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1. Introduction

In [2], Browder has shown that there are an infinite number of distinct
semi-free ^-actions on homotopy (p-\-2q)-sphtrts with Sp as untwisted fixed
point set if (a) p+2q=l mod 4, p>\ and q>2, or if (b)p+2q=7, 15 or 31,
p: odd, p>ί and q>\. As open questions, he has posed the followings:

(I) What is the knot type of the fixed point set ?
(II) In the cases where his theorem does not construct an infinite number

of semi-free ^-actions, are there in reality only a finite number?
In the present paper, we shall give partial answers on these questions as

follows. We shall construct semi-free ^-actions which have knotted fixed point
sets (see Theorem 2.1). As a corollary, we shall have that there are also an
infinite number of distinct semi-free S^-actions on the standard (^)+2g)-sphere
S*+2g with knotted Sp as fixed point set when p = 3 mod 4 and 4 q^p+3
(see Theorem 2.2).

2. Definitions, notations and statement of results

An action (M, φ, G) is called semi-free if it is free outside the fixed point set,
i.e., there are two types of orbits, fixed points and G. Let Θn be the group of
homotopy n-spheres and θn be the order of the group ΘΛ. Let Θn(9τr) be the
subgroup consisting of those homotopy spheres which bound parallelizable mani-
folds and ΣJK be the generator of en(3zr) due to Kervaire and Milnor [7] (see also
Milnor [9] and Kervaire [5]). Dn and S"1"1 denote, respectively, the unit disk
and the unit sphere in euclidean w-space. When N is a submanifold of My we
shall denote by v(N (zM) the normal bundle of N in M. When a homotopy
sphere Σ * imbedded in ^y+2q bounds a manifold Wp+1 in 2*+ 2 * such that the
normal bundle v{Wp+1 c Σ ί + 2 ? ) is trivial, we say that ΣP bounds a π-submanifold
Wp+1 in Σp+2q. In [9], Milnor has constructed a manifold W%k (k^2) which
satisfies: (1) Wt* is parallelizable, (2) the index I(W$k) equals 8, (3) the boundary
dWtk is the homotopy sphere Σ i * " 1 and (4) W%k is (2k— l)-connected. Let us
denote by W4k(l) for / e Z the manifold obtained by the boundary connected sum
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Wtk ||...l| Wtk of /-copies of the manifold W%\ It is clear that the index I(W4k(l))
equals 8/. Then we shall have the following:

Theorem 2.1. There exists a semi-free S1-action on a homotopy sphere
q-l

Σp+2g with fixed point set ( Π θp+2i) Σϊr which bounds a π-submanifold

Wp+1( Π θp+2i) in Σp+2q for p = 3 (mod 4), p^7 and q^2.
=32

Theorem 2.2. There are an infinite number of distinct semi-free S1-actions
on the standard (p+2q)-sphere Sp+2g with knotted Sp as fixed point set for p = 3
(mod 4), 4q^p+3 and

3. Proofs of theorems

Proof of Theorem 2.1. As is well-known, the homotopy sphere Σ ί c a n

imbedded in Sp+2 such that 2 * bounds a τr-submanifold W%+1 of index 8 in <
(see Kervaire [6, Theorem 1 of Appendix] and Milnor [9]). Hence, by the natural
inclusion Sp+2dSp+*, we can embed Σ J * m SP+* s u c n t n a t Σjf bounds a π-
submanifold W%+1 of index 8 in Sp+S. Let α b e a point of S2. Then it is easy
to prove that there is a diffeomorphism

/
. '\~lj9 w Q2 . Qp \s Q2
. / \τvf X O > *3 A O

such that / ( Σ i x a) bounds the τr-submanifold W%+1 in Dp+1 X S2 when we regard

Let

ξN: S1 > 5 2 i V + 1 - ^ U CPN

be the classical Hopf bundle. Let i: S2 -+ CPN be the inclusion of the 2-skeleton
of CPN, then it is clear that v ξN=ξ1. Letp2: SpxS2-> S2 and/)/: ΣMXS2^ S2

be projections. Since CPN is the 2Λ/Γ-skeleton of the Eilenberg MacLane complex
K(Z, 2), ip2f is homotopic to ίp2 for N>p-\-2. Hence there exists a bundle
map

i.e., we have a bundle map

Thus we obtain the following commutative diagram

jyMχS

I ' '
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wherep: SpxS3->SpxS2 (resp.p': Σ l X S 3 - » Σ £ X S 2 ) denotes the projection
of the bundle p2

ι ξ, (resp. p2

nξ1). Set Σ * + 4 = Σ £ X D* U # * + 1 X S3. It is easy

to prove that Σ ^ + 4 ι s a homotopy sphere. Let (Σιp+\ φ, S1) be the semi-free
^-action defined by

> (χ> y)) = (*, « 0 for
and

> (x> y)) = (*>

Now we prove that the fixed point set Σ £ X {0} °f t n e action (ΣP+\ φ, S1)
bounds a 7r-submanifold Wo in Σ ^ + 4 Let p2: Dp+1xS2-+S2 be the projection
and p:Dp+1χS3-^Dp+1xS2 be the projection of the bundle p2

ι ξlu Since the
manifold Wo is (p— l)/2-connected, the restriction of the bundle p2ξx to PF0 is
trivial, i.e., p~\Wo)=WoχS\ It is obvious by definition that / ^ ( Σ J Γ X Λ )

== Σ ^ X 51- Let b be a point of π~ x(a) c S3. It follows from Lemma 2 of Browder
[1] (see also Browder and Levine [3]) that the diffeomorphism

is pseudo isotopic to a diffeomorphism sending Σjf X ̂  m t 0

where c is a point of S1. Hence f(Σ^Xb) bounds the submanifold Wo in
p-\W0)= WoxS\ Since the normal bundle of Wo in Dp+1 X S3 is isomorphic to

d Wox S^φviW^D^1 x S2)

where WocWoX S\ W0czDp+1xS2 are the embeddings defined above, Wo has a
normal frame in Dp+1χS3. Let CiJ^xI^^^xD4 be the embedding
defined by C(x, t)= (x9 tb) for Λ G X , ί e / . By making use of the embedding
C and the fact Σ i X ̂  U Wo= Wo, we have that the fixed point set ΣϊrX{ 0}
bounds a τr-submanifold Wo in Σ ^ ' ^ Σ ^ X ^ 4 U Dp+1χS3.

7.
Thus we have proved the following step 1 of induction.

Step. 1. There exists a semi-free ^-action (Σιp+\ φ, S1) with fixed point

set Σ^c which bounds a τr-submanifold H^g+1 in Σ ^ + 4

Step 2. Suppose there exists a semi-free ^-action (ΣP+2q, <p9 S1) with

fixed point set ( Π θp+2t)-ΣP

M which bounds a 7r-submanifold Wp+1( Π
, = 2 1 = 2

2 ? for
Then by the equivariant connected sum
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of 0^+20-copies of (Σp+2q> φ, S1) we have the following

Lemma 3.1. There exists a semi-free S1-actίon (Sp+2q, ψ, S1) with fixed

point set ( Π 0/,+2, ) Σ ί which bounds a π-submanίfold Wp+1( Π θp+2i) in Sp+2q.
ί=2 , =2

According to Browder [2] there exists an equivariant diffeomorphism

/: ( Π ^ + 2 ί ) Σ i X S2q~1->Spx S™-1 such that (( Π θp+2i) Y?MxD2q U Dp+1

ι=»2 ,=2 /

XS 2 ^ 1 , ψ, S1) is equivalent to (Sp+2q

y ψ, S1) where the action ψ is denned by

Ψ(g> (χ> y)) = (χ> gy) for χ<= ( π
f=2

and

Ψ(g, (x, y)) = (x, gy) for x^Dp+\

Since ( Π θp+2i) Y?MxD2q U D^xS29'1 is diffeomorphic to S*+2ff, we have the

following lemma (c.f. Lemma 4.1 of Kawakubo [4]).

Lemma 3.2. As an equivariant diffeomorphism

f: ( Π θp+2i) Σ ^ X S2*-1 > Spx S2*-1,
ί=2

^^ t:^n choose one which can be extended to a diffeomorphism

F: ( Π θp+2i) Σ i X Z>2* > S' X Z?2* .
»=2

Now we construct an equivariant diίfeomorphism

/ : (( Π ^ + 2 , ) Σ ^ x 5 2 ? + 1 , φι, S1) >(S»xS2«+\ Ψt, S1)

where the actions φx and φ2 are the obvious ones.
Let us denote by

(( Π *,+«)• ΣiX-S' ^xZ)" U ( Π θp+2iy^κxD^xS\ φu S1)
ί=2 id i=2

the differentiate S^action defined by

q

Φi(g> (χ> y>z)) = (χ> gy> gz) for χ^ ( Π 0*+2. ) Σ £ ,
i=2

and
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Let us denote by

(SpxS2g~1xD2 U SpxD2«xS\ φ2y S
1)

id

the similar differentiable ^-action. Since

(( Π θp^y-ΣLxS'^xD2 U ( Π θp+2i) ΈΆxD2<xS1, φu S
1)

ί=2 id i=*2

(resp. (S*xStf-1xiy U ̂ xfl^xS 1 , φn S
1))

is clearly equivalent to

(ttsp.(S*xS»+ι,φaS
1)),

we use them confusedly. Let Fx: ( Π θp+n) Σ i X D2" ~* Sp and F 2 : ( Π θp+2i)
1=2 (=2

be the differentiable maps defined by

ix, y), Fix, y)) = F(x, y) for * e ( Π ^ + r t

2

then we construct an equivariant diffeomorphism

Λ 1
f /TJA \ ^ Π P \y 02^+1 . QP\y Q2Q+1

J \ -LJL "p+2i) / "*" *^ ^ ^ κ\ O

by
A 9

•f I / I I Z) \ "\ Λp \s Qj2Q~ 1 \y 7~)2 ^ v^ 2 J
J I V A X ^ p - \ ~ 2 t ) ( i f f ^ s^ ~^^ J ^^

ι=»2

and

f(x, y, z) = \Fx{x, z-'y), zF2(x, z~ιy\ zj

for x<=( Π^ + 2ί) Σ i , ^ ^ £ ) 2 ^ , ^ S 1 .
»=>2

Lemma 3.3. / w well-defined and an equivariant dίffeomorphίsm.

Proof of Lemma 3.3. First we shall prove that / is well-defined. Let

fi ( Π θp+tl)-ΈίxS"-1-*S* and /,: ( Π ^ + 2 , ) Σ ^ X - S 2 ? - 1 - 5 2 * - 1 be differ-

entiable maps defined by

n
I—2
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Q

Since/is equivariant,/^, £3/) =/;(*, j;) and f2(x,gy)=gf2(xyy) for * e ( Π θp+2i)
i=2

, y^S2q~\ Hence, for # e ( Π 0,+2ί) Σ£> y^dDzg=S29-\ ^ G S 1 , we have

that Fx(x, z-1y)=f1(xyz-1y)=f1(x9y) and zF2(x, z-1y)=zf2(x, z~1y)=f2(xJ y), i.e.,
/ is well-defined. If we take F carefully, / becomes a differentiable map.

Secondly, we shall prove that / is equivariant. Obviously / | ( Π θp+2i)

is equivariant. For x^( Π 0/>+2* )#Σ^> y^D2q, z^S1,

J vPAgy \X9 y> z)))

= f(x, gyy gz)

= (Ffc, z-χy)y gzF2(x, z-χy), gz)

= ^ ( ^ (^I(Λ?, ^ " » , %F2(xy z-'y), z))

= φ-kg, f(χ, y, z)),

i.e., / is equivariant.

Thirdly, we shall prove that/ is a diffeomorphism. For this purpose, we

show that / has a differentiable inverse map. Let Fx: Sp X D2q -+ ( fl θp+2i) Σ ^

and F2: SpxD29-^D2q be the differentiable maps defined by

&, y\ F2{xy y)) - F~\x, y) for

Define a differentiable map

/: ^ x S 2 ? + 1 > ( Π ^ + 2 ί ) Σ £ X
t=32

by
f\SpxS2q-1xD2=f-1xid

and

/(ΛT, J;, Z) = {Fx{xy z~ιy\ zF2(x,z~λy), z)

for x<=Sp

y y<=D2q, ^ e S 1 .
Λ A #

It is easy to prove by the same way as in the case of / that / is well-defined and
a differentiable map., It is clear that

For #<=( Π ̂ +2ί) Σ i , y^£)2^, ^εiS1,
i=»2
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fof(x, y, z)

= {F^Ffa z~y)y z-\zF2(x, z-*y))), zF^x, z^y\ z~\zF2(xy ar"^))), *)
= (F^Ffa z-y), F2(x, z-ty), zFJίFfa z-y)y F2(x, z"y)\ z)
= (x, z{z~1y), z)

= (x, y, z),
A Λ

i.e., f o/= identity.
Similarly we can prove that / ° / = identity. Hence / is a diffeomorphism.

This completes the proof of Lemma 3.3.

SttΣlP+2g+2=(ήθp+2i)^M^O2q+2 U Dp+1χS2g+u It is easy to prove

that ^Π£+2*+2 is a homotopy sphere. Then we construct a semi-free ^-action

Φ(g> (^ y)) = (^ gy) for * e ( Π

and
?, (x, y)) = (x, gy) for

Since / is equivariant with respect to φ, the above action is well-defined.

Regarding Sp+2g as ( Π Op+2i)^p

MxD2g U Dp+ιxS2g~λ and ]>]*+2«+2 as
ί=2 /

{i\ep+2i)^p

KxD2gxD2 U (D^xS^xD2 AJ Dp+1 x D2g x S1) y

we obtain an embedding e: Sp+2g->*Σp+2g+2 by identifying
q ^ q

ι=2 t=2

and
Dp+1xS2g~1 with Z)^+1x S2*'*x {0} .

It is clear that the embedding e is well-defined and equivariant with respect to ΛJT
and φ by definition, i.e., (Sp+2g, Λ/Γ, S1) is an invariant submanifold of(Σp+2g+2,
φ, Sι). Since Sp+2g is (^>+2^-l)-connected, ̂ ( S ί + 2 ? ) ^ Σ ί + 2 ? + 2 ) is trivial and

q

since the normal bundle of e(Wp+1( Π θp+2t)) in 2^+ 2^+ 2 is isomorphic to
q

v(Wp+1( Π ^ + 2 t ) c 5 ί + 2 ? ) Θ ^ S ί + 2 ? ) c Σ ί + 2 ? + 2 ) | ^ F + 1 ( p ί + 2 i ) ) , the normal
, -2

bundle i/(β(ίΓ*+1( Π ^ + 2 ί ) ) c Σ ί + 2 ί + 2 ) is trivial. Thus we have proved that

there exists a semi-free S'-action (ΣP+2g+2

y Φ, S1) with fixed point set ( Π θp+2i)
g i~2

^P

M which bounds a zr-submanifold Wp+1( Π θp+2i) in 2^ + 2 * + 2

) completing the

induction.
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This makes the proof of Theorem 2.1 complete.

Proof of Theorem 2.2. It follows from Theorem 2.1 that there exists a

semi-free ^-action (Sp+2q, φ> S1) with fixed point set the natural sphere Sp

which bounds a 7r-submanifold of non zero index constructed by the equivariant

connected sum operation with itself. Denote by l(Sp+2g, φ> S1) the action in-

duced by the equivariant connected sum

{S>™, φ, S^'-HϋS^', φ, S1)

of /-copies of (Sp+2g, φ, S1). Because of the difference of the indices of the π-

submanifolds bounded by the fixed point sets, l(Sp+2g, φ, S1) is not equivalent

to tn(Sp+2g, <p, S1) tor /Φm (see Levine [8 Theorem 6.7]). This completes the

proof of Theorem 2.2.
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