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Introduction

This is a continuation of the author’s previous work [6] on the cobordism
generators defined by J.M. Boardman in [1]. Previously we have used the
Landweber-Novikov operations to calculate the coefficients z,; and z,;,, of a
primitive element

P=W +2z,W >+ 2 W +2,W 42 W, 2, WS+ -
in T+(BO(1)).

This time we use the Steenrod-tom Dieck operations in the unoriented
cobordism theory ([2], [8]) to deduce that the coefficient 2;_, for the “‘canonical
primitive element” P, is represented by the “iterated Dold manifold” (R,)*(P,s)
for 7=2%(2b4-1), where R(M)=S'}X(MxM)/ax T (Theorem 3.2).

In other words, let L=Z,[e;_,: i=2¥] be the Lazard ring of characteristic
2 and F(x, y)=g *(g(x)+g(y)) with g(x):Zie,._lx"(eozl, e,._,=0) be the univer-
sal formal group law. Then the canonical ring isomorphism of Quillen [5]
@: L—N* sends the generator e;_, to [(R,)*(P,;)] for i=2%(2b+1).

We also study the behaviour of the Dold-tom Dieck homomorphism
R;: Ny—MN,4,; defined by R ([M])=[S/X (M xM)/axT]. In particular, we
present the following product formula (Lemma 2.2);

Rixy)= 3 (ZIL[Pow]")Ru(x)Ro(y) -
iSkTm>0 i>0

In the final section, we examine the relation between the algebra structure of
Nx(BO(1))=Nx(Z,) and the coalgebra structure of N*(BO(1)). As an applica-
tion, we obtain the following formulas for the Smith homomorphism A ([3]);

A([S™, a]-[S7, al)= 35 a;, ;A'[S™, ] A[S”, a]

=(A[S™, a]) [S*, a]+[S™, a] (A[S™, a])+[P.]J(A[S™, a]A’[S™, a]
+AYS™, a]A[S", a])+ -+, and
A*([S™, a]-x)=[S™, a]- A™(x)
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for 2k>m>0 (Corollary 4.3). The former equation would be an answer to a
question of J.C. Su [7] on the relation between A and the multiplication in
MNw(Z,). The latter formula for £<3 was first proved by Uchida [9] utilizing the
multiplicative structures of S*, S® and S".

In the appendix, we state brief comments on the unrestricted bordism ring
of involution I(Z,) ([3], IV 28). We define the “switching involution” homo-
morphism S: Ny—1,4(Z,), which is a ring monomorphism with a left inverse.
We see, by definition, that R;=K ;oS with K; the ,-homomorphism studied
by Conner-Floyd in [4], and thus give a proof for the well-definedness of the
Dold-tom Dieck homomorphism R;.

The author would like to acknowledge stimulating conversation with Profes-
sor Tammo tom Dieck. The author also wishes to express his gratitude to Pro-
fessor Larry Siebenmann for cordial and constant encouragement.

1. Formal group law in the unoriented cobordism theory
As in [6], let
p*:N*(BO(1)) — N*BO(1))QN*(BO(1))
Rx

be the comultiplication defined by the H-space map.
The cobordism first Stiefel-Whitney class W, is mapped by p* to a
formal power series

(1.1) pHW)=W@1+1@W.+ 3 a; (W) QWY
(a; j=a;;,€N;,;.,) .
The formal power series defined by these coefficients
(12) Pl y)=sty+ S ai 'y
is a commutative formal group law [5]; it satisfies the following properties
(1.3) (1) F(x,0)=0,

(2) F(F(x’ y)’ z)=F(x, F(y’ z)) ’
() F(x,y)=F(y, x).

The following lemma explains the relation of primitive elements in 9!
(BO(1)) to the formal group law F(x,y) of (1.2).

Lemma 1.4. An element g(W)=W,+> 2, W of W(BO(1)) is primitive
i22

if and only if F(x, y)=g7'(g(x)+2(y)), where g7*(x) is the inverse of g(x); g(g7'(x))
=g (g(x))=x.

Proof, If g(W)) is primitive, then
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F(W,.R1, 1QW)=p*W,=p*¢ (¢(W))=¢g (n*g(W))
=& @(W)R1+1RQg(W))=g""(¢(W,.®1)+g(1QW))) .
Conversely, if F(x, y)=g7'(g(x)+2£(»)), then
p*g(W)=g(w*W)=g(F(W,®1, IO W,))=g(W,®@1)+g(1QW))
=g(W)R1+1Qg(W,).

Lemma 1.5. Concerning the coefficients of the formal group law (1.2), we
have the following formulas for every integer k>1.

(1) a,, 2k—1:0 .
(2) k>]2>0a1,2j[P2(k—j)]:0 .
3) k§0“1,zj[Pk—j]2: [Pa] -

k—-j:even

In the above formulas, P; denotes the real projective space of dimension i .
Proof. Putting m=1 in (3.4) of [2] (p. 190), we obtain
H(, )= 35 @ ;[P [Pa-j] 5

where H(1, n) is Milnor’s hypersurface in P,x P,. But [P,;_,]=0 and [H(1, )]
=0 for every n>1 ([1]). So >} a, ;[P,_;]=0. Letting n=2k—1, we have
j20

n-j:even

2 51 [Pak-»]=0 and part (1) follows by induction on k. Analogously
k2 j21

letting n=2k >2, part (2) follows. Now, from part (2).
a1,2k+ [sz]: Z a1,2j[P2(k—j)] .
£E>j>0
So [sz]:al,2k+ P ( ) oal,zm[Pz(j—m)]) [Pz(lz—j)]

E>j>0 j>m>

=a1,2k+ 2 ay,25 ( Z . [Pzi] [Pz(k—i-j)]) .
k=22j20 k—j-12i21

J

This yields part (3) since * is a Z,-vector space.
2. Steenrod-tom Dieck operations
T. tom Dieck has defined in [8] the stable cohomology operations
Ri: P¥(X) — N*+H(X) (—oo<i< o)
such that

(2.1) (a) For xeNi(X), Ri(x)=x".
(b) For x&N(X) and j>17, R/(x)=0.

() Ray)= 33 R(=R(y).
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(d) For the natural transformation p=N*( )—H*( ;Z,). it holds
that poRF=SFou, (S.*: Steenrod operation, S,*=0 for K<0).

On the other hand, tom Dieck has also defined in [8] the following mapping
R;: Ny—N,s, ; for j>0; for a closed differentiable manifold M, let R (M) be the
orbit space of the free involution (S7 X (M x M), ax T), where a is the antipodal
involution and T is the switching map. It was proved in [8] that, if M is bor-
dant to M’, then R (M) is bordant to R,(M’) and that this construction yields
consequently a mapping of the bordism set R;: Ryu—>Nyx ;.

The mappings R; are expressed by the operations on Jt*(pf)

Ri: N*(pt) — N*Hi(pt)

and vice versa as in the following lemma. (Recall that we are always identifying
N; with N7 via the Atiyah-Poincaré duality.)

Lemma 2.2.

(1) For x&N,,, R(x)= .>2>0[P,~_]-]R""'f(x), and consequently,
@) Rjx+y)=R;x)+R,(y).

O) Rim)= 5 (SMIPalIRMIRAG)

where the latter summation runs through all the sequences of nonm-negative integers

(mo, ma, +ooy sy ) such that 332 'm,—j—(k-+m)

Proof. Part (1) follows easily from (14.1) of [8]. Since the Rf are stable
cohomology operations, they are additive and so part (2) follows from (1). For
xeN,, and yeR,,

@) R)= 3 [P( 5 RTHORG)
by part (1) and 2.1 (c). On the other hand,
5P 5 R@RA))

=PI [P, 53 R™@R™GN) by ()

=§[Pza] [P2b]Ri—2(a+b)(xy) by (2.3)
—SIP.IR; ().
S0 Ry(s9)= 3] [Pl( 5} RiSRuD)+SIPel R, i)
Substituting repeatedly the latter part of the right hand side, we obtain part (3).

RemMARk 2.4. In 2.4 below, we give a complete description of the mapping
R, with respect to the ‘“‘canonical ring generators” of *. This would be a
partial answer to a question of tom Dieck ([8]) on the behaviour of the mappings
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Corollary 2.5. Let 1=[pt]leN* be the unit element. Then, for —oo<<j
<OO’
1 (j=0)
0 *0).

Proof. For j >0, the assertion is clear by 2.1 (a) and (b) . So let j=—1
(1<<0). Then R, (1)=[P;] by definition. On the other hand, by 2.2 (1),

R(I)=[P]+R"(1)— 2 [P;;)R7(1).
So R7{(1)= 31 [P,_;]JR7/(1) and the assertion follows by induction on 7. (Of
3750

Ri(l)z{

course, this result can also be obtained directly from the definition of the opera-
tion R7.)

Corollary 2.6. Let P=W,+3 %, W, be a primitive element in T'(BO(1)).
Then, for every integer j(— oo <<j < ,12; Ri(P) is also primitive.
Proof. p*RI(P)=R/(p*(P))=R/(PxX14+1XP)
=,.§—"m(Ri(P) XRIT(1)4+Ri(1)X R7{(P)) by 2.1 (c)
=R/(P)x1+1XR/(P) by 2.5.
Lemma 2.7. Let X=3x; W be an arbitrary element of W (BO(1)).
Then .
RX)=3( 5 (5o )W+ R (i )W
where the a, ,; are the coefficients in (1.1).

Proof. R°(2x,-_1W1i)=ZRO(x;qui)

=2 Z‘. R (x; )RI(Wy) by 2.1(c)

ST j5 e

2 R7i(x;_,)R/(W) by 2.1 (b)

>J>z

- RO R AW by 21 @
S JOW R+ TR (s JW
5

A

(acz,)2 4‘R"(W)—]—‘V‘__,R o)W
It was observed in [2](p. 141) that R°(Wl)=W1—|—Z>:11, jW,f“(:Z%al.z W
by 1.5(1)), and R™*(x;_,)=R,(x;_,) by 2.2 (1). Therefore the lemma follows.

Il
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3. Determination of Boardman’s generators
Let P=W 4>z, W e %' (BO(1)) be the (unique) primitive element such
i>2

that 2,._,=0 (k>1) (see [1], [6] Introduction).
Then we have

Lemma 3.1 R'(P)=P,.

Proof. By 2.6, R(P,) is primitive, and by 2.7, R(P,) is of the form W,+
2, Wi, with x4 =R, (x,6-1_,)=0 (k>1). So, by the uniqueness of such a

primitive element ([1]), the lemma follows.

Theorem 3.2 The coefficient z;_, of the canonical primitive element
Py=W 422, W e R(BO(1)) with z,4-1=0 (k=>1) is the cobordism class of the

“iterated Dold manifold” (R)*(P,)=R,(--(R(P,))-+) for i=2%(2b+1) (a>0, b
>1).

Proof. We prove by induction on @>0, using 3.1 and 2.7.
(1) In case a=0. By 3.1 and 2.7, we have

Rpp= 23 (28)'1,2; -
2k + j=b

So 2,=(2,)* a,,=[P,] by 1.5 (2), and inductively on b we can deduce, by 1.5 (3),
that 22b=2k§=b[sz]z al,zj:[sz]'

(2) If we suppose that the theorem holds for a—1>0, then for i=2%2b+1),
3.1and 2.7 imply that 2;_,=R,(z,_,) with j=2"%(2b+1). So, by induction hypo-
thesis, 2;_,=R,([(R,)" '(P.s)])=[(R.)*(P,s)] as desired.

Corollary 3.4.

(1) The cobordism class [(R,)*(P,s)] can be taken as a ring generator of Ny
in dimension 2°(2b+1)—1.
(2) Denoting [(R,)*(P,)] by X(a, b), an additive basis for Ny is given by { 1T X

a>0.5>1
(@, pyr@vrrE@ 5 (g, b) >0, 1>€&(a, b)>=0, \(a, b)=¢&(a, b)=0 except for a finite
number of pairs (a, b)}.

(3) With respect to this basis, the additive homomorphism

Rl: ER* b d m2*+1
is determined by the following formula;
R( TI X(a, b)* @p>tecn)

820,b>1

=2{&(a, b)( 11 X(c, d)*redraece.d)

Ce,d)F(a, b).(a+1,b)

.X(a’ b)4}\(a.b)X(a+l’ b)4)\(¢1+1.b)+28(ﬂ,+l.l))+l} .
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Proof. Part (1) and (2) are the consequence of the fact that the coefficients
%;_, of the primitive element P, are indecomposable in Ny ([1]). Part (3) follows
from 2.2 (3) and the definition of the X(a, b).

4. Bordism algebra of free involutions

In this section we consider the relation between the algebra Ry (BO(1)) with
the multiplication

bt Ra(BO()BRABO(L) — Ru(BO(D)
and the coalgebra N*(BO(1)) with the comultiplication
w¥: RH(BO(L)) — RHBO(1)RTHBO(1)
via the cap product ([2] p. 186) *
N: R(X)QRL(X) = R, (X) .

Let n,: P,—BO(1) be a classifying map of the canonical line bundle over
P,, and denote by {n} the singular bordism class [P,, 7,]E€RN(BO(1)). Itis
well-known that 9t,(BO(1)) is a free Ny-module with basis {{0}, {1},-, {n}, ---}.
Let ay(m, n)eN,,,,_, be the element such that

{m} - ok =xsom, w4}
It is equivalent to define [S™, a]-[S”, a]l=> aw(m, n)[S*, a] in Nw(Z,) ([9]).

Theorem 4.1.
(1) atpyy(m, n):_}_;oai, jo(m—i, n—j), where the a; ; are the coefficients in
1,72

(1.1).

(2) X miQris(m, n)=2 z;_y(au(m—1i, n)+aw(m, n—1i)), where the z;_, are

the coefficients of a primitive element P (Uchida [9])).
(3) X tyiia(m, n)[Py]=[H(m, n)], where H(m, n) denotes Milnor’s hypersur-

face in Ppyx P,
Proof. The proof of [2] XIII (3.3) shows that
W) s} @ 1= W, 1V (5] s, )b+ 11)= Sty (m, )}
— i W0 (@ )= ol S s, WER WA {2 ()
= S o us(im—1} @ fr—7})= 31 ai, (Sleulm—i, n—j) {#})
=SS @i sersm—i, n=)) (R} .

Comparing the coefficient of {k}, part (1) follows. Analogously,
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P pa({m} @ {n})=33(D2s-10ta..(m, m)) {k}
= px(p*(P)N {m} @ {n})=p+(PRI+1QP)N {m} Q {n})
=;(§]zi_lak(m—i, n)+ ay(m, n—i)){k} .
Part (3) follows from the proof of [2], XII (3.3).

Corollary 4.2. In Ny(Z,), the following multiplicative relations hold.
(1) [S a][S*™, a]=a, ,[S*"*", a], where the a, ,; are determined by the
=

formula 1.5 (2).
[+, a][S*"*, a]=0.
(Uchida [9])
) [S% al[S™, al=2a, .S ", a]
+§0(“o(2: 2i—2)+&(n+1—i)(a, ,)) [S**%, a],
[S% a] [S*, a]z‘f‘;o{ao(Z, 2i—2)E(n—i) (@ )+ G, }[S7 4, a]

where E(n—1)=0 (n—1i: even), =1 (n—1i: odd), and
a2, 20)=[P,] [Pu] +E@O 2Py 2] (@1,-2,)"
+200P; ]2, 2i—25) with a (2, 0)=0.

Proof. Letting m=1 in 4.1 (1), we have
Aei(1, m)=a(l, n—1)+a, 4.
This yields, by induction on %, the former part of (1) and [S", ] [S****, a]=0.
Together with 5.1 (2), this in turn gives [S?, a] (3 [P,;]1[S*7%, a])=2( X [P,;]
i=>0 k>0 i+ j=k
al’zi) [SZ”—2k+1’ a]:[S2n+l’ a]. SO [S2m+1’ a] [S2”+l’ a]:[Sl, a] [S2ﬂ+l’ a] (2 [sz]
750
[S*™7%, a])=0.
Analogously, letting m=2 in 4.1 (2), part (2) follows.

Corollary 4.3. Concerning the Smith homomorphism A, we have the follow-
ing formulas.
(1) A([S™, a]-[S™, a])=~2>0ai'in[Sm’ a]-Ai[S”, a)
=(A[S™, a])[§", a]+[S™, a](A[S™, a])
+[PJ(A[S™, a]A?[S*, a]+ AYS™, a]A[S?”, a])+--
(2) A*([S™, a]-x)=[S™, a]- A*(x) for 2*>m>0.
() A([S*, a]-x)=[S*, 4] -AZk(x)+x+gl(a1,2j)2kA2k+lf(x) .
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Proof. Part (1) is a paraphrase of 4.1 (1).
Substituting repeatedly the second factor in the right side of 4.1 (1), we obtain

as+2k(m, n)=2]<£2kaiq,jq)as(m_zq:iq) ”_Zq:jq)
= 33 (a;, ;)" ay(m—2%, n—2%)
i,j =0
=a,(m, n—2%)+ 3 (a; ;)2 a,(m—2%, n—2%j).
i>1

>1,720

This yields part (2) and (3).

Appendix. Unrestricted bordism algebra of involutions

In this appendix, we consider the unrestricted bordism module of all involu-
tions (admitting fixed point sets). 'The basic notations are found in Conner-Floyd
[3], IV 28.

The unrestricted bordism group of involution I4(Z,) has an Ry-algebra
structure via the cartesian product. The direct sum ZM]‘R*(BO(m)) also admits a

multiplicative structure by the formula [M, £]-[N, 7]=[M X N, p,*¢Dp,*n].
Lemma 1. There is the well-defined ring homomorphism
defined by T[M]=[M, 7], where Ty denotes the tangent bundle of M.

Proof. Let W be a manifold giving the bordant relation of M to N; 0W=
MUN. Then (W, 1y)=(M, TpP1)U N, T4yP1). So we have
(in,n+l)*[M’ TM]:(in,nﬂ)*[N’ TN]

where 7, ,,,: BO(n)—>BO(n+1) is the canonical map (up to homotopy). But
(P mrn)x: N(BO(n))—N,(BO(n+-1)) is a monomorphism ([3], 26.3). So [M, 7p]
=[N, 7y]. The assertion that 7 is a ring homomorphism is clear from the
definitions.

Corollary 2. There is the ring homomorphism
S: Ny — Ln(Z>)
defined by S([M])=[M x M, T, where T(x, y)=(y, x).
Proof. Consider the ring monomorphism zy: I4(Z,) —>§]§R*(BO(m)) of [3]

(28.1). By the definition of 7 and the proof of [3] (24.3), ix([M X M, T])=[M,
Ty] and ([N X N, 75])=[N, 75]. Therefore by the preceding lemma, [M x M,
T)=[NxN, T] if [M]=[N]. Next we show that S is additive. S([M]+4[N])
=[(M UN)x (M UN), T1=S([M])+S(IN])+[(MxN)U(NxM), T]. Since
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any free involution bords in I«(Z,), [(M X N)U(IN X M), T]=0 and S is additive.
The multiplicativity of .S is clear by difinition.
Corollary 3. R;=K oS, i.e. the following diagram commutes
1(Z;)
S/ NK;
ER* ——)‘ER* )
i
where R; is the Dold-tom Dieck homomorphism of (2.2) and K ; is the WNy-homo-
morphism defined by K ;([M, p])=[S’x M|ax p] (Conner-Floyd [4]).
The proof is obvious from the definitions.

Corollary 4. As aring, I4(Z,) contains the polynomial subalgebra Z,[S(z;_)):
i—154=2%—1] as a direct summand.

Proof. Let &: >INy (BO(m))—Ny be the augmentation homomorphism in-

duced by the constant map. Then EoixoS=id: Nx—>Ny and &, iy and S are all
ring homomorphisms. So the corollary follows.
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