AN ANALOGUE OF THE PALEY-WIENER THEOREM FOR THE EUCLIDEAN MOTION GROUP

Keisaku KUMaHaRA and Kiyosato OKAMOTO

(Received December 17, 1971)

1. Introduction

The purpose of this paper is to give a detailed proof of an analogue of the Paley-Wiener theorem for the euclidean motion group which was announced in [3]. Restricting our attention to bi-invariant functions (with respect to the rotation group) we obtain an analogue of the Paley-Wiener theorem for the Fourier -Bessel transform.

2. Unitary representations

Let G be the group of all motions of the n-dimensional euclidean space \boldsymbol{R}^{n}. Then G is realized as the group of $(n+1) \times(n+1)$-matrices of the form $\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right)$, $\left(k \in S O(n), x \in R^{n}\right)$. Let K and H be the closed subgroups consisting of the elements $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right),(k \in S O(n))$ and $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right),\left(x \in \boldsymbol{R}^{n}\right)$, respectively. Then G is the semi-direct product of H and K. We normalize the Haar measure $d g$ on G such that $d g=d x d k$, where $d x=(2 \pi)^{-n / 2} d x_{1} \cdots d x_{n}$ and $d k$ is the normalized Haar maesure on K.

For any subgroup G_{1} of G we denote by \hat{G}_{1} the set of all equivalence classses of irreducible unitary representations of G_{1}. For an irreducible unitary representation σ of G_{1}, we denote by $[\sigma]$ the equivalence class which contains σ. For simplicity we identify $k \in S O(n)$ with $\left(\begin{array}{ll}k & 0 \\ 0 & 1\end{array}\right) \in K$ and $x \in \boldsymbol{R}^{n}$ with $\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right)$ $\in H$. Denote by \langle,$\rangle the euclidean inner product on \boldsymbol{R}^{n}$. Then we can identify \hat{H} with \boldsymbol{R}^{n} so that the value of $\xi \in \hat{H}$ at $x \in H$ is $e^{i<\xi, x\rangle}$. Because H is normal, K acts on H and therefore on \hat{H} naturally: $\langle k \xi, x\rangle=\left\langle\xi, k^{-1} x\right\rangle$. Let K_{ξ} be the isotropy subgroup of K at $\xi \in \hat{H}$. If $\xi \neq 0, K_{\xi}$ is isomorphic to $S O(n-1)$.

The dual space \hat{G} of G was completely determined by G. W. Mackey [4] and S. Itô [2] as follows.

Let $\mathfrak{S}=L_{2}(K)$ be the Hilbert space of all square integrable functions on K. We denote by U^{ξ} the unitary representation of G induced by $\xi \in \hat{H}$. Then for
$g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$

$$
\left(U_{g}^{\xi} F\right)(u)=e^{i<\xi, u^{-1} x>} F\left(k^{-1} u\right),(F \in \mathfrak{F}, u \in K) .
$$

Let χ_{σ} and d_{σ} be the character and the degree of $[\sigma] \in \hat{K}_{\xi}$, respectively. Let L and R be the left and right regular representations of K, respectively. We also denote by L and R the corresponding representations of the universal enveloping algebra of the Lie algebra of K defined on $C^{\infty}(K)$, respectively. If $\sigma(m)=$ $\left(\sigma_{p q}(m)\right)\left(1 \leqq p, q \leqq d_{\sigma}\right)$, we put

$$
P^{\sigma}=d_{\sigma} \int_{K_{\xi}} \overline{\chi_{\sigma}(m)} R_{m} d_{\xi} m
$$

and

$$
P_{q}^{\sigma}=d_{\sigma} \int_{K_{\xi}} \overline{\sigma_{q q}(m)} R_{m} d_{\xi} m,
$$

where $d_{\xi} m$ is the normalized Haar measure on K_{ξ}. Then P^{σ} and P_{q}^{σ} are both orthogonal projections of \mathfrak{L}. Put $\mathfrak{S}^{\sigma}=P^{\sigma} \mathfrak{S}$ and $\mathfrak{S}_{q}^{\sigma}=P_{q}^{\sigma} \mathfrak{K}$. The subspaces $\mathfrak{K}_{\alpha}^{\sigma}$ ($1 \leqq q \leqq d_{\sigma}$) are stable under U^{ξ} and the representations of G induced on $\mathfrak{S}_{q}^{\sigma}$ ($1 \leqq q \leqq d_{\sigma}$) under U^{ξ} are equivalent for all $q=1, \cdots, d_{\sigma}$. We fix one of them and denote by $U^{\xi, \sigma}$. It is easy to see that

$$
\begin{equation*}
U_{g}^{k \xi}=R_{k} U_{\varepsilon}^{\xi} R_{k}^{-1}(k \in K, \xi \in \hat{H}, g \in G) . \tag{2.1}
\end{equation*}
$$

Two representations $U^{\xi^{\prime}, \sigma}$ and $U^{\xi^{\prime}, \sigma^{\prime}}$ are equivalent if and only if there exists an element $k \in K$ such that $\xi^{\prime}=k \xi$ and $[\sigma]=\left[\sigma^{\prime k}\right]$, where

$$
\sigma^{\prime^{k}}(m)=\sigma^{\prime}\left(k m k^{-1}\right),\left(m \in K_{\xi}\right) .
$$

First we assume that $\xi \neq 0$. Then $U^{\xi, \sigma}$ is irreducible and every infinite dimensional irreducible unitary representation is equivalent to one of $U^{\xi, \sigma}$, $\left(\xi \neq 0,[\sigma] \in \hat{K}_{\xi}\right)$. Since $\mathfrak{S}=\underset{[\sigma] \in \hat{K}_{\xi}}{\oplus} \mathfrak{S}^{\sigma}$ and $\mathfrak{S}_{2}{ }^{\sigma}=\bigoplus_{q=1}^{d \sigma} \mathfrak{S}_{q}^{\sigma}$, we have

$$
\begin{equation*}
U^{\xi} \cong \underset{[\sigma] \in \hat{K}_{\xi}}{\oplus}(\underbrace{U^{\xi, \sigma} \oplus \cdots \oplus U^{\xi, \sigma}}_{d_{\sigma} \text { times }}) . \tag{2.2}
\end{equation*}
$$

Next we assume that $\xi=0$. Then $U^{\xi, \sigma}$ is reducible and $K_{\xi}=K$. For any $[\sigma] \in \hat{K}$ we define a finite dimensional unitary representation U^{σ} of G by $U_{g}^{\sigma}=$ $\sigma(k)$, where $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$. Then we have $U^{0, \sigma} \cong \underbrace{U^{\sigma} \oplus \cdots \oplus U^{\sigma}}_{d_{\sigma} \text { times }}$ and $U^{0} \cong \underset{[\sigma] \in \hat{K}}{\oplus}$ $U^{0, \sigma}$. Moreover every finite dimensional irreducible unitary representation of G is equivalent to one of $U^{\sigma},([\sigma] \in \hat{K})$.

We denote by $(\hat{G})_{\infty}$ and $(\hat{G})_{0}$ the set of all eqiuvalence classes of infinite and
finite dimensional irreducible unitary representations of G, respectively.

3. The Plancherel formula

Let be the Lie algebra of K. We denote by Δ the Casimir operator of K (In case $n=2$, we put $\Delta=-X^{2}$ for a non-zero $X \in \mathfrak{f}$). By the Peter-Weyl theorem we can choose a complete orthonormal basis $\left\{\phi_{j}\right\}_{j \in J}$ of \mathfrak{S}, consisting of the matricial elements of irreducible unitary representations of K, that is, $\phi_{j}=d_{\tau}^{1 / 2} \tau_{p^{q}}$ for some $[\tau] \in \hat{K}\left(\tau=\left(\tau_{p^{q}}\right)\right)$ and $p, q=1, \cdots, d_{\tau}$. First, we prove the following

Lemma 1. Let T be a bounded operator on $\mathfrak{S}=L_{2}(K)$ which leaves the space $C^{\infty}(K)$ stable. If for any non-negative integers l and m, there exists a constant $C^{l, m}$ such that

$$
\left|\left|\Delta^{l} T \Delta^{m}\right|\right| \leqq C^{l, m}
$$

then the series $\sum_{i, j \in J}\left|\left(T \phi_{j}, \phi_{i}\right)\right|$ converges.
Proof. For the sake of brevity we assume that $n \geqq 3$. In case $n=2$ the same method is valid with a slight modification. Let t be a Cartan subalgebra of \mathfrak{l}. Denote by \mathfrak{t}^{c} and \mathfrak{t}^{c} the complexifications of \mathfrak{t} and \mathfrak{t}, respectively. Fix an order in the dual space of $(-1)^{1 / 2} \mathrm{t}$. Let P be the positive root system of \mathfrak{t}^{c} with respect to t^{c}. Let \mathscr{F} be the set of all dominant integral forms. Then $\Lambda \in$ \mathscr{F} is the highest weight of some irreducible unitary representation of K if and only if it is lilfted to a unitary character of the Cartan subgroup corresponding to t. Let \mathscr{F}_{0} be the set of all such Λ 's. For any $\Lambda \in \mathscr{F}_{0}$ we doente by τ_{Λ} a representative of $\left[\tau_{\Lambda}\right] \in \hat{K}$ which is a matricial representation of K with the highest weight Λ. Then the mapping $\Lambda \mapsto\left[\tau_{\Lambda}\right]$ gives the bijection between \mathscr{F}_{0} and \hat{K}. Let d_{Λ} be the degree of τ_{Λ}. Denote by J_{Λ} be the set of $j \in J$ such that $\phi_{j}=\mathrm{d}_{\Lambda}^{1 / 2}$ $\left(\tau_{\Lambda}\right)_{p q}$ for some $p, q=1, \cdots, d_{\Lambda}$. Let (,) be the inner product on the dual space of $(-1)^{1 / 2} t$ induced by the Killing form and put $|\Lambda|=(\Lambda, \Lambda)^{1 / 2}$. As usual we put $\rho=\frac{1}{2} \sum_{\alpha \in P} \alpha$. We use the following known facts (i) $\sim($ iii $)$:
(i) For every $\Lambda \in \mathscr{F}_{0}$ and $j \in J_{\Lambda}$, we have $\left(\Delta+|\rho|^{2}\right) \phi_{j}=|\Delta+\rho|^{2} \phi_{j}$.
(ii) For every $\Lambda \in \mathscr{F}_{0}, d_{\Lambda}=\frac{\prod_{a \in P}(\Lambda+\rho, \alpha)}{\prod_{a \in P}(\rho, \alpha)}$, (Weyl's dimension formula).
(iii) The Dirichlet series $\sum_{\Lambda \in \mathscr{S}_{0}} \frac{1}{|\Lambda+\rho|^{s}}$ converges if $s>\left[\frac{n}{2}\right]$.
(see [1(a)] and [9])
By (i)

$$
\phi_{j}=\frac{\left(\Delta+|\rho|^{2}\right)^{l}}{|\Lambda+\rho|^{2 l}} \phi_{j} \text { for } j \in J_{\Delta} \text { and } l=0,1,2, \cdots
$$

Therefore

$$
\begin{aligned}
& \left.\sum_{j \in J_{\Lambda}} \sum_{i \in J_{\Lambda^{\prime}}}\left|\left(T \phi_{j}, \phi_{i}\right)\right|=\frac{1}{|\Lambda+\rho|^{2 l}\left|\Lambda^{\prime}+\rho\right|^{2 m}} \sum_{j \in J_{\Lambda^{\prime}}} \sum_{j \in J_{\Lambda^{\prime}}} \right\rvert\,\left(T\left(\Delta+|\rho|^{2}\right)^{l} \phi_{j}\right. \\
& \left.\left(\Delta+|\rho|^{2}\right)^{m} \phi_{i}\right) \left.\left|=\frac{1}{|\Lambda+\rho|^{2 l}\left|\Lambda^{\prime}+\rho\right|^{2 m}} \sum_{j \in J_{\Lambda^{\prime}}} \sum_{i \in J_{\Lambda^{\prime}}}\right|\left(\left(\Delta+|\rho|^{2}\right)^{m} T\left(\Delta+|\rho|^{2}\right)^{l} \phi_{j}, \phi_{i}\right) \right\rvert\,
\end{aligned}
$$

On the other hand by the assumption of the lemma we can prove that there exists a constant $C_{1}^{l, m}$ such that

$$
\left|\left|\left(\Delta+|\rho|^{2}\right)^{m} T\left(\Delta+|\rho|^{2}\right)^{l}\right|\right| \leqq C_{1}^{l, m}
$$

Then

$$
\begin{align*}
& \sum_{j \in J_{\Lambda^{\prime}} \in J_{\Lambda^{\prime}}}\left|\left(T \phi_{j}, \phi_{i}\right)\right| \leqq \frac{C_{1}^{l, m}}{|\Lambda+\rho|^{2 l}\left|\Lambda^{\prime}+\rho\right|^{2 m}}\left(d_{\Lambda}\right)^{2}\left(d_{\Lambda^{\prime}}\right)^{2} \\
& =C_{1}^{l, m} \frac{1}{|\Lambda+\rho|^{2 l}\left|\Lambda^{\prime}+\rho\right|^{2 m}} \frac{\prod_{\alpha \in P}(\Lambda+\rho, \alpha)^{2}\left(\Lambda^{\prime}+\rho, \alpha\right)^{2}}{\Pi_{\alpha \in P}(\rho, \alpha)^{4}} \\
& \leqq C_{1}^{L, m} \frac{\prod_{\alpha \in P}(\alpha, \alpha)^{2}}{\prod_{\alpha \in P}(\rho, \alpha)^{4}} \cdot \frac{1}{|\Lambda+\rho|^{2 l-n(n-1) / 2+[n / 2]}\left|\Lambda^{\prime}+\rho\right|^{2 m-n(n-1) / 2+[n / 2]}} \tag{3.1}
\end{align*}
$$

Therefore if put $l=m$, we have

$$
\begin{equation*}
\sum_{i, j \in J}\left|\left(T \phi_{j}, \phi_{i}\right)\right| \leqq C_{1}^{i, l} \frac{\prod_{\alpha \in P}(\alpha, \alpha)^{2}}{\prod_{\alpha \in P}(\rho, \alpha)^{4}}\left(\sum_{\Lambda \in \mathscr{F}_{0}} \frac{1}{|\Lambda+\rho|^{2 l-n(n-1) / 2+[n / 2]}}\right)^{2} \tag{3.2}
\end{equation*}
$$

If we take $l=m>\frac{1}{2} \frac{n(n-1)}{2}=\frac{1}{2} \operatorname{dim} K$, using the property (iii) we obtain

$$
\sum_{i, j \in J}\left|\left(T \phi_{j}, \phi_{i}\right)\right|<+\infty
$$

q.e.d.

Corollary. If T is an operator on $\mathfrak{S c}$ satisfying the conditions of Lemma 1 , T is of the trace class.

For the proof of this corollary, see Harish-Chandra [1(a), Lemma 1].
For any $f \in C_{c}^{\infty}(G)$. We put

$$
T_{f}(\xi, \sigma)=\int_{G} f(g) U_{\xi}^{\xi, \sigma} d g \quad\left(\xi \neq 0,[\sigma] \in \hat{K}_{\xi}\right)
$$

Then

$$
\left(T_{f}(\xi, \sigma) F\right)(u)=\int_{K} K_{f}(\xi, \sigma ; u, v) F(v) d v \quad(u \in K)
$$

where

$$
K_{f}(\xi, \sigma ; u, v)=d_{\sigma} \int_{K_{\xi}} \overline{\sigma_{q q}(m)} d_{\xi} m \int_{H} f\left(\begin{array}{cc}
u m v^{-1} x \\
0 & 1
\end{array}\right) e^{\left.i<\xi, u^{-1} x\right\rangle} d x .
$$

It is easy to see that $T_{f}(\xi, \sigma) F \in C^{\infty}(K)$ for any $f \in C_{c}^{\infty}(G)$ and $F \in C^{\infty}(K)$.
We denote by λ and μ the left and right regular representations of G, respectively. We also denote by λ and μ the corresponding representations of the universal enveloping algebra of G defined on $C^{\infty}(G)$. We regard each element $X \in \mathfrak{f}$ as a right invariant vector field on K. So that we have $L(X)=-X$. Since

$$
\left(T_{f}(\xi, \sigma) F(\exp (-t X)) u\right)=\left(T_{\lambda(\exp t X) f}(\xi, \sigma) F\right)(u) \quad(t \in \boldsymbol{R}),
$$

we have

$$
\left((-X) T_{f}(\xi, \sigma) F\right)(u)=\left(T_{\lambda(X) f}(\xi, \sigma) F\right)(u)
$$

for $F \in C^{\infty}(K)$. Therefore for any non-negative integer l

$$
\Delta^{l} T_{f}(\xi, \sigma)=T_{\lambda(\Delta)^{l} l_{f}}(\xi, \sigma)
$$

Also we have

$$
T_{f}(\xi, \sigma) \Delta^{m}=T_{\mu(\Delta)^{m}}(\xi, \sigma) \quad(m=0,1,2, \cdots)
$$

by a similar way. On the other hand we notice that

$$
\left|\left|T_{f}(\xi, \sigma)\right|\right| \leqq \int_{G}|f(g)| d g
$$

Hence

$$
\left|\left|\Delta^{l} T_{f}(\xi, \sigma) \Delta^{m}\right|\right| \leqq \int_{G}\left|\left(\lambda(\Delta)^{l} \mu(\Delta)^{m} f\right)(g)\right| d g
$$

Thus the opreator $T_{f}(\xi, \sigma), f \in C_{c}^{\infty}(G)$, satisfies the assumptions of Lemma 1. By the corollary to Lemma $1, T_{f}(\xi, \sigma)$ is of the trace class.

As it can be easily seen that $K_{f}(\xi, \sigma ; u, v) \in C^{\infty}(K \times K)$, we have

$$
\operatorname{Tr}\left(T_{f}(\xi, \sigma)\right)=\int_{K} K_{f}(\xi, \sigma ; u, u) d u
$$

(see [1(b), Lemma 5]). Making use of the relation

$$
d_{\sigma} \int_{K_{\xi}} \sigma_{q q}\left(m_{1} m m_{1}^{-1}\right) d_{\xi} m_{1}=\chi_{\sigma}(m)
$$

we have the following proposition.
Proposition 1. For any $f \in C_{c}^{\infty}(G), T_{f}(\xi, \sigma)\left(\xi \neq 0,[\sigma] \in \hat{K}_{\xi}\right)$ is of the trace class and

$$
\operatorname{Tr}\left(T_{f}(\xi, \sigma)\right)=\int_{K_{\xi}} \overline{\chi_{\sigma}(m)} d_{\xi} m \int_{H \times K} f\left(\begin{array}{cc}
u m u^{-1} x \\
0 & 1
\end{array}\right) e^{i<\xi, u^{-1} x>} d x d u
$$

Let \boldsymbol{R}_{+}be the set of all positive numbers and let M be the subgroup consisting of the elements
$\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1\end{array}\right),(m \in S O(n-1))$. Then for any $\xi \in \hat{H}$ of the form $\xi=\left(\begin{array}{c}a \\ 0 \\ \vdots \\ 0\end{array}\right)\left(a \in \boldsymbol{R}_{+}\right)$, we have $K_{\xi}=M . \quad$ It follows from the results of $\S 2$ that $(\hat{G})_{\infty}$ can be indetified with $\boldsymbol{R}_{+} \times \hat{M}$. For $\xi=\left(\begin{array}{c}a \\ 0 \\ \vdots \\ 0\end{array}\right)\left(a \in \boldsymbol{R}_{+}\right)$, we write briefly $T_{f}(\xi, \sigma)$ $=T_{f}(a, \sigma)$. Then we have the following Plancherel formula for G.

Proposition 2. For any $f \in C_{c}^{\infty}(G)$

$$
\left.\int_{G}|f(g)|^{2} d g=\frac{2}{2^{n / 2} \Gamma(n / 2)} \sum_{[\sigma] \in \hat{\hat{H}}} d_{\sigma} \int_{R_{+}}| | T_{f}(a, \sigma) \right\rvert\,{ }_{2}^{2} a^{n-1} d a,
$$

where || $\quad \|_{2}$ denotes the Hilbert-Schmidt norm.
Proof. It is enough to prove that

$$
f\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\frac{2}{2^{n / 2} \Gamma(n / 2)} \sum_{[\sigma] \in \hat{\mu}} d_{\sigma} \int_{R_{+}} \operatorname{Tr}\left(T_{f}(a, \sigma)\right) a^{n-1} d a .
$$

For any $f \in C_{c}^{\infty}(G)$, we put

$$
T_{f}(\xi)=\int_{G} f(g) U_{g}^{\xi} d g \quad(\xi \in \hat{H})
$$

As above we write $T_{f}(\xi)=T_{f}(a)$ for $\xi=\left(\begin{array}{c}a \\ 0 \\ \vdots \\ 0\end{array}\right)\left(a \in \boldsymbol{R}_{+}\right)$. Then by (2.2)

Therefore

$$
\operatorname{Tr}\left(T_{f}(\xi)\right)=\sum_{\sigma \in \hat{\mathbb{K}}_{\xi}} d_{\sigma} \operatorname{Tr}\left(T_{f}(\xi, \sigma)\right)
$$

Hence it is enough to prove that

$$
f\left(\begin{array}{ll}
1 & 0 \tag{3.3}\\
0 & 1
\end{array}\right)=\frac{2}{2^{n / 2}(n / 2)} \int_{R_{+}} \operatorname{Tr}\left(T_{f}(a)\right) a^{n-1} d a
$$

Since

$$
\phi(m)=\int_{H \times K} f\left(\begin{array}{cc}
u m u^{-1} & x \\
0 & 1
\end{array}\right) e^{i<\xi, u-1 x\rangle} d x d u
$$

is a central function on K_{ξ},

$$
\phi(m)=\sum_{[\sigma] \in \hat{K} \xi}\left(\int_{K_{\xi}} \phi\left(m_{1}\right) \overline{\chi_{\sigma}\left(m_{1}\right)} d_{\xi} m_{1}\right) \chi_{\sigma}(m)
$$

(see [7], §24). Hence by Proposition 1 we have

$$
\begin{aligned}
\phi(1) & =\sum_{[\sigma] \in \hat{K}_{\xi}} d_{\sigma} \int_{K_{\xi}} \phi(m) \overline{\chi_{\sigma}(m)} d_{\xi} m \\
& =\sum_{[\sigma] \in \hat{K_{\xi}}} d_{\sigma} \operatorname{Tr}\left(T_{f}(\xi, \sigma)\right) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\operatorname{Tr}\left(T_{f}(\xi)\right) & =\phi(1)=\int_{H \times K} f\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) e^{i<\xi, u^{-1} x>} d x d u \\
& =\int_{H}\left\{\int_{K} f\left(\begin{array}{rr}
1 & u x \\
0 & 1
\end{array}\right) d u\right\} e^{i<\xi, x>} d x
\end{aligned}
$$

Hence

$$
\int_{K} f\left(\begin{array}{cc}
1 & u x \\
0 & 1
\end{array}\right) d u=\int_{H} \operatorname{Tr}\left(T_{f}(\xi)\right) e^{-i\langle\xi, x\rangle} d \xi,
$$

where $d \xi=\frac{1}{(2 \pi)^{n / 2}} d \xi_{1} \cdots d \xi_{n} . \quad$ When $x=0$,

$$
f\left(\begin{array}{ll}
1 & 0 \tag{3.4}\\
0 & 1
\end{array}\right)=\int_{H} \operatorname{Tr}\left(T_{f}(\xi)\right) d \xi
$$

By (2.1) we have $\operatorname{Tr}\left(T_{f}(k \xi)\right)=\operatorname{Tr}\left(R_{k} T_{f}(\xi) R_{k}{ }^{-1}\right)=\operatorname{Tr}\left(T_{f}(\xi)\right)$.
Hence $\operatorname{Tr}\left(T_{f}(\xi)\right)=\operatorname{Tr}\left(T_{f}(|\xi|)\right)$. So that we have (3.3) from (3.4).
q.e.d.

Let $\boldsymbol{B}(\mathfrak{C})$ by the Banach space of all bounded linear operators on \mathfrak{S}. We define the Fourier transform of $f \in C_{c}^{\infty}(G)$ by the $\boldsymbol{B}(\mathfrak{S})$-valued function T_{f} on \hat{H}. In terms of this transform Proposition 2 becomes the following

Corollary. For any $f \in C_{c}^{\infty}(G)$

$$
\int_{G}|f(g)|^{\prime 2} d g=\frac{2}{2^{n / 2} \Gamma(n / 2)} \int_{R_{+}}| | T_{f}(a)| |_{2}^{2} a^{n-1} d a .
$$

4. The Fourier-Laplace transform

For each $\zeta \in \hat{H}^{c}\left(\cong \boldsymbol{C}^{n}\right)$ we define a bounded representation of G on \mathfrak{S} by

$$
\left(U_{8}^{\zeta} F\right)(u)=e^{i<\zeta, u^{-1} x>} F\left(k^{-1} u\right),(F \in \mathfrak{S}, u \in K),
$$

where $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$. For $f \in C_{c}^{\infty}(G)$, put

$$
T_{f}(\zeta)=\int_{G} f(g) U_{8}^{\zeta} d g .
$$

Then T_{f} is a $\boldsymbol{B}(\mathfrak{y})$-valued function on \hat{H}^{c}. We shall call T_{f} the FourierLaplace transform of f.

Since K is compact, for each $f \in C_{c}^{\infty}(G)$ there exists a positive number a such that $\operatorname{Supp}(f) \subset\left\{\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G ;|x| \leqq a, k \in K\right\}$, where $\operatorname{Supp}(f)$ denotes the support of f. We denote by r_{f} the greatest lower bound of such a 's. Throughout this section we assume that $r_{f} \leqq a$ for a fixed $a \in \boldsymbol{R}_{+}$.

Lemma 2. There exists a constant $C \geqq 0$ depending only on f such that $\left|\left|T_{f}(\zeta)\right|\right| \leqq C \exp a|\operatorname{Im} \zeta|$.

Proof. Making use of the Schwarz's inequality we have

$$
\begin{aligned}
& \| T_{f}(\zeta) F| |^{2} \leqq \int_{K}\left\{\int_{H \times K}\left|f\left(\begin{array}{ll}
k & x \\
0 & 1
\end{array}\right)\right| e^{-\left\langle I m_{\zeta}, u^{-1} x\right\rangle}\left|F\left(k^{-1} u\right)\right| d x d k\right\}^{2} d u \\
& \quad \leqq e^{2 a \mid I m_{\mid}} \int_{K}\left\{\int_{K}\left(\int_{H}\left|f\left(\begin{array}{ll}
k & x \\
0 & 1
\end{array}\right)\right| d x\right)\left|F\left(k^{-1} u\right)\right| d k\right\}^{2} d u \\
& \quad \leqq e^{2 a\left|I m_{\zeta}\right|} \int_{K}\left\{\int_{K}\left(\int_{H}\left|f\left(\begin{array}{ll}
k & x \\
0 & 1
\end{array}\right)\right| d x\right)^{2} d k \int_{K}\left|F\left(k^{-1} u\right)\right|^{2} d k\right\} d u \\
& \quad=e^{2 a\left|I m_{\mid}\right|} \int_{K}\left(\int_{H}\left|f\left(\begin{array}{ll}
k & x \\
0 & 1
\end{array}\right)\right| d x\right)^{2} d k| | F| |^{2}
\end{aligned}
$$

for any $F \in \mathfrak{F}$. Therefore it is enough to put

$$
C=\left\{\int_{K}\left(\int_{H}\left|f\left(\begin{array}{cc}
k & x \\
0 & 1
\end{array}\right)\right| d x\right)^{2} d k\right\}^{1 / 2} .
$$

Lemma 3. The $\boldsymbol{B}(\mathfrak{j})$-valued function T_{f} on \hat{H}^{c} is entire analytic.
Proof. For any n-tuple (m_{1}, \cdots, m_{n}) of non-negative integers we define a bounded operator $T_{f}{ }^{m_{1} \cdots m_{n}}$ by

$$
\left(T_{f}^{m_{1} \cdots m_{n}} F\right)(u)=\int_{H \times K} f\left(\begin{array}{cc}
k & u x \\
0 & 1
\end{array}\right) x_{1}^{m_{1} \cdots x_{n} m_{n}} F\left(k^{-1} u\right) d x d k,
$$

where $x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$. Then we have

$$
\| T_{f}^{m_{1} \cdots m_{n}| | \leqq a^{m_{1}+\cdots+m_{n}}\left\{\int_{K}\left(\int_{H}\left|f\left(\begin{array}{cc}
k & x \\
0 & 1
\end{array}\right)\right| d x\right)^{2} d k\right\}^{1 / 2} . . .2{ }^{1} .}
$$

Hence for any fixed $\zeta=\left(\zeta_{1} \cdots, \zeta_{n}\right) \in \boldsymbol{C}^{n}$ the series

$$
\sum_{m=0}^{\infty} i^{m} \sum_{m_{1}+\cdots+m_{n}=m} \frac{m!}{m_{1}!\cdots m_{n}!} T_{f}^{m_{1} \cdots m_{n} \zeta_{1} m_{1} \cdots \zeta_{n}^{m_{n}}}
$$

converges in $\boldsymbol{B}(\mathfrak{E})$-norm. It is easy to see that this series is equal to $T_{f}(\zeta)$. q.e.d.

For any polynomial function p on \hat{H}^{c}, we define a differential operator $p(D)$ on H by $p(D)=p\left(\frac{1}{i} \frac{\partial}{\partial x_{1}}, \cdots, \frac{1}{i} \frac{\partial}{\partial x_{n}}\right)$. A polynomial funciton p on \hat{H}^{c} is called K-invariant if $p(k \zeta)=p(\zeta)$ for any $k \in K$ and $\zeta \in \hat{H}^{c}$. As is easily seen, $T_{f}(\zeta)$ leaves the space $C^{\infty}(K)$ stable.

Lemma 4. 1) For any non-negative integers l and m we have $\Delta^{l} T_{f}(\zeta) \Delta^{m}$ $=T_{\lambda\left(\Delta^{l}\right) \mu\left(\Delta^{m}\right) f}(\zeta),\left(\zeta \in \hat{H}^{c}\right)$.
2) For any K-invariant polynomial function p on \hat{H}^{c}, we have $p(\zeta) T_{f}(\zeta)=$ $T_{p^{*}(D) f}(\zeta),\left(\zeta \in \hat{H}^{c}\right)$, where $p^{*}(\zeta)=p(-\zeta)$.

The statement 1) can be proved by a similar way mentioned in §3. The statement 2) is easily proved, using the fact $\frac{\partial}{\partial x_{j}} e^{i\langle\zeta, x\rangle}=i \zeta_{j} e^{i\langle\zeta, x\rangle}$ and the integration by parts. From Lemma 2 and Lemma 4 we have the following

Proposition 3. For any K-invariant polynomial function p on \hat{H}^{c} and for any non-negative integers l and m, there exists a constant $C_{p}^{l, m}$ such that

$$
\left|\left|p(\zeta) \Delta^{l} T_{f}(\zeta) \Delta^{m}\right|\right| \leqq C_{p}^{l, m} \exp a|\operatorname{Im} \zeta| .
$$

Finally from the definition of T_{f} we have the following functional equations for T_{f}.

Proposition 4. $\quad T_{f}(k \zeta)=R_{k} T_{f}(\zeta) R_{k}^{-1} \quad\left(\zeta \in \hat{H}^{c}, k \in K\right)$.

5. The analogue of the Paley-Wiener theorem

Theorem 1. A B(\{) -valued function T on \hat{H} is the Fourier transform of f $\in C_{c}^{\infty}(G)$ such that $r_{f} \leqq a(a>0)$ if and only if it satisfies the following conditions:
(I) T can be extended to an entire analytic function on \hat{H}^{c}.
(II) For any $\zeta \in \hat{H}^{c}, T(\zeta)$ leaves the space $C^{\infty}(K)$ stable. Moreover for any K-invariant polynomial function p on \hat{H}^{c} and for any non-negative integers l and m, there exists a constant $C_{p}^{l, m}$ such that

$$
\left|\left|p(\zeta) \Delta^{l} T(\zeta) \Delta^{m}\right|\right| \leqq C_{p}^{l, m} \exp a|\operatorname{Im} \zeta|
$$

(III) For any $k \in K$

$$
T(k \zeta)=R_{k} T(\zeta) R_{k}^{-1} \quad\left(\zeta \in \hat{H}^{c}\right)
$$

Proof. We have already proved the necessity of the theorem in §4. In the following we shall prove the sufficiency of the theorem.

Let T be an arbitrary $\boldsymbol{B}(\mathfrak{L})$-valued function on \hat{H} statisfying the conditions (I) $\sim(\mathrm{III})$ in the theorem. Let $\left\{\phi_{j}\right\}_{j \in J}$ be the complete orthonomal basis of \mathfrak{S}
which we have chosen in §3. If $|\operatorname{Im} \zeta| \leqq b(b>0)$, by the condition (II) for any non-negateive integers l and m there exists a constant $C^{l_{\mathrm{i}}{ }^{m}}$ such that

$$
\| \Delta^{l} T(\zeta) \Delta^{m}| | \leqq C^{l_{1}^{m}} \exp a b .
$$

Therefore by Lemma 1 the series

$$
\sum_{i, j \in J}\left|\left(T(\zeta) \phi_{j}, \phi_{i}\right)\right|
$$

converges and $T(\zeta)$ is of the trace class. We assume that $n \geqq 3$. If $\phi_{j}=d_{\Lambda}^{1 / 2}\left(\tau_{\Lambda}\right)_{p^{q}}$, we have $\left|\phi_{j}(u)\right| \leqq d_{\Lambda}^{1 / 2}$ because $\left|\tau_{\Lambda}(u)_{p^{q}}\right| \leqq 1$. So we have

Hence

$$
\begin{align*}
& \sum_{i, j \in J}\left|\left(T(\zeta) \phi_{j}, \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)}\right| \\
& \leqq C_{1}^{L, l} e^{a_{b}} \frac{\Pi_{\alpha \in P}(\alpha, \alpha)^{3}}{\prod_{a \in P}(\rho, \alpha)^{5}}\left(\sum_{\Lambda \in \mathscr{F}_{0}} \frac{1}{|\Lambda+\rho|^{2 l-3(n(n-1) / 2-[n / 2] / 2}}\right)^{2}<+\infty \tag{5.1}
\end{align*}
$$

for $2 l>\frac{3}{2} \frac{n(n-1)}{2}-\frac{1}{2}\left[\frac{n}{2}\right]$. In case $n=2,\left|\phi_{j}\right|=1$ for all $j \in J$. Therefore $\sum_{i, j \in J}\left|\left(T(\zeta) \phi_{j}, \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)}\right|=\sum_{i, j \in J}\left|\left(T(\zeta) \phi_{j}, \phi_{i}\right)\right|<+\infty$.

Now let us define the kernel function of $T(\zeta)\left(\zeta \in \hat{H}^{c}\right)$ by

$$
\begin{equation*}
K(\zeta ; u, v)=\sum_{i, j \in J}\left(T(\zeta) \phi_{j}, \phi_{i}\right) \Phi_{i}(u) \overline{\phi_{j}(v)} \tag{5.2}
\end{equation*}
$$

By the facts stated above and the property (I) it is easy to see that for any $\zeta \in \hat{H}^{c}$ the right hand side of (5.2) is absolutely convergent and that it is uniformly covergent on every compact subset of $\hat{H}^{c} \times K \times K$. Thus we have the following

Lemma 5. The function $\hat{H}^{c} \times K \times K \ni(\zeta, u, v) \rightarrow K(\zeta ; u, v)$ is of class C^{∞} and entire analytic with repsect to ζ.

If we adopt the formula (5.1) to $p(\zeta) T(\zeta)$ instead of $T(\zeta)$, we have the following lemma by making use of (II).

Lemma 6. For any K-invariant polynomial function p on \hat{H}^{c}, there exists a constant C_{p} such that

$$
|p(\zeta) K(\zeta ; u, v)| \leqq C_{p} \exp a|\operatorname{Im} \zeta|,\left(\zeta \in \hat{H}^{c}, u, v \in K\right) .
$$

Remark. $K(\zeta ; u, v)$ is rapidly decreasing on the real axis \hat{H}.
Let us define a function f on G by the inversion formula corresponding to
the Fourier transform, i.e.

$$
f(g)=\frac{2}{2^{n / 2} \Gamma(n / 2)} \int_{R_{+}} \operatorname{Tr}\left(T(a) U_{g}^{a-1}\right) a^{n-1} d a .
$$

By the property (III) we have

$$
\begin{aligned}
& \left(T(k \zeta) \phi_{j}, \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)} \\
& =\left(R_{k} T(\zeta) R_{k}^{-1} \phi_{j}, \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)}=\left(T(\zeta) R_{k}^{-1} \phi_{j}, R_{k}^{-1} \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)} .
\end{aligned}
$$

Let $\phi_{j}=d_{\tau}^{1 / 2} \tau_{p^{q}}$ and $\phi_{i}=d_{\sigma}^{1 / 2} \sigma_{r s}([\tau],[\sigma] \in \hat{K})$. Then

$$
R_{k}^{-1} \phi_{j}(w)=d_{\tau}^{1 / 2} \tau_{p q}\left(w k^{-1}\right)=d_{\tau}^{1 / 2} \sum_{l=1}^{d \tau} \tau_{p l}(w) \overline{\tau_{q l}(k)}
$$

and

$$
R_{k}^{-1} \phi_{i}(w)=d_{\sigma}^{1 / 2} \sum_{m=1}^{d \sigma} \sigma_{r m}(w) \overline{\sigma_{s m}(k)} .
$$

Therefore

$$
\begin{aligned}
& \left(T(\zeta) R_{k}^{-1} \phi_{j}, R_{k}^{-1} \phi_{i}\right) \phi_{i}(u) \overline{\phi_{j}(v)} \\
& =\sum_{l=1}^{d \tau} \sum_{m=1}^{d \sigma}\left(T(\zeta) d^{1 / 2} \tau_{p l}, d_{\sigma}^{1 / 2} \sigma_{r m}\right) d_{\sigma}^{1 / 2} \sigma_{r s}(u) \sigma_{s m}(k) d_{\tau}^{1 / 2} \overline{\tau_{p^{q}}(v) \tau_{q_{l}}(k)} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{p, q=1}^{d \tau} \sum_{r, s=1}^{d \sigma}\left(T(k \zeta) d_{\tau}^{1 / 2} \tau_{p^{q}}, d_{\sigma}^{1 / 2} \sigma_{r s}\right) d_{\sigma}^{1 / 2} \sigma_{r s}(u) d_{\tau}^{1 / 2} \overline{\tau_{p q}(v)} \\
& =\sum_{p, l=1}^{d_{\tau}} \sum_{r, m=1}^{d \sigma}\left(T(\zeta) d_{\tau}^{1 / 2} \tau_{p l}, d_{\sigma}^{1 / 2} \sigma_{r m}\right) \sum_{s=1}^{d \sigma} d_{\sigma}^{1 / 2} \sigma_{r s}(u) \sigma_{s m}(k) \times \sum_{q=1}^{d \tau} d_{\tau}^{1 / 2} \overline{\tau_{p^{q}}(v) \tau_{q l}(k)} \\
& =\sum_{p, l=1}^{d \tau} \sum_{r, m=1}^{d \sigma}\left(T(\zeta) d_{\tau}^{1 / 2} \tau_{p l}, d_{\sigma}^{1 / 2} \sigma_{r m}\right) d_{\sigma}^{1 / 2} \sigma_{r m}(u k) d_{\tau}^{1 / 2} \tau_{p l}(v k) .
\end{aligned}
$$

Since $K(\zeta ; u, v)=\sum_{[\sigma],[\tau] \in \hat{K}} \sum_{p, q=1}^{d_{\tau}} \sum_{r, s=1}^{d \sigma}\left(T(\zeta) d_{\tau}^{1 / 2} \tau_{p^{q}}, d_{\sigma}^{1 / 2} \sigma_{r s}\right) d_{\sigma}^{1 / 2} \sigma_{r s}(u) \times d_{\tau}^{1 / 2} \overline{\tau_{p^{q}}(v)}$, we have the following functional equation for $K(\zeta ; u, v)$:

$$
\begin{equation*}
K(k \zeta ; u, v)=K(\zeta ; u k, v k) \tag{5.3}
\end{equation*}
$$

On the other hand

$$
\operatorname{Tr}\left(T(k \xi) U_{g}^{k \xi_{1}}\right)=\operatorname{Tr}\left(R_{k} T(\xi) R_{k}^{-1} U_{g}^{\xi-1}\right)=\operatorname{Tr}\left(T(\xi) U_{\xi}^{\xi-1}\right),(\xi \in \hat{H}) .
$$

Hence

$$
\frac{2}{2^{n / 2} \Gamma(2 / n)} \int_{R_{+}} \operatorname{Tr}\left(T(a) U_{g}^{a-1}\right) a^{n-1} d a=\int_{H} T r\left(T(\xi) U^{\xi-1}\right) d \xi,
$$

where $d \xi=\frac{1}{(2 \pi)^{n / 2}} d \xi_{1} \cdots d \xi_{n} . \quad$ As $T(\xi) F(u)=\int_{K} K(\xi ; u, v) F(v) d v \quad(F \in \mathfrak{K})$
and $g^{-1}=\left(\begin{array}{cc}k^{-1} & -k^{-1} x \\ 0 & 1\end{array}\right)$ for $g=\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right) \in G$, we have

$$
U^{\xi}-1 T(\xi) F(u)=\int_{K} e^{-i<\xi, u^{-1} k^{-1} x>} K(\xi ; k u, v) F(v) d v
$$

Since $T(\xi)$ is of the trace class, so is $U_{\xi}^{\xi} T(\xi)$. Moreover the function $K \times K \ni$ $(u, v) \mapsto e^{-i<\xi, u^{-1} k^{-1} x>} K(\xi ; k u, v)$ is clearly of class C^{∞}. Hence

$$
\operatorname{Tr}\left(T(\xi)_{\xi}^{\xi-1}\right)=\operatorname{Tr}\left(U^{\xi-1} T(\xi)\right)=\int_{K} e^{-i<\xi, u^{-1} k^{-1} x>} K(\xi, k u, u) d u
$$

Therefore the equation (5.3) and the remark to Lemma 6 imply that

$$
\begin{aligned}
& \int_{H} T r\left(T(\xi) U^{\xi}-1\right) d \xi=\int_{H} \int_{K} e^{-i<k u \xi, x>} K(\xi ; k u, u) d u d \xi \\
& =\int_{K} \int_{H} e^{-i<\xi, x>} K\left(u^{-1} k^{-1} \xi ; k u, u\right) d \xi d u \\
& =\int_{K} \int_{H} e^{-i<\xi, x>} K\left(\xi ; 1, k^{-1}\right) d \xi d u \\
& =\int_{H} e^{-i<\xi, x>} K\left(\xi ; 1, k^{-1}\right) d \xi
\end{aligned}
$$

Thus we have

$$
f\left(\begin{array}{ll}
k & x \tag{5.4}\\
0 & 1
\end{array}\right)=\int_{H} e^{-i<\xi, x>} K\left(\xi ; 1, k^{-1}\right) d \xi
$$

$(k \in K, x \in H)$. It follows from Lemma 5 and the remark to Lemma 6 that f is of class C^{∞}. Making use of Lemma 6, it follows from the classical Paley-Wiener theorem that if $|x|>a, f\left(\begin{array}{ll}k & x \\ 0 & 1\end{array}\right)=0$ for any $k \in K$.

Finally we have to check that $T_{f}=T$. Since

$$
T_{f}(\xi) F(u)=\int_{K} K_{f}(\xi: u, v) F(v) d v
$$

where

$$
K_{f}(\xi ; u, v)=\int_{H} f\left(\begin{array}{cc}
u v^{-1} & x \\
0 & 1
\end{array}\right) e^{i<\xi, u-1 x>} d x
$$

so it is enough to prove that

$$
K(\xi ; u, v)=\int_{H} f\left(\begin{array}{cc}
u v^{-1} & x \\
0 & 1
\end{array}\right) e^{\left.i<\xi, u^{-1} x\right\rangle} d x
$$

By the relation (5.4),

$$
f\left(\begin{array}{rr}
u v^{-1} & x \\
0 & 1
\end{array}\right)=\int_{H} e^{-i<\xi, x>} K\left(\xi ; 1, v u^{-1}\right) d \xi
$$

$$
=\int_{H} e^{-i<\xi, x\rangle} K\left(u^{-1} \xi ; u, v\right) d \xi
$$

Hence

$$
K\left(u^{-1} \xi ; u, v\right)=\int_{H} f\left(\begin{array}{cc}
u v^{-1} & x \\
0 & 1
\end{array}\right) e^{i<\xi, x\rangle} d x .
$$

If we replace $u \xi$ for ξ,

$$
\begin{aligned}
K(\xi ; u, v) & =\int_{H} f\left(\begin{array}{cc}
u v^{-1} & x \\
1 & 0
\end{array}\right) e^{i<u \xi, x\rangle} d x \\
& =\int_{H} f\left(\begin{array}{cc}
u v^{-1} & x \\
0 & 1
\end{array}\right) e^{i<\xi, u^{-1} x>} d x .
\end{aligned}
$$

This completes the proof of the theorem.

6. The Fourier-Bessel transform

Let $C_{c}^{\infty}(K \backslash G / K)$ be the set of all complex valued K-bi-invariant functions on G which are infinitely differentiable and with compact support. For $f \in C_{c}^{\infty}(G)$, put

$$
\left(\mathscr{F}_{\xi} f\right)(g)=\int_{H} f\left(g\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\right) e^{-i\langle\xi, y\rangle} d y
$$

and

$$
(\mathscr{P} f)(g)=\int_{K} f(g u) d u
$$

For $f \in C_{c}^{\infty}(K \backslash G / K)$ it is easy to to see that

$$
\left(\mathscr{P} \mathscr{E}_{\xi} f\right)\left(\begin{array}{ll}
1 & x \tag{6.1}\\
0 & 1
\end{array}\right)=\left(\int_{H} f\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) \phi_{\xi}(y) d y\right) \phi_{-\xi}(x),
$$

where

$$
\phi_{\xi}(x)=\int_{K} e^{i<\xi, u x>} d u .
$$

Remark. The formula (6.1) is regarded as an analogue of the Poisson integral for semisimple Lie groups (see [5]). And the function ϕ_{ξ} is the zonal spherical function.

Let us define the Fourier-Bessel transform $\mathscr{B} \nsubseteq f$ of $f \in C_{c}^{\infty}(K \backslash G / K)$ by

$$
(\mathscr{B} \mathscr{F} f)(\xi)=\int_{H} f\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) \phi_{\xi}(y) d y .
$$

If $x=\left(\begin{array}{c}r \\ 0 \\ \vdots \\ 0\end{array}\right),(r>0)$ and $\xi=\left(\begin{array}{c}a \\ 0 \\ \vdots \\ 0\end{array}\right),(a>0)$, we can prove that

$$
\begin{aligned}
\phi_{\xi}(x) & =\frac{\Gamma\left(\frac{n}{2}\right)}{\pi^{1 / 2} \Gamma\left(\frac{n-1}{2}\right)^{\pi}} \int_{0}^{\pi} e^{i \operatorname{arcos} \theta} \sin ^{n-2} \theta d \theta \\
& =\Gamma\left(\frac{n}{2}\right) \frac{J_{(n-2) / 2}(a r)}{\left(\frac{a r}{2}\right)^{(n-2) / 2}}
\end{aligned}
$$

(see [8] for the the notation of the Bessel function $J_{n}(r)$).
If $g_{r}=\left(\begin{array}{cccc}1 & & 0 & r \\ \ddots & & 0 \\ 0 & \ddots & \vdots \\ 0 & & 1 & 0 \\ 0 & \cdots & 0 & 1\end{array}\right),(r \geqq 0)$, we write briefly $f(r)=f\left(g_{r}\right)$. Then for any
$f \in C_{c}^{\infty}(K \backslash G / K) f$ is uniquely determined by $f(r),(r \geqq 0)$. Let $C^{\infty}(K \backslash \hat{H})$ be the set of all complex valued K-invariant functions on \hat{H} which are infinitely differentiable. If $\xi=\left(\begin{array}{c}a \\ 0 \\ \vdots \\ 0\end{array}\right)$, we write $F(\xi)=F(a)$ for $F \in C^{\infty}(K \backslash \hat{H})$. It is obvious that $\mathscr{B X} f \in C^{\infty}(K \backslash \hat{H})$ for $f \in C_{c}^{\infty}(K \backslash G / K)$. Moreover we have

$$
(\mathscr{B} \Phi f)(a)=\int_{R_{+}} f(r) \frac{(a r)^{(n-2) / 2}}{J_{(n-2) / 2}(a r)} r^{n-1} d r \quad(a>0)
$$

Since for $f \in C_{c}^{\infty}(K \backslash G / K)$

$$
\begin{aligned}
(\mathscr{B} \mathscr{F} f)(\xi) & =\int_{H \times K} f\left(\begin{array}{ll}
1 & u^{-1} y \\
0 & 1
\end{array}\right) e^{i<\xi, y>} d y d u \\
& =\int_{H \times K} f\left(\left(\begin{array}{ll}
u^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
u & 0 \\
0 & 1
\end{array}\right)\right) e^{i<\xi, y>} d y d u \\
& =\int_{H} f\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) e^{i<\xi, y>} d y
\end{aligned}
$$

we have

$$
\begin{aligned}
f\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right) & =\int_{\hat{H}}(\mathscr{B} \mathscr{F} f)(\xi) e^{-i\langle\xi, y>} d \xi \\
& =\int_{\hat{H}}(\mathscr{B F} f)(\xi) \phi_{-\xi}(y) d \xi
\end{aligned}
$$

On the other hand we remark that $\phi_{-\xi}(x)=\phi_{\xi}(x)$ for any $\xi \in \hat{H}$ and $x \in H$. Hence we have the following inversion formula

$$
f(r)=\int_{R_{+}}(\mathscr{B} \nsubseteq f)(a) \frac{J_{(n-2) / 2}(a r)}{(a r)^{(n-2) / 2}} a^{n-1} d a
$$

Then we can easily prove the following analogue of the Paley-Wiener theorem
for the Fourier-Bessel transform.
Theorem 2. A function F on \hat{H} is the Fourier-Bessel transform of $f \in C_{c}^{\infty}$ $(K \backslash G / K)$ such that $r_{f} \leqq a(a>0)$ if and only if it satisfies the following conditions:
(I) F can be extended to an entire analytic function on \hat{H}^{c}.
(II) For any K-invariant polynomial function p of \hat{H}^{c} there exists a constant C_{p} such that

$$
|p(\zeta) F(\zeta)| \leqq C_{p} \exp a|\operatorname{Im} \zeta| \quad\left(\zeta \in \hat{H}^{c}\right) .
$$

(III) For any $k \in K$

$$
F(k \zeta)=F(\zeta) \quad(\zeta \in \hat{H})
$$

Remark. In case $n=2$, we have

$$
(\mathscr{B} \mathscr{F} f)(a)=\int_{0}^{\infty} f(r) J_{0}(a r) r d r
$$

This is the classical Fourier-Bessel transform [8].
Osaka University
Hiroshima University

References

[1] Harish-Chandra: (a) Representations of semisimple Lie groups III, Trans. Amer. Math. Soc. 76 (1954), 234-253.
(b) The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485-528.
[2] S. Itô: Unitary representations of some linear groups II, Nagoya Math. J. 5 (1953), 79-96.
[3] K. Kumahara and K. Okamoto: An analogue of the Paley-Wiener theorem for the euclidean motion group, Proc. Japan Acad. 47 (1971), 485-490.
[4] G.W. Mackey: (a) Imprimitivity for representations of locally compact groups I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537-544.
(b) Induced representations of locally compact groups I, Ann. of Math. 55 (1952), 101 -139.
[5] K. Okamoto: Harmonic analysis on homogeneous vector bundles, Conference on Harmonic Analysis, Lecture notes in mathematics, vol. 266, Springer-Verlag, 1972, 255-271.
[6] R. Paley and N. Wiener: Fourier Transform in the Complex Domain, Colloq. Publ. Amer. Math. Soc., 1934.
[7] A. Weil: L’integration dans les Groupes Topologiques et ses Applications, Hermann, Paris, 1940.
[8] N.J. Vilenkin: Special Functions and the 'Theory of Group Representations, AMS Translations of Mathematical Monographs, vol. 22, 1968.
[9] H. Weyl: Theorie der Darstellung kontinuierlicher halp-einfacher Gruppen druch lineare Transformationen, Teil III, Math. Z. 24 (1926), 377-395.

