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Prof. L.N. Gupta has pointed out the author that there is a gap in the proof
of Theorem 2.2 [3]. In this theorem we need to put certain assumptions.
To give it, we shall extend to the case of preschemes certain notions defined by
Chase, Harrison and Rosenberg in [1].

Let o, 7: X—Z be two morphisms of preschemes where X is affine.
Then o and 7 are called to be strongly distinct if, for any sum X = X, zX,
such that X; are affine schemes (=1, 2), o and 7¢ are distinct where ¢ is
the canonical morphism: X,— X.

Let X be a Galois covering of a prescheme Y with a Galois group ®,
@: X Y the structure morphism and Z an intermediate prescheme between X
and Y with the structure morphism ®,: X —»Z, ®,: Z—-X. We shall say that
Z is ®-strong if there is an affiine open covering {V,},e; of Y such that for any
pair o, TE®, ®,0 and O, are equal or their restrictions to ®~*(V,) are strongly
distinct for all ye 1.

One can show that @-strongness is independent on an affine open covering.

Let @: X —Y be a surjective morphism of preschemes which is finite and
locally free. Let Z,, Z, be two intermediate preschemes between X and Y
such that the structure morphisms yr;: Z;—Y are affine for i=1,2. Z, and Z,
are said to be isomorphic as intermediate preschemes if there is a Y-isomorphism
\r: Z,—Z, such that the diagram

z, Y577

is commutative where the unadorned morphisms are structural. We shall
call an intermediate covering between X and Y an isomrphism class of inter-

mediate preschemes between X and Y.
A correct form of Theorem 2.2 in [3] can be obtained by strengthening
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hypotheses in the following manner.

Theorem 2.2. Let Y be a prescheme and X a Galois covering of Y with a
Galois group &. Let Z be an intermediate covering between X and Y. If Zisa
quasi-unramified covering of Y which is &-strong, then there exists a unique sub-
group O of & such that Z is the quotient prescheme X|® of X by .

Proof. It follows form modifying the proof of Theorem 2.2. in [3], noting
the following facts;

1) Since a union of two disjoint affine open sets in a prescheme is also
affine, we can choose an affine open covering {V,}yc; of Y satisfying that,
for any pair (a, B)EIX 1, there is a sequence V=V, , V,, -+, V;,,=Vp with
Vy,NVy,, *¢ for v,eL

2) Let @: Z—Y be the structure morphism. For an affine open set V' in

Y, the ring of @~'(V) is ®-strong in sense of Chase, Harrison and Rosenberg [1].
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