
Oyama, T.
Osaka J. Math.
8 (1971), 99-130

ON MULTIPLY TRANSITIVE GROUPS X

Dedicated to Professor Keizo Asano on his 60th birthday

TUYOSI OYAMA

(Received May 27, 1970)

1. Introduction

In this paper we shall prove the following theorems.

Theorem 1. Let G be a permutation group on Ω={1, 2, •••, n) where n>4.

Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies

the following two conditions:

( i ) P is a nonίdentity semi-regular group.

(ii) P fixes exactly r points.

Then

( I ) Ifr=\y then |Ω | =6, 8 or 12, and G=S6, A8 or M12 respectively.

( I I ) // r = 5 , then | Ω | = 7 , 9or 13. In particular, if\Cl\ =(), then G^A9,

and if | Ω | = 13, then G=SX X M12.

(III) Ifr=7 and NG(P)ICP^A7J then G=M23.

In a previous paper [10] we proved that if G is a 4-fold transitive group and

a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity, then

P fixes exactly four, five or seven points. Therefore the following corollary is

an immediate consequence of Theorem 1.

Corollary. Let G be a 4-fold transitive group on Ω and assume that a Sylow

2-subgroup P of a stabilizer of four points in G is not the identity. For a point t of

Ω — I(P), assume that a Sylow 2-subgroup R of the stabilizer of any four points in

NG{P^)nPt) satisfies the following two conditions:

( i ) R is a nonidentity semi-regular group.

(ii) |/(Λ)| = |/(P)|.

Then one of the conclusions in Theorem 1 holds for NG(Pt)
Icpt'>. In particular,

if t is a point of a minimal P-orbit, then NG(Pt)
UPP satisfies the conditions (i)

and (ii).

The last assertion of this corollary follows from Lemma 1 of [9].

By using these theorems we have the following
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Theorem 2. Let G be a 4-fold transitive group on Ω={1, 2, —, n). If a
Sylow 2-subgroup of a stabilizer of four points in G is a nonidentity abelian group.
then G must be one of the following groups: S6, S7, A8, A9 or M23.

We shall follow the notations of T. Oyama [9].

2. Proof of Theorem 1

Case I. | / ( P ) | = 4 .

For any four points i, j , k, I of Ω a Sylow 2-subgrouρ P of Gijkι fixes
exactly these four points. Hence, by a lemma of D. Livingstone and A. Wagner
[3. Lemma 6], G is a 4-fold transitive group on Ω. By assumption, P is a
nonidentity semi-regular group. Therefore, by a theorem of H. Nagao [6], G
is S6, A8 or M12.

Case II. \I(P)\=5.

First assume |Ω| > 9 . Let a be an involution of P and J(P)={1, 2, •••, 5}.
Since P is a nonidentity semi-regular group, we may assume that a is of the
form

For any two 2-cycles (6 7), (8 9) of a> a^NG(G6789). Hence by Lemma 1 of
[10], there is an involution b of G 6 7 8 9 commuting with a. Since | / ( i ) | = 5 , we
may assume

* = (1) (2 3) (4 5) (6) (7) (8) (9).. .

Since ζa, by<NG(G2367), also by Lemma 1 of [10] there is an involution c of
G2 3 6 7 commuting with a and b. Since | I(c) | = 5 , c is of the form

, = (1) (2) (3) (4 5) (6) (7) (8 9 ) - .

Then I(ac) = {l, 2, 3, 8, 9}. Hence <Λ, C> is semi-regular on {10, 11, —,n},
and so we may assume

β = (l) (2) .-.(5) (6 7) (8 9) (10 11) (12 13). ,

c = (1) (2) (3) (4 5) (6) (7) (8 9) (10 12) (11 13)... .

Since (ay c) <NG(G10 u 1 2 1 3 ), there is an involution d of G10 u 1213 commuting with
a and c. Since | / ( J ) | = 5 a n d /(rf)Z){10, 11, 12, 13}, d fixes exactly one point of
I(a) Π I(c)={l, 2, 3} and so d is (1) (2 3) - , (2) (1 3) - or (3) (1 2)... . We may
assume that ^=(1) (2 3)«« since the proofs in the remaining cases are similar.
Therefore d is of the form

d=(\) (2 3) (4 5) (6 7) (8 9) (10) (11) (12) (13)... .



O N MULTIPLY TRANSITIVE GROUPS X 101

Since (a> rf> <NG(G2 3 1 0 n), there is an involution/ of G2 3 1 0 n commuting with a

and d, f is one of the following forms:

(i) / = (1) (2) (3) (4 5) (6 7) (8 9) (10) (11) (12 13) - ,

(ii) / = (1) (2) (3) (4 5) (6 8) (7 9) (10) (11) (12 13) - .

If/is of the form (i), then

β / = ( l ) ( 2 ) ( 3 ) ( 4 5)(6)(7)(8)(9).. .

Thus \I{af)I > 5 , which contradicts the assumption. Hence

/ = (1) (2) (3) (4 5) (6 8) (7 9) (10) (11) (12 13) - ,

Then

c / = ( l ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 8 7 9) . . .

Since f/GG/ ( β ), four points 6, 7, 8, 9 are contained in the same G/(α)-orbit.

Since we took 2-cycles (6 7) and (8 9) as arbitrary 2-cycles of #, GICa^ is transitive

on Ω—I(a). Hence for any involution x fixing five points G/CAr) is also transitive

o n ί ] - / ( 4
By using this result repeatedly, we prove that G1 is 4-fold transitive on

Ω— {1}. GKά> is transitive on {6, 7, -~>n}> and GICcD is transitive on Ω—{1, 10,

11, 12, 13}. Since G 1 ^ < G / C α ) , G / c ^>, G1 is transitive on Ω—{1}. Similarly

since G 1 2 3 ^ < G / C β ) , G/ C c)>, G 1 2 3 is transitive on Ω—{1, 2, 3}. Therefore G12

is transitive or has two orbits {3} and {4, 5, •••, n} on Ω—{1, 2}. Since <α, dy

<NG(G67101l), there is an involution g of G 6 7 1 0 1 1 commuting with a and d,

Similary to / we have

g = (1)(2 4)(3 5) (6) (7)(8 9) (10) (11) (12 13)... .

Since <α, gy<NG(G2467)> there is an involution h of G 2 4 6 7 commuting with a

and g. Then h is of the form

A = (1) (2) (4) (3 5) (6) (7) . . .

Hence

ch = (1) (2) (3 5 4) - .

Thus ch^G12 and so G 1 2 is transitive on Ω—{1, 2}. Therefore Gx is 3-fold

transitive on Ω—{1}.

Furthermore G / C c ) is transitive on {4, 5, 10, 11, •••, n} and G / C Λ ) is transitive

on {3, 5, 8, 9, — , n } . Since G 1 2 6 7 ^ < G / ( c ) , G / C A )>, G 1 2 6 7 is transitive on

Ω—{1, 2, 6, 7} and so Gx is 4-fold transitive on Ω—{1}.

By assumption a Sylow 2-subgrouρ of (G1)2Z45 is a nonidentity semi-regular

group on {6, 7, ••-,#}, Gx must be *S6, A8 or M12 by Theorem of [6]. Since

| Ω | > 9 , | Ω | = 1 3 and G1=M12. Since there is no transitive extension of M 1 2,

G=S1xM12.
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Next assume | Ω | ^ 9 . Since \I(P)\=5 and P φ l , | Ω | = 7 or 9. Now we
consider the case |Ω| = 9 . Since there is not an involution fixing seven points,
G has not a transposition. Assume, by way of contradiction, that G has an odd
permutation. Then there is a 2-element in G, which is an odd permutation.

First suppose that G has an element x of order 8. We may assume

x = (1 2 3 4 5 6 7 8) (9).

Since

x2 = (1 3 5 7) (2 4 6 8) (9),

x2^NG(G13 5 7) and hence x2 commutes with an involution a of Gλ 3 5 7. a is of the
form

β = (l)(3)(5)(7)(2 6)(4 8)(9).

Then fl6JVG(Guu). Hence a commutes with one of the following elements of
G1326:

h = (1) (3) (2) (6) (4 8) (5) (7 9),

6, = (1) (3) (2) (6) (4 8) (7) (5 9),

6, = (1) (3) (2) (6) (4 8) (9) (5 7).

Then we have

xb, = (1 2 3 8) (4 5 6 9 7),

xb2 = (1 2 3 8) (4 9 5 6 7),

*δ, = (1 2 3 8) (4 7) (5 6) (9),

(xhf = (xb2γ = ( 1 2 3 8 ) (4) (5) (6) (7) (9).

Thus if G has an element of order 8, then G has an element consisting of one
4-cycle or one 4-cycle and two 2-cycles.

Suppose that G has an element x consisting of one 4-cycle and two 2-cycles.
We may assume that

x = (1 2 3 4) (5 6) (7 8) (9).

Since xe NG(G12 3 4), x commutes with an involution a of G12 3 4. a is one of the
following forms:

(i) α = (l)(2)(3)(4)(9)(5 6)(7 8),

(ii) α = (l)(2)(3)(4)(9)(5 7)(6 8).

If a is of the form (i), then

xa = (12 3 4) (9) (5) (6) (7) (8).

If a is of the form (ii), then a^NG(G12 5 7). Hence a commutes with one of the
following elements oΐ G1257:
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A, = (1) (2) (5) (7) (6 8) (3) (4 9),

A, = (1) (2) (5) (7) (6 8) (4) (3 9),

A, = (1) (2) (5) (7) (6 8) (9) (3 4).

Then we have

xb, = (1 2 3 9 4) (5 8 7 6),

xb2 = (1 2 9 3 4) (5 8 7 6),

xb3 = (12 4) (3) ( 5 8 7 6 ) .

Thus

(xbj = (xb2γ = (xb3y = (1) (2) (3) (4) (5 8 7 6) (9).

Hence if G has an element of order 8 or consisting of one 4-cycle and two
2-cycles, then G has an element consisting of one 4-cycle. Therefore we may
assume that G has an element x of the form

* = (12 3 4) (5) (6) (7) (8) (9).

Then

*• = (13) (2 4) (5) (6) (7) (8) (9).

Since x2^NG(G1356), x2 commutes with an involution a of G1356. Then a is of
the form

5)(6)(2 4)ft)fti,),

where ft, i2, i3}={7, 8, 9}. Then we have

«β = (14) (2 3) (5) (6) ft) ft I,).

Thus if G has an odd permutation, then G has an element consisting of three
2-cycles.

Therefore finally suppose that G has an element x consisting of three
2-cycles. We may assume that

* = (12) (3 4) (5 6) (7) (8) (9).

Since x^NG(G5 6 7 8), x commutes with an involution a of G5678. a is one of the
following forms:

(i) β = (12) (3 4) (5) (6) (7) (8) (9).

(ii) α = (13) (2 4) (5) (6) (7) (8) (9).

If a is of the form (i), then

xa = (1) (2) (3) (4) (5 6) (7) (8) (9).

Thus xa is a transposition, which is a contradiction. Thus a must be of the form
(ii). On the other hand x^NG(G12 5 6). Hence x commutes with an involution b
of Gx 2 5 6, and b is of the form



104 T. OYAMA

b = ( 1 ) (2) (5) (6) (3 4) (π) (i, i3),

where ft, ia t'J={7, 8, 9}. Then

Thus we have

which is also a contradiction. Therefore

Case III. |/(P)| = 7 , i

Let /(P)={1, 2, •••, 7}. The proof of this case will be given in various steps:

(1) P is elementary abelian.

Proof. If P has an element

* = (1) (2) - (7) (8 9 10 11) •-.,

then x^NG(G8910 n ) . Hence x normalizes some Sylow 2-subgroup P' of G8 9 1 0 n .
By assumption, xKP^^NG(P')ICP'^A7. Thus x has a 2-cycle, contrary to the
semi-regularity of P. Therefore P has no element of order 4, whence P is
elementary abelian.

(2) |Ω

Proof. Let

« = (l)(2) --(7)(8 9).-.

be an involution of P. Then a^NG(G12 8 9). Hence a commutes with an involu-
tion b of G12 8 9. By assumption, | I(b) \ =7 and bI(a:>G AΊ. Hence we may assume

ft = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) •».

Then we have

α = (l)(2). . .(7)(8 9)(10 11).. .

Since ζa, by<NG(G4589), there is an involution c of G 4 5 8 9 commuting with
a and b. By assumption, | J(c) |=7, cIca:>^A7 and c Icb:>^A7. Hence we may
assume

c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) - .

Then we have

α = (l) (2)-(7X8 9) (10 11) (12 13) . ,

ac = (1) (2 3) (4) (5) (6 7) (8 9) (10) (11) (12 13) - .

Since ac is an involution and \I{ac)\^Sy \I(ac)\=7. Thus ac fixes two more
points in {14, 15, •••, «}. Hence |Ω | ^15
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(3) One of the following holds:

Case i. iVG(P)/CP) is transitive.
(i. i) NG(PY^=A7.
(i. ii) ΛΓG(P)/CP) is isomorphic to LF2(7), which will be denoted by A,*.

Case ii. NG(P)ICP:> has two orbits, say Δ and Γ.
(ii. i) | Δ | = 1 and | Γ | = 6 . iVG(P)/CP) is A6 on Γ, «ΛώΛ will be denoted

byA6.
(ii. ii) IΔI = 1 and | Γ | = 6. NG(P)IcP> ά isomorphic to A5 on Γ, wtoA «>ί//

fo denoted by A6*.
(ii. iii) IΔI = 2 ααJ | Γ | = 5 . iVG(P)/CP) w NA7(AS), which will be denoted by

N(A5).
(ϋ. iv) IΔI = 3 and | Γ | = 4 . ΛΓG(P)/CP) is NAl(AA), which will be denoted by

N(AA).
(ii. v) IΔI = 3 and | Γ | = 4 . NG(P)W=NAΊ*(K4) where K4 is a regular four

group on Γ. NAΊ*(K4) will be denoted by N(K4).

Proof. Let

be an involution of P. For any two points ix and ί2 of /(α), a^NG(Gili2iy).
Hence there is an involution # l l f 2 of Gilizij commuting with a. Set

^ t l ί2 = («Ί) (h) (h) (h h)(h h) ,

where {ilf i29 •••, ί7} = {l, 2, ••• 7}. Let T be the restriction of the group gene-
rated by all involutions of CG(α)t y on I(a). Then aiχ , 2G Γ.

(3.1) Suppose that Γ is transitive. By § 166 of [1], T is A7 or isomorphic
to LF2(7). If T=LF2(7), then Γ=<(1 2 3 6 4 5 7), (2 3 4) (5 6 7), (2 7 6 3)(4 5)>.

(3.2) Suppose that T has an orbit of length 1. Let {1} be the orbit of
length 1 and set Γ={2, 3, •••, 7}. Then for any two points ίx and i2 of Γ there is
an involution aiχ , 2 of the form

Thus ζaiχ t 2> is a 2-group fixing exactly two points iλ and ι2 of Γ. Hence from
a lemma of D. Livingstone and A. Wagner [3. Lemma 6] Tx is a doubly transi-
tive group on Γ. Hence from § 166 in [1] Tx is A6 or isomorphic to A5 on Γ.
In the second case T=<(2 3 4)(5 7 6), (3 4 5 7), (3 7) (5 6)>.

(3.3) Suppose that T has an orbit of length 2. Let {1, 2} be the orbit of
length 2 and set Γ={3, 4, •••, 7}. For any point ix of Γ there is an involution ax iχ

of the form

alh = (ί) (2) (ίOfciOfc*.).
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Hence from Lemma 6 of [3] 7\ 2 is transitive on Γ. By § 166 in [1] Tx 2 is A5 or a
group of order 10 generated by (3 4 5 6 7) and (3 4)(5 7). Assume | Γ 1 2 | =10.
Then there is an element az 4 of the form

«,, = (12)(3)(4)(/i)0 ,Λ)

Set y = (3 4 5 6 7). Since <jy> is the unique Sylow 5-subgroup of T12 and
α 3 4eiV τ(Γ 1 2), a34ya3i=yr where r = l , 2, 3 or 4. But this is impossible since
«3 4y«3 4=(3 4 . ). Thus I Γ 1 2 | ΦlO. Hence Γ 1 2 = Λ and so T=NAΊ(A5).

(3.4) Suppose that T has an orbit of length 3. Let {1, 2, 3} be the orbit
of length 3. Set Δ={1, 2, 3} and Γ={4, 5, 6, 7}. For any two points z\ and /2

of Γ there is an involution aiχ f 2 such that (#fl ί a)Γ=(i 1) (i2) (z3 z4). Hence again by
Lemma6 of [3] Γ Γ is doubly transitive. Thus TΓ=S4. Since T^A7, \TΓ\=ί
or 3. For any point j \ of Δ there is an involution ajχ 4 such that (aJl 4)

A=(j1) (j2ja).
Hence similarly TA is transitive on Δ, and so TΔk=S3.

First assume | TΓ | = 3 . Then

Γ i I T I /1 T Δ I I T I I T Γ I /1 T Δ I ^ . 1 9 1 / 1 9 1 1 ?, Δ I — I 1 I I I 1 I — l * r l l * I I I 1 I — ^ 1 * ^ 4 1 / 1 * ^ 3 1 — i Z f •

Hence TA=A4 and T^NAl(AA). On the other hand

\T\ = \Tv\-\Tv\=Z-\SA=\NAl(AA)\.

Thus Γ=iV
Next assume | TΓ \ = 1. Then

Hence ΓΔ is a regular four-group of degree 4, which is denoted by K4. Since
|Γ Γ |= l ,Γ$iV Λ τ (Λ: 4 ) . Since T^T*=S4i ΛΓ4 = <(1) (2) (3) (4 5) (6 7), (1) (2)
(3) (4 6) (5 6)> and Γ=<(1) (2) (3) (4 5) (6 7), (1 2) (3) (4) (6) (5 7), (1) (2 3) (4)
(5) (6 7)>. Thus Γ < Λ * and so T=NAl*(K4).

(3.5) Suppose that T has an orbit with length greater than 3. Then obviously
T is one of the groups above.

Now T^NG(GICP,)
KP\ By Lemma 2 of [10] iVG(G/CPD)/cP) = NG(P)ICP\

Hence T SNG(P)ICP^A7. Thus NG(P)KP> is one of the groups above.

REMARK. Since T is contained in (CG(a)i y)
/ C Λ : ) for a 2-cycle (ij) of tf, we

denote T by £, y(a).

(4) Let x be an arbitrary involution of G. Then \ I(x) | = 7 .

Proof. Since | ί l | is odd, \I(x)\ is odd. Let x be of the form

Then Λ: normalizes some Sylow 2-subgroup P' of Gijkι. By assumption
Therefore | / ( x ) | ^ 3 . If \I{x)\ ^ 4 , then |7(Λ)| = 7 by assumption.
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Suppose by way of contradiction that \I(x) | = 3 . We may assume that x is
of the form

* = ( 1 ) ( 2 ) ( 3 ) ( 4 5)(6 7)(8 9) .

Since x^NG(G4 5 6 7), there is an involution a of G4 5 6 7 commuting with x. Since

\I(a)\=7 and ^ e 4 /(*)={!> 2, - , 7}.
First assume that x and a have the same 2-cycle (8, 9) namely

Then ax is an involution and \I{ax)\ Z){1, 2, 3, 8, 9}. Hence \I{ax)\=Ί.
Thus # and a have two 2-cycles in common. Therefore we may assume that

* = (1) (2) (3) (4 5) (6 7) (8 9) (10 11).. ,

β = (l)(2) . (7)(8 9)(10 11) . . .

Then <Λ, x)> is semi-regular on {12, 13, •••,«}. On the other hand since ζa, Xs}
<NG(G4589), there is an involution b of G4589 commuting with a and x. Since
6 / w G i 4 7 and bnax:>^A7, we may assume that

4 = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11)....

Since |/(ό) |=7, b fixes exactly two more points of {12, 13, •••,//}. But this is
impossible since b^CG(ζa, Λ?» and <#, #> is semi-regular on {12, 13, •••, n}.

Thus a and x have not the same 2-cycle. Therefore we may assume that

* = (1) (2) (3) (4 5) (6 7) (8 9) (10 11) - ,

α = (l)(2) ..(7)(8 10)(9 11).. .

Let (hjΊ) be an arbitrary 2-cycle of x other than (4 5). Then x normalizes
some Sylow 2-subgroup P' of G 4 6 l 1 J r V Since xeίNG(P')KP'^A7y I(P') =
{1, 2, 3, 4, 5, ily j\}. Hence P' is also a Sylow 2-subgrouρ of G 1 2 3 4 5 . By the
conjugacy of Sylow 2-subgroups of G12345 we have that for any other 2-cycle
(i2j2) (Φ(4 5)) of x there is an element of G12345 which takes {i19 j\} into {z2, j2}.
Therefore the number of Gx 2 3 4 5-orbits in Ω-{1, 2, 3, 4, 5} is one or two. If it
is one, then since P / ^ G 1 2 3 4 5 ί 1, |Ω | —5= | G 1 2 3 4 5 : G 1 2 3 4 5 f l | is odd, which is a
contradiction. Hence it must be two and 6 and 7 belong to different orbits of
G12345, say T6 and T7 respectively. Obviously | T6\ = \ T7 \ > 1. Thus G12Z4 is
transitive or has three orbits {5}, T6, T7 on {5, 6, •••, n} since P' is also a Sylow
2-subgroup of G1234.

Now since ζa, Xs}<NG(G8910n), there is an involution c of G 8 9 1 0 n com-
muting with a and x. Since xIcn^A7, c fixes {1, 2, 3} pointwise. Hence by the
same argument as is used above for a x and c have not the same 2-cycle. Since
cIca:>^A7, we have

. = (1) (2) (3) (4 6) (5 7) (8) (9) (10) (11).. . .



108 T. OYAMA

Since <#, c > < G 1 2 3 and {4,5,6,7} is a ζx, c>-orbit, G 1 2 3 is transitive on
Ω-{1, 2, 3}.

Next since <#, ̂ ><Λ/r

G(G46810), there is an involution J of G 4 6 8 1 0 commu-
ting with a and c. Since dI<ia:>EiA7, we may assume that

J = ( l ) (2 3) (4) (6) (5 7) (8) (10) (9 1 1 ) - .

Then dtE.NG(G123i). Hence if Gi234 is intransitive on {5, 6, •••, «}, then d must
fix the G1 2 3 4-orbit {5}, which is impossible. Thus G 1 2 3 4 is transitive on
{5, 6, •-,«}.

Therefore G 1 2 3 is doubly transitive on {4, 5, ••«, n}. Since G 1 2 3 4 5 has two
orbits of odd length in {6, 7, •••, n}, G 1 2 3 4 6 has exactly two orbits of odd length
in {5, 7, 8, •••, n} by the doubly transitivity of Gx 2 3. Since a^Gx2346 and a fixes
exactly two points 5 and 7 of {5, 7, 8, •••,«}, 5 and 7 belong to different G12346-
orbits, say T/ and Γ/ respectively. Since </eiVG(G12346) d fixes two orbits Ts'
and Γ/ or interchanges them. But this is impossible since d has a 2-cycle (5 7)
and fixes a point 8. This contradiction shows that \I(x) | Φ3. Hence \I(x) | =7.

(5) | Ω | ^ 2 3 a n d |Ω| - 7 = 0 (mod 8).

Proof. By (2) | Ω | ^ 1 5 . Let

a = (1) (2) .- (7) (8 9) (10 11) (12 13) (14 15) ...

be an involution of P. Then there is an involution b of G12 8 9 commuting with a.
Since \I(b) \ = \ I(ab) | = 7 , we may assume that b is of the form

b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15)... .

Since <α, 6><N G (G 4 5 8 9 ), there is an involution c of G4 5 8 9 commuting with
a and b. Since | I(c) | = | I(ac) | = | I(bc) \ = \ I(abc) | = 7 , we may assume that c
is of the form

c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) (14 15)... .

Suppose IΩI >15. Since <α, b, c) is an elementary abelian group and every
involutions of <a, b, c> fix exactly seven points of {1, 2, •••, 15}, <α, b> c> is
semi-regular on {16, 17, •••,«}. Since |<α, i, c > | = 8 , |Ω | =15+8Λwhereyfe^l.
Hence

| Ω | ^ 2 3 a n d | Ω | — 7 = 0 (mod 8).

Therefore to complete the proof we must show that | Ω | Φ l 5 . Suppose
by way of contradiction that | Ω | = 1 5 . Since b1^ and cκa> are elements of
£ 8 9(a)f w e m a Y assume that X8 9(α) is one of the following:

(a) S 8 9 (α)=i 7 orΛ*,
(b) Z69(a)=A6 or A * , a n d its orbi ts are {1} a n d {2, 3, ••«, 7}.
(c) X8,(a)=N(A5) and its orbits are {2, 3} and {1, 4, 5, 6, 7},
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(d) E89(a)=iV(J4) or N(K4), and its orbits are {1, 2, 3} and {4, 5, 6, 7}.
First assume that %s9(a)φA*. Since ό / w = (l) (2) (3) (4 5) (6 7), by (3)

there is an involution * of CG(a\ a such that * is of the form

* = (1)(2)(3)(4 6)(5 7)(8)(9) .

Then we have

to = ( 1 ) (2) (3) (4 7) (5 6) (8) (9) . .

Since \I(bx) \ 2^5, bx is of order 2r where r is odd. Hencey=(bx)r is an involu-
tion commuting with b and so | I(y) \ = \ I{by) | = 7 . Since yIcb^^A7

y = (1) (2) (3) (4 7) (5 6) (8) (9) (10) (11) (12 14) (13 15).

Then we have

ay = (1) (2) (3) (4 7) (5 6) (8 9) (10 11) (12 15) (13 14).

Thus ay is an involution fixing exactly three points, which contradicts (4).

Next assume that Z89(a) = A*. Since ft/w = (l) (2) (3) (4 5) (6 7) and
c'c*>=(l) (2 3) (4) (5) (6 7) belong to £89(fl), by (3) there is an involution z of
CG(a\ 9 such that z is of the form

* = (1)(2)(6)(3 5)(4 7)(8)(9) .

Since az fixes three points 1, 2, 6 of {1, 2, •••, 9}, az fixes four more points of
{10, 11, •••, 15}. Therefore z must be one of the following forms:

(i) z = (1) (2) (6) (3 5) (4 7) (8) (9) (10 11)... ,

(ϋ) *=(1) (2) (6) (3 5X4 7) (8) (9) (12 13) •••.

If z is of the form (i), then

bz = (1) (2) ( 3 5 7 6 4 ) (8) (9) (10 11) - .

Hence (bz)5 is of even order and fixes at least nine points, which is a contradiction.
If z is of the form (ii), then

cz = (1) (2 5 3) (4 7 6) (8) (9) (12 13)... .

Then similary we have a contradiction. Thus |Ω | Φ15.

(6) // \P\ ^ 4 , then \P\ ^ 8 and GICP^ is transitive on Ω-/(P). In parti-
cular if NG(PycP> = A*f N(A5), N(A4) or N(K4), then P and GKP, have these
properties.

The proof is by steps.
(6.1) // NG(PY^ is A*y N(A5), N(A4) or N(K4), then \ P \ ̂ 4 .

Proof. We may assume that if iVG(P)/cP:)=yί6*, then its orbits are {1}
and {2, 3, - , 7}, if NG(Py^=N(A5), then its orbits are {2, 3} and {1, 4, 5, 6, 7}
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and if NG(P)IίP>=N(At) or N(K4), then its orbits are {1, 2, 3} and {4, 5, 6, 7}.
Let

a = (1) (2) - (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) -

be an involution of P. Then there is an involution b of G, 5 8 9 commuting with
a. By the assumption on the orbits of N^P)1^ we may assume that

b = (1) (2 3) (4) (5) (6 7) (8) (9) (10) (11) (12 13) (14 15) (16 18) (17 19) - .

Furthermore there is an involution c of GH1718 Iβ commuting with a and b. Since
aIm^A7 and bIm(ΞA7,

c = (1) (4) (5) (2 6) (3 7) (16) (17) (18) (19) -

or

c = (1) (4) (5) (2 3) (6 7) (16) (17) (18) (19) .-• .

Suppose that c is of the first form. If NG(P)KP>=N(A5), N(A4) or N(KA)y then
2 and 6 belong to different orbits, which is a contradiction. If NG{P)IiP')=A^,
then |(Λ^G(P) / c P ))1 4 5 |=2, which is also a contradiction. Thus c must be of
the second form. Then we have

far = (1) (2) - (7) (16 18) (17 19) •» .

Hence <α, be) is a four-group in GICP). Thus a Sylow 2-subgroup P of GICPi
is of order at least 4.

(6.2) If \P\ ^ 4 , then \P\^8and GKP> is transitive on Ω - / ( P ) .

Proof. Suppose by way of contradiction that \P\ = 4 . Since P is a semi-
regular elementary abelian group, the automorphisum group A(P) of P is iso-
morphic to S,. Obviously A(P)^NG(P)ICG(P). If NG(P)ICP^CG{P), then
NG(P)ING(P)ICP) is a homomorphic image of a subgroup of A(P). But this is
impossible since NG(P)ING(P)KP^NG(P)nP> and A(P)^S3. Hence NG(P)ICP)
^CG(P). Thus NG(P)«p^CG(Pγ^l.

First suppose NG(P)IcP>=A7, A7*, A6 or ^ 6 * . Then iVG(P)/GP) is a simple
group. Hence NG(Pγ^=CG(P)ICP\

Next suppose NG(P)IcP>=N(A5)y N(A,) or iV(iQ. Then we may assume
that NG(P)IcP:> has the orbits mentioned in (6.1). We have also three involutions
a, b and c, which are used in the proof of (6. 1). Since | JP | = 4 , we may assume
that P = <Λ, bey. Then MCP) = (1) (2 3) (4) (5) (6 7 ) G C G ( P ) / ( P ) , Since McP)

is not contained in a proper normal subgroup of NG(P)IcP:> in these cases,

NG(Pγ^=CG{Pγtp\
Now NG(P)ING(P)ICP^(CG(P)-NG(P)ICP,)ING(P)ICP> Since ΛΓσ(P)/

iVG(P)/cP)«iVG(P)J« and (CG(P).iVG(P)/(F))/^G(P)7cP)« CG(P)ING(P)ICP, Π
CG (P) = CG (P)/CG(P)/CP) s* CG ( P ) ' « iVG (P)/iVG (P) / C P ) = (CG (P) Λ̂ G (P)/ c«)/
NG(P)ICP> Hence NG(P)=CG(F) NG(P)ICF>. Thus NG(P)/CG(P) = (CG(P).
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NG(P)ICP>)ICG(P)^NG(P)ICP)ICG(P) ΓΊ NG(P)ICP, = NG(P)KP)ICG(P)I(P> On the

other hand P is a Sylow 2-subgoup of NG(P)IίP^ and contained in CG(P)ICP^.
Hence |NG(P) r c p^CG(P) I c p y | is odd and so \NG{P)ICG{P)\ is odd. Therefore
every 2-elements of NG(P) belong to CG(P).

Let

β = (l)(2) . (7)(8 9) . . .

be an involution of P. For an arbitrary 2-cycle (ij) of a other than (8 9), there
is an involution x of G8 9 f. y commuting with #. Then x normalizes some Sylow
2-subgroup P ' of G/CP) containing tf. By the argument above x^CG(P'). Since
I P ' | = 4 ahd x fixes exactly four points 8, 9, /, j of Ω—/(P')> P ' has an involution

Therefore <#, #'> is a subgroup of G / C P ) and <tf, α7> is transitive on {8, 9, i,j}.
Since (/y* is an arbitrary 2-cycle of a other than (8 9), G / ( P ) is transitive on
Ω-/(P). Since | Ω - / ( P ) | = 0 (mod 8) by (5), | G / C P ) | = 0 (mod 8). ButaSylow
2-subgroup of G/CF) is of order 4, which is a contradiction. Thus \P\ 2^8.

Next we shall prove that G / C F ) is transitive on ΓL — /(P). Let

be an involution of P. For an arbitrary 2-cycle (ij) of a other than (8 9), there
is an involution x of G8 9 , y commuting with a. Then # normalizes smoe Sylow
2-subgroup P' of G/CP) containing a. If Λ? commutes with only two elements of
P', then by a theorem of H. Zassenhaus [12, Satz 5] P' contains a cyclic group of
index 2. Since \P'\ ^ 8 and P ' is elementary abelian, we have a contradiction.
Thus x commutes with some involution of P' other than β. Therefore by the
same argument above we have that G / C P ) is transitive on Ω —/(P).

(7) NG(Py
Proof. Suppose by way of contradiction that NG(P)ICP>=N(A5). We may

assume that iVG(P)/(P)-orbits are {1, 2} and {3, 4, —, 7}. Let

a = (1) (2).- (7) (8 9) (10 11) (12 13) (14 15) ...

be an involution of P. Since Z89(a) ^NG(P)I^ = N(A5)i Zs9(a) = N(A5).
Therefore there are involutions

* = (1)(2)(3)(4 5)(6 7)(8)(9)

and

<r = (l)(2)(3)(4 6)(5 7)(8)(9) .

such that b and c commute with a. Then we have

Ac = (1) (2) (3) (4 7) (5 6) (8) ( 9 ) - .
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Since \I(bc)\ ̂ 5 , be is of order 2r where r is odd. Therefore d=(bc)r is an
involution commuting with b. Since \I{b)\ = |/(αά)|=7, we may assume that

b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15) ... .

Then since dI

Since <δ, rf> is of order 4, G 1 2 3 8 9 1 0 1 1 is transitive on Ω—{1, 2, 3, 8, 9, 10, 11} by
(6). Since NG{Py^=N(A5), also by (6) G12...7 is transitive on Ω-{1, 2, •••, 7}.
Thus G 1 2 3 is transitive on {4, 5, •••, w}.

On the other hand {3,4, —,7} is the orbit of NG(P). Hence G 1 2 is
transitiveon on {3, 4, •••, n}. Therefore G is transitive on Ω or G-orbits are
{1, 2} and {3, 4, - , «}.

Now suppose that G-orbits are {1, 2} and {3, 4, •••, n}. There is an involu-
tion/of G 4 5 8 9 commuting with a and b. Since {1, 2} is the G-orbit.

/ = (1 2) (3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) (14 15) - .

Since Gx 4 5 8 fixes {2}, a Sylow 2-subgroup of Gx 4 5 8 is also a Sylow 2-subgrouρ
°f G 1 2 4 5 8 . Since<6, /><ΛΓG(G1 2 4 5 8), there is an involution x of G 1 2 4 5 8 com-
muting with b and/. Let I(x)={1, 2, 4, 5, 8, ily Q. Then

Hence (^ i a)=(6 7) or (14 15).
First assume that (^ ί2)=(6 7). Then /(#)={1, 2, 4, 5, 6, 7, 8}. Since {1, 2}

is the G-orbit, NG(GICx^)Icx:>=N(Ai). Hence G/Gc) is transitive on Ω—/(Λ;) by (6).
On the other hand G12...7 is transitive on {8,9, , n}. Hence Gx 2 4 5 6 7 is transitive
on {3, 8, 9, •••, n}. Since a Sylow 2-subgroup of G 1 2 4 5 6 7 is a Sylow 2-subgroup
of G 1 2 4 5 6 and |{3, 7, 8, •••, n} \ is even, G 1 2 3 4 5 6 has two orbits {7}, {3, 8, •••, n}
on {3, 7, 8, —, n}. Since NG(Py^=N(A5), there is an element

7)(4)(5)(6) . .

Since ^eΛ^G(G 1 2 4 5 6), z fixes the G12456-orbit {7}, which is a contradiction.
Next assume that (ίx »I)=(14 15). Then /(*)={1, 2,4, 5, 8, 14, 15}. Since

^ e Λ and / ( / > e 4 7 ,

* = (1) (2) (4) (5) (8) (14) (15) (3 9) (10 11) (6 7) (12 13) - .

Then we have

ax = (1) (2) (3 9 8) (4) (5) (6 7) (10) (11) (12) (13) - .

Thus ax is of even order and \I(ax)\ ^ 8 , which is a contradiction.
Therefore G must be transitive on Ω. Let R be a Sylow 2-subgrouρ of
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NciP),. Since NG(P)IcP^=N(A5)i R has three orbits of length 1 and one orbit
of length 4 on I{P). On the other hand since \P\ ^ 8 , i?-orbits in Ω—I(P)
are of length at least 8. Therefore if Q be a 2-grouρ of G1 containing R as a
normal subgroup, then Q fixes I(P). Since RIQP^=Py Q normalizes P. Thus
Q^NG(P)1 and so Q=R, namely R is a Sylow 2-subgroup of Glβ Similarly a
Sylow 2-subgroup i?' of NG(P)3 is a Sylow 2-subgrouρ of G3. By assumption
R' has the orbit {1, 2} of length 2. Since G is transitive, Gj is conjugate to
G3. Hence i? is conjugate to R', which is impossible.

Thus there is no group such that NG(P)ICP>=N(A5).

(8)

Proof. Suppose by way of contradiction that NG(P)IcP:>=N(A4) or N(K4).
We may assume that iVG(P)/cP:)-orbits are {1, 2, 3} and {4, 5, 6, 7}. Let

α = (1) (2) - (7) (8 9) (10 11) -

be an involution of P. As in the proof of (7) there are commuting involutions
b and d in CG(a)89:

b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) - ,

d = (1) (2) (3) (4 7) (5 6) (8) (9) (10) (11) - ,

Let R and R' be Sylow 2-subgroups of NG(P\ and NG{P)A respectively. Since
NG(P)IcP>=N(A4) or N(K4), by the same argument as in the proof of (7) G 1 2 3 is
transitive on {4, 5, •••, n}> and R and R' are Sylow 2-subgrouρs of Gx and G4

respectively. Since R fixes exactly one point and R' fixes exactly two points,
R and Rr are not conjugate in G. Thus Gλ and G4 are not conjugate in G and
hence G is intransitive on Ω.

Therefore G has exactly two orbits {1,2,3} and {4,5, •• ,w}. Set Δ =
{4, 5, •••, n}. Since ζay ^ < A 7

G ( G 4 5 8 9 ) , there is an involution / of G 4 5 8 9 com-
muting with a and b. Then we may assume that

/ = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) - .

Let P' be a Sylow 2-subgroup of G 4 5 8 9 containing /. Since {1, 2, 3} is the
G-orbit, {1} is a NG(P')IcP'>-orbit. Hence NG(P')r^=A6 or A*.

Since {5, 6, 7} is the iVG(P)4-orbit, {5, 8, 9, 12, 13} is the iVG(PVorbit and
{8, 9, •••, n} is the G/CP)-orbit, G4 is transitive on Ω— {4}.

Since {4, 5, 6, 7} is the iVG(P)-orbit, P is a Sylow 2-subgroup of G 4 5 6 and
| / ( P ) Π Δ | = 4 . On the other hand since {1} and {2, 3, -",7} are the ΛΓG(P>
orbits, P' is a Sylow 2-subgroup of G 4 5 8 and | / ( P r ) n Δ | = 6 . Thus P and P '
are not conjugate in G4 5 and hence G 4 5 is intransitive on Δ —{4, 5}.

Therefore G4 5 has two orbits {6, 7} and {8, 9, •••, n) on Δ-{4, 5}. Let P"
be a Sylow 2-subgrouρ of G 4 5 6 8 . Then P " fixes one or three points of the
G-orbit {1, 2, 3}. If /(P")={1, 2, •-, 6, 8}, then {1, 2, 3} is a iVG(P")-orbit.
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Hence NG(P")*P":>=N(A4) or N(K4). By the same argument as is used for P,
{6, 8} is a G45-orbit, which is a contradiction. Therefore I(P")={jly 4, 5, 6, 8,
k19 k2}, where7^(1, 2, 3} and {*„ Λ2}cΩ-{l, 2, 3, 4, 5, 6, 8}. Then {j\} is
a NG(P")IcP">-orbit. Thus iVG(P")7 c P">=Λ or 4 * . Since P" has an orbit of
length 2 in {1, 2, 3} and is semi-regular, | P " \ =2. Therefore by (6) iVG(P")w">
=A6. Hence {6, 8, kly k2} is a NG{P")4 5-orbit, which is a contradiction.

Thus we have no group such that NG(P)IcP>=N(A4) or N(K4).

(9) NG(P)'<r>*A*. IfNG(F)I<r>=A.,then\P\=2.

Proof. If NG(P)ICP>=A*, then | P | ^ 8 by (6). Therefore suppose by way
of contradiction that NG(P)ICP:>=A6 or A6* and \P\ ^ 4 . We may assume that
iVG(P)7cP)-orbits are {1} and {2, 3, - , 7}. Let

a = (1) (2) ...(7) (8 9) (10 11)...

be an involution of P. Since a^NG(G2389), there is an involution b of G 2 3 8 9

commuting with a. We may assume

b = {\) (2) (3) (4 5) (6 7) (8) (9) (10) ( 1 1 ) - .

Let P' be a Sylow 2-subgrouρ of G/ C 6 ) containing b.
Assume that G is intransitive on Ω. By (6) GKP^ is transitive on {8, 9, •••, n},

and {1}, {2, 3, ...,7} are ArG(P)7^-orbits. On the other hand /(6) = {1, 2, 3,
8, 9, 10, 11} and NG(Gκω)IC»=A7J A*, A, or ^ 6 *. Therefore G has two orbits
{l}and {2, 3, •••, n}. Then G=Gτ satisfies the condition (*) of [9], which is a
contradiction. Thus G must be transitive on Ω.

Since \P\ ^ 8 by (6), a Sylow 2-subgrouρ of NG{P\ is a Sylow 2-subgrouρ
of Gt and fixes exactly one point. Similarly a Sylow 2-subgrouρ of NG(P)2 is a
Sylow 2-subgrouρ of G2 and fixes exactly three points. Thus Gj and G2 are not
conjugate in G, which contradicts the transitivity of G. Thus we complete the
proof of (9).

(10) There are four points i,j, k and I of Ω such that a Sylow 2-subgroup
of G{ y k i is of order at least 4.

Proof. Suppose by way of contradiction that for any four points /, j , k
and / a Sylow 2-subgroup of G, j k ι is of order 2. Let

a = (1) (2) .- (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) -

be an involution. Since a^NG(G8 9 1 0 n ) , there is an involution b of G8 9 1 0 u com-
muting with a. We may assume that

b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15) (16 18) (17 19).- .

Since ζa, by<NG(G16171819), there is an involution c of G 1 6 1 7 1 8 1 9 commuting
with a and b. Then c / ( β ) is one of the following:
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( i ) ^ « = (1) (2 3) (4) (5) (6 7 ) ,

(i i) *« > = (1)(2

(iii) c « " = ( l ) ( 2

Assume cκ"> is of the form (i). Since

c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (16) (17) (18) (19) - .

Thus \I{c) I ̂ >9, which is a contradiction.

Next assume that c*c*> is of the form (ii). Then ζbc, α> is a subgroup of

G/cp) and of order 4, contrary to the assumption.

Therefore cIca:> must be of the form (iii). Then similarly cIcb:> and α / c w have

no 2-cycle in common, cICal° and aICab:> also have no 2-cycle in common. Therefore

c = (1) (2) (3) (4 6) (5 7) (8 10) (9 11) (12 14) (13 15) (16) (17) (18) (19) - .

On the other hand ζa, by<NG(GA589). Hence there is an involutiond of G 4 5 8 9

commuting with a and b. Then

d = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) (14 15) - .

Therefore we have

ed= (1) (2 3) (4 7 5 6) (8 11 9 10) (12 15 13 14) - ,

a(cdf = (1) (2) (3) (4 5) (6 7) (8) (9) - (14) - .

Thus a{cd)2 is of even order and \I(a(cd)2) | JΞ> 11, which is a contradiction. Thus

(10) is proved.

(11) G=M23.

Proof. By (10) we may assume that | P \ ̂ 4 . Then by (6) and (9) NG(P)ICP:>

=A7 or A7* and G / C P) is transitive on Ω—/(P). Hence G is transitive on Ω or

has two orbits {1, 2, •••, 7} and {8, 9, •••, n}. Let

a = (1) (2) . " ( 7 ) (8 9) (10 11)..-

be an involution of P. Since a^NG(G1289), there is an involution b of G 1 2 8 9

commuting with a. We may assume that

A = (1) (2) (3) (4 5) (6 7) (8) (9) (10) ( I I ) . - .

By (9) NG(Gκω)Icb:>=A7, A* or A6. Hence G is transitive on Ω.

Now we may assume that if NG(Gκω)Icb:>=A6 then its orbits are {1} and

{2, 3, 8, 9, 10, 11}. Then since G / C F ) is transitive on {8, 9, •••, n}, and {2, 3, •••, 7}

is an orbit of NG(P\, Gx is transitive on {2, 3, •••, n}.

Since 4 / ( β ) GJV G (P) / ( P ) , {4,5,6,7} is a ^ G ( P ) X 2 3-orbit. Hence G 1 2 3 is

transitive or has two orbits {4, 5, 6, 7} and {8, 9, ••-,#} on {4, 5, •••,#}. Set

| P | z = 2 r where r^>3. Since G / C P) is transitive on Ω—/(P) and P is semi-

regular, |Ω—I(P) I =2r s where ί is odd. On the other hand a Sylow 2-subgroup
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Q of N^P^ 23 is also a Sylow 2-subgroup of G12 3. Hence | Q \ =2r 4 and there
is at least one £)-orbit T in Ω—/(P), which is of length 2 r. Let i be a point of
T. Then |Q t | = 4 a n d £), is a 2-group of G 1 2 3 I . Thus G / ( Q | 0 is transitive on
Ω-I(Qi) by (6). Since i${4, 5, 6, 7}, /(£,-)*{4, 5, 6, 7}. Therefore G 1 2 3 is
transitive on {4, 5, •••, n}.

Hence this implies that G 1 2 is transitive or has two orbits {3} and
{4, 5, •••, n} on {3, 4, •••, n}. If G1 2 is transitive on {3, 4, •••, n}, then G is 4-fold
transitive on Ω. Since a Sylow 2-subgrouρ P of G 1 2 3 4 is semi-regular, G—M2Z

by a theorem of [8],
Thusto complete the proof of (11) we must show that G1 2is transitive. Hence

suppose by way of contradiction that G 1 2 has two orbits {3} and {4, 5, •••, n}
on {3, 4, —, n). Then NG(P)ICP:>=AΊ*. Since G is doubly transitive on Ω, any
stabilizer of two points in G fixes exactly three points. Therefore NG(GICb^)12

fixes at least three points. Hence NG(Gκω)Icb:>=A7*. On the other hand since
ζay by<NG(G4589)y there is an involution c of G 4 5 8 9 commuting with a andb.
We may assume

c = (l) (2 3) (4) (5) (6 7) (8) (9) (10 11).. .

Now b normalizes some Sylow 2-subgroup P' of GKc0 containing a. Since P'
is conjugate to P, \P'\ ^ 8 and NG{Pf)HP'^=A*. If b commutes with only two
elements 1 and a of P', then by a theorem of H. Zassenhaus [12, Satz 5] P ' has
a cyclic subgroup of order at least 4, which is a contradiction. Therefore there
is an involution a' of P' which is different from a and commutes with b. We
may assume

α' = (l)(2) (7)(8 10)(9 11) > .

Since <α', by<NG(GiSil0), there is an involution c' of Gί5SW commuting with a'
and b. Then c and c' fix two points 4,5 and have the same 2-cycle (6 7) in I(P).
Since NG{GKP,γ<p>=A*, c / i P ) =c'« P ) . Thus we have

ί' = (l)(2 3)(4)(5)(6 7)(8)(10)(9 11) . .

Then

whicfy i§ a contradiction since (cc')Icιo&A7*. Thus we complete the proof.

3. Proof of Theorem 2

By Corollary of [10] |/(P) | - 4 , 5 or 7 and NG(P)ICP'=Si9 S5 or ̂ 7 respec-
tively. If P is a semi-regular abelian group, then G=S6, S7> A8, A9 or M23 by a
theorem of [8]. Therefore from now on we assume by way of contradiction
that P is not semi-regular.
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We shall treat the following three cases separately:

Case I. I I(P) \ = 4 and iVG(P)/cP) = S4.

Case II. \I{P) | = 5 and iVG(P)/GP> = S5.

Case III. | I(P) | = 7 and NG(Py^ = Λ .

Case I. I /(P) | = 4 and iVG(P)/GP) - 5 4 .

Let | / (P, l f 2 ) | is the smallest number such that t1^fί—I(P) and
ί2GΩ-^(P/J- For any four points ί,y, & and / of I(Ptlt2) let P ' be a Sylow
2-subgroup of G, y Λ , containing Ptχ t%. Since P ' is abelian, P'^NG(Ph tz). By
minimality of |/(P# 1, 2)| for any point t of I(Ptιtt)-I(P') (Pt')

ICPW is a semi-
regular group (^1). Thus NG(Ptlt2)

ICPt1i2

) satisfies the conditions (i), (ii) and
(iii) of the following lemma. ^

Therefore to complete the proof of this case it is sufficient to prove the
following lemma.

L e m m a 1. Let G be a permutation group on fl= {1, 2, •••, n}. Assume

that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the

following three conditions:

( i) |/(P)|=4.
(ii) P is a non-identity abelian group.
(iii) For any point t of Ω—I(P) Pt is a semi-regular group ( ^ 1).

Then P is semi-regular.

Proof. For any four points of Ω there is a 2-grouρ fixing exactly these four
points by (i). Hence by the lemma of [3] G is 4-fold transitive on Ω. Assume by
way of contradiction that P is not semi-regular. Then there is a point t of
Ω—I(P) such that Pt is a non-identity semi-regular group by (iii). By Corollary
NG{Pt)

IcP^=S6y A6 or M12. Since P is abelian, iVG(P,)/αVφM12. Furthermore
since |/(P f)—/(P)| = 2 or 4, t belongs to a P-orbit of length 2 or 4, and a
non-identity element of P fixes 4, 6 or 8 points of Ω. Since there is no 4-fold
transitive group of degree less than 35 except known one [2. p. 80], the degree
of G is not less than 35.

From now on we assume that P is a Sylow 2-subgroup of G1234.
(1) Suppose that P has exactly one orbit of length 2. We may assume that

this orbit is {5, 6}. Let

α = (l)(2) -.(6)(7 8).--

be an involution of P5. Since P is abelian, there is an element (1) (2) (3) (4) (5 6)
... in CG(Ps). Since (1)(2)(3)(4)(5 6 ) e C G ( P t y ^ ^ N c { P B y ^ = S6, NG{Pty<**
=C C (P,) 7 C P 5. Hence NG(P5)=CG(P5) NG(Ps)KPi> By the same argument as
in the proof of (6.2) in Section 2, every 2-elements of NG(PS) belong to CG(P5).

Since aε^NG(G127e), a normalizes a Sylow 2-subgroup P' of G127S. By the
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4-fold transitivity of G P' has exactly one orbit {ily i2} of length 2. Then a
fixes {ily i2} as a set. Hence a commutes with an involution b of P1'iχ. Since

b = (1) (2) (7) (8) ft)

First suppose that a fixes {ily i2} pointwise. Then we may assume that
{ily /2}={3, 4}. Thus we have

« = (1)(2) (6)(7 8) ,

4 = (1)(2)(3)(4)(5 6)(7)(8) » .

Let P" be a Sylow 2-subgroup of G 1 2 3 4 containing (a, by. Since P" is abelian,
{5, 6 } and {7, 8} are P"-orbits of length 2, which is a contradiction.

Next suppose that a has a 2-cycle (ix i2). We may assume that (ix ί2)=(9 10).
Then

a = (1) (2) ."(6) (7 8) (9 10)...,

6 = (1) (2) (3 4) (5 6) (7) (8) (9) (10)....

Since ζay by<NG(G3478)y ζa, by normalizes a Sylow 2-subgroup P"' of G 3 4 7 8 .
By the same argument above a and b have the same 2-cycle on a P"'-orbit of
length 2. We may assume that this P'"-orbit is {11,12}. Then <a, by < C G ( P ' " n )
and J(P" n )={3, 4, 7, 8, 11, 12}. Since P ' " n is semi-regular on Cl-I(P"\,)
and / ( ^ ^ n ί Π - Z ί P ^ O l ^ ί l ^ } , | P / / /

U | = 2. Hence | P | = | P " ' | = 4 . By
Theorem 1 of [7] P is elementary abelian. Let c be an involution of P'"n.
Then we have

fl = ( l)(2). . .(6)(7 8)(9 10)(1112) . ,

b = (1) (2) (3 4) (5 6) (7) (8) (9) (10) (11 12) - ,

c = (1 2) (3) (4) (5 6) (7) (8) (9 10) (11) (12) - .

Since (b, c> < NG(G12 3 4), ζb, cy normalizes a Sylow 2-subgrouρ Q of Gx 2 3 4 con-
taining a. Then Q is semi-regular on {7, 8, -••, n}, and g-orbits in {7, 8, •••, n}
are of length 4. Since /« i , c»Π{7, 8, ...,«} = {7, 8}, <ό, c> fixes a Q-orbit
containing 7 and 8, say {7, 8, j l y j2}. Then there is an involution

of Q. If b has a 2-cycle (j\ j2), then

Thus ba' is of order 4 and contained in G 1 2 5 6 . Since a Sylow 2-subgroup of
G 1 2 5 6 is elementary abelian, we have a contradiction. If b fixes {7,8,jlyj2}
pointwise, then {7, Sfjuj2}={7y 8, 9, 10}. Then we have

^ ' = (12)(3)(4)(5)(6)(7i 1 8y 2 ) . . ,

which is also a contradiction.
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Therefore it is impossible that P has only one orbit of length 2.
(2) Suppose that P has at least two orbits of length 2. Then P is an elementary

abelian group of order 4 and any involution of P fixes four or six points in Ω.
Let r be a number of P-orbits of length 2, and s a number of involutions of P
fixing six points. Since for any P-orbit of length 2 there is exactly one involution
of P such that it fixes this P-orbit pointwise, s = r. Since r^.2 and s^3y r=s=2
or 3. We may assume that P-orbits of length 2 are {5, 6}, {7, 8}, •••. Then there
are two involutions

* = (1) (2) (3) (4) (5 6) (7) (8)- .

such that <α, by = P.
Assume that r=s=2. Since NG(P5)

ICP^=S6y there is a 2-element

in NG(P5) such that ζx, P> is a 2-group. Then *2<EiVG(P). Since x2 fixes the
P-orbit {5, 6}, of fixes also the P-orbit {7, 8}. Thus <#*, P> has exactly three
orbits {3, 4}, {5, 6}, {7, 8} of length 2. Since X E NG«p?, P » and x takes {3, 4}
into {5, 6}, x fixes {7, 8} as a set. By taking xa instead of x if necessary, we may
assume that

Then ζx9 by is a non-abelian 2-group, which is a contradiction.
Thus r=s=3. Then P has one more orbit of length 2, say {9 10}.

Hence

a = (1) (2) ...(6) (7 8) (9 10)...,

* = (l)(2)(3)(4)(5 6)(7)(8)(9 1 0 ) - . .

Since P<NG(G5 6 7 8), there is an involution c of G5678 such that c^CG(P). By
assumption | I(c) | = 6 . Hence | I(c) Π I(P) | = 2 or 0.

First assume that \I(c) Π I(P) | = 2 . Then we may assume that

c = (1) (2) (3 4) (5) (6) (7) (8) - .

Since c / C P 5 = (1) (2) (3 4) e CG(P) / C P^iVG(P)'<:^=S4 ) CG(Py^=NG(PYCP\ By
the same argument as in the proof of (6.2) in Section 2, every 2-elements of
Na(P) belong to CG(P). Hence there is a 2-element

y = (1324)~

in CG(P) such that <j>, c, P> is a 2-grouρ. Since J ; G C G ( P ) , J fixes the three
P-orbits {5, 6}, {7, 8}, {9, 10} as a set. Therefore yyya, yb or yab fixes {5, 6, 7, 8}
pointwise, and so one of these elements and c generate a non-abelian 2-group
of G5 6 7 8, which is a contradiction.
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Next assume that | I(c) Π /(P) | = 0 . Then we may assume that

c = (1 2) (3 4) (5) (6) (7) (8) (9) (10) - .

Since P<NG(G5 6 7 8), P normalizes a Sylow 2-subgroup Pf of G5 6 7 8 containing c.
Then {9, 10} is a P'-orbit. Furthermore P fixes a P'-orbit containing {1, 2}.
If {1, 2} is a P'-orbit then αGC G (F). Since α / c p / ) =(5) (6) (7 8), from the
same reason as above we have a contradiction. Therefore the length of the P'-
orbit containing {1, 2} is 4. Since every P-orbits in {11, 12, •••, n} are of length
4, the P'-orbit containing {1, 2} is {1, 2, 3, 4}. Then also flGCG(F). Hence sim-
ilarly we have a contradiction.

Thus the minimal P-orbit is of length 4 and any involution of P fixes four
or eight points.

(3) Suppose that the minimal P-orbit on Ω-/(P) is of length 4 and P has
exactly one orbit of length 4. We may assume that there is an involution

« = (1) (2) .. (8) (9 10) (11 12) -

in P such that a fixes exactly eight points. Since a^.NG{Gλ 2 9 1 0 ) , a normalizes
a Sylow 2-subgroup P' of G12910. By assumption Pf has exactly one orbit of
length 4. Hence a fixes this P'-orbit, and hence a commutes with an invlution
b of P ' which fixes exactly eight points. Since bIca:>^A8 and tf/αoe A8, we may
assume that

b = (1) (2) (3) (4) (5 6) (7 8) (9) (10) (11) (12) - .

Since a Sylow 2-subgrouρ P " of G12 3 4 containing ζa> by has not an orbit of
length 2, P " has two orbits {5, 6, 7, 8} and {9, 10, 11, 12} of length 4, which is
a contradiction. Thus P has at least two orbits of length 4.

(4) Suppose that a minimal P-orbit on Ω-/(P) is of length 4 and P has at
least two orbits of length 4. Then we may assume that P-orbits of length 4 are
{5,6,7,8}, {9, 10, 11, 12}, •••. Since | P : P 5 | = 4 a n d | P 5 | = 2 or 4, | P | = 8 or
16. If P has an element of order 4, then this element has a 4-cycle on {5, 6, 7, 8}
or {9, 10, 11, 12}. But this is a contracidtion since NG(P5)

ICPJ=NG(P9)
ICPJ=A8.

Thus P is elementary abelian.
First assume that | P | =16. Then we may assume that there are three in-

volutions

b = (1) (2) ...(8) (9 11) (10 12).-.,

c = (1) (2) (3) (4) (5 6) (7 8) (9) (10) (11) (12) -

in P. Since c'«V=(l) (2) (3) (4) (5 6) (7 8)eC G (P 5 ) '^^JV G (P 5 ) / c ί V=A, CG

'^=As. Hence there is an involution

4)(5)(6)(7 8 ) -
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in CG(P5) such that d is conjugate to c. Then we have

6)(7)(8) .

Since \I(cd) | 2^4, cd is of order 2r where r is odd. Hence x={cd)r is an involu-
tion commuting with #, b and c. Since xI( c:>^A8J

*«o = (1) (2) (3 4) (i) (/) (Λ /)

where {z, /, &, /} = {9, 10, 11, 12}. On the other hand ζa, by is regular on
{9, 10, 11, 12}. Therefore x$ΞCG(ζa, ό», which is a contradiction.

Next assume that | P | = 8 . Then there is involutions

α = (l)(2) (8) (9 10) (11 1 2 ) - ,

b = (1) (2) (3) (4) (5 6) (7 8) (9) (10) (11) (12) -

in P. From the same argument as above there is an involution

* = (1)( 2) (3 4) (5 6) (7) (8) -

commuting with a and b. Since xIcb^^A8, we may assume that

* = (1) (2) (3 4) (5 6) (7) (8) (9) (10) (11 12) - .

If \I(ab)\ = 8, then we have

a = (1) (2) - (8) (9 10) (11 12) (13 14) (15 16) - ,

b = (1) (2) (3) (4) (5 6) (7 8) (9) (10) (11) (12) (13 14) (15 16) - ,

x = (1) (2) (3 4) (5 6) (7) (8) (9) (10) (11 12) (13) (14) (15 16) - .

Since | P | = 8 , there is an invluiton

c = (1) (2) (3) (4) (5 7) (6 8) (9 11) (10 12) (13 15) (14 16) -

In P. Then we have

ex = (1) (2) (3 4) (5 7 6 8) (9 12 10 11) (13 16 14 15) ••• ,

a{cxf = (1) (2) (3) (4) (5 6) (7 8) (9) (10) - (15) - .

Thus a(cxf is of even order and \I(a(cx)2) \ 2^12, which is a contradiction.
Next if |7(α6) | = 4 , then <α, ό> is semi-regular on {13, 14, •••, n}. On the

other hand x fixes six points of {1, 2, •••, 12}. Hence x fixes exactly two points
of {13, 14, •••, n}, contrary to the result that # e CG(<a, by). The lemma is proved.

Case II. | / ( P ) | = 5 and NG(P)KP^S5.

Let t be a point of Ω-/(P) such that t belongs to the minimal P-orbit. Since
II{P) I = 5 , by Corollary |I(Pt) | = 7 , 9 or 13. If |I(Pt) | =13, then NG

SxχM12, which is a contradiction since P is abelian. Therefore
or 9 and t belongs to a P-orbit of length 2 or 4. From now on we assume that
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(1) First we shall ahow that if | I(Pt) | = 9 , then t belongs to a P-orbit of length
4. Assume by way of contradiction that t is a point of a P-orbit of length 2. Set
I(Pt)={l, 2, ..-, 9} and H=NG{Pt)

KPt\ Since \P:Pt\=2, a Sylow 2-subgroup
of the stabilizer of any four points in H is of order 2 and H $Ag.

If Hi is transitive on {1, 2, •••, 9} — {i} for any point i of I(Pt), then i ί is
doubly transitive. Since H has an invloution consisting of two 2-cycles, H=A9.
This is a contradiction. Therefore we may assume that Hx is intransitive on
{2, 3,.. , 9}.

First assume that H1 has an orbit of length 1 in {2, 3, •••,9}. Then we may
assume that this orbit is {2}. Set Δ ={3, 4, •••, 9}. For any three points i19 i2

and i3 of Δ there is an involution

* = (1) (2) ft) ft) ft) ft !.)(*.*,).

Thus x fixes exactly these three points iu i2 and iz. From Lemma 6 of [3] Hx 2

is 3-fold transitive on Δ. By § 166 in [1], H12=ΛΊ. Hence a Sylow 2-subgroup
of H12 3 4 is of order 4, which is a contradiction.

Next assume that H1 has an orbit of length 2. Then we may assume that
{2, 3} is the ί^-orbit. Set Δ = {4, 5, , 9}. For any two points iλ and i2 of Δ there
is an involution

x = (1) (2) (3) ft) ft) ft Q ft ί,).

Then from the same reason as above, H12 3 is doubly transitive on Δ. On the
other hand there is an involution (1) (2 3) (j\) (j2) (j3) (;4) (/5i6). Thus Hf=S6.
Hence there is an involution

y = (l)(2)(3)ft)ft)ftί.)ftί,).

Then ζx9 y) is a 2-group of H12 3 t i and of order 4, which is a contradiction.
For the remaining cases by the same argument as above we have also a con-

tradiction. Thus we complete the proof.
(2) Next we shall show that if t is a point of a P-orbit of length 2, then

\I(Pt) I = 7 and CG(P,) / c iV=S 7. Let t be a point of a P-orbit {6, 7}. Then by
(1) /(P6) = {1, 2, •••,7}. For any four points iu i2y iz and ί4 of 7(P6) there is a
Sylow 2-subgroup P' of Giχ , 2, 3, 4 containing P6. Set C = CG(P6)

/ciV. Since
Pf is abelian, P'<CG(P 6). Thus C has an involution (zΊ) (z2) (ί8) (ι4) (ιB) (z6 iΊ).
By the same argument as in (1) we have that C is one of the following groups:

( i ) If C is transitive on /(P6), then by Theorem 8.3 and Theorem 13.3 of
[11] C=S7.

(ii) If C has two orbits of length 1 and 6, then C= Sx X 56. We may assume
that the C-orbits are {1} and {2, 3, •••, 7}.

(iii) If C has two orbits of length 2 and 5, then C = 5 2 x 5 5 . We may
assume that the C-orbits are {1, 2} and {3, 4, •••, 7}.
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(iv) If C has two orbits of length 3 and 4, then C = 5 3 x S 4 . We may as-
sume that C-orbits are {1, 2, 3} and {4, 5, 6, 7}.

Since NG(P)ICP>=S5, there is a 2-element

* = (14) (2) (3) (5)..-

in NG(P).
First suppose that {6, 7}x= {6, 7}. Since P has an element y=(ί) (2) « (5)

(6 7) ••• ,x or xy is of the form (1 4) (2) (3) (5) (6) (7) . Therefore we may
assume that

* = (14) (2) (3) (5) (6) (7)..-.

Since <*, Pβy<G2 3 5 6 7, x<= CG(P6). On the other hand C= CG(P6)
/ciV is one of

the groups listed above. Hence the points 1 and 4 are contained in the same
C-oribt. T h u s C = 5 7 .

Nextsuppose that {6,7}*Φ{6,7}. Set {8,9}={6,7}*. Since Λ^GΞP, {8, 9}*=
{6, 7}*2={6, 7}. Hence X(ΞNG(P68). Set H=NG(P68) and Δ = J ( P 6 8 ) . Since
CG(P6 8 ) > C G ( Λ ) > H>ζx, CG(P6)>. On the other hand C is one of the groups
listed above. Therefore x and all elements of C fixing the set /(P)={1, 2, •••, 5}
generate S5 on /(P). Thus NH(HJCP^

ICP^=S5. New P Δ is an elementary abelian
group of order 4 and a Sylow 2-subgrouρ of (i/ Δ ) / C P > Hence NHΔ (PA)ICP:>=NHA

(HjCp^)IcP:> = S5. Since the automorphism group of P Δ is a subgroup of S3

and NH*(PA)ICP:>/CHA(PAycP:> is a homomorphic image of a subgroup of this
automorphism group, CHA (P*)ICP>^>A5. Since {6, 7} is the PΔ-orbit, there is an
element

y = (1 4) (2 3) (5) (6) (7) ...

such that j Δ e CH Δ(PΔ). Thus iVG(G/αv)
/< iV^<j/, CG(P 6)y^V=S 7. Since P 6

is a Sylow 2-subgroup of G / ( P ) , NG(P6y^=NG(GICP6,y^=S7. Furthermore
ΛΓ G (P 6 ) / C J P 6 ) ^C and C has a transposition. Therefore C = 5 7 .

(3) Suppose that P has exactly one orbit of length 2. Let {tly t\} be the
P-orbit of length 2, and let t2 be a point of the minimal P/:ι-orbit on Ω-/(P^).
Since P is abelian, I{Ptχ #2)-/(P) consists of one P-orbit of length 2 and several
P-orbits of length at least 4. Thus | I(Ptl ,2) | -5 = 2 (mod 4).

Set H=NG(Ptl t2) and A=I(Ph h). For any four points iu i2, t3 and iA of
Δ let P ' be a Sylow 2-subgroup of G t l ,2 t 3 ,4 containing P f l #2. Then P 'OP^ /a

and P / Δ is a Sylow 2-subgroup of (H% i% ,3,4. Since | Δ | —5 = 2 (mod 4), P / Δ

has exactly one orbit {u19 «/} of length 2. By (2) /(P'W l)φΔ. Since t2 is the
point of the minimal P^-orbit, for any point v of Δ — /(P^) P# 1 t2=P/u1v Thus
| P Δ | = |P^ Δ | and (P Δ ) W l ,= 1. Since CG(P'Ui)<CG(P'UlV) = CG(Ptl H)<H and
CG(P'K 1) / C PV=S 7 by (2), C ^ / V ^ / C P ' ^ ^

Thus HA satisfies the conditions (i), (ii) and (iii) of the following lemma.
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Hence if we prove the following lemma, then the number of P-orbits of length
2 is greater than 1.

L e m m a 2. Let G be a permutation group on Ω = { 1 , 2, •••, n}. Then it is

impossible that a Sylow 2-subgroup P of the stabilizer of any four points in G sat-

isfies the following three conditions:

( i ) I I(P) I = 5 and \ P \ is constant.

(ii) P is an abelian group.

(iii) P has exactly one orbit of length 2. Let t be a point of the orbit of

length 2, then CG(Pt)
IQPP=S7 and Pt is a non-identity semi-regular

group.

Proof. Assume by way of contradiction that G is a counter-example to
Lemma 2. Let P be a Sylow 2-subgrouρ of G1234 and I(P) = {1, 2, 3, 4, 5}.
Since P has an orbit of length 2 and some orbits of length at least 4, | Ω | ^
5 + 2 + 4 = 1 1 . Let {6, 7} be a P-orbit of length 2. By the same argument as in
the proof of (1) of Lemma 1, |Ω | ^13 and for an involution

β = (l) (2) ..-(7) (8 9) (10 11) (12 13). .

of P6, there is two commuting involutions

b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) - ,

c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) ...

in CG(a). Moreover P is a cyclic group or an elementary abelian group of order
4.

(a) Suppose that P is an elementary abelian group. Then by the same argu-
ment as in the proof (1) of Lemma 1, there is an element (1) (2) (3) (6) (7) (4 5)
(8/, 9jt)... i n G 1 2 3 , , o r (1) (4) (5) (6) (7) (2 3) (8 j \ 9 j2) - in G, 4 , . 7. Since
CG(P6)

IQP6)=S7y a Sylow 2-subgroup of G 1 2 3 6 7 and a Sylow 2-subgroup of
G\ 4 s e 7 a r e conjugate to P. But P is an elementary abelian group, which is a
contradiction.

(b) Therefore for any four points i9jy k and / a Sylow 2-subgroup of Gt 5 k /
is cyclic. Since CG(P6)

/ c iV=S7, there is a 2-element

in CG(P6) such that ζx,Py is a 2-group and xz^NG(P). Assume that ζxy P>
has an orbit {ily i2, iz> Q of length 4, which is different from {4, 5, 6, 7}. Since P
is cyclic, we may assume that

is the generator of P. If x has a 4-cycle on {ily i2y i3, /J, then x or x~1 is of the
the form (^ i2 z3 i4) on {ily i2y z'3, /J. Hence
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Thus # 2 eC G (P). If x has not a 4-cycle on {ily *2, izy Q, then

Thus also X2EΞCG(P). On the other hand since CG(P6)
/C/V=S7, NG{GKP^)KP^=

NG(pγ<p>=SΛ. Then (^2)/CP) = (l) (2) (3) (4 5) e C G ( P ) ^ ^ i V G ( P ) ^ = 5 5 .
Hence NG(P)ICP>=CG(P)ICP\ By the same argument as in the proof of (6.2) in
Section 2, every 2-elements of NG(P) belong to CG(P). Since <2>, cy<NG(G12

3 4 5), there is a Sylow 2-subgrouρ P' of Gx 2 3 4 5 such that a E ? ' and <ft, £> <iVG

(P'). Since P ' is conjugate to P, <ό, c> <C G (P / ). Since /«*, *» Π {8, 9, •••, n)
= {8, 9} and P' is semi-regular on {8, 9, •••, w}, P is of order 2, which is a
contradiction.

Therefore <#, P> has exactly one orbit of length 4, namely {4, 5, 6, 7}. Let
Q be a 2-group of G 1 2 3 containing <#, P> as a normal subgroup. Then Q
fixes {4, 5, 6, 7}. Hence Q=<x, P>. Thus O, P> is a Sylow 2-sbubgroup of
G12 3. For any point i of {4, 5, •••, n} let Pfr be a Sylow 2-subgrouρ of Gλ 2 3 , .
Then similarly a Sylow 2-subgrouρ £)' of G123 containing P" has exactly one
orbit of length 4, which contains /. By the conjugacy of Sylow 2-subgrouρs of
G12 3 there is an element of G12 3 which takes {4, 5, 6, 7} into the Q'-orbit con-
taining i. Thus Gx 2 3 is transitive on {4, 5, •••, n}. On the other nand CG(P^)iσ>^
= S7. Hence G is 4-fold transitive on Ω. By Theorem 1 of [7] this is a con-
tradiction. Thus lemma is proved.

(4) Suppose that P has at least two orbits of length 2. Let {6, 7}, {8, 9}
be P-orbits of length 2. Then 7(P6)={1,2, - , 7}. Since | P : P 6 β | = 4 , P / α W is
an elementary abelian group of order 4. For any four points z, , k and / of I(P6 8)
let P ' be a Sylow 2-subgroup of G, j k ξ containing P 6 8. Then |/(P//CPββ5) | = 5
and PmPe β5 is a Sylow 2-subgroup of (Λ^G(P6 8 ) / C P

6 β
5),. y A / of order 4. Set Δ = J

(P. 8), H=NG(P6 8γ<pe 8> and P Δ = ρ . Since CG(P6)<CG(P6.)^iVG(P6.), C

From now on we deal with H. Then the proof is similar to the proof (2) of
Lemma 1. Let r be a number of £)-orbits of length 2 and s a number of involutions
ofg. Then r=s=2 or 3.

If r = ί = 2 , then by the same argument as in the proof (2) of Lemma 1 we have
a contradiction.

Therefore r=s=3. Hence we may assume that Q has exactly three orbits
{6, 7}, {8, 9} and {10, 11} of length 2. Then Q has the following two involutions

a = (l)(2) .-(7)(8 9)(10 11) --,

6 = (1) (2)-.(5) (6 7) (8) (9) (10 11)....

Since \Q\ = 4 and £ i s semi-regular on {12,13, —,n}, | Δ | - 5 = 2 (mod 4). There-
fore a Sylow 2-subgroup of the stabilizer of any four points in H has exactly
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one or three orbits of length 2. Since Q < NH(H6 7 8 9), Q normalizes a Sylow
2-subgrouρ Qf of H6 7 β 9. Then Q fixes at least one (J'-orbit of length 2. Thus
Q centralizes an involution c of Q' fixing exactly seven points. Since I(c)ZD
{6,7,8,9}, | / ( c ) n / ( 0 ) | = 3 o r l .

In the case \I(c) (Ί I(Q) | = 3 using the same argument as in the proof (2) of
Lemma 1, we have a contradiction.

Hence | I(c) Π I(Q) \ — 1. Then we may assume that

c = (l) (2 3) (4 5) (6) (7) (8) (9) (10) (11) ... .

Since <£, c> <NH(H4 5 6 7) and <&, £> <CH(a), <δ, c> normalizes a Sylow 2-sub-
group £ " of # 4 5 6 7 containing α. Then I(Q")={\, 4, 5, 6, 7}. Since CH{Q^Qi
= S7, H4567 is conjugate to i / 1 2 3 4 , and so Qπ is conjugate to Q. Thus Q"
has exactly three orbits of length 2. If {8, 9} is a £)"-orbit, then bϊΞ.CH{Q'f).
Since |/(i) Π I(Q") \ = 3 , as is shown above, we have a contradiction. Hence the
ρ"-orbit containing {8, 9} is of length 4 say {8, 9, /„ Q. If {8, 9, iiy ί j={8, 9, 10,
11}, then c belongs to CG{g'). Since | I(c) Π /(Q'O | = 3, we have also a contra-
diction. Thus {ily Qd {12, 13, •••, n}. Since <α, ό> is semi-regular on {12, 13,
•••, n} and a has a 2-cycle (it t2), b has not a 2-cycle (ίΊ z2). Thus {ily / J * * {/« ί2}.
On the other hand bϊΞNH{Q"). Hence {8, 9, /„ /2}

δ={8, 9, z*Λ ί2*} is a ρ^-orbit,
which is a contradiction. Thus the minimal P-orbit is of length 4.

(5) We shall ahow that if t belongs to a P-orbit of length 4, then | I(Pt) \ =9
and CG(Pt)

ICPt:>=A9 or S1xA8. By the argument above the minimal P-orbit
on Ω-/(P) is of length 4 and P is abelian. Hence by Corollary \I(Pt) I = 9 and
NG(Pt)

Ict^AQ. Let/(P,)={1, 2, - , 9 } . Then there are elements

in P. Since <^, α2> <NG(G6 7 8 9) Π CG(P6), there is a Sylow 2-subgrouρ P ' of
G 6 7 8 9 such that <alya2><NG(P') and P'>P6. Since P '<C G (P 6 ) , we may
assume that there are elements

6, = (1) (2 3) (4 5) (6) (7) (8) (9) »• ,

in P1. Since <^, biy<NG(G23 6 7), similarly we may assume that there are
elements

in CG(P6) Π G23 6 7. Then CG(P 6)><αn Λ2, ix, i2, ^, c2>. Hence ̂ (PβX is transitive
on {2, 3, ••-, 9}. Therefore CG(P6)

ICP6> is transitive or has two orbits {1} and {2,
3, •••, 9} on 7(P6). If CG(P^KPJ is transitive, then CG(P6)

/αV is doubly transitive.
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Since CG(P 6) / c iV has an involution consisting of two 2-cycles, CG(P6)
ICP6)= AQ.

Next suppose that CG(P 6) / c iV is intransitive. Then for any four points of
{2,3, •••, 9} ( C ^ P g ) 7 0 ^ ) ! has an involution fixing exactly these four points.
Hence from Lemma 6 of [3] {CG(P^)KP&>)1 is 4-fold transitive on {2, 3, •••, 9}.
Thus CG{P^p^>=S1xA,.

(6) By (4) the minimal P-orbit on Ω - /(P) is of length 4. Let | I(Ptl ,2) | be
the smallest number such that ^GΩ-ZfP) and ί 2 G Ω - / ( P J . Then \l\ptlt2)\
$ 9 . Let R be a Sylow 2-subgroup of GKPtl ,2 > Set H=NG(R)ICR> and A=I(R).
Then if a Sylow 2-subgroup of the stabilizer of any four points in H is semi-
regular on Δ, then by Theorem 1 | Δ | = 9, which is a contradiction. Hence
there are four points j,j, k and / of Δ such that a Sylow 2-subgroup Q of Hi 3 k /
is not semi-regular on Δ — I(Q). By the minimality of |Δ |, there is a point t of
Δ — I(Q) such that Qt is a non-identity semi-regular group. By (3) and (4),
| / ( 0 , ) | = 9 and t belongs to a £-orbit of length 4. By (5) CH{Qt)

IζQ*> = A9 or
*SΊ X A8. Therefore by the same argument as in the proof of Lemma 1 we have
a contradiction. Thus Case II is proved.

Case III. |/(P) | =7 and NG(F)J^=A7.
Let | / ( P ί l / a ) | be the smallest number such that ^eΩ-/(P) and *2<ΞΩ—/

(Ptl). Since P is abelian, I(Ph t2) consists of some P-orbits. By Theorem 1
II(Ph) I =23. Hence |I{Ptχ h) | ^ 2 3 .

Let R be a Sylow 2-subgroup of GKPtl /jP. Set H=NG(R)KR> and A=I(R).
Let Q be a Sylo w 2-subgroup of the stabilizer of any four points in H. Then
Q satisfies the following conditions:

(i) |/(0|=7
(ii) Q is abelian and | Q \ is constant for any four points i,j, k and /.
(iii) For any point t of Δ — I(Q) Qt is a semi-regular group ̂  1. If Qt Φ1,

then NH(Qtγ^=M23.
If a Sylow 2-subgroup of the stabilizer of any four points in H is semi-regular,
then by Theorem 1 |Δ | =23, which is a contradiction. Hence we may assume
that a Sylow 2-subgrouρ Q of H12 3 4 is not semi-regular. Therefore there is a
point t of the minimal g-orbit such that NH(Qt)

ICQ^=M23 and |/(£>,) | =23.

Let Q' be a Sylow 2-subgroup oϊH1231 , where I G Δ - {1, 2, 3}. Then by (iii)
the minimal (X-orbit is of length at least 16. Since NH(Qt)

ICQt:>=M23y a Sylow
2-subgroup of H12 3 containing Q has exactly one orbit of length 4 and the point
4 belongs to this orbit. By the conjugacy of Sylow 2-subgroups of H12 3, a Sylow
2-subgroup of H123 containing ζX has exactly one orbit of length 4 which con-
tains /. Thus Hx 2 3 has an element carrying 4 into ί, and so i ^ 2 3 is transitive on
Δ-{1, 2, 3}. On the other hand NH(Qt)ICQP=M23. Hence H is 4-fold transitive
on Δ. Therefore to prove Case III it is sufficient to prove the following lemma.

Lemma 3. Let G be α 4-fold transitive group on Ω={1, 2, •••,«}, and P a
Sylow 2-subgroup ofG123 4. Assume that P satisfies the following conditions:
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(i) P φ l a n d | / (P) |=7.
(ii) For any point t of Δ-/(P) Pt is a semi-regular group ^ 1. Then G=M23.

Proof. If P is semi-regular, then by the theorem of [8] G=M23. Therefore
from now on suppose by way of contradiction that P is not semi-regular. Let I(P)
= {1,2, •••, 7}. The proof will be given in various steps:

(1) For a point t of Ω-/(P) if Pt Φ1, then Pt is an elementary abelian group.

Proof. The proof is similar to the proof (1) of Case III in Section 2.

(2) For any point t of Ω-/(P) | I(Pt) | ^23.

Proof. This is a direct consequence of Corollary.

(3) ForapointtofΩ-I(P)ifPt*lythen \I(Pt)\=23 andNG(Pt)
KPP=M23.

Proof. This follows from Theorem 1.

(4) For a point t of Ω-/(P) // Pt Φ1, then \Pt\=2or4- and every 2-elenιents
of NG(Pt) belong to CG(Pt).

Proof. Since M23 =NG(Pt)^P « NG (Pt)ING(Pt)JCPt^CG(Pt) NG{Pt)KPt,l
NG(Pt)KPt, and M 2 3isa simple group, NG{Pt)=CG(Pt)-NG{Pt)ICPp or CG(Pt)^
NG(Pt)κptϊ. Let I(Pt)={l ,2, •••, 23}. Then we may assume that Pt has an
involution

β = (l)(2) (23)(24 25) .

Since a^NG(G122425), there is an involution b of G 1 2 2 4 2 5 commuting with a.
Since o / w e M 2 3 , | /(ό / w ) | = 7 . Hence | / ( i ) |=23 and we may assume that

b = (1) (2) -. (7) (8 9) (10 11).- (22 23) (24) (25) - (29) - .

Thus |Ω| ^29. Since b<^NG{a), b normalizes a Sylow 2-subgrouρ Q of G/(Λ)
containing a. Then Q is a semi-regular elementary abelian group on {24, 25, •••,
n}. Since b^NG(Q) and |/(ft)Π(Ωr-/(ρ))|=16, by Lemma of # . Nagao [4]
IQI <̂  22 '4=28. On the other hand the automorphism group A(Q) of an elementary
abelian group of order 2 r is of order (2r-l)(2r-2) ... (2r-2r"1).

Suppose that NG(Q)ICQ^CG(Q). Since NG(Q)ICG(Q) is a subgroup of
(̂£?)> NG(Q)ING(Q)KQ) being isomorphic to NG(O)ICQ^=M23 is a homomorphic

image of a subgroup of ^4(£)). But if r <̂  8, then the order of 4̂(£>) is not divisible
by 23, which is a contradiction. Thus NG(Q)ICQ^CG(Q). Hence NG(Q)=
CG{Q)'^G{Q)KQ^' Therefore by the same argument as in the proof (6.2) of
Case III in Section 2 every 2-elements of NG(Q) belong to CG(Q).

Since ζa, by <NG(G8 9 ^ 25), there is an involution c of G8 9 24 25 commuting
with a and έ. Since / ( M ^ J Φ / ^ ) and ό / w and c/CΛ) are the commuting
involutions of M23. | I{V^) Π I(cIca>) \ = 3. On the other hand since c / α o G M23ί
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|7(4)Π7(*)|=7. Hence
Now since ζb,c><NG(CICai), <i,£> normalizes a Sylow 2-subgrouρ Q' of

GKά). Then since Q' is conjugate to Q in G/Cβ), <£,£> <CG(Q'). Since Q' is
semi-regular on Ω-/(a) and 17(<ί, c» Π (Ω-7(α)) | = 4 , 101 = | £?Ί ^ 4 .

(5) Let x be an involution. If \I{x) | ^ 4 , then \I{x)| =23.

Proof. If I I{x) I ̂  4, then | 7(#) | = 7 or 23. Suppose by way of contradiction
that |7(#) |=7. Then P has an involution a fixing 7 points and an involution b
fixing 23 points. We may assume that I(b)={l, 2, •••, 23} and

a=(ί) (2) ... (7) (8 9) (10 11) - (22 23) •-. .

Since NG(Py^=A79 G1234 has an element (1) (2) (3) (4) (5 6 7) .... Let Δ be a
Gλ 2 3 4-orbit containing {5, 6, 7}. Since P is a Sylow 2-subgroup of G1234, A is
of odd length. Then by the conjugacy of Sylow 2-subgrouρs of Gx 2 3 4 Δ is only
one Gx 2 3 4-orbit of odd length in {5, 6, « , n}.

Now suppose that there is a point ί of Δ-{5, 6, 7} such that P, Φ 1. Then NG

(Pi)TCP°=M23. On the other hand i belongs to Δ, which is of odd length.
Hence a Sylow2-subgroup P' of G1234i containingP, is also a Sylow2-subgroup
of G123 4. Since NP(Pi)KP° and NP>{Pi)KP? are non-identity 2-subgroups of
(N^Py^X 2 3 4, 7(ΛΓp(P^W) = 7(iV(Pt.)

/CP'°). But i φ {1, 2, ..., 7}, which
is a contradiction. Thus P , = l .

If a and ό have a 2-cycle (ix i2) in common, then we have

ab = (1) (2).» (7) (8 9) (10 11) - (22 23) ft) ft) - .

Since P ^ ^ P ^ φ 1, both ^ and i2 are not points of Δ.

Next if a 2-cycle (ix i2) of α is not a 2-cycle of ό, then we may assuem that

a = (1) (2)... (7) (8 9) (10 11) - (22 23) ft i2) ft Q - ,

Since ζa, by <Λ/r

G(G<1 i% , 3 , 4), there is an involution c of Giχ i% , 3 , 4 commuting
withαandft. Since C7^€ΞM 2 3 , |7(c)n7(ft)| = 7 . Hence |7(c) |= 23. Since a1^
and ό / w are the commuting elements of M23 and I(b)zil(a), I(aICC>)=I(bICC>)=
{1,2, ••., 7}. Hence a Sylow 2-subgrouρ of G1234 containing a and c fixes {5,6,7}
pointwise. Hence /„ /2, i3 and /4 do not belong to Δ. Thus Δ={5, 6, 7}.

Now in the proof of Case II of Theorem 2 in [5] we used only the following
conditions: In a 4-fold transitive group G an involution a fixes exactly seven
points and a G123 4-orbit of odd length is {5, 6, 7}. Therefore similarly G=M23,
which is a contradiction. Thus we complete the proof of (5).

(6) If P is not semi-regulary then we have a contradiction.

Proof. For a point t of Ω-I(P) suppose that Pt Φ1. We may assume that
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J(P,)={1, 2, —, 23} and Pt has an involution

a = (1) (2) ...(23) (24 25) . . .

Since a^NG(Gx 2 u 25), there is an involution b of G122425 commuting with a.

We may assume that

b = (1) (2) - . (7) (8 9) (10 11).- (22 23) (24) (25)... .

Since fieJVG(G/Cβ)), b normalizes a Sylow 2-subgrouρ Q of GKa> Then by (3)

and (4) b^CG(Q) and CG(QY^=M23.

Let x be an arbitrary 2-element of CG(Q) such that x™ is an involution.

Since all involutions in M23 are conjugate, there is an involution y of CG(Q) such

that y is conjugate to b and χ*CQ)=yICQ>. Then #ye £λ Hence xy=a'&Q9 and

so x=a'y. Since #' is an involution commuting with y, x is also an involution.

Now there is a 2-element

* = (1) (2) (3) (45) (67) (810 9 11) (121413 15) (16181719) (2022 2123)...

in CG(Q). By the argument above z2 is an involution. Hence | I(z2) | =23 by (5).

By the same reason z is an involution since zIcz2:> is an involution, which is a con-

tradiction. Thus we complete the proof.
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