Kawakubo, K. Osaka J. Math. 8 (1971), 385-392

KNOTTED FIXED POINT SETS OF SEMI-FREE S¹-ACTIONS

KATSUO KAWAKUBO

(Received December 17, 1970)

1. Introduction

In [2], Browder has shown that there are an infinite number of distinct semi-free S¹-actions on homotopy (p+2q)-spheres with S^p as untwisted fixed point set if (a) $p+2q\equiv 1 \mod 4$, p>1 and q>2, or if (b) p+2q=7, 15 or 31, p: odd, p>1 and q>1. As open questions, he has posed the followings:

(I) What is the knot type of the fixed point set?

(II) In the cases where his theorem does not construct an infinite number of semi-free S^1 -actions, are there in reality only a finite number?

In the present paper, we shall give partial answers on these questions as follows. We shall construct semi-free S^1 -actions which have knotted fixed point sets (see Theorem 2.1). As a corollary, we shall have that there are also an infinite number of distinct semi-free S^1 -actions on the standard (p+2q)-sphere S^{p+2q} with knotted S^p as fixed point set when $p \equiv 3 \mod 4$ and $4q \leq p+3$ (see Theorem 2.2).

2. Definitions, notations and statement of results

An action (M, φ, G) is called *semi-free* if it is free outside the fixed point set, i.e., there are two types of orbits, fixed points and G. Let Θ_n be the group of homotopy n-spheres and θ_n be the order of the group Θ_n . Let $\Theta_n(\partial \pi)$ be the subgroup consisting of those homotopy spheres which bound parallelizable manifolds and \sum_{k}^{n} be the generator of $\Theta_n(\partial \pi)$ due to Kervaire and Milnor [7] (see also Milnor [9] and Kervaire [5]). D^n and S^{n-1} denote, respectively, the unit disk and the unit sphere in euclidean *n*-space. When N is a submanifold of M, we shall denote by $\nu(N \subset M)$ the normal bundle of N in M. When a homotopy sphere \sum^{p} imbedded in \sum^{p+2q} bounds a manifold W^{p+1} in \sum^{p+2q} such that the normal bundle $\nu(W^{p+1} \subset \sum^{p+2q})$ is trivial, we say that \sum^{p} bounds a π -submanifold W^{p+1} in \sum^{p+2q} . In [9], Milnor has constructed a manifold W_0^{4k} ($k \ge 2$) which satisfies: (1) W_0^{4k} is parallelizable, (2) the index $I(W_0^{4k})$ equals 8, (3) the boundary ∂W_0^{4k} is the homotopy sphere \sum_{k}^{4k-1} and (4) W_0^{4k} is (2k-1)-connected. Let us denote by $W^{4k}(l)$ for $l \in \mathbb{Z}$ the manifold obtained by the boundary connected sum $W_0^{4k} \ddagger \cdots \ddagger W_0^{4k}$ of *l*-copies of the manifold W_0^{4k} . It is clear that the index $I(W^{4k}(l))$ equals 8*l*. Then we shall have the following:

Theorem 2.1. There exists a semi-free S^1 -action on a homotopy sphere \sum_{p+2q}^{p+2q} with fixed point set $(\prod_{i=2}^{q-1}\theta_{p+2i})\cdot\sum_{m}^{p}$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^{q-1}\theta_{p+2i})$ in \sum_{p+2q}^{p+2q} for $p \equiv 3 \pmod{4}$, $p \geq 7$ and $q \geq 2$.

Theorem 2.2. There are an infinite number of distinct semi-free S^1 -actions on the standard (p+2q)-sphere S^{p+2q} with knotted S^p as fixed point set for $p \equiv 3 \pmod{4}$, $4q \leq p+3$ and $q \geq 2$.

3. Proofs of theorems

Proof of Theorem 2.1. As is well-known, the homotopy sphere \sum_{M}^{p} can be imbedded in S^{p+2} such that \sum_{M}^{p} bounds a π -submanifold W_{0}^{p+1} of index 8 in S^{p+2} (see Kervaire [6, Theorem 1 of Appendix] and Milnor [9]). Hence, by the natural inclusion $S^{p+2} \subset S^{p+3}$, we can embed \sum_{M}^{p} in S^{p+3} such that \sum_{M}^{p} bounds a π submanifold W_{0}^{p+1} of index 8 in S^{p+3} . Let *a* be a point of S^{2} . Then it is easy to prove that there is a diffeomorphism

$$f: \sum_{\mathbf{M}}^{p} \times S^{2} \longrightarrow S^{p} \times S^{2}$$

such that $f(\sum_{M}^{p} \times a)$ bounds the π -submanifold W_{0}^{p+1} in $D^{p+1} \times S^{2}$ when we regard $S^{p} \times S^{2}$ as $\partial (D^{p+1} \times S^{2})$.

Let

$$\xi_N \colon S^1 \longrightarrow S^{2N+1} \stackrel{\pi}{\longrightarrow} CP^N$$

be the classical Hopf bundle. Let $i: S^2 \to CP^N$ be the inclusion of the 2-skeleton of CP^N , then it is clear that $i^!\xi_N = \xi_1$. Let $p_2: S^p \times S^2 \to S^2$ and $p_2': \sum_{M}^{p} \times S^2 \to S^2$ be projections. Since CP^N is the 2N-skeleton of the Eilenberg MacLane complex $K(Z, 2), ip_2 f$ is homotopic to ip_2' for N > p+2. Hence there exists a bundle map

$$\tilde{f}: (ip_2')^! \xi_N \longrightarrow (ip_2)^i \xi_N ,$$

i.e., we have a bundle map

$$\widetilde{f}:p_2'^!\xi_1\longrightarrow p_2^!\xi_1.$$

Thus we obtain the following commutative diagram

$$\begin{array}{c} \sum_{M}^{p} \times S^{3} \xrightarrow{\widetilde{f}} S^{p} \times S^{3} \\ \downarrow p' \qquad \qquad \downarrow p \\ \sum_{M}^{p} \times S^{2} \xrightarrow{f} S^{p} \times S^{2} \end{array}$$

where $p: S^{p} \times S^{3} \to S^{p} \times S^{2}$ (resp. $p': \sum_{M}^{p} \times S^{3} \to \sum_{M}^{p} \times S^{2}$) denotes the projection of the bundle $p_{2}^{1}\xi_{1}$ (resp. $p_{2}^{\prime 1}\xi_{1}$). Set $\sum_{M}^{p+4} = \sum_{M}^{p} \times D^{4} \cup D^{p+1} \times S^{3}$. It is easy to prove that \sum_{p+4}^{p+4} is a homotopy sphere. Let $(\sum_{p+4}^{p+4}, \varphi, S^{1})$ be the semi-free S^{1} -action defined by

$$\varphi(g, (x, y)) = (x, gy)$$
 for $x \in \sum_{M}^{p}, y \in D^{4}$

and

$$\varphi(g, (x, y)) = (x, gy) \quad \text{for} \quad x \in D^{p+1}, y \in S^3.$$

Now we prove that the fixed point set $\sum_{M}^{p} \times \{0\}$ of the action $(\sum_{p}^{p+4}, \varphi, S^{1})$ bounds a π -submanifold W_{0} in \sum_{p+4}^{p+4} . Let $\overline{p}_{2}: D^{p+1} \times S^{2} \to S^{2}$ be the projection and $\overline{p}: D^{p+1} \times S^{3} \to D^{p+1} \times S^{2}$ be the projection of the bundle $\overline{p}_{2}^{1}\xi_{1}$. Since the manifold W_{0} is (p-1)/2-connected, the restriction of the bundle $\overline{p}_{2}^{1}\xi_{1}$ to W_{0} is trivial, i.e., $\overline{p}^{-1}(W_{0}) = W_{0} \times S^{1}$. It is obvious by definition that $p'^{-1}(\sum_{M}^{p} \times a)$ $= \sum_{M}^{p} \times S^{1}$. Let *b* be a point of $\pi^{-1}(a) \subset S^{3}$. It follows from Lemma 2 of Browder [1] (see also Browder and Levine [3]) that the diffeomorphism

$$\overline{f}|p'^{-1}(\sum_{\mathfrak{M}}^{p}\times a):\sum_{\mathfrak{M}}^{p}\times S^{1}\longrightarrow f(\sum_{\mathfrak{M}}^{p}\times a)\times S^{1}$$

is pseudo isotopic to a diffeomorphism sending $\sum_{M}^{p} \times b$ into

$$f(\sum_{\mathfrak{M}}^{p} \times a) \times c \ (\subset f(\sum_{\mathfrak{M}}^{p} \times a) \times S^{1} = p^{-1}(f(\sum_{\mathfrak{M}}^{p} \times a)))$$

where c is a point of S^1 . Hence $\tilde{f}(\sum_{M}^{p} \times b)$ bounds the submanifold W_0 in $\bar{p}^{-1}(W_0) = W_0 \times S^1$. Since the normal bundle of W_0 in $D^{p+1} \times S^3$ is isomorphic to

$$\nu(W_0 \subset W_0 \times S^1) \oplus \nu(W_0 \subset D^{p+1} \times S^2)$$

where $W_0 \subset W_0 \times S^1$, $W_0 \subset D^{p+1} \times S^2$ are the embeddings defined above, W_0 has a normal frame in $D^{p+1} \times S^3$. Let $C: \sum_{M}^{p} \times I \to \sum_{M}^{p} \times D^4$ be the embedding defined by C(x, t) = (x, tb) for $x \in \sum_{M}^{p}, t \in I$. By making use of the embedding C and the fact $\sum_{M}^{p} \times I \cup W_0 = W_0$, we have that the fixed point set $\sum_{M}^{p} \times \{0\}$ bounds a π -submanifold W_0 in $\sum_{M}^{p+4} = \sum_{M}^{p} \times D^4 \cup D^{p+1} \times S^3$.

Thus we have proved the following step 1 of induction.

Step. 1. There exists a semi-free S¹-action $(\sum_{\mu}^{p+4}, \varphi, S^1)$ with fixed point set \sum_{μ}^{p} which bounds a π -submanifold W_0^{p+1} in \sum_{μ}^{p+4} .

Step 2. Suppose there exists a semi-free S^1 -action $(\sum_{i=2}^{p+2q}, \varphi, S^1)$ with fixed point set $(\prod_{i=2}^{q-1} \theta_{p+2i}) \cdot \sum_{M}^{p}$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^{q-1} \theta_{p+2i})$ in $\sum_{i=2}^{p+2q}$ for $q \ge 2$.

Then by the equivariant connected sum

$$(\sum^{p+2q}, \varphi, S^{1}) # \cdots # (\sum^{p+2q}, \varphi, S^{1})$$

of θ_{p+2q} -copies of $(\sum^{p+2q}, \varphi, S^1)$ we have the following

Lemma 3.1. There exists a semi-free S^{1} -action (S^{p+2q}, ψ, S^{1}) with fixed point set $(\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p}$ which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i})$ in S^{p+2q} .

According to Browder [2] there exists an equivariant diffeomorphism $f: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q-1} \rightarrow S^{p} \times S^{2q-1}$ such that $((\prod_{i=2}^{q} \theta_{p+2i}) \sum_{M}^{p} \times D^{2q} \bigcup_{f} D^{p+1} \times S^{2q-1}, \overline{\psi}, S^{1})$ is equivalent to (S^{p+2q}, ψ, S^{1}) where the action $\overline{\psi}$ is defined by

$$\overline{\psi}(g, (x, y)) = (x, gy) \quad \text{for} \quad x \in (\prod_{i=2}^{q} \theta_{p+2i}) \sum_{M}^{p}, y \in D^{2q}$$

and

$$\bar{\psi}(g, (x, y)) = (x, gy) \quad \text{for} \quad x \in D^{p+1}, y \in S^{2q-1}$$

Since $(\prod_{i=2}^{q} \theta_{p+2i}) \sum_{M}^{p} \times D^{2q} \bigcup_{f} D^{p+1} \times S^{2q-1}$ is diffeomorphic to S^{p+2q} , we have the following lemma (c.f. Lemma 4.1 of Kawakubo [4]).

Lemma 3.2. As an equivariant diffeomorphism

$$f: (\prod_{i=2}^{q} \theta_{p+2i}) \sum_{\mathcal{M}} S^{2q-1} \longrightarrow S^{p} \times S^{2q-1}$$

we can choose one which can be extended to a diffeomorphism

$$F: \left(\prod_{i=2}^{q} \theta_{p+2i}\right) \sum_{M}^{p} \times D^{2q} \longrightarrow S^{p} \times D^{2q}$$

Now we construct an equivariant diffeomorphism

$$\widehat{f}: ((\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{\mathcal{M}}^{p} \times S^{2q+1}, \varphi_{1}, S^{1}) \longrightarrow (S^{p} \times S^{2q+1}, \varphi_{2}, S^{1})$$

where the actions φ_1 and φ_2 are the obvious ones.

Let us denote by

$$\left(\left(\prod_{i=2}^{q} \theta_{p+2i}\right) \cdot \sum_{M}^{p} \times S^{2q-1} \times D^{2} \bigcup_{id} \left(\prod_{i=2}^{q} \theta_{p+2i}\right) \cdot \sum_{M}^{p} \times D^{2q} \times S^{1}, \ \overline{\varphi}_{1}, \ S^{1}\right)$$

the differentiable S^1 -action defined by

$$ar{arphi}_{1}(g,\,(x,\,y,\,z))=(x,\,gy,\,gz) \qquad ext{for} \quad x\!\in\!(\prod\limits_{i=2}^{q} heta_{p+2i})\!\cdot\!\sum_{M}^{p},$$

 $y\!\in\!S^{2q-1}, \quad z\!\in\!D^{2},$

and

$$ar{arphi}_1(g,\,(x,\,y,\,z))=(x,\,gy,\,gz) \qquad ext{for} \quad x\!\in\!(\prod\limits_{i=2}^s heta_{p+2i})\!\cdot\!\sum_M^p, \ y\!\in\!D^{2q}\,, \quad z\!\in\!S^1\,.$$

Let us denote by

$$(S^{p} \times S^{2q-1} \times D^{2} \bigcup_{id} S^{p} \times D^{2q} \times S^{1}, \overline{\varphi}_{2}, S^{1})$$

the similar differentiable S^1 -action. Since

$$((\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q-1} \times D^{2} \bigcup_{id} (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \times S^{1}, \overline{\varphi}_{1}, S^{1})$$

(resp. $(S^{p} \times S^{2q-1} \times D^{2} \bigcup_{id} S^{p} \times D^{2q} \times S^{1}, \overline{\varphi}_{2}, S^{1}))$

is clearly equivalent to

$$((\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q+1}, \varphi_1, S^1)$$

(resp. $(S^p \times S^{2q+1}, \varphi_2, S^1)),$

we use them confusedly. Let $F_1: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \to S^p$ and $F_2: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \to D^{2q}$ be the differentiable maps defined by

$$(F_1(x, y), F_2(x, y)) = F(x, y) \quad \text{for} \quad x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{M}^p,$$
$$y \in D^{2q},$$

then we construct an equivariant diffeomorphism

$$\hat{f}: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M} S^{2q+1} \longrightarrow S^{p} \times S^{2q+1}$$

by

$$\hat{f}|(\prod_{i=2}^{q}\theta_{p+2i})\cdot\sum_{M}^{p}\times S^{2q-1}\times D^{2}=f\times id$$

and

$$\hat{f}(x, y, z) = \left(F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z\right)$$

for $x \in (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p}, y \in D^{2q}, z \in S^1$.

Lemma 3.3. \hat{f} is well-defined and an equivariant diffeomorphism.

Proof of Lemma 3.3. First we shall prove that \hat{f} is well-defined. Let $f_1: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q-1} \to S^{p}$ and $f_2: (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q-1} \to S^{2q-1}$ be differentiable maps defined by

$$(f_1(x, y), f_2(x, y)) = f(x, y)$$
 for $x \in (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{M}^p, y \in S^{2q-1}$

K. KAWAKUBO

Since f is equivariant, $f_1(x, gy) = f_1(x, y)$ and $f_2(x, gy) = gf_2(x, y)$ for $x \in (\prod_{i=2}^q \theta_{p+2i})$.

 $\sum_{\mathbf{x}}^{p}, y \in S^{2q-1}.$ Hence, for $x \in (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{\mathbf{x}}^{p}, y \in \partial D^{2q} = S^{2q-1}, z \in S^{1}$, we have that $F_1(x, z^{-1}y) = f_1(x, z^{-1}y) = f_1(x, y)$ and $zF_2(x, z^{-1}y) = zf_2(x, z^{-1}y) = f_2(x, y)$, i.e., \hat{f} is well-defined. If we take F carefully, \hat{f} becomes a differentiable map.

Secondly, we shall prove that \hat{f} is equivariant. Obviously $\hat{f}|(\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{\mathbf{M}}^{p} \times S^{2q-1} \times D^{2}$ is equivariant. For $x \in (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{\mathbf{M}}^{p}, y \in D^{2q}, z \in S^{1},$

$$\begin{split} \hat{f}(\varphi_1(g,\,(x,\,y,\,z))) &= \hat{f}(x,\,gy,\,gz) \\ &= (F_1(x,\,(gz)^{-1}gy),\,gzF_2(x,\,(gz)^{-1}gy),\,gz) \\ &= (F_1(x,\,z^{-1}y),\,gzF_2(x,\,z^{-1}y),\,gz) \\ &= \varphi_2(g,\,(F_1(x,\,z^{-1}y),\,zF_2(x,\,z^{-1}y),\,z)) \\ &= \varphi_2(g,\,\hat{f}(x,\,y,\,z))\,, \end{split}$$

...., f is equivariant.

Thirdly, we shall prove that \hat{f} is a diffeomorphism. For this purpose, we show that \hat{f} has a differentiable inverse map. Let $\overline{F}_1: S^p \times D^{2q} \to (\prod_{i=2}^q \theta_{p+2i}) \cdot \sum_{M}^p$ and $\overline{F}_2: S^p \times D^{2q} \to D^{2q}$ be the differentiable maps defined by

$$(\bar{F}_1(x, y), \bar{F}_2(x, y)) = F^{-1}(x, y)$$
 for $x \in S^p, y \in D^{2q}$.

Define a differentiable map

$$\hat{f}: S^{p} \times S^{2q+1} \longrightarrow (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times S^{2q+1}$$

by

$$\widehat{f} \mid S^{p} \times S^{2q-1} \times D^{2} = f^{-1} \times id$$

and

$$\hat{f}(x, y, z) = (F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z)$$

for $x \in S^p$, $y \in D^{2q}$, $z \in S^1$.

It is easy to prove by the same way as in the case of \hat{f} that \hat{f} is well-defined and a differentiable map., It is clear that

$$\hat{f} \circ \hat{f} | \left(\prod_{i=2}^{q} \theta_{p+2i} \right) \sum_{M}^{p} \times S^{2q-1} \times D^{2} = id$$

For $x \in \left(\prod_{i=2}^{q} \theta_{p+2i} \right) \cdot \sum_{M}^{p}$, $y \in D^{2q}$, $z \in S^{1}$,

$$\begin{split} \widehat{f} \circ \widehat{f}(x, y, z) \\ &= \widehat{f}(F_1(x, z^{-1}y), zF_2(x, z^{-1}y), z) \\ &= (F_1(F_1(x, z^{-1}y), z^{-1}(zF_2(x, z^{-1}y))), z\overline{F}_2(F_1(x, z^{-1}y), z^{-1}(zF_2(x, z^{-1}y))), z) \\ &= (F_1(F_1(x, z^{-1}y), F_2(x, z^{-1}y)), z\overline{F}_2(F_1(x, z^{-1}y), F_2(x, z^{-1}y)), z) \\ &= (x, z(z^{-1}y), z) \\ &= (x, y, z) , \end{split}$$

i.e., $\hat{f} \circ \hat{f} =$ identity.

Similarly we can prove that $\hat{f} \circ \hat{f}$ =identity. Hence f is a diffeomorphism. This completes the proof of Lemma 3.3.

Set $\sum_{i=2}^{p+2q+2} = (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{k}^{p} \times D^{2q+2} \bigcup_{\hat{f}} D^{p+1} \times S^{2q+1}$. It is easy to prove that $\sum_{i=2}^{p+2q+2}$ is a homotopy sphere. Then we construct a semi-free S^1 -action $(\sum_{i=2}^{p+2q+2}, \phi S^1)$ by

$$\phi(g, (x, y)) = (x, gy) \quad \text{for} \quad x \in (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p}, y \in D^{2q+2}$$

and

$$\phi(g, (x, y)) = (x, gy)$$
 for $x \in D^{p+1}, y \in S^{2q+1}$.

Since f is equivariant with respect to ϕ , the above action is well-defined. Regarding S^{p+2q} as $(\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \bigcup_{f} D^{p+1} \times S^{2q-1}$ and $\sum_{i=2}^{p+2q+2} A^{p} \otimes D^{2q} \times D^{2q} \otimes D^{p} \otimes D^{2q} \otimes D^{2$

$$(\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \quad \text{with} \quad (\prod_{i=2}^{q} \theta_{p+2i}) \cdot \sum_{M}^{p} \times D^{2q} \times \{0\}$$

and

$$D^{p+1} \times S^{2q-1}$$
 with $D^{p+1} \times S^{2q-1} \times \{0\}$.

It is clear that the embedding e is well-defined and equivariant with respect to ψ and $\overline{\varphi}$ by definition, i.e., (S^{p+2q}, ψ, S^1) is an invariant submanifold of $(\sum^{p+2q+2}, \phi, S^1)$. Since S^{p+2q} is (p+2q-1)-connected, $\nu(e(S^{p+2q}) \subset \sum^{p+2q+2})$ is trivial and since the normal bundle of $e(W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i}))$ in \sum^{p+2q+2} is isomorphic to $\nu(W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i}) \subset S^{p+2q}) \oplus \nu(e(S^{p+2q}) \subset \sum^{p+2q+2}) |e(W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i})))$, the normal bundle $\nu(e(W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i})) \subset \sum^{p+2q+2})$ is trivial. Thus we have proved that there exists a semi-free S^1 -action $(\sum^{p+2q+2}, \phi, S^1)$ with fixed point set $(\prod_{i=2}^{q} \theta_{p+2i}) \cdot$ \sum_{M}^{p} which bounds a π -submanifold $W^{p+1}(\prod_{i=2}^{q} \theta_{p+2i})$ in \sum^{p+2q+2} , completing the induction. This makes the proof of Theorem 2.1 complete.

Proof of Theorem 2.2. It follows from Theorem 2.1 that there exists a semi-free S^1 -action (S^{p+2q}, φ, S^1) with fixed point set the natural sphere S^p which bounds a π -submanifold of non zero index constructed by the equivariant connected sum operation with itself. Denote by $l(S^{p+2q}, \varphi, S^1)$ the action induced by the equivariant connected sum

$$(S^{p+2q}, \varphi, S^1) # \cdots # (S^{p+2q}, \varphi, S^1)$$

of *l*-copies of (S^{p+2q}, φ, S^1) . Because of the difference of the indices of the π -submanifolds bounded by the fixed point sets, $l(S^{p+2q}, \varphi, S^1)$ is not equivalent to $m(S^{p+2q}, \varphi, S^1)$ for $l \neq m$ (see Levine [8 Theorem 6.7]). This completes the proof of Theorem 2.2.

OSAKA UNIVERSITY AND INSTITUTE FOR ADVANCED STUDY

References

- W. Browder: Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967), 155–163.
- W. Browder: Surgery and the theory of differentiable transformation groups, Proc. of the Conference on Transformation Groups, Springer-Verlag, New York, 1968, 1-46.
- W. Browder and J. Levine: Fibring manifolds over S¹, Comment. Math. Helv. 40 (1966), 153-160.
- [4] K. Kawakubo: On homotopy spheres which admit differentiable actions II, Osaka J. Math. 7 (1970), 179-192.
- [5] M. Kervaire: A manifold which does not admit any differentiable structure, Comment. Math. Helv. 34 (1960), 257-270.
- [6] M. Kervaire: On higher dimensional knot, Differentiable and Combinatorial Topology, Princeton Univ. Press, 1965, 105-119.
- [7] M. Kervaire and J. Milnor: Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.
- [8] J. Levine: A classification of differentiable knots, Ann. of Math. 82 (1965), 15-50.
- [9] J. Milnor: Differentiable Manifolds which are Homotopy Spheres. Mimeographed notes, Princeton, 1958.