j, B), d+w.

So it suffices to prove 7 [M(m—j, k), ]=0 in QF,(RP(2k—1)) and hence also in
Q2(RP(2k—1)). But the augmentation &: QY (RP(2k—1))—Q&(pt) is an iso-
morphism and the fact that E[M(m—j, k), J]=[M(m—j, k)]=0 in QF, as shown
in the preceding case implies the desired result.

Case 3. odd dimensional case for p>3 or L=U.
An odd dimensional #’ can be expressed as

1 = Dot v’} Dos,u’
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with o' €QL(L™?7(q; (v))) and w' €QL(L*'(p)). So u’'=0 implies w'=
(150 54w )=m D (w)=0. Therefore Dos,w'=Doi,v'=0.

Case 4. odd dimensional case for p=2, L=SO.
In this case, we have
u = [V ]+ Dotyv'+a*t’'+ Dosyav’

with [V ]y, v QUL (q: (), ¥ €O (RP(2k—1)) and w'e
059 (RP(2k—1)).

Suppose u'=0. First consider a map c: pt—M(m, k) such that ¢(pt) N Image
i=c(pt) N Image s=¢. Then O=c*u'=[V,]. Next observe that v’ is decom-
posed as o'=[V/][pt]+v"+[V/][L"?"q; (1)), id] with 9" an odd torsion
element. Because v”/ is the only odd torsion term in the expression of #/,
it follows that o”=0. Therefore O=w'=[V/]-D[pt]+[V ] Dois[L™*"}
(g; (#))),id)+n*t'+Dosyw’. Then 0=[V]s*o Doty [L™? Y (q: (r7)), id]+s*z*t'+
(s)*Dosyw’=[V,]- D[ pt]+¢', and consequently [V ,/]=ED~Y([V /]- D[ pt]+¢t)=
0. Thus #=0. These facts imply [V, ][pt]+ssw'=0 and hence [V,]=
[V /][ pt]+sxw’)=0 and syw’=0. Summarizing, we conclude that the sums in
4.4 are also direct in this final case. Q.E.D.

Now let £=£,;,, and respectively 7=7,.,, be the complex line bundles
associated to the coverings S*77'—L™#7(g: (/) and S*™*7'L"P7(g)=
L7?7(g; 1, +++, 1). The maps f: L™"X(g)—>L"""(g; (")) and g: L™*"(g; (+/))—>
L7?7(q) defined respectively by f([(z,)))=[(27)] and g([(z;))=[(3"")] satisfy
f*e=n and g*n=¢.

Lemma 4.5. Letm, k>1.
1 -1 i
(1) froi*oD[M(m—1, k), J=e(r®n" @+ &7 )= 1L e(n").
(2) The restriction of the homomorphism

froi*: QE(M(m, k)) — QE(L™*7(g))

upon the subalgebra QF(D[M(m—1, k), (1) is monomorphic.
(3) D[M(m—1, k), c]=e(vq,p;mr), where vy p.mr is the normal bundle of the
natural embedding M(m, k)C M(m+-1, k).

Proof. First observe that for m=1, it holds that [M(m—1, k), (]=0 and

that prle(n"'):& And so (1) and (2) are obvious in this case. So we suppose

m>2 in the following proof of (1) and (2).
Now #*o D[M(m—1, k), i] = D[L™""*7X(g; (r")), ] € QP (L™ (g; (r)))-
Define L7r~%(r?) (i=1, 2, .-+, p) by
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Ly=*(r) = {U(=)€L™7(g5 ()5 Zom-vp-14s = O} -
Then it is easy to see that D[L™ " ?(gq; (1)), (]J= f[D[L’;‘"z(rj), ¢]. Define

Wiz L™7(g; ()~ CPmp—1) by ¥ {(z)]—[(=7 ™) and CPy(mp—2)c
CP(mp—1) by CP(mp—2)={[(z;)]€ CP(mp—1); 2p-pp-1+i=0} fori=1,2, ...,
p. Thenvp; is t-regular on CPy(mp—2) and D[L7*r7), ]=
r§FD[CP(mp—2), ¢]. We can easily construct a homotopy between CP (mp—2)=
CP (mp—2)C CP(mp—1) and

CP(mp—2) —" CP (mp—2) CP(mp—1),

where h:’[zoy ERRE) zmp—z]:[zm **ty Bim—Dp-1+i-1> O) RBm-Dp-1+ir *" "> zmp~2]' Hence

W ¥D[CP (mp—2), (]=\¥D[CP(mp—2), [|=p¥e(ng)=e(y¥ ny) with 74 the Hopf

line bundle over CP(mp—1). Therefore f*oi*oD[M(m—1, k), (]=
p-

= T e(f*ovtnm= M e(r" )= T e(r™) since ¥riof[(3)]=I[(z;)"""™]. This

=

proves (1) for m>1.

By (1), we have f*oi*oD[M(m—1, EYY={ TI e,(r" )P ={( IL )e(n)*} =
{(—1)?"c(n)?} in H*?/(L™?"*(q); Z). (Notice that r is a primitive p-th root of
1 mod ¢, and so p]_:Il ri=(—1)?""mod ¢q.) By4.2(5), D[M(m—1, k)]”=0 and by
3.2, the order of D[M(m—1, k)]’=D[M(m—j, k)] is ¢, that is, the order of
{(—1)?""c,(n)?} for 1<j<m—1. Thus the restricition of the homomorphism

fEot*: H¥(M(m, k); Z) — H*(L™~Y(q); Z)
upon the subring
Z(D[M(m—1, k)]) = Z[D[M(m—1, k)]]/(D[M(m—1, k)]™)

is monomorphic. Then consider the E,terms of the cobordism spectral
sequences for M(m, k) and L™?7'(g). Since ¢ is odd, QF has no g¢-torsion.
And by 4.3, the subalgebra Q¥(D[M(m—1, k), ¢]) is a direct summand as an
Qf-submodule. These facts together with the triviality of the spectral sequence,
imply that Q¥(D[M(m—1, k), ¢]) corresponds to Z(D[M(m—-1, k)])QQ¥ in the
E,-term. Therefore the triviality and the naturality of the spectral sequences
imply (2) for m>1.

Now by 4.3, (v, p; mi1£) EQE(M(m+1, k)) is expressed as e(vq p; m+1,)=
‘Z%[V]-]-D[M(m, k), J'+[W]- D[ pt]+n*v+Dos,w with 'z)efli"(Lk“(p)) and
12

we QL (L*'(p)). Observe that the induced bundle s*v4 5; m+1 . is the complex
vector bundle C?x S%*~'—S%1|7Z —L*¥~'(p) with Z, acting on C? as the regular
Z

4
representation space. 'This complex bundle is well-known to be isomorphic to



340 K. SuiBaTA

-1 -1
75 s D1y 4D DniTh Thus s*e(vg i mrrs)= I e(ny, )=0-{ TI e(n;; ) 1=0,

and this should be equal to [V ]+ s*z*v+(s,)*oDos,w=[V,]+v. Hence[V,]=0
and v=0.
Consider the natural inclusion map ¢,: M(m, k)C M(m-+-1, k). One can

easily verify that (‘m)*e(yq,b;m+1,k):e(yq,1>:m,k)’ (‘m)*OD[M(m’ k), (J’=D[M
(m—1, k), ¢}, (¢,s)*oD[pt]=0 and (¢,,)*¥oDos,w=0. (Seethe proof of 5.1 in
the following section.) Therefore e(vy p;me)=(tm)* (Ve p;mrre)= ; v;l-
D[M(m—1, k), cJ’. So e(vq,p; mr)=0 when m=1 and this proves (3) for m=1.
For m>1, e(vy »; mr) belongs to QF(D[M(m—1, k), (]).

Consequently, it suffices to prove f*oi*e(v, p; p r)=f*ci*c D[M(m—1, k), (]=
e(mPDn D--Dn”’"") by virtue of (1) and (2). But by definition we have
F*oi*vg 5 =T *EDE D BE” " )=nPn" BB Q.E.D.

We summarize the results in 4.3 and 4.5 in the following form.
Theorem 4.6. Letm, k>1.
QF(M(m, k)) = QF(e(vq,; me)) DDt QL™ (g; (r)))
Br*OHLF(p))DDosk QKL (p)) ,

where (1) QF(e(vg, p; m.x)) 15 the QF-subalgebra generated by the cobordism Euler class
e(vq.p; m) Of the normal bundle v, 4. ,, » of embedding M(m, k) M(m+-1, k),
(2) Q¥ (e(vq,s: mr)) is mapped isomorphically onto the subalgebra QF( PI:"[I e(n'i)) of

QE(L"?7(q)) by f*oi*

(3) QHLF(p) =L (p) N DOKL " (p),

(4) =* and Dos, are Vf-module isomorphisms onto direct summands and

(5) (V1 e(va,p; me)) w*o=[V ]-n*vsincethe e(vy p; o r) (j=1) are g-torsion
>0

while QF(L*'(p)) is a p-torsion group.

5. Proof of Theorem

Let ¢, s: M(m, k)—M(m+-1, k1) be the canonical inclusion. Then, for
the induced homomorphism

(tm.e)*: QF(M(m+1, k+-1)) — QF(M(m, k)),
we have the following result.
Lemma 5.1.

(1) (Lm,k)*e(l’q,p; m+1,k+1) = e(”q,p;m,k) .

(2) (Lm,k)*e(ﬁp;m+‘1,k+1) = e(";]p H m,k) .
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() (tm ) *Dosy QE(LA(p)) = 0.
() (tm)*Doiy QL™ ™?7(g; (r7))) = 0.
(5)  Cme)*: P*QELH(p))—>n*QF(LE(p)) is an  epimorphism, where
QELH(p)=QELA(p)I(D[pt]).
Proof. Part (1) and (2) are obvious from the definition. Let us consider
part (3). Let f: M—L*(p) represent an element [M, f] of Q%(L*(p)). Inorder
to obtain (¢,, ) *Dosy([M, f]), we should convert ¢, , within homotopy to become

t-regular to sof, and then we take the inverse image of sof(M) (c.f. Quillen [13]).
But ¢,, » is homotopic to ¢,,’ , defined by

tw #([(20)y (@)]) = [((0, -+, 0), (=), ()] -

4
Since
s[(w)] = [(1/ P, -5 1NV D, 0, =+ 0), ()],

y

Image ¢, N Image sof=¢ and hence they are t-regular. Therefore (¢, 2)*
(Dosk([M, f1))=0. This proves (3). Part (4) is shown similarly. Part (5)
follows from the commutativity of the diagram
*
4
QF(M(m+1, k+1)) «— QI(LX(p))
(tm ) % (w)*

Qf(M(m, k)) «——QE(L*7(p)) - Q.E.D.
Now Kamata [7] defined a Z,-action on

QHL"(9) = QHX1N/([g] #(X), X™)

by the correspondence X+—[—1](X), where [ ] denotes the formal multiplica-
tion by the formal group law of the complex cobordism theory. We can genera-
lize this to a Z ,-action (p>2) on

QL™ X(g)) = QEX1N/([g] +(X), X™, (Tor QF)-X)

for 1<m< o as follows. (Notice that Tor Qf=0 and that (Tor Q¥)-XC
([¢] #(X), X™) when m<cc.) For an element g of O(L™ (q)) represented by

a formal power series G(X)= ga,-X" €Q¥[[X]], we define [r](g) to be the

class represented by G([r](X)). This is easily seen to be a well-defined endo-
morphism on QF(L™*(g)) for 1<m<oo. Further, ([r]z)?(X)=[r?]«(X)=
[ng+1]#(X) for some 7z by definition. And [#g+1]x(X)=F([nq]x(X), X)=
[nq)(X)+ X+ [nq] (X)X P([nq] »(X), X) for some formal power series
P(X, YV)eQF[[X,Y]]. As [ng]x(X)=[n]r([g]~(X)), it follows that [r?]x(X)—
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Xe([ql(X)) Hence ([r]r)’G(X)=G(X) mod ([q]#(X)) for any power series
G(X). This proves that [r]r defines a Z ,-action on QF(L™(p)).

Lemma 5.2. For 1<m< oo, the invariant set

{QEIXN/([g)#(X), (Tor QF)}7

is equal to

([ TT P 1-(XO)(g] A(X). X", (Tor 0F)-X) .

Proof. As remarked above, [7?]x(X)—Xe&([¢]#(X)) and so [r]#{ II [r]F
(X)} H [F)(X)= H [#'](X) mod ([¢](X)). Hence every power series in
H [r] F(X ) represents a Z -invariant class in QF(L™7*(p)).

Conversely, suppose a power series G(X)= ]Z:_‘(,)an 7eQF[[X]] represents a

Z ,~invariant class of QF(L™"'(p)). Then the class of G,(X)=G(X)—a, is also

Z y-invariant. So
Gy([r]#(X))—Gy(X) = a(r—1) X +---€([g] /(X), X7, (Tor OF)- X) .

Thus, if m>1, a,eq-QF (D'Tor QF) by virtue of the hypothesis that (r—1, g)=1.
Put a,=g¢-a, and G, (X)=G,(X)—a,[q]«(X). Then G,(X)=G,(X)mod
([q]#(X)), G(X)E(X?) and G,(X) also represents a Z ,-invariant class. In this
way we inductively obtain, if m>p, series G,(X), -+, G,(X) such that
G(X)=-+=G,(X) mod ([q]#(X)), G}(X)E(X’) and that G;(X) represents a
Z ,-invariant class (j=1, 2, ---, p). (Notice that, if m<p, this procedure termi-
nates at G,,(X) and that G(X)=a,+ G ,(X)=a, mod ([q]«(X), X™) as desired.)
Now that

bp-1
-]';Io [r‘]F(X) = (— 1)1"1(ng—|— DXP e
for some n>1. We put

Gl X) = G (X)—(—1)"ta2{ T [r]4(X)
—(=1D)*" [ lg] x(X))}
where a” denotes the coefficient of X7 in G (X). Then G (X)=G,(X)+
b :;]:[01 [7] (X))} mod ([q] #(X)), G,(X)E(X?*") and G ,,(X) represents a Z -

invariant class of DF(L"(p)). And then we again obtain inductively G ,.,(X),
s+, G, )(X) if m>2p, and so on.

So we obtain a sequence of power series G(X)=G(X), G(X), -+, G;(X),
-++ (j<m) such that for pk+1<j<p(k-+1)+1
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k p-1
GHX) = G(X)—{art 21 b,( 11 []#(X))*} mod ([g](X)),
G;(X)e(X’) and G;(X) represents a Z ,-invariant class of QF(L" (p)) for every
j<m. This proves the lemma for a finite value of m. For the case m=co, we
remark that a,+ }_‘_, by( H [r]-(X)) is a convergent power series since

II [F1A(X)e(X?), and thls convergent series gives rise to the same class as that

of G(X) in QF(L=(p))=QF[[X1/([q]~(X), (Tor QF)-X). This completes the
proof of the lemma. Q.E.D.

Let Q¥(( He(n ")) denote the Qf-subalgebra of Q¥(BZ,) generated by

homogeneous power series in H e(n).
i=0

Corollary 5.3. The cononical homomorphism
p-1 i . p-1 i
tim 7,02 QF(( TT e(r™))) — lim QF( TT e(73', )

is an isomorphism.

Proof. (Z. Yoshimura) Observe that the Euler class e(7, ,,) corresponds to
[r'] #(X) with respect to the isomorphism

QEL™(g) = QE[[X])/([g] #(X), X™, (Tor QF)-X)

for 1<m< 0. Therefore in the following commutative diagram

0 — Q(( IT (™)) — 0 - ;
— Qf(( T e()) — QK(BZ) QK(BZ,)

th = lim (1 1) =
0 — lim Q*( H e} ) = 11m Q¥(L™7(q)) T——— Im Q¥(L™*'(q)),

the horizontal sequences are exact by 5.2. The corollary follows by diagram
chasing. Q.E.D.

Now we can prove our theorem stated in 1.

Proof of Theorem. Consider Milnor’s short exact sequence
0 — lim* QF ~(M(m, m)) — Q¥(lim M(m, m))
— lim QF(M(m, m)) — 0

(Milnor [10]).



344 K. SHIBATA

It is easy to see that Lemmas 4.2 and 5.1 imply lim' QF (M(m, m))=0
and lim QF(M(m, m))=lim Q(e(vg p; m m))® lim z*QEL™(p)).

So Q¥ (lim M(m, m))=lim QF(M(m, m))
== lim‘ Qf(e(ve.p; m.m))Plim z*QF(L™(p))
=~ i ({0, 01 ) DU (lim L7(p))

Denote by v, , the direct limit bundle lim vy 5;,,,, over lim M(m, m)=BZ, ,

m m

and by QF((e(v,,»))) the graded subalgebra of QF(BZ, ,) generated by homo-
geneous power series in e(v, ). Consider the following diagram:

(lim 7of)*

b1 i -
()P T ™)) —— O (e(vq.)
(5.4) =~ |lim z,, =~ {lim =,, ﬁlimf*Ol;* mono |lim 7,
< e, i <« N —
Li__n_lAQt(me_l(Q)) Dkrg QF( Hn e(n% . m)) “Thono }_IE Qt("(”q,p ; m,m)) .

By 5.3, lim 7,, in the middle is an isomorphism of Qf-algebras. And lim z,, in
the rig}:_'is a monomorphism because it factors throught the :omor-
phism Qf(ljﬂM(m, m))gli_nl QF(e(vq,p; m,m))@liﬂﬂ*ﬂf([f"—l( p)) and because
QF((e(vq,p))) is mapped trivially on the second summand by 4.6. So the com-
mutativity of the diagram implies the injectivity of (limZof)* in the upper
right. Since (lim ,,)o(lim iof)*e(vg,»)=(lim f*oi*)o(lim ,,) (v, ) = (lim f*oi*)

p-1 : -1 :
lim e(vg p; m,m)=lm I e(7}, »)=(lim nm){pl'[ e(n"")}, the injectiveity of lim 7.,
«— —— =0 «— i=0 «—
in the middle implies (lim Zof)*e(v, )= pI-Il e(n”"). Therefore (lim 7of)* is an
«— =0 —

epimorphism, and hence an isomorphism.
Consequently, the diagram chasing asserts that

yﬂ(”m: Qf((e(VQ,P))) = liﬂﬂt(e(yq,ﬁ:m,m))
and

p-1 .
liﬂf*oi*: lln ‘Q't(e(vq,p;m,m)) = lin Q( _]-;-([) 8(77;': m)) -

This completes the proof of Theorem.

Appendix. A generalization and examples

For simplicity, we have assumed in the present article and the preceding one
[15], that p is a prime integer and so that 7 is a primitive p-th root of unity mod gq.
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In fact, these assumptions are not necessary if we assume in turn that (p, g)=1
and that

(1, g) = 1, 1<i<p—1)

where 7 is a primitive p,-th root of unity mod ¢. (Hence p,|p.) Of course
7, p,=>2 for otherwise Z, , is a cyclic group. (Notice that the condition (1—7, g)

p-1 bo-
=1 requires ¢ odd.) Under these hypotheses, we should replace II by <)III in (2)
j=0 =0

of Theorem of this article (but [p](Y) should remain as it is), and Bzpr-1 by
Bzp -1 1n (2) of Theorem 2.10 [15] (but O%(Z,) should remain as it is), etc.
Notice that for an odd prime ¢ such that (p, g)=1 with 7 a primitive p,-th
root of unity mod g, the above assumptions are always satisfied.
Here are some examples which satisfy the above conditions, and hence, for
which the analogous theorems as in the present and preceding articles hold:

Example 1. {x®=y"=1, yay~'=a"} withp,—p=22

Example 2. D(4a, 29+1)={x*"""=y*=1,yxy~'=x""} with p,=p/2a=2. (No-
tice that (2¢+1, a)=1 is assumed.) According to Wolf [16], the group D(4a,
2g+1) acts freely and orthogonally on S={(z,, 2,)=C?; |2,|°+|2,|’=1} by

X (2, 2,) = ((p2g+1)®® 2, (P2g41)” 077,
and

_'V'(2»'1) 22) - (zz) (Pza)(mﬂ)_le)

where p;=exp (2n\/—1/j) (j=2¢+1, 2a), and (2a)"* and respectively (2g+1)7*
are arbitrary integers such that 24-(2a)"'=1 mod 2¢-+1 and respectively such
that (2¢+1)-(2¢+1)"'=1 mod 2a. Let us denote the bordism class of this
D(4a, 2g+1)-action by [L, S°]. The generalized version of [15] Th. 4.5
asserts that

QF(D(4a, 29+1)) = Z,01,(i48) D Zea(s4[ T a2 S°])
DZ,o([CP()54[T aa,100 S™+254[T 40,0 S7) -

(For the notations, see [15].) The calculations show that
[L, S7] = aq-i,Bs+(29+1+4E-4a)su[Tua,0, S°]
+(—2¢+¢€"-2a) [CP,Jsx[T a1 S']
with &, &=0 or 1. Therefore

'ng(D(“'a» 29+1)) = Zrarvesal[Ls S°)
EBZza([CP(l)]S*[T(m,Dv S1]+(4k+2)s*[TC44,1)) Sa]
for some k>0,
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