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1. Let U*(X) be the unitary cobordism group of a finite CW complex X.
P.S. Landweber [4] and K. Shibata [6] determined the unitary cobordism group
of the lens space Ln(m)=S2n+1IZm. In this paper, we use the structure of the
reduced unitary cobordism group of Ln(m) to prove the following

Theorem 1. If positive integers p and q are relatively prime, there exists
an isomorphism

ψ: Oev{L'-(p))®Oei'(L''(q)) -* U°°{L»{Pq)),

where C/O T(.)=Σ #*(•)•
i

Let U*(X) be the unitary bordism group of a space X. Denote by
BZm the classifying space of the group Zm. Using the duality isomorphism
D: U*(Ln(m))^U*(Ln(m)) and the isomorphism Uk(Ln(m))^ Uk(BZm) for
k<2n+ί [3], we have Uk(BZm)^ U2n+1-k(Ln(m)) for k<2n+l. Then, Theorem
1 implies the following

Theorem 2. Ifp and q are relatively prime, there exists an isomorphism

ψ*: Uod(BZp)®Uod(BZβ) - υod{BZPq),

where Uod( )=Έ U2i+1( )
i

Using the spectral sequence [3], we obtain

For a primed, U*(BZp) was determined in [1] and [3].
Denote by K(X) the reduced Grothendieck group of isomorphism classes

of complex vector bundles over X. In [2], Conner and Floyd gave the isomor-
phism

Therefore, Theorem 1 implies the following
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Theorem 3. (N. Mahammed [5]) If p and q are relatively prime, there
exists an isomorphism

K{L\p))®K{L»{q))« K(L"(Pq))

2. In this section we prove Theorem 1. Denote by CPn the w-dimen-
sional complex projective space and by η the canonical complex line bundle
over CPn. Let π: Ln(P)->CPn be the natural projection and put

xp = n+cfa),

where cx{η) is the first Chern class of η in the sence of Conner and Floyd [2].
Let F( , ) is the formal group law such that

for complex line bundles ξ, ξ' over the same CW complex [7]. For a positive
integer m, let [m]F(x)^ £/*[[#]] be a formal power series defined by the following
formulas

In [6], K. Shibata gave the following

Theorem 2.1.

where [pt, ί\ e U0(Ln(m)) is the bordίsm class represented by an inclusion map of a
point, Au*( ) is the exterior algebra over £/* and (Xn+1, [m]F(xm)) denotes the ideal
generated by x^1 and [m]F(xm).

The same result can be obtained also by the method of P.S. Landweber
[4] directly.

Considering the following short exact sequence

0 - U*(Ln(m)) — U*(Ln(m)) -> U* -> 0 ,

it follows from Theorem 2.1 that

O"(L"(m)) « U*[[xm]]l(x»m+\ [mUxm)), ( 2 )

where £/*[[#„,]] is the kernel of the homomorphism
ε: U*[[xm]] - U*

CO

defined by £QΓ] akx^)=a0.

We define a homomorphism
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ψ: Ue"{L"{p))®U-(L"{q)) -> Ue"{LK{pq))

by ψ(P(xp), g(«,)) = P([g]F(xPg)) + Q(\P\P{*M))> where P(xp), Q{xg) and
^>{\3\F{XP9))JΓQ{\.P\F{XPQ))

 a r e t n e classes of the formal power series P(xp)^
U*[[xp]], Q(x.)eU*[[xj\ and P([?] , (**))+0([p] ,(**))et f*[ [**]] respec-
tively.

Using the associativity of the formal group law, we obtain

[p]A\s\A*))=.\s\A[p\A*))

= [pqU*). (3)

From (2) and (3), it follows that the homomorphism ψ is well defined.
We define the multiplication in Uev{Ln(p))φ0ev(Ln(q)) by

(χ,y) (χ',y') = (χχ'yy/).

We prove the following lemma, so that the homomorphism ψ is a ring homo-

morphism.

Lemma 2.2. If p and q are relatively prime, [p]F(xpq)'[q]F(
xPg) — Q m

Ue\L«{pq)).

Proof. We put

We show that [p] F{xPq) [q] F(xPg) elp_g. From (3),

p[q\Λ*)+'g <*Λ[q\Aχ)Y

q[p]F(χ)+Έ bΛ[p\A*)V= IP9\A*) >

where x=xPg.
Since p and q are relatively prime, there exist integers a and b such that

ap-\-bq=l. Then, we have

We put

The equation (4) implies
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Therefore,

where A=-(ξ} alY'^+Jl tyX*'1). q.e.d.
t=2 ,=2

Proposition 2.3. 7/"/> α/zrf <? are relatively prime, then ψ is epimorphic.

Proof. Since ψ is the ring homomorphism, we need only to prove the
existence of the elements y and z which satisfy ψ(y, z)=χPq. We put

and

ι=υ

OO OO

We find series A=Y\ a X^ and B = Σ ^i^U which satisfy

Xpq =

that is, «, and έt satisfy the following

pao+qbo = 1, (co=/> and ̂ 0 =?),

/! = 0 ,

Σ
t=0

= o,

Since p and # are relatively prime, there exist a0 and b0 which satisfy \=pao-\-qbQ.
Suppose that a. and bj are determined for)<M. Put

and

then αfc and ό̂ , satisfy the above relation. Therefore.

Xpq —
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where

Pk,i = ak[p\F{xpq)^

Suppose that

XPQ = i j *k,mXp<l 9

where Pkm is a polynomial of [p\F(xPq) and [<7]F(Λ^) with the coefficients in £/*,
and for k^ί

Then, we have

xpg = M,ί

Put

Then, we have

and since P jtYn=x™q Qjm for j ^ 1, there exists ζ)y>w+1<Ξ i/*[[^ J ] such that

Pj,m+1 = X™q Qj,m+1 » j = ̂ '

By induction, we have

Xpq == •Lo,n~Γ2-1 •* k,nXpq >

and for

Therefore,

Put

where ReU*[[xP9]].
From Lemma 2.2,

Therefore, we obtain
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Proposition 2.4. The order of the group U2S(Ln(m)) is tnt,t= 2 τ»>

T. is the number of partitions of ifor i^O and τ.=0 for /<0.

Proof. Consider the spectral sequence E*'q associated with U2s(Ln(m)).
There is a filtration

U2S(Ln(nί)) = J0.2.= )yi.»-iD.

yήthJp'gIJp+Uq-1=ffp(Ln(m); U9). Then, for l ^ j + ί ^ n ,

the order of ,
1 otherwise.

Therefore, the order of U2s(Ln(m)) is m\ t= Σ T.. q.e.d.

From the Proposition 2.4, we have the following

Corollary 2.5. The order of U2s(Ln(p))φU2s(Ln(q)) is equal to that of
U2\L\pq)).

Proposition 2.3 and Corollary 2.5 prove Theorem 1.
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