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Introduction

G.Bredon developed the equivariant (generalized) cohomology theories
in [3], in which he had to restrict himself to the case of finite groups. One of
the purposes of this note is to generalize his theory by replacing G-complexes
with G-CW complexes. Then, for example, the followings are still true for the
case in which G is an arbitrary topological group. The E,-term of the Atiyah-
Hirzebruch spectral sequence associated to a G-cohomology theroy (in this note
we frequently use ‘G-’ instead of ‘equivariant’) is a classical G-cohomology
theory, which is easy to calculate (§1~§4). The G-obstruction theory works
in a classical G-cohomology theory (§5). Moreover, for a G-cohomology theory
we get a representation theorem of E.Brown (§6) and the Maunder’s spectral
sequence (§7).

As an application we study the equivariant K*-theory in the last sestion (§8).
The Atiyah-Hirzebruch spectral sequence for K#(X) collapses, if dim X/G<2
or X satisfies some other conditions. The E,-term depends only on the orbit
type decomposition of the orbit space, if X is a regular O(n)-manifold or the like.
These facts enable us to calculate the equivariant K*-group of Hirzebruch-Mayer
O(n)-manifolds and Janich knot O(n)-manifolds. Our spectral sequence for a
differentiable G-manifold is similar to that of G.Segal which is defined by the
equivariant nerve of his [13], but ours is easier to calculate the E,-term.

In this note G denotes a fixed topological group. Terminologies and nota-
tion follow those of [3], [9], [10] in general, though o denotes a closed cell which
is the closure of an (open) cell in the definition of a G-CW complex in [10].
And Go denotes the G-orbit of o and H, the unique isotropy subgroup at any
interior point of o. §0 is exposed for reference to the properties of G-CW
complexes.

The author wishes to thank Professors Shoro Araki and Akio Hattori for
their criticisms and encouragements.
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0. Preliminaries about G-CW complexes

We summarize here the properties of G-CW complexes and G-CW comple-
xes with base point (the base point in G-CW complex is always assumed to be a
vertex which is left fixed by each element of G).

Proposition 0.1. (G-cellular approximation theorem) Let f: X—Y be a
G-map between G-CW complexes (with base point). Then f is (base point preserving)
G-homotopic to a G-map , f': X—Y such that f'(X™)C Y™ for any n.

Thisis Theorem 4.4 of [10]. Moreover, if f is G-cellular on a G-subcomplex
4, then we may require f'=f on 4.

Proposition 0.2. (G-homotopy extension property) Let f,: X—Y be a
gen G-map of a G-CW complex X into an arbitrary G-space Y. Letg,: A=Y
be a G-homotopy of g,=f,| A, where A is a G-subcomplex of X. Then, there is
a G-homotopy f,: X—Y, such that f,| A=g,.

This is (J) of [10].

For a pair of G-CW complexes (X, 4), collapsed A into a point, X/4 forms
a G-CW complex with a base point A/4 (taken to be a disjoint point if A=¢,
in which case X* denotes X/$). Let i: A—X be the inclusion. Consider
the mapping cone C;=X UCA=(XX {1} U4 XI)/A X% {0} with the obvious G-
action, trivial on I. 'Then, by the G-homotopy extension property, we can prove
that the collapsing map, X UCA—X UCA/CA=X|A is a G-homotopy equival-
ence. Therefore, we get

Proposition 0.3. Let (X, A) be a pair of G-CW complexes (with base point)
and let i: A—X be the natural inclusion. Then, in the following cofibering
sequence, the vertical maps are G-homotopy equivalences:

atxlcle e,

\. |=6|=¢|=c

X/A—SA—SX

Proposition 0.4. (Theorem of J.H.C.Whitehead) Let ¢: (X, A)—(Y, B)
be a G-map between two pairs of G-CW complexes with base point. For each
closed subgroup H which appears as an isotropy subgroup in X or Y, we assume
that X¥, A", Y¥ and B¥ are arcwise connected, and the induced maps,

Px: o XH, %) > 7 (VH, %)
and
Py (A", %) — 7z, (BH, %)

are bijective for 1 <n< max (dim X, dim Y). Then, ¢: (X, A)—(Y, B) is a G-
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homotopy equivalence.
This is a special case of ** Theorem 5.3 of [10].

Proposition 0.5. Let G be a compact Lie group. Then any compact dif-
ferentiable G-manifold has a G-finite G-CW complex structure.
This comes from Proposition 4.4 of [9].

1. Definition of an equivariant cohomology theory on G-CW
complexes

On the category of pairs of G-finite G-CW complexes and G-homotopy
classes of G-maps, a G-cohomology theory is defined to be a sequence of contrava-
riant functors Ag(—oo<<m<<co) into the category of abelian groups together
with natural transformation &": hg(4, ¢)—>hi"'(X, A) such that the following
axioms are satisfied (we put Ag(X)=hg(X, ¢)):

(1) The inclusion (X, X N A)—(X U4, A) induces an isomorphism,

“X U4, A) S X, XNA4).
(2) If (X, A)is a pair of G-finite G-CW complexes, the sequence,

s (X, ) - BX) — Hy(A) S hg(X, ) -
is exact.
Standard argument can be used to prove the exactness of Mayer-Vietoris
sequence and the long sequence of triples.

Lemma 1.1. For a pair of G-finite G-CW complexes (X, A), the collapsing

map, (X, A)—(X|A, A|A), induces an isomorphism,
Hy(X |4, A]4) = kX, 4)

Proof. By the proposition 0.3 the collapsing map, X UCA—-XUCA/CA
=X|/A is a G-homotopy equivalence. Moreover, CA—x is an G-homotopy equ-
ivalence, and (X, 4)—>(X UCA4, CA) is an exision map. Hence, we get the
commutative diagram (the homomorphisms are induced by the canonical G-
maps),

(X UCA, ¥) S k(X UCA4, CA)

|

he(X|A, AJA) — kYX, A)
q.e.d.

*) The footnote at p. 371 of [10] is inadequate. “® 7, (X, Y) vainshes’ should read “7,(X,Y,y)
vanishes for every point ¥ of Y’ and also ‘0x: ¥ m,(X)—* 7,(Y) is bijective or surjective’ should
read “ox: m(X, x)—7(Y, @(x)) is bijective or surjective for every point x of X*’. Then, the state-
ments and proofs in [10] are true in the context except Theorem 5.2. In Theorem 5.2 we should
add the assumption that each arcwise connected component of X or Y is n-simple for every n>1.
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For a G-CW complex with base point X, SX=.S A X (with obvious G-action,
trivial on the “circle factor” .S) denotes the reduced suspension of X. A reduced
G-cohomology theory on the category of G-finite G-CW complexes with base
point and base point preserving G-homotopy classes of base point preserving G-
maps is a sequence of contravariant functors fa(— oo <<n<<co) into the category
of abelian groups, together with natural transformations o”: AH(X)—hé™(SX)
satisfying the following axioms:

(1)’ o™ is an isomorphism for each z and X.

(2)" The short sequence,

B(X]A) = B(X) — ke(4)

is exact.

ReMARK 1.2. By Proposition 0.3 and Axioms (1)’, (2)" we get the long
exact sequence for ¥(-).

Let k% be a G-cohomology theory. Define z%(X) by A&(X, *). Then h¥
is a reduced G-cohomology theory by Lemma 1.1. Conversely let z& be a re-
duced G-cohomology theory. Define h%(X, A) by h%(X/A). Then j¥ is a G-
cohomology theory by Remark 1.2. This is a canonical one-to-one corres-
pondence. Afterwards we identify Ag(X, 4) and fg(X/A).

We enclose this section after giving some examples.

ExampLEs 1.3. of G-COHOMOLOGY THEORIES:
(i) hy(X)=H"(X|G; Z).
(ii) hg(X)=K%X) when G is a compact Lie group.
(i) AH(X)=h"(X X cEs) where E; is a universal G-principal bundle and 4* a
cohomology theory for spaces.

2. On classification of G-maps between G-cells of the same dimen-
sion up to G-homotopy classes

Let H be a closed subgroup of G. Suppose that X is a space and G/Hx X
is a G-space with the obvious G-action, trivial on X. Let Y be a G-space and
f: G/Hx X—Y be a G-map. Since f is G-equivariant, we get, f(H/Hx X)cY#
where Y# is the H-pointwise fixed subspace of Y. Therefore, we may define
a map, f: X—>Y#, by f(x)=f(H/H X x).

Lemma 2.1. In the above situation, the correspondence, fi—f, yields an
isomorphism of sets,
G-maps (GIHx X, Y) S Maps (X, YH).
Moreover, the isomorphism induces another isomorphism,

[GIHX X; Y]e 5 [X; YH]
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where [+ ;+]c stands for the set of G-homotopy classes of G-maps.

Proof. Let f: X—>Y# be a map. Define a map, f: GJHxX—Y, by
f(gH|Hx x)=g-f(x) for any g€G, and any x X. If gH/H=g H|H, then g’
=g+h for some he H, so that g-f(x)=g’-f(x) (since f(x) is fixed by H), which
shows that this definition is valid. By this definition fis certainly G-equivariant,
and conversely if we assume that a map f: G/H x X—Y is G-equivariant, we get
F(gH|H X ¥)=g- f(H|H x ).

Therefore, the correspondence, fi—f, is the converse to the correspondence,
fr>f. This proves the first isomorphism. The second isomorphism is induced,
because the G-homotopy f,(0<¢<1) and homotopy f(0<t=<1) correspond

each other in the same way.
q.e.d.

Assume that X has a distinguished closed subspace A and Y has a base
point y, (the base point is left fixed by G).

Lemma 2.1'. The correspondence, f—f, yields an isomorphism,
G-maps ((G/H x X)(G|Hx A), Y|y,), = Map (XA, Y7[y,), .
Moreover, the isomorphism induces another isomorphism,
[(GIHX X)(GIH x A); Yiyle,, > [X]A; Y[y,
where [+ , *1c,, Stands for the set of base point preserving G-homotopy classes of base
point preserving G-maps.

Proof. The correspondence fi—f, is also defined in the same way as in

Lemma 2.1.
q.e.d.

Therefore, we get

Corollary 2.2. Let H and K be two closed subgroups of G and n=0 be
a fixed integer. Then, “the restriction” yields the following isomorphisms,

(i) [G/H; GIK]e = =((GIK)™),

(i) [(G/Hx AM/(G/H X 8A"); (GIK X A")[(GIK X 9A")]e,,

= 7.((GIK)" X A")((GIK)™ x 04", ).
Here m(+) stands for the set of arcwise connected components and * is the base point

((GIK)® x 0A™)[(G|K)H" x 0A™).
Now let Y be a space and #=1 be an integer.

Lemma 2.3. Y XA"Y X0A"is (n—1)-connected, and there are natural iso-
morphisms,

2/ (Y X A" Y X 0A", %) S H (Y X A" Y x 0A"; Z) S H(Y; Z)
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Here n,/(*)=mn,(*) for n=2 and =/(-) is the abelianized group of =,(-) and
H,(+; Z) is the singular homology group.

Proof. By the definition, ¥ X A®/Y X 0A” is homeomorphic with the smash
product Y* A A"/0A". Hence Y X A"/Y X 0A™is (n—1)connected. If we use the

Hurwicz theorem, the rest is easily proved.
q.e.d.

Let {Y,: A=A} be the family of all the arcwise connected components of
Y. Take an element y,& Y, for each A. Then each element of H(Y; Z) has
Zny - ya(ma=0 except the finite \’s) asits representative. Also any map: (A",0A")
—(Y X A"/Y X 0A", *) determines n, uniquely.

Now let H and K be closed subgroups of G. Recall that for any element
geN(H, K)={geG, Hgc gK}, g: G/H—G|K is defined by g(aH)=agK, and
this correspondence, g— g, induces an isomorphism,

N(H, K)|K = (G|K)" 5 G-maps (G/H, G|K).

Suppose that {g\&G} is the family of representatives of all arcwise con-
nected components of N(H, K)/K=(G/K)H. Then any base point preserving
G-map,

f: (G/H X A™)/(G/H x 0A™) — (G/K x A™)[(G/K X 0A"),

determines n,(f) such that f is equal to =n,(f)- g, in 7,/ ((G/K)H x A")/((G/K)H
X 8A"), *)=H,(GIK)"; Z).

Let L be another closed subgroup of G. Suppose that g, N(H, K) and
gu=N(K, L), then we get

& guEN(H, L) (not gu-g)!), and (gx-gu)" = guod -

From this we get

Proposition 2.4. Let H, K and L be closed subgroup of G. Suppose that
{&x=G}, {g.=G} and {g,= G} are the families of representatives of all arcwise
connected components of N(H, K)/K, N(K, L)/L and N(H, L)/L respectively. Let
f: (G/H)x A™)/(G/H x 0A™)—(G/K x A")/(G/K x 0A™) and g: (G|K x A")/(G/K
X 0A™)—(G/L x A™)/(G|L X 0A™), be base point preserving G-maps. Then,

ny(gof) = Znu(g)m(f) -

Here the summation is taken over the pairs (N, w) such that g\-g. and g, are in the
same arcwise connected component of N(H, L)|L.

3. Classical G-cohomology theory on G-CW complexes

We shall define a classical G-cohomology theory with coefficients in a
(generic) G-coefficient system. In §4 the classical G-cohomology theory will
be characterized as the G-cohomology theory which satisfies also the dimension
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axiom.

DeriniTION 3.1. A (generic) G-coefficient system is a contravariant functor
M of the category of the left coset spaces of G by closed subgroups, G/H, and
G-homotopy classes of G-maps (equivariant with respect to left translation), G/H
—G/K, into the category of abelian groups.

Remark. When G is a discrete group, any two distinct G-maps between
G-coset spaces cannot be G-homotopic and hence this definition coincides with
the generic equivariant coefficient system of Bredon in [3].

EXAMPLES 3.2. OF G-COEFFICIENT SYSTEMS:
(1) Mg=h.
(i) Ms=Z with a trivial G-action.
(i) Me=w,(Y)(n=2), where Y is a G-space with a base point y, and
o (Y)(GIH)=mY ", y)=[(G/H x A")(G/H X 0A"), Y|y0]e,o-

Let M be a G-coefficient system. The n#-dimensional G-cochain group

of a pair of G-CW complexes (X, 4) with coefficients in Mg, denoted by

(X, A;M ), is defined to be the group of all G-equivariant functions ¢ on the

n-cells of (X, 4) with ¢(¢)eM(G/H,) and M(g)p(a)=¢(go) for a right

translation g¢: G/H,,2aH ,—ag(H,)g 'agH, = G[H,. (If o is an n-cell of 4
or a p-cell (p+#n), then ¢(c)=0.)

By the definition of the G-cochain group, C¥(X, A; M) is canonically
isomorphic with Cg(X"/X*'UA; Mg). Moreover, since X"/ X" 'UA=
V(Go|Gdc) where o range over the representatives of all z-dimensional G-cells
of (X, 4),

CoX"IX" U 4; Mo) = CY(V(GalGoo); Mo) = 11CHGa/Goa; Mo).
Let f: (X, A)—(Y, B) be a G-cellular map between pairs of G-CW com-
plexes. Then, for every =, f induces a G-map,
XX ud—- YY" 'UB.
Suppose that o and 7 are representatives of all G-n-cells of (X, 4) and

(Y, B) respectively. Then we can define a G-map f,, (between G-cells of the
same dimension #z) by f,,=cof"o7 in the following diagram:

XY X*'UA = V(Go|Goo) é: Go|Gio = (G/H,x A™)(G/H,x 0A")
| [ £ [ 7n

Y*/Y*'UB = \/(Gr/GoT) é Gr/GoT = (G|H,x A")[(G/H, x A"

(4

where 7 is the inclusion and ¢ is the collapsing of the other factors.
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Let {g\c.»EG} be the family of representatives of all arcwise connected
components of (G/H,)"+ as in §2.
Define f*—C3(f; M): C3(Y, B; Mo)~CyX, 4; M) by

(f*@)(o) = Z} ACZ’T)n}\(O',T)(f o) M G(é' A(a‘,'r))¢(7)

where 7 ranges over the representatives of all G-n-cells of (Y, B). The sum is
finite because n,(f,,)=0 except the finite A\’s.)

Proposition 3.3. Let M be a G-coefficient system. Then, C3(«; Mg)isa
contravariant functor from the category of pairs of G-CW complexes and G-cellular
maps into the category of abelian groups.

Proof. If we fix the representatives, (go f)*=f*og* by Proposition 2.4.
It is easily seen that f* is determined independent of the representatives.
Remark that f* depends only on the G-homotopy class of the G-map f™.
q.e.d.
Now recall that X"/X"'UA has the same G-homotopy type with
X"UJC(X"'U4) canonically. As a special case of Proposition 0.3, we have
a Puppe sequence (the horizontal sequence),

S(Xn—l/Xn~3 U A)
/
Xn~1/X’l—'2 UA — Xﬂ/Xﬂ—z U-A —> Xﬁ/Xn—l UA _a) S(Xn*l/Xﬂ—Z UA)
7 |s@
X" X"*U4 S S(X"2 X"y A)

Since both the vertical and oblique sequences are cofiberings, we get that S(d)e
0 is G-homotopic to the trivial map. On the other hand we have a canonical
isomorphism,

o: C& (X" X" Ud; M) = CE(S(X"|X"* U A); Mc).
Define the coboundary homomorphism
8: Cg™'(X, A; Mg) — Ce(X, 4; M)
by §=C¢(0)oc. Then , because S(0)09=0, we get §05=0.

DreriNiTION 3.4. The classical G-cohomology theory on a pair of G-CW
complexes (X, A) with the coefficients in a G-coefficient system M, denoted by
H¥(X, A; M), is defined by Hg(X, A; Mg)=H™"C(X, 4; M), J).

ReEMARK 3.5. Let o and 7 be n-cell and (n—1)-cell of (X, 4). We write
[o) &rco,nT] for ny¢s 5(05r) Where 8,,: Go|GOoc—S(GT|GOT). Then, we get the

formula,
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(@) (o) = EA(GZ,T)[G' » Exco,nTIM c(g Ao, 0)P(T)

where 7 ranges over the representatives of all G-(n— 1)-cells and g,, ,, ranges over
the representatives of all arcwise connceted components of N(H,, H,)/H,.

Theorem 3.6. The classical G-cohomology theory H¥(« ; M) is a G-cohomo-
logy theory in the sense of §1.

Proof. We prove here only the G-homotopy axiom. The exision axiom
and the exactness axiom is trivially satisfied. Let f: (X, A)—(Y, B) be a G-map
between pairs of G-CW complexes. By a G-cellular approximation theorem we
may assume that f is G-cellular. The induced map f*: C¢(Y, B; Mg)—
Ce(X, 4; M) commutes with §, in fact, f*cd=C%(f)oCe(0)ooc=Cg(0of)oo=
C&(S(f)o(0)oa=Cg(0)oCe(f)oo=Cg(0)oaoC&(f)=8-f*. This gives an in-
duced map f*: H¥Y, B; Ms)—HEX, A; Mg). If fis G-homotopic to g, we may
assume that not only f and g are G-cellular but G-homotopy F: (X x I, AXI)—
(Y, Bywith F| X X {0}=f, F| X X {1}=g is also G-cellular. 'Then, F gives a ho-
motopy connecting the chain maps, f* and g*: C¥(Y, B; M;)—C¥(X, 4; M)
and hence f*=g*: H§(Y, B; M;)—H¥X, A; M). Therefore, even if f is not a
G-cellular map the induced map f*: HY, B; Ms)—HEX, A; M) is well-
defined and satisfies the G-homotopy axiom. 4

q.e.d.

4. Spectral sequence of Atiyah-Hirzebruch type

Suppose that (X, 4) is a fixed pair of G-finite G-CW complexes. Put
H(p, 9)==hg(X?', X?7*UA). Then, the collection of H(p, g)’s satisfies the
axioms (S.P. 1)-(S.P. 5) of Cartan-Eilenberg [5. p.334] and hence induces a
spectral sequence resulting to A§(X, A). The E;-term and the 1st differential
of the spectral sequence are easily calculated as follows:

Ep? = hgt9(X?, X?7 U A)
d, = 8: hgt9(X?, X7 U A) — hEHe(X 21, X7y A)

where § is the coboundary homomorphism.

Lemma 4.1.

(i) A& UX?, XP7'UA)=hE"I(X?|X? UA) is decomposed into the direct
product T1hE"(Ga|Gdc), where o ranges over representatives of all p-dimensional
G-cells of X/A. .

(i) And for each direct factor, there are isomorphisms, hb+%(Go|Goo)=
he*4(Go, Goo)=hZ"(G/H,x A?, G|H, X 0A?)=h&(G/H,,).

Proof of (i). Since X?/X?7*UA=V(Ga/Gdq) is the one point union of
finite (Go/Gda)’s we get the decomposition by the usual argument.
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Proof of (ii). The 2nd isomorphism is induced by the G-characteristic map,
Gf,: (GIH,xX A?, G|H, X 0A?)—(Ga, Gdc), which is a relative G-homeomor-
phism. Now we shall prove the last isomorphism. Put H=H,. Since the
inclusion, G/H X (0A? —A?")—G|/H X A?, has a G-equivariant deformation re-
traction, we get the isomorphism,

1 U(GIH x A%, GIHx 0A%) £ hgrey(GIH x 0A%, GIH x (0A7— A7)

in the exact sequence of a triple (G/H X A?, G/[H x 0A?, G/HX (0A?—A?™)).
By the exision axiom, we get the isomorphism,

B8t (GH x 0A?, G/H X (0A?—A?™)) S hg+(G/HX A?™, GIH X 0A?™Y) .
Combining the isomorphisms of these two types repeatedly, we get
k2 (GIH x A?, G/H X 0A?) < hg* 9 (G/H x A*™", G/H x 0A*™)

- S hYGIHX A®, G/H % 3A°) = h&(G[H) .
q.e.d.

We shall consider the difference of taking another representative go instead
of o, as a representative of a p-dimensional G-cell Go. Put H=H,. Then gHg™
=H,,. Since we may identify agH-orbit of o with agHg *-orbit of go in Go,
a canonical right translation g: G/gHg ' SagHg '—agH & G|H induces a required
isomorphism, 2&(g): h4(G/H,)—h&G[H,,). This shows that h5*4(X?, X?™' U A4)
=C{X?, X?7 U 4; hé).

Theorem 4.2. The E¥'‘-term of the Atiyah-Hirzebruch spectral sequence
for a G-cohomology theory, h¥, on G-finite G-CW complexes, is a classical G-
cohomology theory with coefficients in hé.

Proof. By the result above we can identify E{?=hg"9(X?, X?7' U A) with
CAX, A; hg). And the coboundary homomorphisms are induced from 9 in
the Puppe sequence in both cases.

q.e.d.

Assume that the G-cohomology theory Ag(-) is defined also on (not G-finite)
G-CW complexes, and satisfies the additivity axiom:

(3) The inclusions, z,: X,—I1X,, induce an isomorphism,

[142(is): TIH(X.) < hy(11X.)

Then, Lemma 4.1 and Theorem 4.2 are also valid for a pair of (not G-finite)
G-CW complexes.

The classical G-cohomology theory is defined on G-CW complexes and
satisfies the additivity axiom. Therefore, we get as usual

Theorem 4.3. The classical G-cohomology theory is characterized to be
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the G-cohomology theory defined on G-CW complexes which satisfies also the addi-
tivity axiom and the dimension axiom.

Here we mean by dimension axiom,

(4) hg(G/H)=0 for n+0 and all closed subgroup H of G.

The aditivity axiom and the dimension axiom are as follows, for the reduced
G-cohomology theory.

(3)" The inclusions, 7,: X,— VX,, induce an isomorphism,

158Ga): TIh4(X.) < Fa(VX.,) .
(4)" hx(G/H)*)=0 for n+#0 and all H.

5. G-obstruction theory

Let Y be a G-space with a base point. Then in the classical G-cohomology
group H¥(+; w,(Y)), we can make a G-obstruction theory similar to that of
Bredon [3].

Let n=1 be a fixed integer and A be a G-subcomplex of a G-CW complex
X. We shall assume, for simplicity, that the pointwise fixed subspace Y# of Y
by H is non-empty, arcwise connected and n-simple for each closed subgroup H
of G which appears as an isotropy subgroup at a point of X.

Assume that we are given a G-map ¢: X*UA—Y. Let o be an (n+41)-cell
of X and let f,: 0A™"'— X" be the characteristic attaching map of ¢ and H,=H.
Because the image of 0A™"* by @o f is pointwise fixed by H, we get a map: 9A™"*
—=YH,  We define cy(c)en,(YH, *)=0,(Y)(G/H) to be the unique base
point preserving homotopy class which is free homotopic to the above map
(m(YH, %)==<[S"; YH] because Y ¥ isn-simple). Since ¢ is a G-map, we get c,(go)
=g c(a)Em (Ve ¥)=0,(Y)(G/gHg™) and hence c,& CE(X, 4; wu(Y)).

Lemma 5.1. 8c,=0 €C&*(X, 4; 0,(Y)).

Proof. Let 7 be an (n+2)-cell of (X, 4) and ¢: (G7, GoT)—(X, A) be the
inclusion. Then *8¢c,=di*c, and *C,c C&* (G, GOT; w,(Y)). According to
our definition of C&"(+; w,(Y)) on G-CW complexes, C&*(GT, GoT; w,(Y))
=0. Therefore, i*c,=0 and hence *8c,=0, that is, ¢,(7)=0 for any (n+2)-cell

7 of (X, A).
q.e.d.

Now identifying the G-homotpy classes of G-maps: G/H X 0A""'—Y and
the homotopy classes of maps: 0A™"'—Y#, we can reduce the proof of the
following lemmas to the ordinary obstruction theory as Bredon did.

Lemma 5.2. ¢,=0 if and only if @ is extendable equivariantly on X" U A.

Lemma 5.3. Let deC¥X, 4; 0,(Y)). Then, thereisa G-map §: X*UA
—Y, coinciding with @ on X" U A such that dy y=d.
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Here the difference cochain d, , is defined to be the class which corresponds to
Coxe DY the isomorphism, C&(X, 4; 0(Y))—>C& (XX I, AXIUXX0I; 0,(Y)).
O+ is a G-map: (XX I)"UAXI—Y which is ¢ on X*x {0} UX**x I and 6
on X" x {1}.

Combining these three lemmas, we get

Theorem 5.4. Let o: X*UA—Y be a G-map. Then | X" UA can be
extended to G-map: X** UA—Y if and only if the G-cohomology class of ¢, in
HE(X, 4; 0,(Y)) vanishes.

Also the argument of Bredon in ‘primary obstructions’ [3, I1.5.2] is valid
to this case. In particular, we get

Proposition 5.5. Let n=1 be a fixed integer and let Y be a G-space with
base point such that Y is non-empty, arcwise connected and n-simple for every closed
subgroup H of G. Suppose that o, (Y) vanishes for k+#n, then a primary obstruc-
tion map,

51 [X; Y]o = HYX; oY)
is an isomorphism for any G-CW complex X.

Proposition 5.5. Under the assumption above, a primary obstruction map,

ot [X, Yo, > HYX; ()
is an isomorphism for any G-CW complex X with base point.

6. Representation theorem of E. Brown

We shall prove the following representation theorem as an application of
E.Brown’s abstract homotopy theory [4].

Theorem 6.1. If a reduced G-cohomology group h& on G-CW complexes
with base point satisfies the additivity axiom, then B is representable, that is, there
is a G-space Y, with base point and a natural transformation T: [-; Y,,]G,,,—%g(-)
such that T is an isomorphism for any G-CW complex with base point, where [+ ;+]c ,
stands for the set of base point preserving G-homotopy classes of base point preserv-
ing G-maps.

Let C be the category of G-CW complexes with base point such that the
H-stationary subspace is arcwise connected for each H, and base point preserving
G-homotopy classes of base point preserving G-maps. In C there is a (not
unique) sequential direct limit by approximating G-maps by G-cellular maps and
making their telescope. Also we get a (not unique) ‘push out’ as a double map-
ping cylinder in C. If we choose one representative for each class of conjugate
closed subgroups, {(G/H x A?)/(G|H x 0A?); H representative, 0<<p<<oo} is a
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small subcategory of C.

Let C, be a minimal subcategory which contains (G/H x A?)/(G/H x 0A?)’s
(0<p<<oo) and their ‘push out’. Then C, is a small, full subcategory of C and
also a subcategory of G-finite G-CW complexes with base point and we get

Proposition 6.2. A pair (C, C,) is a homotopy category in the sense of
E.Brown.

Proof of Theorem 6.1. Since reduced G-cohomology theory has a Mayer-
Vietoris exact sequence, j& (restricted on C) with the additivity axiom is a
homotopy functor in the sense of E.Brown. Moreover, we get C,=C by an
equivariant version of J.H.C.Whitehead’s theorem. (See Proposition 0.4.).
Therefore, by Theorem 2.8 of [4], we get a Y,=C unique up to G-homotopy
equivalence and a natural transformation T: [+; Y,]g ,—A&(+) such that T is
an isomorphism for each X C.

Define Y,=QVY,,,. For any G-CW complex X with base point, SX&C.
Therefore, we get

[X) Yn G,0 Zg(X)

~ ~

[SX, Yi,le. = kE(SX)
g.e.d.

ReMARk. Even when /¢ is defined only on G-finite G-CW complexes,
by the method of Adams [2], we get a reduced G-cohomology theory on G-CW
complexes which satisfies the additivity axiom and coincides with /& on G-finite
G-CW complexes.

Let Y,,,=0C be a representing space of 4% in the category of C. 'Then, the
isomorphism: AZ"(X) = h&*(SX) induces a G-map hy,,: Yq,,: >QY,,, which
is a weak G-homotopy equivalence, that is, (#,,)«: 7 Y5 )?) S QY )H)
for any 7 and any H. Hence, taking their loop spaces, we get also a weak
G-homotpy equivalence, %,: Y,—»QY,,,. Then, Y={Y,, h,; —co<n<oo}
forms a weak Q-spectrum for % This fact is used in §7 to make a spectral se-
quence of C.Maunder.

7. Killing the elements of the G-homotopy groups and C.Maunder’s
spectral sequence

Let Y be a G-space with base point y,such that Y is arcwise connected for
each closed subgroup H of G. An element in the #-th homotopy group z,(Y*#,y,)
of H-stationary subspace Y# is called to be an element of G-n-homotopy groups
of Y. An element [f]en,(Y#, y,) with f: S"=A"/dA"—Y*# is killed by atta-
ching a G-(n+1)-cell represented by an (n+1)-cell & which has f as its charac-
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o

n and kill all the elements of G-n-homotopy groups, we get a relative G-CW
complex ¥ such that Y'=Y. Then, iy: 7, (Y, y,)—>z (Y%, y,) is a zero map
for any closed subgroup H, where i: Y#— Y, On the other hand, by the G-
cellular approximation theorem we get z Y#, Y#, y,) vanishes for &<z and any
H, that is, i: ms( YH, y,)—>mi( Y2, y,) is an isomorphism for k<7 and a surjection
for k=n. Therefore, z,( V¥, y,) is canonically isomorphic with 7Y%, y,) for
k<n and vanishes for k=n. By this reason we call ¥ a G-space obtained of Y
by killing the elements of G-n-homotopy groups.

Let Y(1, p) be a G-space obtained of Y by killing the elements of G-homo-
topy groups of dimensions =(p+-1) one after the other. Then, Y(1, p) is uniquely
determined up to G-homotopy types rel. Y by the usual argument on (relative)
G-CW complexes. For p<gq, Y(p, ¢) denotes the mapping track of i(p, q):
Y(1, ¢)—Y(1, p—1). Moreover, let Y(p, ¢) denote the mapping track of
1(p, q): Y(r,q)—=>Y(r, p—1) for r<p=<gq. Then, it is easily seen that the
natural G-map: Y(p, ¢)— Y(p, ¢q) has a G-homotopy inverse. Therefore, by
taking mapping tracks repeatedly, we get a following G-fibering sequence of G-
spaces. (The G-spaces are determined up to G-homotopy types.)

teristic attaching map and H as its isotropy subgroup, that is, H,=H. If we fix

3
QY(r, t) = QY(r, s) > Y(s+1,8) = Y(r, t) = Y(r, 5), r=s<t.

Here, that X—Y—Z is a G-fibering stands for that X#—Y#—Z" is a fibering
for any H. In particular, z,(Y(p, ¢)¥, y,) is isomorphic with m,(Y*#, y,) for
p=k=gq and vanishes otherwise.

In §6 we have obtained a weak Q-spectrum for a G-cohomology theory 7.
Let X be aG-finite G-CW complex and put H(p, q) :2[S(X+); Yaii(p+2, 96,0
Then, by the G-fibering sequence above, we get a spectral sequence resulting to
hE(X)=Z[S(X*); Yniile,o The Epterm, E5=[S(X"); ¥ inii(p+1, p+ 16,0
is isomorphic with HE"(S(X™*); 7 ,1(Y psa4.))=HEX; k&) by Proposition 5.5'.
Moreover, since [S(X?™)"); Y piaui(1l, p+ D6 o=[S(X"); Y pian(l, p+1lc,o
and [S(X?IX?7); Vhyaalon=[S(X?X?™); Y oais(l, p+ 1), the Maunder's
argument using exact couples [11] is also valid in this case. Hence, we get

Theorem 7.1 Let h¥ be G-cohomology theory. Then, the spectral se-
quence above s isomorphic with the Atiyah-Hirzebruch spectral sequence except the
E -term for any G-finite G-CW complex X.

Proposition 7.2. The r-th differential d,; E?*7—E?'" 7" "' in the Maunder’s
spectral sequence is induced from the ‘higher cohomology operation’ determined by the
G-homotopy class of

, B h;+a+1 ,
3, ? Sohpiain: Yiran(p+1, (p+r—1)—"Q Yiiardp+2, ptr)
= Ypian(p+r+1, p+r+1).
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Remark that  [3,]€ HE"(Y'yrqui(p+1, p+7—1), 0prain(Virass)) -

Corollary 7.3. E29=FE%%r=2) together with the differentials d, are G-
homotopy type invariant.

This is also proved from Theorem 4.2 and comparison of spectral sequences.

8. Applications to the equivariant K*-theory
In this section G' denotes a compact Lie group. We shall applicate our
results to K¥-theory.
Theorem 8.1. Let X be a G-finite G-CW complex. There exists a spectral
sequence E2%(r=1, —co <p, q<< o) with
Efe=CY(X, K§)
d, being the coboundary homomorphism.
Ege=HYX, K9),
E29=G KE (X) = KEF(X)KEF1(X)
where K¢ (X)=Kernel (Kg(X)—>Kg(X?™)). The G-coefficient system, K&(G/H)
is isomorphic with K o(G|H) for q even and vanishes for q odd (See [13]).

This is a special case of Theorem 4.2.

A. Collapsing theorems

If 7 is even, the r-th differential is a zero map, because d, is a map of E27
into E277977** where one of the domain or the image vanishes. Therefore, we
get

Theorem 8.2. If one of the following conditions is satisfied, then the above

spectral sequence collapses :
(i) HE&X; K;) vanishes for every odd p.
(ii) H&(X; K¢) vanishes for every p=3.

For the reduced K¥-theory, we get
Theorem 8.2°. If X has a base point, then the spectral sequence,
HYX; K& K& (X)

collapses if :
(i) HEX; K;) vanishes for every odd p or for every even p, or
(i) HEX; Kg) vanishes except p=r, r+1, r+2 for some 7.

B. On E,-term
We consider the classical G-cohomology theory with coefficients in Kg.
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K(G/H) is canonically isomorphic with R(H), where R(H) is the Grothendieck
group of the isomorphic classes of complex representations of H.

Remark that Kg(g); Ko(G/G)—K(G/G) is an identity isomorphism for
any g G, because any inner automorphism of G induces an identity isomor-
phism on R(G). Therefore, if we assume that the restriction maps ¢*: R(G)—
R(H) is surjective, then K(g)=Ks(g'): Ko(G/H)—K(G/H') for any elements
&g of N(H', H). Hence, by Remark 3.5 we shall get

Proposition 8.3. Let X be a G-finite G-CW complex whose isotropy sub-
groups satisfy the condition:

(*) the restriction map: R(G)—R(H) is a surjection for any closed subgroup
H which appears as an isotropy subgroup at a point of X.

Then, HA(X: Kg) can be calculated by considering only the orbit type decomposition
of the orbit space.

Proof. As we remark above, by the condition (¥), Kq(g): Ko(G/H)—
K;(G/H’) is independent of the choice of g& N(H’, H) for any isotropy sub-
groups H, H'. So, we may write this map by Ko(H—H").

Then, we get the formula:

(6e) (o) = 2 2 [0 gxconTIK(Ho—H)p(7) -
On the other hand, it is easy to see that
3 [0, guo7) = [0/, 7/G] & Z
where o /G and 7/G are the induced cells on X/G.

q.e.d.

ReEMARK 8.4. We call an O(n)-manifold to be a regular O(n)-manifold if each
isotropy subgroup is conjugate to O(k) (k<#n). Then any regular O(n)-manifold
satisfies the condition (%) above, because the restriction map p,: R(O(n))—
R(O(n—1)) is a surjection. 'This fact is-easily checked by the classical represen-
tation theory as in [14], but we refer the reader to [12].

C. A conclusion
Combining these results with Proposition 0.5, we get

Proposition 8.5. For a compact regular O(n) manifold X, if dim X|/G <2,
then, K&(X)/KE (X), K& (X) and KE(X) depend only on the orbit type decompo-
sition of the orbit space.

D. Examples
Now we shall calculate K#%(X) for some regular O(n)-manifolds.

(1) Hirzebruch-Mayer O(n)-manifold W**~'(d) for n=2 [7]: The orbit
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space is a 2-disk D? the orbit type of whose interior is (O(z—2)) and the boundary
(O(n—1)).

Define a presheaf § on the orbit space D* by T'(U, §)=T'(U, U X R(O(n—2)))
if Uc Int D? and by I'(U, &)=T(U, U X R(O(n—1)) if UN8D*#¢. Then, by
Proposition 8.3, HE(W**'(d); K¢)=H*(D*, ¥). Remark that § forms a sheaf.
Define @ and by G=constant sheaf Ker p,_, on 8D? which is considered to be
a sheaf over D? and $=constant sheaf R(O(n—2)) on whole D*. Then, since
P R(O(n—1))—R(O(n—2)) is surjective, we get an exact sequence of sheaves,

0-8-F—->9—-0.
The following notation is simpler and reasonable to denote this exact sequence.
St Kerp,., [R(O(n—1)) [R(O(n—2))
o (o - (R<0<n—z» - (R<O<n—2»

—

D?
From the associated long exact sequence, we get
H2=~R(O(n—1)), Hz=Ker p,_, and Hg=Coker p,_,=0.
Therefore,
K¢=R(O(n—1) and K¢=Ker p,_, .

(it) Jdnich knot O(n)-manifold for n=3 [8]: Let S’C.S® be a knot. The
~ orbit space is a 4-disk D* where the orbit type of each difference domain of D*D
S§*D 8" is (O(n—2)), (O(n—1)), (O(n)) respectively.

As in (i), we consider the following exact sequence of sheaves.

st Ker p, R(O(n)) R(O(n—1))
800 — ¥'=| ROO(n—1)) - | ROMm—1)) -0
D 0 R(O(n—2)) ‘R(O(n—2))

Then, Hi=H¥%(X ; K)=H*(D*; §) is calculated as follows:
H%=R(O(n)), Ht=Ker p,, H:=0, H;=Ker p,_, and H¢=0.

In particular, if we consider that the O(7)-manifold has a base point, then H%=0
and H¥ satisfies the condition (ii) of Theorem 8.2°. Therefore, we get

K = 0, that is, K&=R(O(n))
and

0 — Ker p,_, > K¢ — Ker p, = 0

is exact,
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