UNE CARACTÉRISATION SUR LE PRINCIPE RELATIF DE DOMINATION POUR LES NOYAUX DE RIESZ-FROSTMAN

Masayuki ITÔ

(Received September 13, 1972)

1. Introduction et résultat

Soit R^n 1'espace euclidien à dimensions $n (\ge 1)$; on note par $x = (x_1, x_2, \dots, x_n)$ son point et pose $|x| = (\sum_{i=1}^n x_i^2)^{1/2}$. Pour un nomber α avec $0 < \alpha < n$, le noyau de Riesz-Frostman d'ordre α est une fonction $x \to |x|^{\alpha-n}$ sur R^n , et il s'écrira symnoliquement $r^{\alpha-n}$. Pour une mesure de Radon réelle μ dans R^n , le potentiel de Riesz-Frostman d'ordre α par μ est défini par

$$u_{\mu}^{(\alpha)}(x) = \int |x-y|^{\alpha-n} d\mu(y)$$

dès que la convolution $r^{\alpha-n}*\mu$ a un sens.

La notion du principe relatif de domination a été explicitement introduite par N. Ninomiya (cf. [4]), et il l'a discuté pour les noyaux de Riesz-Frostamn (cf. [5]). Cette amélioration est obtenue dans [2], qui est 1'énoncé suivant:

Soient α , β deux nombres avec $0 < \alpha \le 2$ et $\alpha \le \beta < n$. Alors $r^{\alpha-n}$ satisfait au prinicipe de domination relatif à $r^{\beta-n}$; c'est-à-dire, quelles que soient μ , ν mesures de Radon positives dans R^n à support compact et avec

$$I(\mu;\alpha) = \int u_{\mu}^{(\alpha)}(x)d\mu(x) < +\infty$$
,

 $u_{\mu}^{(\alpha)}(x) \leq u_{\nu}^{(\beta)}(x)$ partout sur R^n dès que la même inégalité a lieu sur le support de μ , supp (μ) .

Cela se base tout à fait sur le principe de domination pour $r^{\alpha-n_1}$, et ce résultat est généralisé pour les noyaux de convolution de Hunt (cf. [3]).

Dans cette note, nous discuterons son inverse.

¹⁾ Si $r^{\alpha-n}$ satisfait au principe de domination relatif à lui-même, on dit simplement que cela satisfait au principe de domination.

266 M. Itô

Théorème. Soit α un nombre avec $0 < \alpha < n$. Alors l'énoncé suivant a lieu si et seulement si $0 < \alpha \le 2$.

Il existe un noyau de convolution borné $N \ (\pm 0)$ sur R^n invariant par rotations $^{2)}$ relatif auquel r^{n-n} satisfait au principe de domination; c'est-à-dire, quelles que soient μ une mesure de Radon positive dans R^n à support compact et φ une fonction non-négative, finie et continue dans R^n à support compact, $u^{(\alpha)}_{\mu} \leq N * \varphi$ partout sur R^n dès que $u^{(\alpha)}_{\mu}(x) \leq N * \varphi(x)$ sur supp (μ) .

2. Deux lemmes

Remarquons d'abord la formule de Riesz. Pour deux nombers positifs α , β avec $\alpha+\beta< n$, il existe une constante positive $C(\alpha, \beta)$ telle que

$$r^{\alpha-n}*r^{\beta-n}=C(\alpha,\beta)r^{\alpha+\beta-n}$$

(cf. [6]). On désigne par Δ l'opérateur différentiel qui vérifie $\Delta r^{2-n} = -\varepsilon$ au sens des distributions, où ε est la mesure de Dirac à l'origine, et alors Δ est proportionnel au laplacien ordinaire sur R^n . Pour $0 < \alpha < 2$, la distribution $pf. r^{-\alpha-n}$ est de la forme

$$pf. \ r^{-\alpha-n}(\varphi) = \int (\varphi(x) - \varphi(0)) |x|^{-\alpha-n} dx$$

pour toute fonction infiniment dérivable φ dans R^n à support compact, et alors il existe une autre constante positive $A(\alpha)$ telle que

$$A(\alpha)(pr. r^{-\alpha-n})*r^{\alpha-n} = -\varepsilon$$

au sens des distributions (cf. par exemple, [1]). On note $\Delta^{\alpha/2} = A(\alpha)pf. r^{-\alpha-n}$.

Soit α un nombre avec $0<\alpha< n$; on appelle l'indice de α l'entier non-négatif p tel que $0<\frac{\alpha}{2}-p\leq 1$, et on écrit $\Delta^{\alpha/2}=\Delta^p*\Delta^{\{(\alpha/2)-p\}}$ dès que $p\geq 1$. Dans ce cas, on a

$$\Delta^{\alpha/2} * r^{\alpha-n} = \frac{(-1)^{p+1}}{C(2p, \alpha-2p)C(2(p-1), 2)\cdots C(2, 2)} \varepsilon.$$

Lemme 1. Soient α un nombre avec $0<\alpha< n$ et N un noyau de convolution borné sur R^n , et supposons que r^{n-n} satisfait au principe de domination relatif à N. Alors, pour une fonction non-négative, finie et contiue φ dans R^n à support compact, il existe une mesure de Radon positive μ'_{φ} dans R^n et une constante non-négative c_{φ} telles que

²⁾ Un noyau de convolution N sur Rⁿ signifie une mesure de Radon positive dans Rⁿ. On dit qu'il est borné si, quelle que soit φ une fonction finie et continue à support compact, N*φ est bornée.

$$u_{\mu_{\varphi}}^{(\alpha)}+c_{\varphi}=N*\varphi$$
 sur R^{n} .

En effet, d'après la théorie générale du balayage (cf. [4]), pour un entier positif m, il existe une mesure de Radon positive μ'_m portée par B telle que

$$u_{\mu_m'}^{(\alpha)}(x) \leq N * \varphi(x)$$
 sur R^n et $u_{\mu_m'}^{(\alpha)}(x) = N * \varphi(x) \alpha - p. p. p. p. sur B_m^{3} ,$

où $B_m = \{x \in R^n; |x| \leq m\}$. La suite $(u_{\mu_m}^{(\alpha)})_{m=1}^{\infty}$ converge fortement vers $N*\varphi$ dans L_{loc} avec $m \to +\infty^{4}$. La suite $(\mu_m')_{m=1}^{\infty}$ étant vaguement bornée, on peut supposer qu'il existe une mesure de Radon positive μ_{φ}' dans R^n telle que $(\mu_m')_{m=1}^{\infty}$ converge vaguement vers μ_{φ}' avec $m \to +\infty$. On a $N*\varphi \geq u_{\mu_{\varphi}'}^{(\alpha)}$ sur R^n , d'après la semicontinuité inférieure de $r^{\alpha-n}$. La suite $(u_{\mu_m'}^{(\alpha)})_{m=1}^{\infty}$ étant umiformément bornée sur R^n , on obtient que la suite $(\Delta^{\alpha/2}*u_{\mu_m'}^{(\alpha)})_{m=1}^{\infty}$ converge vers $\Delta^{\alpha/2}*(N*\varphi)$ au sens des distributions dans R^n avec $m \to \infty$. Donc

$$\Delta^{\alpha/2}*(N*\varphi-u_{\mu_\varphi'}^{(\alpha)})=\lim_{m\to+\infty}\ \Delta^{\alpha/2}*(u_{\mu_m'}^{(\alpha)}-u_{\mu_\varphi'}^{(\alpha)})=0$$

au sens des distributions dans R^n . Pour une fonction infiniment dérivable ψ dans R^n à support compact, la fonction $(N*\varphi-u^{(\varphi)}_{\mu_\varphi})*\psi$ est bornée, et par suite elle est égale à une constante. En effet, on a

$$\Delta^{(\alpha/2-p)}*\Delta^p(N*\varphi-u_{\mu'_{\varphi}}^{(n)})*\psi(x)=0$$

pour tout x de R^n dès que l'indice p de α est ≥ 1 . Dans ce cas, d'après le résultat de Riesz concernant la $\left(\frac{2}{\alpha}-p\right)$ -harmonicité (cf.[6]), $\Delta^p(N*\varphi-u_{\mu_\varphi}^{(\alpha)})*\psi$ est égale à une constante, et donc elle est égale à 0. Par récurrence, $(N*\varphi-u_{\mu_\varphi}^{(\alpha)})*\psi$ est aussi égale à une constante. La fonction ψ étant quelconque, il existe une constante non-négative c_{φ} telle que $N*\varphi-u_{\mu_\varphi}^{(\alpha)}=c_{\varphi}$ presque partout sur R^n . Posons

$$f_m(x) = \begin{cases} c_m, |x| \leq \frac{1}{m} \\ 0, |x| > \frac{1}{m} \end{cases}$$

où c_m est une constante positive telle que l'on ait $\int f_m dx = 1$. On a alors

$$u_{\mu_{\varphi}}^{(\alpha)}(x) = \lim_{m \to +\infty} \int u_{\mu_{\varphi}}^{(\alpha)}(x+y) f_{m}(y) dy$$

³⁾ Une propriété a lieu α -p.p.p. sur un sous-ensemble X de R^n si, quelle que soit λ une mesure de Radon positive dans R^n avec $supp(\lambda) \subset X$ et $I(\lambda;\alpha) < +\infty$, elle a lieu presque partout pour λ .

⁴⁾ L_{loc} est l'espace vectoriel topologique usuel des fonctions localement sommables dans R^n .

268 M. Itô

sur R^n , d'où $N*\varphi = u_{\mu'_{\omega}}^{(\alpha)} + c_{\varphi}$ partout sur R^n .

Dans ce cas, la couple $(\mu'_{\varphi}, c_{\varphi})$ est uniquement déterminée. En effet, soit $(\mu''_{\varphi}, c'_{\varphi})$ une autre couple qui vérifie la présente condition. Alors, quelle que soit ψ une fonction finie et continue dans R^n à support compact,

$$\lim_{x\to\infty} (u_{\mu_{\varphi}}^{(\alpha)} - u_{\mu_{\varphi}}^{(\alpha)}) * \psi(x) = 0.$$

et donc $c_{\varphi}=c'_{\varphi}$. L'autre égalité $\mu'_{\varphi}=\mu''_{\varphi}$ résulte immédiatement du principe d'unicité pour $r^{\alpha-n}$ 5)

Corollaire 1. Soient α , β deux nombres avec $0 < \alpha$, $\beta < n$. Si $r^{\alpha-n}$ satisfait au principe de domination relatif à $r^{\beta-n}$, on a alors $\alpha \le \beta$.

En effet, d'après le présent lemme, pour une fonction non-négative, finie et continue φ dans R^n à support compact, il existe une mesure de Radon positive μ'_{φ} dans R^n telle que $u^{(\beta)}_{\varphi} = u^{(\alpha)}_{\mu'_{\varphi}}$ partout sur R^n , où φ désigne aussi la mesure positive avec la densité φ . Supposons $\alpha > \beta$; alors, d'après la formule de Riesz et le théorème de Fubini,

$$u_{\mu'_{\varphi}}^{(\alpha)} = u_{(C(\beta, \alpha-\beta) u_{\mu'_{\alpha}}^{(\alpha-\beta)})}^{(\beta)} \quad sur \ R^n$$
.

On a donc, d'après le principe d'unicité pour $r^{\beta-n}$,

$$\varphi = C(\beta, \alpha - \beta) u_{\mu_{\varphi}}^{(\alpha - \beta)}$$
.

Si $\varphi \neq 0$, alors $\mu'_{\varphi} \neq 0$ et par suite $u'_{\mu'_{\varphi}}^{(\alpha - \beta)}$ est à support non-compact, d'où une contradiction. Par conséquent, $\alpha \leq \beta$.

Lemme 2. Soit μ une mesure de Radon positive dans R^n à support compact et invariante par rotations. Si supp $(\mu) \ni 0$, alors, quel que soit α un nombre avec $0 < \alpha < n$, $u_{\mu}^{(\alpha)}$ est fini et continu dans R^n .

De la manière usuelle, il existe une mesure positive λ dans $R^+ = \{t>0\}$ portée par un intervalle fermé $\ni 0$ telle que

$$u^{(\alpha)}_{\mu}(x) = \int u^{(\alpha)}_{\sigma_r}(x) d\lambda(r)$$
,

où σ_r est la mesure uniforme sur $S_r = \{x \in R^n; |x| = r\}$ de masse totale d'unité. Le potentiel $u_{\sigma_r}^{(\alpha)}$ étant fini et continu dans R^n , $u_{\mu}^{(\alpha)}$ l'est aussi.

⁵⁾ Cela signifie que, quelle que soit λ une mesure de Radon réelle dans R^n , $\lambda=0$ si et seulement si $u(\alpha)=0$. Cela résulte évidemment de $\Delta^{\alpha/2}*u(\alpha)=0.$

3. La démonstration du théorème

Il suffit de voir que si l'énoncé dans théorème a lieu, alors $0 < \alpha \le 2$, car son inverse est déjà connu. Soit φ une fonction non-négative, non-zéro, finie et continue dans R^n à support compact et invariante par rotations; alors, d'après le lemme 1, il existe une mesure de Radon positive λ dans R^n et une constante $c \ge 0$ telles que $N*\varphi=u_{\lambda}^{(\alpha)}+c$ partout sur R^n . D'après l'unicité de la couple (λ,c) , λ est invariante par rotations. Pose $\psi=\lambda*\varphi$ et $C=c\int \varphi dx$. Ayant $N \ne 0$, on a $(\psi,C)\ne (0,0)$. On choit deux nombers positifs r_1, r_2 avec $r_1 \le r_2$ tels que

$$supp(\psi) \oplus C(0; r_1, r_2) \text{ ou } supp(\psi) \cap C(0; r_1, r_2) = \phi,$$

où $C(0; r_1, r_2) = \{x \in \mathbb{R}^n; r_1 \leq |x| \leq r_2\}$. En utilisant encore la théorie générale du balayage (cf. [4]), il existe une mesure de Radon positive μ' dans \mathbb{R}^n portée par $C(0; r_1, r_2)$ telle que

$$u_{\mu}^{(\alpha)} \leq u_{\psi}^{(\alpha)} + C \operatorname{sur} R^n \operatorname{et} u_{\mu}^{(\alpha)} = u_{\psi}^{(\alpha)} + C \alpha - p.p.p. \operatorname{sur} C(r_1, r_2),$$

car $u_{\psi}^{(\alpha)}+C=N*\varphi*\varphi$ sur R^n . Dans ce cas, μ' est uniquement déterminée, d'après le principe d'énergie pour $r^{\alpha-n}$ 6), et donc μ' est invariante par rotations. Supposons $\alpha>2$ et soit p l'indice de α ; alors

$$\Delta^p u_{\mu\nu}^{(\alpha)} = \Delta^p (u_{\mu\nu}^{(\alpha)} + C)$$

au sens des distributions dans $\{x \in \mathbb{R}^n; r_1 < |x| < r_2\}$, et donc

$$u_{\mu\nu}^{(ab-2b)} = u_{\mu\nu}^{(ab-2b)}$$

presque partout dans $\{x \in R^n; r_1 < |x| < r_2\}$. On a $u_{\psi}^{(\alpha-2b)} = u_{\lambda}^{(\alpha-2b)} * \varphi$, et donc $u_{\psi}^{(\alpha-2b)}$ est fini et continu dans R^n . D'autre part, d'après le lemme 2, $u_{\psi}^{(\alpha-2b)}$ est fini et continu dans R^n . Donc

$$u_{\mu'}^{(\alpha-2p)} = u_{\mu}^{(\alpha-2r)} sur C(0; r_1, r_2).$$

D'après le principe de domination et le principe d'unicité pour $r^{(a-2p)-n}$, on a

$$u_{\mu}^{(\alpha-2p)} \leq u_{\psi}^{(\alpha-2p)} \operatorname{sur} R^n \operatorname{et} u_{\mu}^{(\alpha-2p)} \equiv u_{\psi}^{(\alpha-2p)} \operatorname{(resp. } \mu' = 0)$$

dès que $\psi \neq 0$ (resp. $\psi = 0$). Par conséquent.

$$r^{2p-n}*(u_{\mu}^{(\alpha-2p)}-u_{\mu}^{(\alpha-2p)})>0 \text{ sur } \mathbf{R}^{n} \text{ (resp. } u_{\mu}^{(\alpha-2p)}-u_{\mu}^{(\alpha-2p)}\Longrightarrow 0)$$

dès que $\psi \neq 0$ (resp. $\psi = 0$). Mais cela est en contradiction avec $u_{\psi}^{(\alpha)} = u_{\psi}^{(\alpha)} + C$

⁶⁾ Cela signifie que, quelle que soit λ une mesure de Radon réelle dans Rⁿ avec I (|λ|;α)<+∞, λ=0 si et seulement si I (λ;α)=0. Cela résulte du fait que la transformation de Fourier de r^{α-n} est égale à Cr^{-α} (cf. [1]), où C est une constante positive.

270 M. Itô

sur $C(0; r_1, r_2)$, d'où $\alpha \le 2$. La démonstration est ainsi complète.

Corollaire 2. Soit α un nombre avec $0 < \alpha < n$. S'il existe un nombre β avec $0 < \beta < n$ tel que $r^{\alpha-n}$ satisfasse au principe de domination relatif à $r^{\beta-n}$, alors $0 < \alpha \le 2$.

Notre méthode reste valable pour les noyaux besseliens.

REMARQUE. Soit α un nombre positif quelconque; on note k_{α} le noyau besselien d'ordre α . Pour que l'énoncé suivant ait lieu, il faut et il suffit que $0 < \alpha \le 2$.

Il existe un noyau de convolution borné N sur R^n invariant par rotations tel que k_{α} satisfasse au principe de domination relatif à N.

On remarque ici que k_{α} est une fonction continue au sens large dans R^n dont la transformation de Fourier est égale à $1/1(+|x|^2)^{\alpha/2}$. Le potentiel besselien d'ordre α par une mesure μ est défini par

$$v_{\mu}^{(\alpha)}(x) = \int k_{\alpha} (x - y) d\mu(y)$$

dès que cette convolution a un sens.

Université de Nagoya

Bibliographies

- [1] J. Deny: Les potentiels d'énergie finie, Acta Math. 82 (1950), 107-183.
- [2] M. Itô: Remarks on Ninomiya's domination principle, Proc. Japan Acad. 40 (1964), 743-746.
- [3] I. Higuchi and M. Itô: Characterization of relative domination principle, Nagoya Math. J. 50 (1973), 175-184.
- [4] N. Ninomiya: Sur le problème du balayage généralisé, J. Math. Osaka City Univ. 12 (1961), 115-138.
- [5] —: Sur un principe du maximum pour le potentiel de Riesz-Frostman, ibid. 13 (1952), 57-62.
- [6] M. Riesz: Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged 9 (1938), 1-42.