ON MULTIPLY TRANSITIVE GROUPS X

Dedicated to Professor Keizo Asano on his 60th birthday

Tuyosi OYAMA

(Received May 27, 1970)

1. Introduction

In this paper we shall prove the following theorems.

Theorem 1. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$ where n > 4. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following two conditions:

- (i) P is a nonidentity semi-regular group.
- (ii) P fixes exactly r points.

Then

- (I) If r=4, then $|\Omega|=6$, 8 or 12, and $G=S_6$, A_8 or M_{12} respectively.
- (II) If r=5, then $|\Omega|=7$, 9 or 13. In particular, if $|\Omega|=9$, then $G \leq A_9$, and if $|\Omega|=13$, then $G=S_1 \times M_{12}$.
- (III) If r=7 and $N_G(P)^{I(P)} \leq A_7$, then $G=M_{23}$.

In a previous paper [10] we proved that if G is a 4-fold transitive group and a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity, then P fixes exactly four, five or seven points. Therefore the following corollary is an immediate consequence of Theorem 1.

Corollary. Let G be a 4-fold transitive group on Ω and assume that a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity. For a point t of $\Omega - I(P)$, assume that a Sylow 2-subgroup R of the stabilizer of any four points in $N_G(P_t)^{I(P_t)}$ satisfies the following two conditions:

- (i) R is a nonidentity semi-regular group.
- (ii) |I(R)| = |I(P)|.

Then one of the conclusions in Theorem 1 holds for $N_G(P_t)^{I(P_t)}$. In particular, if t is a point of a minimal P-orbit, then $N_G(P_t)^{I(P_t)}$ satisfies the conditions (i) and (ii).

The last assertion of this corollary follows from Lemma 1 of [9]. By using these theorems we have the following

100 T. OYAMA

Theorem 2. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. If a Sylow 2-subgroup of a stabilizer of four points in G is a nonidentity abelian group then G must be one of the following groups: S_6 , S_7 , A_8 , A_9 or M_{23} .

We shall follow the notations of T. Oyama [9].

2. Proof of Theorem 1

Case I.
$$|I(P)| = 4$$
.

For any four points i, j, k, l of Ω a Sylow 2-subgroup P of G_{ijkl} fixes exactly these four points. Hence, by a lemma of D. Livingstone and A. Wagner [3. Lemma 6], G is a 4-fold transitive group on Ω . By assumption, P is a nonidentity semi-regular group. Therefore, by a theorem of H. Nagao [6], G is S_6 , A_8 or M_{12} .

Case II.
$$|I(P)| = 5$$
.

First assume $|\Omega| > 9$. Let a be an involution of P and $I(P) = \{1, 2, \dots, 5\}$. Since P is a nonidentity semi-regular group, we may assume that a is of the form

$$a = (1)(2)\cdots(5)(67)(89)(1011)\cdots$$

For any two 2-cycles (6 7), (8 9) of a, $a \in N_G(G_{6789})$. Hence by Lemma 1 of [10], there is an involution b of G_{6789} commuting with a. Since |I(b)| = 5, we may assume

$$b = (1) (2 3) (4 5) (6) (7) (8) (9) \cdots$$

Since $\langle a, b \rangle < N_G(G_{2367})$, also by Lemma 1 of [10] there is an involution c of G_{2367} commuting with a and b. Since |I(c)| = 5, c is of the form

$$c = (1)(2)(3)(45)(6)(7)(89)\cdots$$

Then $I(ac) = \{1, 2, 3, 8, 9\}$. Hence $\langle a, c \rangle$ is semi-regular on $\{10, 11, \dots, n\}$, and so we may assume

$$a = (1) (2) \cdots (5) (6 7) (8 9) (10 11) (12 13) \cdots,$$

 $c = (1) (2) (3) (4 5) (6) (7) (8 9) (10 12) (11 13) \cdots.$

Since $\langle a,c\rangle < N_G(G_{10\ 11\ 12\ 13})$, there is an involution d of $G_{10\ 11\ 12\ 13}$ commuting with a and c. Since |I(d)|=5 and $I(d)\supset\{10,\ 11,\ 12,\ 13\}$, d fixes exactly one point of $I(a)\cap I(c)=\{1,\ 2,\ 3\}$ and so d is $(1)\ (2\ 3)\cdots$, $(2)\ (1\ 3)\cdots$ or $(3)\ (1\ 2)\cdots$. We may assume that $d=(1)\ (2\ 3)\cdots$ since the proofs in the remaining cases are similar. Therefore d is of the form

$$d = (1) (2 \ 3) (4 \ 5) (6 \ 7) (8 \ 9) (10) (11) (12) (13) \cdots$$

Since $\langle a, d \rangle < N_G(G_{2\,3\,10\,11})$, there is an involution f of $G_{2\,3\,10\,11}$ commuting with a and d. f is one of the following forms:

(i)
$$f = (1)(2)(3)(45)(67)(89)(10)(11)(1213)\cdots$$

(ii)
$$f = (1)(2)(3)(45)(68)(79)(10)(11)(1213)\cdots$$

If f is of the form (i), then

$$af = (1)(2)(3)(45)(6)(7)(8)(9)\cdots$$

Thus |I(af)| > 5, which contradicts the assumption. Hence

$$f = (1)(2)(3)(45)(68)(79)(10)(11)(1213)\cdots$$

Then

$$cf = (1)(2)(3)(4)(5)(6879)\cdots$$

Since $cf \in G_{I(a)}$, four points 6, 7, 8, 9 are contained in the same $G_{I(a)}$ -orbit. Since we took 2-cycles (6 7) and (8 9) as arbitrary 2-cycles of a, $G_{I(a)}$ is transitive on $\Omega - I(a)$. Hence for any involution x fixing five points $G_{I(x)}$ is also transitive on $\Omega - I(x)$.

By using this result repeatedly, we prove that G_1 is 4-fold transitive on $\Omega-\{1\}$. $G_{I(a)}$ is transitive on $\{6, 7, \dots, n\}$, and $G_{I(d)}$ is transitive on $\Omega-\{1, 10, 11, 12, 13\}$. Since $G_1 \geq \langle G_{I(a)}, G_{I(d)} \rangle$, G_1 is transitive on $\Omega-\{1\}$. Similarly since $G_{1\,2\,3} \geq \langle G_{I(a)}, G_{I(c)} \rangle$, $G_{1\,2\,3}$ is transitive on $\Omega-\{1, 2, 3\}$. Therefore $G_{1\,2}$ is transitive or has two orbits $\{3\}$ and $\{4, 5, \dots, n\}$ on $\Omega-\{1, 2\}$. Since $\langle a, d \rangle < N_G(G_{6\,7\,10\,11})$, there is an involution g of $G_{6\,7\,10\,11}$ commuting with a and a, Similarly to a we have

$$g = (1)(2 \ 4)(3 \ 5) \ (6) \ (7)(8 \ 9) \ (10) \ (11) \ (12 \ 13) \cdots$$

Since $\langle a, g \rangle < N_G(G_{2467})$, there is an involution h of G_{2467} commuting with a and g. Then h is of the form

$$h = (1)(2)(4)(35)(6)(7)\cdots$$

Hence

$$ch = (1) (2) (3 5 4) \cdots$$

Thus $ch \in G_{12}$ and so G_{12} is transitive on $\Omega - \{1, 2\}$. Therefore G_1 is 3-fold transitive on $\Omega - \{1\}$.

Furthermore $G_{I(e)}$ is transitive on $\{4, 5, 10, 11, \dots, n\}$ and $G_{I(h)}$ is transitive on $\{3, 5, 8, 9, \dots, n\}$. Since $G_{1267} \ge \langle G_{I(e)}, G_{I(h)} \rangle$, G_{1267} is transitive on $\Omega - \{1, 2, 6, 7\}$ and so G_1 is 4-fold transitive on $\Omega - \{1\}$.

By assumption a Sylow 2-subgroup of $(G_1)_{2345}$ is a nonidentity semi-regular group on $\{6, 7, \dots, n\}$, G_1 must be S_6 , A_8 or M_{12} by Theorem of [6]. Since $|\Omega| > 9$, $|\Omega| = 13$ and $G_1 = M_{12}$. Since there is no transitive extension of M_{12} , $G = S_1 \times M_{12}$.

102 T. Oyama

Next assume $|\Omega| \le 9$. Since |I(P)| = 5 and $P \ne 1$, $|\Omega| = 7$ or 9. Now we consider the case $|\Omega| = 9$. Since there is not an involution fixing seven points, G has not a transposition. Assume, by way of contradiction, that G has an odd permutation. Then there is a 2-element in G, which is an odd permutation.

First suppose that G has an element x of order 8. We may assume

$$x = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8) (9)$$
.

Since

$$x^2 = (1 \ 3 \ 5 \ 7) (2 \ 4 \ 6 \ 8) (9)$$

 $x^2 \in N_G(G_{1357})$ and hence x^2 commutes with an involution a of G_{1357} . a is of the form

$$a = (1)(3)(5)(7)(26)(48)(9)$$
.

Then $a \in N_G(G_{1\,3\,2\,6})$. Hence a commutes with one of the following elements of $G_{1\,3\,2\,6}$:

$$b_1 = (1)(3)(2)(6)(48)(5)(79),$$

$$b_2 = (1)(3)(2)(6)(48)(7)(59),$$

$$b_3 = (1)(3)(2)(6)(48)(9)(57)$$
.

Then we have

$$xb_1 = (1 \ 2 \ 3 \ 8) \ (4 \ 5 \ 6 \ 9 \ 7),$$

 $xb_2 = (1 \ 2 \ 3 \ 8) \ (4 \ 9 \ 5 \ 6 \ 7),$
 $xb_3 = (1 \ 2 \ 3 \ 8) \ (4 \ 7) \ (5 \ 6) \ (9),$
 $(xb_1)^5 = (xb_2)^5 = (1 \ 2 \ 3 \ 8) \ (4) \ (5) \ (6) \ (7) \ (9).$

Thus if G has an element of order 8, then G has an element consisting of one 4-cycle or one 4-cycle and two 2-cycles.

Suppose that G has an element x consisting of one 4-cycle and two 2-cycles. We may assume that

$$x = (1 \ 2 \ 3 \ 4) \ (5 \ 6) \ (7 \ 8) \ (9)$$
.

Since $x \in N_G(G_{1234})$, x commutes with an involution a of G_{1234} . a is one of the following forms:

(i)
$$a = (1)(2)(3)(4)(9)(56)(78)$$
,

(ii)
$$a = (1)(2)(3)(4)(9)(57)(68)$$
.

If a is of the form (i), then

$$xa = (1 \ 2 \ 3 \ 4) \ (9) \ (5) \ (6) \ (7) \ (8)$$
.

If a is of the form (ii), then $a \in N_G(G_{1257})$. Hence a commutes with one of the following elements of G_{1257} :

$$b_1 = (1)(2)(5)(7)(68)(3)(49),$$

$$b_2 = (1)(2)(5)(7)(68)(4)(39)$$
,

$$b_3 = (1)(2)(5)(7)(68)(9)(34)$$
.

Then we have

$$xb_1 = (1 \ 2 \ 3 \ 9 \ 4) \ (5 \ 8 \ 7 \ 6),$$

$$xb_2 = (1 \ 2 \ 9 \ 3 \ 4) \ (5 \ 8 \ 7 \ 6)$$
,

$$xb_3 = (1 \ 2 \ 4) \ (3) \ (5 \ 8 \ 7 \ 6)$$
.

Thus

$$(xb_1)^5 = (xb_2)^5 = (xb_3)^{-3} = (1)(2)(3)(4)(5876)(9)$$
.

Hence if G has an element of order 8 or consisting of one 4-cycle and two 2-cycles, then G has an element consisting of one 4-cycle. Therefore we may assume that G has an element x of the form

$$x = (1 \ 2 \ 3 \ 4) \ (5) \ (6) \ (7) \ (8) \ (9)$$
.

Then

$$x^2 = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \ (7) \ (8) \ (9)$$
.

Since $x^2 \in N_G(G_{1356})$, x^2 commutes with an involution a of G_{1356} . Then a is of the form

$$a = (1)(3)(5)(6)(24)(i_1)(i_2 i_3),$$

where $\{i_1, i_2, i_3\} = \{7, 8, 9\}$. Then we have

$$xa = (1 \ 4) \ (2 \ 3) \ (5) \ (6) \ (i_1) \ (i_2 \ i_3)$$
.

Thus if G has an odd permutation, then G has an element consisting of three 2-cycles.

Therefore finally suppose that G has an element x consisting of three 2-cycles. We may assume that

$$x = (1\ 2)\ (3\ 4)\ (5\ 6)\ (7)\ (8)\ (9)$$
.

Since $x \in N_G(G_{5678})$, x commutes with an involution a of G_{5678} . a is one of the following forms:

(i)
$$a = (1\ 2)\ (3\ 4)\ (5)\ (6)\ (7)\ (8)\ (9)$$
.

(ii)
$$a = (1 \ 3) \ (2 \ 4) \ (5) \ (6) \ (7) \ (8) \ (9)$$
.

If a is of the form (i), then

$$xa = (1)(2)(3)(4)(56)(7)(8)(9)$$
.

Thus xa is a transposition, which is a contradiction. Thus a must be of the form (ii). On the other hand $x \in N_G(G_{1256})$. Hence x commutes with an involution b of G_{1256} , and b is of the form

104 Т. Оуама

$$b = (1) (2) (5) (6) (3 4) (i_1) (i_2 i_3),$$

where $\{i_1, i_2, i_3\} = \{7, 8, 9\}$. Then

$$ab = (1 \ 4 \ 2 \ 3) \ (5) \ (6) \ (i_1) \ (i_2 \ i_3)$$
.

Thus we have

$$x(ab)^2 = (1)(2)(3)(4)(56)(7)(8)(9),$$

which is also a contradiction. Therefore $G \leq A_9$.

Case III.
$$|I(P)| = 7$$
, $N_G(P)^{I(P)} \le A_7$.

Let $I(P) = \{1, 2, \dots, 7\}$. The proof of this case will be given in various steps:

(1) P is elementary abelian.

Proof. If P has an element

$$x = (1)(2)\cdots(7)(891011)\cdots$$

then $x \in N_G(G_{89101})$. Hence x normalizes some Sylow 2-subgroup P' of G_{89101} . By assumption, $x^{I(P)} \in N_G(P')^{I(P')} \leq A_7$. Thus x has a 2-cycle, contrary to the semi-regularity of P. Therefore P has no element of order 4, whence P is elementary abelian.

(2)
$$|\Omega| \ge 15$$
.

Proof. Let

$$a = (1)(2)\cdots(7)(89)\cdots$$

be an involution of P. Then $a \in N_G(G_{1289})$. Hence a commutes with an involution b of G_{1289} . By assumption, |I(b)| = 7 and $b^{I(a)} \in A_7$. Hence we may assume

$$b = (1)(2)(3)(45)(67)(8)(9)(10)(11)\cdots$$

Then we have

$$a = (1)(2)\cdots(7)(89)(1011)\cdots$$

Since $\langle a, b \rangle < N_G(G_{4589})$, there is an involution c of G_{4589} commuting with a and b. By assumption, |I(c)| = 7, $c^{I(a)} \in A_7$ and $c^{I(b)} \in A_7$. Hence we may assume

$$c = (1) (2 \ 3) (4) (5) (6 \ 7) (8) (9) (10 \ 11) (12) (13) \cdots$$

Then we have

$$a = (1) (2) \cdots (7)(8 \ 9) (10 \ 11) (12 \ 13) \cdots,$$

 $ac = (1) (2 \ 3) (4) (5) (6 \ 7) (8 \ 9) (10) (11) (12 \ 13) \cdots.$

Since ac is an involution and $|I(ac)| \ge 5$, |I(ac)| = 7. Thus ac fixes two more points in $\{14, 15, \dots, n\}$. Hence $|\Omega| \ge 15$.

(3) One of the following holds:

Case i. $N_G(P)^{I(P)}$ is transitive.

- $(i. i) N_G(P)^{I(P)} = A_7.$
- (i. ii) $N_G(P)^{I(P)}$ is isomorphic to $LF_2(7)$, which will be denoted by A_7^* .

Case ii. $N_G(P)^{I(P)}$ has two orbits, say Δ and Γ .

- (ii. i) $|\Delta|=1$ and $|\Gamma|=6$. $N_G(P)^{I(P)}$ is A_6 on Γ , which will be denoted by A_6 .
- (ii. ii) $|\Delta|=1$ and $|\Gamma|=6$. $N_G(P)^{I(P)}$ is isomorphic to A_5 on Γ , which will be denoted by A_6^* .
- (ii. iii) $|\Delta|=2$ and $|\Gamma|=5$. $N_G(P)^{I(P)}$ is $N_{A_7}(A_5)$, which will be denoted by $N(A_5)$.
- (ii. iv) $|\Delta|=3$ and $|\Gamma|=4$. $N_G(P)^{I(P)}$ is $N_{A_7}(A_4)$, which will be denoted by $N(A_4)$.
- (ii. v) $|\Delta| = 3$ and $|\Gamma| = 4$. $N_G(P)^{I(P)} = N_{A_7} * (K_4)$ where K_4 is a regular four group on Γ . $N_{A_7} * (K_4)$ will be denoted by $N(K_4)$.

Proof. Let

$$a = (1) (2) \cdots (7)(i j) \cdots$$

be an involution of P. For any two points i_1 and i_2 of I(a), $a \in N_G(G_{i_1 i_2 i_j})$. Hence there is an involution $x_{i_1 i_2}$ of $G_{i_1 i_2 i_j}$ commuting with a. Set $a_{i_1 i_2} = (x_{i_1 i_2})^{I(a)}$, Then

$$a_{i_1 i_2} = (i_1) (i_2) (i_3) (i_4 i_5)(i_6 i_7)$$
,

where $\{i_1, i_2, \dots, i_7\} = \{1, 2, \dots 7\}$. Let T be the restriction of the group generated by all involutions of $C_G(a)_{i,j}$ on I(a). Then $a_{i_1,i_2} \in T$.

- (3.1) Suppose that T is transitive. By § 166 of [1], T is A_7 or isomorphic to $LF_2(7)$. If $T=LF_2(7)$, then $T=\langle (1\ 2\ 3\ 6\ 4\ 5\ 7),\ (2\ 3\ 4)\ (5\ 6\ 7),\ (2\ 7\ 6\ 3)(4\ 5)\rangle$.
- (3.2) Suppose that T has an orbit of length 1. Let $\{1\}$ be the orbit of length 1 and set $\Gamma = \{2, 3, \dots, 7\}$. Then for any two points i_1 and i_2 of Γ there is an involution $a_{i_1 i_2}$ of the form

$$a_{i_1 i_2} = (1) (i_1) (i_2) (i_3 i_4) (i_5 i_6).$$

Thus $\langle a_{i_1 i_2} \rangle$ is a 2-group fixing exactly two points i_1 and i_2 of Γ . Hence from a lemma of D. Livingstone and A. Wagner [3. Lemma 6] T_1 is a doubly transitive group on Γ . Hence from § 166 in [1] T_1 is A_6 or isomorphic to A_5 on Γ . In the second case $T = \langle (2\ 3\ 4)(5\ 7\ 6),\ (3\ 4\ 5\ 7),\ (3\ 7)\ (5\ 6) \rangle$.

(3.3) Suppose that T has an orbit of length 2. Let $\{1, 2\}$ be the orbit of length 2 and set $\Gamma = \{3, 4, \dots, 7\}$. For any point i_1 of Γ there is an involution a_{1i_1} of the form

$$a_{1 i_1} = (1) (2) (i_1) (i_2 i_3)(i_4 i_5)$$
.

T. OYAMA

Hence from Lemma 6 of [3] T_{12} is transitive on Γ . By §166 in [1] T_{12} is A_5 or a group of order 10 generated by (3 4 5 6 7) and (3 4)(5 7). Assume $|T_{12}|=10$. Then there is an element a_{34} of the form

$$a_{34} = (1\ 2)\ (3)\ (4)\ (j_1)(j_2\,j_3)$$
.

Set $y = (3 \ 4 \ 5 \ 6 \ 7)$. Since $\langle y \rangle$ is the unique Sylow 5-subgroup of T_{12} and $a_{34} \in N_T(T_{12})$, $a_{34} y a_{34} = y^r$ where r = 1, 2, 3 or 4. But this is impossible since $a_{34} y a_{34} = (3 \ 4 \cdots)$. Thus $|T_{12}| \neq 10$. Hence $T_{12} = A_5$ and so $T = N_{A_7}(A_5)$.

(3.4) Suppose that T has an orbit of length 3. Let $\{1, 2, 3\}$ be the orbit of length 3. Set $\Delta = \{1, 2, 3\}$ and $\Gamma = \{4, 5, 6, 7\}$. For any two points i_1 and i_2 of Γ there is an involution $a_{i_1 i_2}$ such that $(a_{i_1 i_2})^{\Gamma} = (i_1)(i_2)(i_3 i_4)$. Hence again by Lemma 6 of [3] T^{Γ} is doubly transitive. Thus $T^{\Gamma} = S_4$. Since $T \leq A_7$, $|T_{\Gamma}| = 1$ or 3. For any point j_1 of Δ there is an involution $a_{j_1 i_2}$ such that $(a_{j_1 i_2})^{\Delta} = (j_1)(j_2 j_3)$. Hence similarly T^{Δ} is transitive on Δ , and so $T^{\Delta} = S_3$.

First assume $|T_{\Gamma}|=3$. Then

$$|T_{\Delta}| = |T|/|T^{\Delta}| = |T_{\Gamma}| \cdot |T^{\Gamma}|/|T^{\Delta}| = 3 \cdot |S_{\Delta}|/|S_{\Delta}| = 12$$
.

Hence $T_{\Delta} = A_4$ and $T \leq N_{A_7}(A_4)$. On the other hand

$$|T| = |T_{\Gamma}| \cdot |T^{\Gamma}| = 3 \cdot |S_4| = |N_{A_7}(A_4)|$$
.

Thus $T=N_{A_7}(A_4)$.

Next assume $|T_{\Gamma}|=1$. Then

$$|T_{\Delta}| = |S_4|/|S_3| = 4.$$

Hence T_{Δ} is a regular four-group of degree 4, which is denoted by K_4 . Since $|T_{\Gamma}|=1$, $T \leq N_{A_7}(K_4)$. Since $T \simeq T^{\Gamma} = S_4$, $K_4 = \langle (1) \ (2) \ (3) \ (45) \ (67)$, (1) (2) (3) (4 5) (5 6)> and $T = \langle (1) \ (2) \ (3) \ (45) \ (67)$, (1 2) (3) (4) (6) (57), (1) (23) (4) (5) (67)>. Thus $T < A_7 *$ and so $T = N_{A_7} * (K_4)$.

(3.5) Suppose that T has an orbit with length greater than 3. Then obviously T is one of the groups above.

Now $T \leq N_G(G_{I(P)})^{I(P)}$. By Lemma 2 of [10] $N_G(G_{I(P)})^{I(P)} = N_G(P)^{I(P)}$. Hence $T \leq N_G(P)^{I(P)} \leq A_7$. Thus $N_G(P)^{I(P)}$ is one of the groups above.

REMARK. Since T is contained in $(C_G(a)_{i,j})^{I(a)}$ for a 2-cycle (i,j) of a, we denote T by $\mathfrak{T}_{i,j}(a)$.

(4) Let x be an arbitrary involution of G. Then |I(x)|=7.

Proof. Since $|\Omega|$ is odd, |I(x)| is odd. Let x be of the form

$$x = (i j) (k l) \cdots$$
.

Then x normalizes some Sylow 2-subgroup P' of $G_{i,j,k,l}$. By assumption $x^{I(P)} \in A_7$. Therefore $|I(x)| \ge 3$. If $|I(x)| \ge 4$, then |I(x)| = 7 by assumption.

Suppose by way of contradiction that |I(x)|=3. We may assume that x is of the form

$$x = (1)(2)(3)(45)(67)(89)\cdots$$

Since $x \in N_G(G_{4567})$, there is an involution a of G_{4567} commuting with x. Since |I(a)| = 7 and $x^{I(a)} \in A_7$, $I(a) = \{1, 2, \dots, 7\}$.

First assume that x and a have the same 2-cycle (8, 9) namely

$$a = (1) (2) \cdots (7) (8 9) \cdots$$

Then ax is an involution and $|I(ax)| \supset \{1, 2, 3, 8, 9\}$. Hence |I(ax)| = 7. Thus x and a have two 2-cycles in common. Therefore we may assume that

$$x = (1) (2) (3) (45) (67) (89) (1011) \cdots$$

$$a = (1) (2) \cdots (7) (8 9) (10 11) \cdots$$

Then $\langle a, x \rangle$ is semi-regular on $\{12, 13, \dots, n\}$. On the other hand since $\langle a, x \rangle$ $\langle N_G(G_{4589})$, there is an involution b of G_{4589} commuting with a and x. Since $b^{I(a)} \in A_7$ and $b^{I(ax)} \in A_7$, we may assume that

$$b = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) \cdots$$

Since |I(b)|=7, b fixes exactly two more points of $\{12, 13, \dots, n\}$. But this is impossible since $b \in C_G(\langle a, x \rangle)$ and $\langle a, x \rangle$ is semi-regular on $\{12, 13, \dots, n\}$.

Thus a and x have not the same 2-cycle. Therefore we may assume that

$$x = (1)(2)(3)(45)(67)(89)(1011)\cdots$$

$$a = (1)(2)\cdots(7)(8\ 10)(9\ 11)\cdots$$

Let (i_1j_1) be an arbitrary 2-cycle of x other than (45). Then x normalizes some Sylow 2-subgroup P' of $G_{45i_1j_1}$. Since $x \in N_G(P')^{I(P')} \leq A_7$, $I(P') = \{1, 2, 3, 4, 5, i_1, j_1\}$. Hence P' is also a Sylow 2-subgroup of G_{12345} . By the conjugacy of Sylow 2-subgroups of G_{12345} we have that for any other 2-cycle (i_2j_2) ($\pm(45)$) of x there is an element of G_{12345} which takes $\{i_1, j_1\}$ into $\{i_2, j_2\}$. Therefore the number of G_{12345} -orbits in Ω - $\{1, 2, 3, 4, 5\}$ is one or two. If it is one, then since $P' \leq G_{12345i_1}$, $|\Omega| - 5 = |G_{12345}$: G_{12345i_1} is odd, which is a contradiction. Hence it must be two and 6 and 7 belong to different orbits of G_{12345} , say T_6 and T_7 respectively. Obviously $|T_6| = |T_7| > 1$. Thus G_{1234} is transitive or has three orbits $\{5\}$, T_6 , T_7 on $\{5, 6, \dots, n\}$ since P' is also a Sylow 2-subgroup of G_{1234} .

Now since $\langle a, x \rangle < N_G(G_{8\,9\,10\,11})$, there is an involution c of $G_{8\,9\,10\,11}$ commuting with a and x. Since $x^{I(c)} \in A_7$, c fixes $\{1, 2, 3\}$ pointwise. Hence by the same argument as is used above for a x and c have not the same 2-cycle. Since $c^{I(a)} \in A_7$, we have

$$c = (1) (2) (3) (4 6) (5 7) (8) (9) (10) (11) \cdots$$

108 Т. Оуама

Since $\langle x, c \rangle < G_{123}$ and $\{4, 5, 6, 7\}$ is a $\langle x, c \rangle$ -orbit, G_{123} is transitive on $\Omega - \{1, 2, 3\}$.

Next since $\langle a, c \rangle < N_G(G_{_{_{6\,8\,10}}})$, there is an involution d of $G_{_{_{6\,8\,10}}}$ commuting with a and c. Since $d^{I(a)} \in A_7$, we may assume that

$$d = (1) (2 3) (4) (6) (5 7) (8) (10) (9 11) \cdots$$

Then $d \in N_G(G_{1234})$. Hence if G_{1234} is intransitive on $\{5, 6, \dots, n\}$, then d must fix the G_{1234} -orbit $\{5\}$, which is impossible. Thus G_{1234} is transitive on $\{5, 6, \dots, n\}$.

Therefore $G_{1\,2\,3}$ is doubly transitive on $\{4, 5, \cdots, n\}$. Since $G_{1\,2\,3\,4\,5}$ has two orbits of odd length in $\{6, 7, \cdots, n\}$, $G_{1\,2\,3\,4\,6}$ has exactly two orbits of odd length in $\{5, 7, 8, \cdots, n\}$ by the doubly transitivity of $G_{1\,2\,3}$. Since $a \in G_{1\,2\,3\,4\,6}$ and a fixes exactly two points 5 and 7 of $\{5, 7, 8, \cdots, n\}$, 5 and 7 belong to different $G_{1\,2\,3\,4\,6}$ orbits, say T_5 and T_7 respectively. Since $d \in N_G(G_{1\,2\,3\,4\,6})$ d fixes two orbits T_5 and T_7 or interchanges them. But this is impossible since d has a 2-cycle $(5\,7)$ and fixes a point 8. This contradiction shows that $|I(x)| \neq 3$. Hence |I(x)| = 7.

(5)
$$|\Omega| \ge 23$$
 and $|\Omega| - 7 \equiv 0 \pmod{8}$.

Proof. By (2) $|\Omega| \ge 15$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) (12 13) (14 15) \cdots$$

be an involution of P. Then there is an involution b of G_{1289} commuting with a. Since |I(b)| = |I(ab)| = 7, we may assume that b is of the form

$$b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15) \cdots$$

Since $\langle a, b \rangle < N_G(G_{4589})$, there is an involution c of G_{4589} commuting with a and b. Since |I(c)| = |I(ac)| = |I(bc)| = |I(abc)| = 7, we may assume that c is of the form

$$c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) (14 15) \cdots$$

Suppose $|\Omega| > 15$. Since $\langle a, b, c \rangle$ is an elementary abelian group and every involutions of $\langle a, b, c \rangle$ fix exactly seven points of $\{1, 2, \dots, 15\}$, $\langle a, b, c \rangle$ is semi-regular on $\{16, 17, \dots, n\}$. Since $|\langle a, b, c \rangle| = 8$, $|\Omega| = 15 + 8k$ where $k \ge 1$. Hence

$$|\Omega| \ge 23$$
 and $|\Omega| - 7 \equiv 0 \pmod{8}$.

Therefore to complete the proof we must show that $|\Omega| = 15$. Suppose by way of contradiction that $|\Omega| = 15$. Since $b^{I(a)}$ and $c^{I(a)}$ are elements of $\mathfrak{T}_{8,9}(a)$, we may assume that $\mathfrak{T}_{8,9}(a)$ is one of the following:

- (a) $\mathfrak{T}_{8,9}(a) = A_7 \text{ or } A_7^*,$
- (b) $\mathfrak{T}_{8,9}(a) = A_6$ or A_6^* , and its orbits are $\{1\}$ and $\{2, 3, \dots, 7\}$.
- (c) $\mathfrak{T}_{8,9}(a)=N(A_5)$ and its orbits are $\{2,3\}$ and $\{1,4,5,6,7\}$,

(d) $\mathfrak{T}_{8,9}(a) = N(A_4)$ or $N(K_4)$, and its orbits are $\{1, 2, 3\}$ and $\{4, 5, 6, 7\}$. First assume that $\mathfrak{T}_{8,9}(a) \pm A_6^*$. Since $b^{I(a)} = (1) (2) (3) (4 5) (6 7)$, by (3) there is an involution x of $C_G(a)_{8,9}$ such that x is of the form

$$x = (1)(2)(3)(46)(57)(8)(9)\cdots$$

Then we have

$$bx = (1)(2)(3)(47)(56)(8)(9)\cdots$$

Since $|I(bx)| \ge 5$, bx is of order 2r where r is odd. Hence $y = (bx)^r$ is an involution commuting with b and so |I(y)| = |I(by)| = 7. Since $y^{I(b)} \in A_7$

$$y = (1)(2)(3)(47)(56)(8)(9)(10)(11)(1214)(1315).$$

Then we have

$$ay = (1)(2)(3)(47)(56)(89)(1011)(1215)(1314).$$

Thus ay is an involution fixing exactly three points, which contradicts (4).

Next assume that $\mathfrak{T}_{8,9}(a) = A_6^*$. Since $b^{I(a)} = (1) (2) (3) (4.5) (6.7)$ and $c^{I(a)} = (1) (2.3) (4) (5) (6.7)$ belong to $\mathfrak{T}_{8,9}(a)$, by (3) there is an involution z of $C_G(a)_{8,9}$ such that z is of the form

$$z = (1)(2)(6)(35)(47)(8)(9)\cdots$$

Since az fixes three points 1, 2, 6 of $\{1, 2, \dots, 9\}$, az fixes four more points of $\{10, 11, \dots, 15\}$. Therefore z must be one of the following forms:

- (i) $z = (1)(2)(6)(35)(47)(8)(9)(1011)\cdots$,
- (ii) z=(1) (2) (6) (3 5)(4 7) (8) (9) (12 13) ...

If z is of the form (i), then

$$bz = (1) (2) (3 5 7 6 4) (8) (9) (10 11) \cdots$$

Hence $(bz)^5$ is of even order and fixes at least nine points, which is a contradiction. If z is of the form (ii), then

$$cz = (1) (2 5 3) (4 7 6) (8) (9) (12 13) \cdots$$

Then similarly we have a contradiction. Thus $|\Omega| \neq 15$.

(6) If $|P| \ge 4$, then $|P| \ge 8$ and $G_{I(P)}$ is transitive on $\Omega - I(P)$. In particular if $N_G(P)^{I(P)} = A_6^*$, $N(A_5)$, $N(A_4)$ or $N(K_4)$, then P and $G_{I(P)}$ have these properties.

The proof is by steps.

(6.1) If
$$N_G(P)^{I(P)}$$
 is A_6^* , $N(A_5)$, $N(A_4)$ or $N(K_4)$, then $|P| \ge 4$.

Proof. We may assume that if $N_G(P)^{I(P)} = A_6^*$, then its orbits are {1} and {2, 3, ..., 7}, if $N_G(P)^{I(P)} = N(A_5)$, then its orbits are {2, 3} and {1, 4, 5, 6, 7}

110 T. Oyama

and if $N_G(P)^{I(P)} = N(A_4)$ or $N(K_4)$, then its orbits are $\{1, 2, 3\}$ and $\{4, 5, 6, 7\}$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) \cdots$$

be an involution of P. Then there is an involution b of G_{4589} commuting with a. By the assumption on the orbits of $N_G(P)^{I(P)}$ we may assume that

$$b = (1) (2 \ 3) (4) (5) (6 \ 7) (8) (9) (10) (11) (12 \ 13) (14 \ 15) (16 \ 18) (17 \ 19) \cdots$$

Furthermore there is an involution c of $G_{16 \ 17 \ 18 \ 19}$ commuting with a and b. Since $a^{I(c)} \in A_7$ and $b^{I(c)} \in A_7$,

$$c = (1) (4) (5) (2 6) (3 7) (16) (17) (18) (19) \cdots$$

or

$$c = (1) (4) (5) (2 3) (6 7) (16) (17) (18) (19) \cdots$$

Suppose that c is of the first form. If $N_G(P)^{I(P)} = N(A_5)$, $N(A_4)$ or $N(K_4)$, then 2 and 6 belong to different orbits, which is a contradiction. If $N_G(P)^{I(P)} = A_6^*$, then $|(N_G(P)^{I(P)})_{145}| = 2$, which is also a contradiction. Thus c must be of the second form. Then we have

$$bc = (1)(2)\cdots(7)(16\ 18)(17\ 19)\cdots$$

Hence $\langle a, bc \rangle$ is a four-group in $G_{I(P)}$. Thus a Sylow 2-subgroup P of $G_{I(P)}$ is of order at least 4.

(6.2) If
$$|P| \ge 4$$
, then $|P| \ge 8$ and $G_{I(P)}$ is transitive on $\Omega - I(P)$.

Proof. Suppose by way of contradiction that |P|=4. Since P is a semi-regular elementary abelian group, the automorphisum group A(P) of P is isomorphic to S_3 . Obviously $A(P) \ge N_G(P)/C_G(P)$. If $N_G(P)_{I(P)} \ge C_G(P)$, then $N_G(P)/N_G(P)_{I(P)}$ is a homomorphic image of a subgroup of A(P). But this is impossible since $N_G(P)/N_G(P)_{I(P)} \cong N_G(P)^{I(P)}$ and $A(P) \cong S_3$. Hence $N_G(P)_{I(P)} \ge C_G(P)$. Thus $N_G(P)^{I(P)} \ge C_G(P)^{I(P)} \ge 1$.

First suppose $N_G(P)^{I(P)} = A_7$, A_7^* , A_6 or A_6^* . Then $N_G(P)^{I(P)}$ is a simple group. Hence $N_G(P)^{I(P)} = C_G(P)^{I(P)}$.

Next suppose $N_G(P)^{I(P)} = N(A_5)$, $N(A_4)$ or $N(K_4)$. Then we may assume that $N_G(P)^{I(P)}$ has the orbits mentioned in (6.1). We have also three involutions a, b and c, which are used in the proof of (6.1). Since |P| = 4, we may assume that $P = \langle a, bc \rangle$. Then $b^{I(P)} = (1) (2 3) (4) (5) (6 7) \in C_G(P)^{I(P)}$. Since $b^{I(P)}$ is not contained in a proper normal subgroup of $N_G(P)^{I(P)}$ in these cases, $N_G(P)^{I(P)} = C_G(P)^{I(P)}$.

Now $N_G(P)/N_G(P)_{I(P)} \stackrel{\triangleright}{=} (C_G(P) \cdot N_G(P)_{I(P)})/N_G(P)_{I(P)}$. Since $N_G(P)/N_G(P)_{I(P)} \cong N_G(P)/N_G(P)_{I(P)} \cong C_G(P)/N_G(P)_{I(P)} \cap C_G(P) = C_G(P)/C_G(P)_{I(P)} \cong C_G(P)/N_G(P)_{I(P)}, \ N_G(P)/N_G(P)_{I(P)} = (C_G(P) \cdot N_G(P)_{I(P)})/N_G(P)_{I(P)}$. Hence $N_G(P) = C_G(P) \cdot N_G(P)_{I(P)}$. Thus $N_G(P)/C_G(P) = (C_G(P) \cdot N_G(P)/N_G(P))/N_G(P)/N_G(P)/N_G(P) = (C_G(P) \cdot N_G(P)/N$

 $N_G(P)_{I(P)}/C_G(P) \cong N_G(P)_{I(P)}/C_G(P) \cap N_G(P)_{I(P)} = N_G(P)_{I(P)}/C_G(P)_{I(P)}$. On the other hand P is a Sylow 2-subgoup of $N_G(P)_{I(P)}$ and contained in $C_G(P)_{I(P)}$. Hence $|N_G(P)_{I(P)}/C_G(P)_{I(P)}|$ is odd and so $|N_G(P)/C_G(P)|$ is odd. Therefore every 2-elements of $N_G(P)$ belong to $C_G(P)$.

Let

$$a = (1)(2) \cdots (7)(89) \cdots$$

be an involution of P. For an arbitrary 2-cycle (ij) of a other than $(8\ 9)$, there is an involution x of $G_{8\ 9\ i\ j}$ commuting with a. Then x normalizes some Sylow 2-subgroup P' of $G_{I(P)}$ containing a. By the argument above $x \in C_G(P')$. Since |P'| = 4 and x fixes exactly four points 8, 9, i, j of $\Omega - I(P'), P'$ has an involution

$$a' = (1)(2)\cdots(7)(8 i)(9 j)\cdots$$

Therefore $\langle a, a' \rangle$ is a subgroup of $G_{I(P)}$ and $\langle a, a' \rangle$ is transitive on $\{8, 9, i, j\}$. Since (ij) is an arbitrary 2-cycle of a other than (8 9), $G_{I(P)}$ is transitive on $\Omega - I(P)$. Since $|\Omega - I(P)| \equiv 0 \pmod{8}$ by (5), $|G_{I(P)}| \equiv 0 \pmod{8}$. But a Sylow 2-subgroup of $G_{I(P)}$ is of order 4, which is a contradiction. Thus $|P| \geq 8$.

Next we shall prove that $G_{I(P)}$ is transitive on $\Omega - I(P)$. Let

$$a = (1)(2)\cdots(7)(89)\cdots$$

be an involution of P. For an arbitrary 2-cycle (ij) of a other than $(8\ 9)$, there is an involution x of $G_{8\ 9\ i}$, commuting with a. Then x normalizes smoe Sylow 2-subgroup P' of $G_{I(P)}$ containing a. If x commutes with only two elements of P', then by a theorem of P'. Zassenhaus [12, Satz 5] P' contains a cyclic group of index 2. Since $|P'| \ge 8$ and P' is elementary abelian, we have a contradiction. Thus x commutes with some involution of P' other than a. Therefore by the same argument above we have that $G_{I(P)}$ is transitive on $\Omega - I(P)$.

(7)
$$N_G(P)^{I(P)} \neq N(A_5)$$
.

Proof. Suppose by way of contradiction that $N_G(P)^{I(P)} = N(A_5)$. We may assume that $N_G(P)^{I(P)}$ -orbits are $\{1, 2\}$ and $\{3, 4, \dots, 7\}$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) (12 13) (14 15) \cdots$$

be an involution of P. Since $\mathfrak{T}_{8,9}(a) \leq N_G(P)^{I(P)} = N(A_5)$, $\mathfrak{T}_{8,9}(a) = N(A_5)$. Therefore there are involutions

$$b = (1)(2)(3)(45)(67)(8)(9) \cdots$$

and

$$c = (1)(2)(3)(46)(57)(8)(9) \cdots$$

such that b and c commute with a. Then we have

$$bc = (1)(2)(3)(47)(56)(8)(9)\cdots$$

112 T. Oyama

Since $|I(bc)| \ge 5$, bc is of order 2r where r is odd. Therefore $d=(bc)^r$ is an involution commuting with b. Since |I(b)| = |I(ab)| = 7, we may assume that

$$b = (1) (2) (3) (45) (67) (8) (9) (10) (11) (1213) (1415) \cdots$$

Then since $d^{I(b)} \in A_7$,

$$d = (1)(2)(3)(47)(56)(8)(9)(10)(11)\cdots$$

Since $\langle b, d \rangle$ is of order 4, $G_{1\,2\,3\,8\,9\,10\,11}$ is transitive on $\Omega - \{1, 2, 3, 8, 9, 10, 11\}$ by (6). Since $N_G(P)^{I(P)} = N(A_5)$, also by (6) $G_{1\,2...7}$ is transitive on $\Omega - \{1, 2, ..., 7\}$. Thus $G_{1\,2\,3}$ is transitive on $\{4, 5, ..., n\}$.

On the other hand $\{3, 4, \dots, 7\}$ is the orbit of $N_G(P)$. Hence G_{12} is transitive on on $\{3, 4, \dots, n\}$. Therefore G is transitive on Ω or G-orbits are $\{1, 2\}$ and $\{3, 4, \dots, n\}$.

Now suppose that G-orbits are $\{1, 2\}$ and $\{3, 4, \dots, n\}$. There is an involution f of G_{4589} commuting with a and b. Since $\{1, 2\}$ is the G-orbit.

$$f = (1\ 2)\ (3)\ (4)\ (5)\ (6\ 7)\ (8)\ (9)\ (10\ 11)\ (12)\ (13)\ (14\ 15)\ \cdots$$

Since G_{1458} fixes {2}, a Sylow 2-subgroup of G_{1458} is also a Sylow 2-subgroup of G_{12458} . Since $\langle b, f \rangle < N_G(G_{12458})$, there is an involution x of G_{12458} commuting with b and f. Let $I(x) = \{1, 2, 4, 5, 8, i_1, i_2\}$. Then

$$b^{I(x)} = (1) (2) (4 5) (8) (i_1 i_2),$$

$$f^{I(x)} = (1\ 2)\ (4)\ (5)\ (8)\ (i_1\ i_2)$$
.

Hence $(i_1 i_2) = (6 7)$ or (14 15).

First assume that $(i_1 i_2) = (6.7)$. Then $I(x) = \{1, 2, 4, 5, 6, 7, 8\}$. Since $\{1, 2\}$ is the G-orbit, $N_G(G_{I(x)})^{I(x)} = N(A_5)$. Hence $G_{I(x)}$ is transitive on $\Omega - I(x)$ by (6). On the other hand $G_{1 2 \dots 7}$ is transitive on $\{8, 9, \dots, n\}$. Hence $G_{1 2 4 5 6 7}$ is transitive on $\{3, 8, 9, \dots, n\}$. Since a Sylow 2-subgroup of $G_{1 2 4 5 6 7}$ is a Sylow 2-subgroup of $G_{1 2 4 5 6}$ and $|\{3, 7, 8, \dots, n\}|$ is even, $G_{1 2 3 4 5 6}$ has two orbits $\{7\}$, $\{3, 8, \dots, n\}$ on $\{3, 7, 8, \dots, n\}$. Since $N_G(P)^{I(P)} = N(A_5)$, there is an element

$$z = (1\ 2)\ (3\ 7)\ (4)\ (5)\ (6)\ \cdots$$

Since $z \in N_G(G_{12456})$, z fixes the G_{12456} -orbit $\{7\}$, which is a contradiction.

Next assume that $(i_1 i_2) = (14 15)$. Then $I(x) = \{1, 2, 4, 5, 8, 14, 15\}$. Since $x^{I(b)} \in A_7$ and $x^{I(f)} \in A_7$,

$$x = (1) (2) (4) (5) (8) (14) (15) (3 9) (10 11) (6 7) (12 13) \cdots$$

Then we have

$$ax = (1) (2) (3 9 8) (4) (5) (6 7) (10) (11) (12) (13) \cdots$$

Thus ax is of even order and $|I(ax)| \ge 8$, which is a contradiction.

Therefore G must be transitive on Ω . Let R be a Sylow 2-subgroup of

 $N_G(P)_1$. Since $N_G(P)^{I(P)} = N(A_5)$, R has three orbits of length 1 and one orbit of length 4 on I(P). On the other hand since $|P| \ge 8$, R-orbits in $\Omega - I(P)$ are of length at least 8. Therefore if Q be a 2-group of G_1 containing R as a normal subgroup, then Q fixes I(P). Since $R_{I(P)} = P$, Q normalizes P. Thus $Q \in N_G(P)_1$ and so Q = R, namely R is a Sylow 2-subgroup of G_1 . Similarly a Sylow 2-subgroup R' of $N_G(P)_3$ is a Sylow 2-subgroup of G_3 . By assumption R' has the orbit $\{1, 2\}$ of length 2. Since G is transitive, G_1 is conjugate to G_3 . Hence R is conjugate to R', which is impossible.

Thus there is no group such that $N_G(P)^{I(P)} = N(A_5)$.

(8)
$$N_G(P)^{I(P)} \neq N(A_4)$$
 and $N(K_4)$.

Proof. Suppose by way of contradiction that $N_G(P)^{I(P)} = N(A_4)$ or $N(K_4)$. We may assume that $N_G(P)^{I(P)}$ -orbits are $\{1, 2, 3\}$ and $\{4, 5, 6, 7\}$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) \cdots$$

be an involution of P. As in the proof of (7) there are commuting involutions b and d in $C_G(a)_{8,9}$:

$$b = (1) (2) (3) (45) (67) (8) (9) (10) (11) \cdots$$

$$d = (1) (2) (3) (47) (56) (8) (9) (10) (11) \cdots$$

Let R and R' be Sylow 2-subgroups of $N_G(P)_1$ and $N_G(P)_4$ respectively. Since $N_G(P)^{I(P)} = N(A_4)$ or $N(K_4)$, by the same argument as in the proof of (7) $G_{1\,2\,3}$ is transitive on $\{4, 5, \dots, n\}$, and R and R' are Sylow 2-subgroups of G_1 and G_4 respectively. Since R fixes exactly one point and R' fixes exactly two points, R and R' are not conjugate in G. Thus G_1 and G_4 are not conjugate in G and hence G is intransitive on Ω .

Therefore G has exactly two orbits $\{1, 2, 3\}$ and $\{4, 5, \dots, n\}$. Set $\Delta = \{4, 5, \dots, n\}$. Since $(a, b) < N_G(G_{4589})$, there is an involution f of G_{4589} commuting with a and b. Then we may assume that

$$f = (1) (2 \ 3) (4) (5) (6 \ 7) (8) (9) (10 \ 11) (12) (13) \cdots$$

Let P' be a Sylow 2-subgroup of G_{4589} containing f. Since $\{1, 2, 3\}$ is the G-orbit, $\{1\}$ is a $N_G(P')^{I(P')}$ -orbit. Hence $N_G(P')^{I(P')} = A_6$ or A_6^* .

Since $\{5, 6, 7\}$ is the $N_G(P)_4$ -orbit, $\{5, 8, 9, 12, 13\}$ is the $N_G(P')_4$ -orbit and $\{8, 9, \dots, n\}$ is the $G_{I(P)}$ -orbit, G_4 is transitive on $\Omega - \{4\}$.

Since $\{4, 5, 6, 7\}$ is the $N_G(P)$ -orbit, P is a Sylow 2-subgroup of G_{456} and $|I(P) \cap \Delta| = 4$. On the other hand since $\{1\}$ and $\{2, 3, \dots, 7\}$ are the $N_G(P')$ -orbits, P' is a Sylow 2-subgroup of G_{458} and $|I(P') \cap \Delta| = 6$. Thus P and P' are not conjugate in G_{45} and hence G_{45} is intransitive on $\Delta - \{4, 5\}$.

Therefore G_{45} has two orbits $\{6, 7\}$ and $\{8, 9, \dots, n\}$ on $\Delta - \{4, 5\}$. Let P'' be a Sylow 2-subgroup of G_{4568} . Then P'' fixes one or three points of the G-orbit $\{1, 2, 3\}$. If $I(P'') = \{1, 2, \dots, 6, 8\}$, then $\{1, 2, 3\}$ is a $N_G(P'')$ -orbit.

114 T. OYAMA

Hence $N_G(P'')^{I(P'')} = N(A_4)$ or $N(K_4)$. By the same argument as is used for P, $\{6, 8\}$ is a G_4 5-orbit, which is a contradiction. Therefore $I(P'') = \{j_1, 4, 5, 6, 8, k_1, k_2\}$, where $j_1 \in \{1, 2, 3\}$ and $\{k_1, k_2\} \subset \Omega - \{1, 2, 3, 4, 5, 6, 8\}$. Then $\{j_1\}$ is a $N_G(P'')^{I(P'')}$ -orbit. Thus $N_G(P'')^{I(P'')} = A_6$ or A_6 *. Since P'' has an orbit of length 2 in $\{1, 2, 3\}$ and is semi-regular, |P''| = 2. Therefore by $(6) N_G(P'')^{I(P'')} = A_6$. Hence $\{6, 8, k_1, k_2\}$ is a $N_G(P'')_{4,5}$ -orbit, which is a contradiction.

Thus we have no group such that $N_G(P)^{I(P)} = N(A_4)$ or $N(K_4)$.

(9)
$$N_G(P)^{I(P)} \neq A_6^*$$
. If $N_G(P)^{I(P)} = A_6$, then $|P| = 2$.

Proof. If $N_G(P)^{I(P)} = A_6^*$, then $|P| \ge 8$ by (6). Therefore suppose by way of contradiction that $N_G(P)^{I(P)} = A_6$ or A_6^* and $|P| \ge 4$. We may assume that $N_G(P)^{I(P)}$ -orbits are $\{1\}$ and $\{2, 3, \dots, 7\}$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) \cdots$$

be an involution of P. Since $a \in N_G(G_{2389})$, there is an involution b of G_{2389} commuting with a. We may assume

$$b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) \cdots$$

Let P' be a Sylow 2-subgroup of $G_{I(b)}$ containing b.

Assume that G is intransitive on Ω . By (6) $G_{I(P)}$ is transitive on $\{8, 9, \dots, n\}$, and $\{1\}$, $\{2, 3, \dots, 7\}$ are $N_G(P)^{I(P)}$ -orbits. On the other hand $I(b) = \{1, 2, 3, 8, 9, 10, 11\}$ and $N_G(G_{I(b)})^{I(b)} = A_7$, A_7^* , A_6 or A_6^* . Therefore G has two orbits $\{1\}$ and $\{2, 3, \dots, n\}$. Then $G = G_1$ satisfies the condition (*) of [9], which is a contradiction. Thus G must be transitive on Ω .

Since $|P| \ge 8$ by (6), a Sylow 2-subgroup of $N_G(P)_1$ is a Sylow 2-subgroup of G_1 and fixes exactly one point. Similarly a Sylow 2-subgroup of $N_G(P)_2$ is a Sylow 2-subgroup of G_2 and fixes exactly three points. Thus G_1 and G_2 are not conjugate in G, which contradicts the transitivity of G. Thus we complete the proof of (9).

(10) There are four points i, j, k and l of Ω such that a Sylow 2-subgroup of $G_{i,j,k,l}$ is of order at least 4.

Proof. Suppose by way of contradiction that for any four points i, j, k and l a Sylow 2-subgroup of $G_{i,j,k,l}$ is of order 2. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) \cdots$$

be an involution. Since $a \in N_G(G_{8,9,10,11})$, there is an involution b of $G_{8,9,10,11}$ commuting with a. We may assume that

$$b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15) (16 18) (17 19) \cdots$$

Since $\langle a, b \rangle < N_G(G_{16 \ 17 \ 18 \ 19})$, there is an involution c of $G_{16 \ 17 \ 18 \ 19}$ commuting with a and b. Then $c^{I(a)}$ is one of the following:

- (i) $c^{I(a)} = (1)(23)(4)(5)(67)$,
- (ii) $c^{I(a)} = (1)(2)(3)(45)(67)$,

(iii)
$$c^{I(a)} = (1)(2)(3)(46)(57)$$
.

Assume $c^{I(a)}$ is of the form (i). Since $c^{I(b)} \in A_7$,

$$c = (1) (2 \ 3) (4) (5) (6 \ 7) (8) (9) (10 \ 11) (16) (17) (18) (19) \cdots$$

Thus $|I(c)| \ge 9$, which is a contradiction.

Next assume that $c^{I(a)}$ is of the form (ii). Then $\langle bc, a \rangle$ is a subgroup of $G_{I(P)}$ and of order 4, contrary to the assumption.

Therefore $c^{I(a)}$ must be of the form (iii). Then similarly $c^{I(b)}$ and $a^{I(b)}$ have no 2-cycle in common, $c^{I(ab)}$ and $a^{I(ab)}$ also have no 2-cycle in common. Therefore

$$c = (1) (2) (3) (4 6) (5 7) (8 10) (9 11) (12 14) (13 15) (16) (17) (18) (19) \cdots$$

On the other hand $\langle a, b \rangle < N_G(G_{4589})$. Hence there is an involution d of G_{4589} commuting with a and b. Then

$$d = (1) (2 \ 3) (4) (5) (6 \ 7) (8) (9) (10 \ 11) (12) (13) (14 \ 15) \cdots$$

Therefore we have

$$cd = (1) (2 \ 3) (4 \ 7 \ 5 \ 6) (8 \ 11 \ 9 \ 10) (12 \ 15 \ 13 \ 14) \cdots$$

$$a(cd)^2 = (1)(2)(3)(45)(67)(8)(9)\cdots(14)\cdots$$

Thus $a(cd)^2$ is of even order and $|I(a(cd)^2)| \ge 11$, which is a contradiction. Thus (10) is proved.

(11)
$$G=M_{23}$$
.

Proof. By (10) we may assume that $|P| \ge 4$. Then by (6) and (9) $N_G(P)^{I(P)} = A_7$ or A_7^* and $G_{I(P)}$ is transitive on $\Omega - I(P)$. Hence G is transitive on Ω or has two orbits $\{1, 2, \dots, 7\}$ and $\{8, 9, \dots, n\}$. Let

$$a = (1) (2) \cdots (7) (8 9) (10 11) \cdots$$

be an involution of P. Since $a \in N_G(G_{1289})$, there is an involution b of G_{1289} commuting with a. We may assume that

$$b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) \cdots$$

By (9) $N_G(G_{I(b)})^{I(b)} = A_7$, A_7^* or A_6 . Hence G is transitive on Ω .

Now we may assume that if $N_G(G_{I(b)})^{I(b)} = A_6$ then its orbits are $\{1\}$ and $\{2, 3, 8, 9, 10, 11\}$. Then since $G_{I(P)}$ is transitive on $\{8, 9, \dots, n\}$, and $\{2, 3, \dots, 7\}$ is an orbit of $N_G(P)_1$, G_1 is transitive on $\{2, 3, \dots, n\}$.

Since $b^{I(a)} \in N_G(P)^{I(P)}$, $\{4, 5, 6, 7\}$ is a $N_G(P)_{123}$ -orbit. Hence G_{123} is transitive or has two orbits $\{4, 5, 6, 7\}$ and $\{8, 9, \dots, n\}$ on $\{4, 5, \dots, n\}$. Set $|P| = 2^r$ where $r \ge 3$. Since $G_{I(P)}$ is transitive on $\Omega - I(P)$ and P is semi-regular, $|\Omega - I(P)| = 2^r \cdot s$ where s is odd. On the other hand a Sylow 2-subgroup

116 Т. ОУАМА

Q of $N_G(P)_{123}$ is also a Sylow 2-subgroup of G_{123} . Hence $|Q|=2^r\cdot 4$ and there is at least one Q-orbit T in $\Omega-I(P)$, which is of length 2^r . Let i be a point of T. Then $|Q_i|=4$ and Q_i is a 2-group of G_{123i} . Thus $G_{I(Q_i)}$ is transitive on $\Omega-I(Q_i)$ by (6). Since $i \in \{4, 5, 6, 7\}$, $I(Q_i) \supseteq \{4, 5, 6, 7\}$. Therefore G_{123} is transitive on $\{4, 5, \dots, n\}$.

Hence this implies that G_{12} is transitive or has two orbits $\{3\}$ and $\{4, 5, \dots, n\}$ on $\{3, 4, \dots, n\}$. If G_{12} is transitive on $\{3, 4, \dots, n\}$, then G is 4-fold transitive on Ω . Since a Sylow 2-subgroup P of G_{1234} is semi-regular, $G=M_{23}$ by a theorem of [8].

Thus to complete the proof of (11) we must show that G_{12} is transitive. Hence suppose by way of contradiction that G_{12} has two orbits {3} and {4, 5, ..., n} on {3, 4, ..., n}. Then $N_G(P)^{I(P)} = A_7^*$. Since G is doubly transitive on Ω , any stabilizer of two points in G fixes exactly three points. Therefore $N_G(G_{I(b)})_{12}$ fixes at least three points. Hence $N_G(G_{I(b)})^{I(b)} = A_7^*$. On the other hand since $\langle a, b \rangle < N_G(G_{4589})$, there is an involution c of G_{4589} commuting with a and b. We may assume

$$c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) \cdots$$

Now b normalizes some Sylow 2-subgroup P' of $G_{I(a)}$ containing a. Since P' is conjugate to P, $|P'| \ge 8$ and $N_G(P')^{I(P')} = A_7^*$. If b commutes with only two elements 1 and a of P', then by a theorem of H. Zassenhaus [12, Satz 5] P' has a cyclic subgroup of order at least 4, which is a contradiction. Therefore there is an involution a' of P' which is different from a and commutes with b. We may assume

$$a' = (1) (2) \cdots (7) (8 \ 10) (9 \ 11) \cdots$$

Since $\langle a', b \rangle < N_G(G_{45810})$, there is an involution c' of G_{45810} commuting with a' and b. Then c and c' fix two points 4,5 and have the same 2-cycle (6.7) in I(P). Since $N_G(G_{I(P)})^{I(P)} = A_7^*$, $c^{I(P)} = c'^{I(P)}$. Thus we have

$$c' = (1) (2 3) (4) (5) (6 7) (8) (10) (9 11) \cdots$$

Then

$$(cc')^{I(b)} = (1)(2)(3)(8)(91110),$$

which is a contradiction since $(cc')^{I(b)} \in A_7^*$. Thus we complete the proof.

3. Proof of Theorem 2

By Corollary of [10] |I(P)|=4, 5 or 7 and $N_G(P)^{I(P)}=S_4$, S_5 or A_7 respectively. If P is a semi-regular abelian group, then $G=S_6$, S_7 , A_8 , A_9 or M_{23} by a theorem of [8]. Therefore from now on we assume by way of contradiction that P is not semi-regular.

We shall treat the following three cases separately:

Case I.
$$|I(P)| = 4$$
 and $N_G(P)^{I(P)} = S_4$.

Case II.
$$|I(P)| = 5$$
 and $N_G(P)^{I(P)} = S_5$.

Case III.
$$|I(P)| = 7$$
 and $N_G(P)^{I(P)} = A_7$.

Case I.
$$|I(P)| = 4$$
 and $N_G(P)^{I(P)} = S_4$.

Let $|I(P_{t_1t_2})|$ is the smallest number such that $t_1 \in \Omega - I(P)$ and $t_2 \in \Omega - I(P_{t_1})$. For any four points i, j, k and l of $I(P_{t_1t_2})$ let P' be a Sylow 2-subgroup of $G_{i j k l}$ containing $P_{t_1t_2}$. Since P' is abelian, $P' \subseteq N_G(P_{t_1t_2})$. By minimality of $|I(P_{t_1t_2})|$ for any point t of $I(P_{t_1t_2}) - I(P') (P_t')^{I(P_{t_1t_2})}$ is a semi-regular group (≥ 1). Thus $N_G(P_{t_1t_2})^{I(P_{t_1t_2})}$ satisfies the conditions (i), (ii) and (iii) of the following lemma.

Therefore to complete the proof of this case it is sufficient to prove the following lemma.

Lemma 1. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following three conditions:

- (i) |I(P)| = 4.
- (ii) P is a non-identity abelian group.
- (iii) For any point t of $\Omega I(P)$ P_t is a semi-regular group (≥ 1) . Then P is semi-regular.

Proof. For any four points of Ω there is a 2-group fixing exactly these four points by (i). Hence by the lemma of [3] G is 4-fold transitive on Ω . Assume by way of contradiction that P is not semi-regular. Then there is a point t of $\Omega - I(P)$ such that P_t is a non-identity semi-regular group by (iii). By Corollary $N_G(P_t)^{I(P_t)} = S_s$, A_8 or M_{12} . Since P is abelian, $N_G(P_t)^{I(P_t)} \neq M_{12}$. Furthermore since $|I(P_t) - I(P)| = 2$ or 4, t belongs to a P-orbit of length 2 or 4, and a non-identity element of P fixes 4, 6 or 8 points of Ω . Since there is no 4-fold transitive group of degree less than 35 except known one [2. p. 80], the degree of G is not less than 35.

From now on we assume that P is a Sylow 2-subgroup of G_{1234} .

(1) Suppose that P has exactly one orbit of length 2. We may assume that this orbit is $\{5, 6\}$. Let

$$a = (1)(2)\cdots(6)(78)\cdots$$

be an involution of P_5 . Since P is abelian, there is an element (1)(2)(3)(4)(5 6) \cdots in $C_G(P_5)$. Since $(1)(2)(3)(4)(5 6) \in C_G(P_5)^{I(P_5)} \stackrel{\triangleleft}{=} N_G(P_5)^{I(P_5)} = S_6$, $N_G(P_5)^{I(P_5)} = C_G(P_5)^{I(P_5)}$. Hence $N_G(P_5) = C_G(P_5) \cdot N_G(P_5)_{I(P_5)}$. By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_G(P_5)$ belong to $C_G(P_5)$.

Since $a \in N_G(G_{1278})$, a normalizes a Sylow 2-subgroup P' of G_{1278} . By the

118 Т. Оуама

4-fold transitivity of G P' has exactly one orbit $\{i_1, i_2\}$ of length 2. Then a fixes $\{i_1, i_2\}$ as a set. Hence a commutes with an involution b of P'_{i_1} . Since |I(b)| = 6,

$$b = (1) (2) (7) (8) (i_1) (i_2) \cdots$$

First suppose that a fixes $\{i_1, i_2\}$ pointwise. Then we may assume that $\{i_1, i_2\} = \{3, 4\}$. Thus we have

$$a = (1) (2) \cdots (6) (7 \ 8) \cdots$$
,
 $b = (1) (2) (3) (4) (5 \ 6) (7) (8) \cdots$.

Let P'' be a Sylow 2-subgroup of G_{1234} containing $\langle a, b \rangle$. Since P'' is abelian, $\{5, 6\}$ and $\{7, 8\}$ are P''-orbits of length 2, which is a contradiction.

Next suppose that a has a 2-cycle $(i_1 i_2)$. We may assume that $(i_1 i_2)$ =(9 10). Then

$$a = (1) (2) \cdots (6) (7 8) (9 10) \cdots,$$

 $b = (1) (2) (3 4) (5 6) (7) (8) (9) (10) \cdots.$

Since $\langle a,b\rangle < N_G(G_{3478}), \langle a,b\rangle$ normalizes a Sylow 2-subgroup P''' of G_{3478} . By the same argument above a and b have the same 2-cycle on a P'''-orbit of length 2. We may assume that this P'''-orbit is $\{11,12\}$. Then $\langle a,b\rangle < C_G(P'''_{11})$ and $I(P''_{11})=\{3,4,7,8,11,12\}$. Since P'''_{11} is semi-regular on $\Omega-I(P'''_{11})$ and $I(\langle a,b\rangle)\cap\{\Omega-I(P'''_{11})\}=\{1,2\}, |P'''_{11}|=2$. Hence |P|=|P'''|=4. By Theorem 1 of [7] P is elementary abelian. Let c be an involution of P'''_{11} . Then we have

$$a = (1) (2) \cdots (6) (7 8) (9 10) (11 12) \cdots,$$

 $b = (1) (2) (3 4) (5 6) (7) (8) (9) (10) (11 12) \cdots,$
 $c = (1 2) (3) (4) (5 6) (7) (8) (9 10) (11) (12) \cdots.$

Since $\langle b, c \rangle < N_G(G_{1\,2\,3\,4})$, $\langle b, c \rangle$ normalizes a Sylow 2-subgroup Q of $G_{1\,2\,3\,4}$ containing a. Then Q is semi-regular on $\{7, 8, \dots, n\}$, and Q-orbits in $\{7, 8, \dots, n\}$ are of length 4. Since $I(\langle b, c \rangle) \cap \{7, 8, \dots, n\} = \{7, 8\}$, $\langle b, c \rangle$ fixes a Q-orbit containing 7 and 8, say $\{7, 8, j_1, j_2\}$. Then there is an involution

$$a' = (1) (2) (3) (4) (5 6) (7 j_1) (8 j_2) \cdots$$

of Q. If b has a 2-cycle $(j_1 j_2)$, then

$$ba' = (1)(2)(34)(5)(6)(7j_18j_2)\cdots$$

Thus ba' is of order 4 and contained in $G_{1\,2\,5\,6}$. Since a Sylow 2-subgroup of $G_{1\,2\,5\,6}$ is elementary abelian, we have a contradiction. If b fixes $\{7, 8, j_1, j_2\}$ pointwise, then $\{7, 8, j_1, j_2\} = \{7, 8, 9, 10\}$. Then we have

$$ca' = (1\ 2)\ (3)\ (4)\ (5)\ (6)\ (7\ j_1\ 8\ j_2)\ \cdots$$

which is also a contradiction.

Therefore it is impossible that P has only one orbit of length 2.

(2) Suppose that P has at least two orbits of length 2. Then P is an elementary abelian group of order 4 and any involution of P fixes four or six points in Ω . Let r be a number of P-orbits of length 2, and s a number of involutions of P fixing six points. Since for any P-orbit of length 2 there is exactly one involution of P such that it fixes this P-orbit pointwise, s=r. Since $r \ge 2$ and $s \le 3$, r=s=2 or 3. We may assume that P-orbits of length 2 are $\{5, 6\}, \{7, 8\}, \cdots$. Then there are two involutions

$$a = (1) (2) \cdots (6) (7 8) \cdots,$$

 $b = (1) (2) (3) (4) (5 6) (7) (8) \cdots$

such that $\langle a, b \rangle = P$.

Assume that r=s=2. Since $N_G(P_5)^{I(P_5)}=S_6$, there is a 2-element

$$x = (1)(2)(3456)\cdots$$

in $N_G(P_s)$ such that $\langle x, P \rangle$ is a 2-group. Then $x^2 \in N_G(P)$. Since x^2 fixes the P-orbit $\{5, 6\}$, x^2 fixes also the P-orbit $\{7, 8\}$. Thus $\langle x^2, P \rangle$ has exactly three orbits $\{3, 4\}$, $\{5, 6\}$, $\{7, 8\}$ of length 2. Since $x \in N_G(\langle x^2, P \rangle)$ and x takes $\{3, 4\}$ into $\{5, 6\}$, x fixes $\{7, 8\}$ as a set. By taking xa instead of x if necessary, we may assume that

$$x = (1)(2)(3546)(7)(8)\cdots$$

Then $\langle x, b \rangle$ is a non-abelian 2-group, which is a contradiction.

Thus r=s=3. Then P has one more orbit of length 2, say $\{9\ 10\}$. Hence

$$a = (1) (2) \cdots (6) (7 8) (9 10) \cdots,$$

 $b = (1) (2) (3) (4) (5 6) (7) (8) (9 10) \cdots.$

Since $P < N_G(G_{5678})$, there is an involution c of G_{5678} such that $c \in C_G(P)$. By assumption |I(c)| = 6. Hence $|I(c) \cap I(P)| = 2$ or 0.

First assume that $|I(c) \cap I(P)| = 2$. Then we may assume that

$$c = (1)(2)(34)(5)(6)(7)(8)\cdots$$

Since $c^{I(P)} = (1)(2)(34) \in C_G(P)^{I(P)} \stackrel{\underline{\triangleleft}}{=} N_G(P)^{I(P)} = S_4$, $C_G(P)^{I(P)} = N_G(P)^{I(P)}$. By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_G(P)$ belong to $C_G(P)$. Hence there is a 2-element

$$y = (1 \ 3 \ 2 \ 4) \cdots$$

in $C_G(P)$ such that $\langle y, c, P \rangle$ is a 2-group. Since $y \in C_G(P)$, y fixes the three P-orbits $\{5, 6\}, \{7, 8\}, \{9, 10\}$ as a set. Therefore y, ya, yb or yab fixes $\{5, 6, 7, 8\}$ pointwise, and so one of these elements and c generate a non-abelian 2-group of $G_{5,6,7,8}$, which is a contradiction.

120 Т. Очама

Next assume that $|I(c) \cap I(P)| = 0$. Then we may assume that

$$c = (1\ 2)\ (3\ 4)\ (5)\ (6)\ (7)\ (8)\ (9)\ (10)\ \cdots$$

Since $P < N_G(G_{5678})$, P normalizes a Sylow 2-subgroup P' of G_{5678} containing c. Then $\{9, 10\}$ is a P'-orbit. Furthermore P fixes a P'-orbit containing $\{1, 2\}$. If $\{1, 2\}$ is a P'-orbit then $a \in C_G(P')$. Since $a^{I(P')} = (5)$ (6) (7 8), from the same reason as above we have a contradiction. Therefore the length of the P'-orbit containing $\{1, 2\}$ is $\{1, 2, 3, 4\}$. Then also $a \in C_G(P')$. Hence similarly we have a contradiction.

Thus the minimal P-orbit is of length 4 and any involution of P fixes four or eight points.

(3) Suppose that the minimal P-orbit on Ω -I(P) is of length 4 and P has exactly one orbit of length 4. We may assume that there is an involution

$$a = (1)(2)\cdots(8)(9\ 10)(11\ 12)\cdots$$

in P such that a fixes exactly eight points. Since $a \in N_G(G_{1 \ 2 \ 9 \ 10})$, a normalizes a Sylow 2-subgroup P' of $G_{1 \ 2 \ 9 \ 10}$. By assumption P' has exactly one orbit of length 4. Hence a fixes this P'-orbit, and hence a commutes with an invlution b of P' which fixes exactly eight points. Since $b^{I(a)} \in A_8$ and $a^{I(b)} \in A_8$, we may assume that

$$b = (1)(2)(3)(4)(56)(78)(9)(10)(11)(12) \cdots$$

Since a Sylow 2-subgroup P'' of $G_{1\,2\,3\,4}$ containing $\langle a,b\rangle$ has not an orbit of length 2, P'' has two orbits $\{5,6,7,8\}$ and $\{9,10,11,12\}$ of length 4, which is a contradiction. Thus P has at least two orbits of length 4.

(4) Suppose that a minimal P-orbit on Ω -I(P) is of length 4 and P has at least two orbits of length 4. Then we may assume that P-orbits of length 4 are $\{5, 6, 7, 8\}$, $\{9, 10, 11, 12\}$, \cdots . Since $|P:P_5|=4$ and $|P_5|=2$ or $\{1, P|=8\}$ or 16. If P has an element of order 4, then this element has a 4-cycle on $\{5, 6, 7, 8\}$ or $\{9, 10, 11, 12\}$. But this is a contracidtion since $N_G(P_5)^{I(P_5)}=N_G(P_9)^{I(P_9)}=A_8$. Thus P is elementary abelian.

First assume that |P|=16. Then we may assume that there are three involutions

$$a = (1)(2)\cdots(8)(9\ 10)(11\ 12)\cdots,$$

$$b = (1)(2) \cdots (8)(9 11)(10 12) \cdots$$

$$c = (1)(2)(3)(4)(56)(78)(9)(10)(11)(12) \cdots$$

in P. Since $c^{I(P_5)} = (1) (2) (3) (4) (5 6) (7 8) \in C_G(P_5)^{I(P_5)} \stackrel{\triangleleft}{=} N_G(P_5)^{I(P_5)} = A_8$, $C_G(P_5)^{I(P_5)} = N_G(P_5)^{I(P_5)} = A_8$. Hence there is an involution

$$d = (1)(2)(34)(5)(6)(78)\cdots$$

in $C_G(P_5)$ such that d is conjugate to c. Then we have

$$cd = (1)(2)(34)(56)(7)(8)\cdots$$

Since $|I(cd)| \ge 4$, cd is of order 2r where r is odd. Hence $x=(cd)^r$ is an involution commuting with a, b and c. Since $x^{I(c)} \in A_8$,

$$x^{I(c)} = (1)(2)(34)(i)(j)(kl)$$

where $\{i, j, k, l\} = \{9, 10, 11, 12\}$. On the other hand $\langle a, b \rangle$ is regular on $\{9, 10, 11, 12\}$. Therefore $x \notin C_G(\langle a, b \rangle)$, which is a contradiction.

Next assume that |P|=8. Then there is involutions

$$a = (1)(2)\cdots(8)(9\ 10)(11\ 12)\cdots$$

$$b = (1)(2)(3)(4)(56)(78)(9)(10)(11)(12)\cdots$$

in P. From the same argument as above there is an involution

$$x = (1)(2)(34)(56)(7)(8) \cdots$$

commuting with a and b. Since $x^{I(b)} \in A_8$, we may assume that

$$x = (1) (2) (3 4) (5 6) (7) (8) (9) (10) (11 12) \cdots$$

If |I(ab)| = 8, then we have

$$a = (1)(2)\cdots(8)(9\ 10)(11\ 12)(13\ 14)(15\ 16)\cdots$$

$$b = (1)(2)(3)(4)(56)(78)(9)(10)(11)(12)(1314)(1516)\cdots$$

$$x = (1)(2)(34)(56)(7)(8)(9)(10)(1112)(13)(14)(1516)\cdots$$

Since |P| = 8, there is an invluiton

$$c = (1) (2) (3) (4) (5 7) (6 8) (9 11) (10 12) (13 15) (14 16) \cdots$$

In P. Then we have

$$cx = (1) (2) (3 4) (5 7 6 8) (9 12 10 11) (13 16 14 15) \cdots$$

$$a(cx)^2 = (1)(2)(3)(4)(56)(78)(9)(10)\cdots(15)\cdots$$

Thus $a(cx)^2$ is of even order and $|I(a(cx)^2)| \ge 12$, which is a contradiction.

Next if |I(ab)|=4, then $\langle a,b\rangle$ is semi-regular on $\{13,14,\cdots,n\}$. On the other hand x fixes six points of $\{1,2,\cdots,12\}$. Hence x fixes exactly two points of $\{13,14,\cdots,n\}$, contrary to the result that $x\in C_G(\langle a,b\rangle)$. The lemma is proved.

Case II.
$$|I(P)| = 5$$
 and $N_G(P)^{I(P)} = S_5$.

Let t be a point of Ω -I(P) such that t belongs to the minimal P-orbit. Since |I(P)|=5, by Corollary $|I(P_t)|=7$, 9 or 13. If $|I(P_t)|=13$, then $N_G(P_t)^{I(P_t)}=S_1\times M_{12}$, which is a contradiction since P is abelian. Therefore $|I(P_t)|=7$ or 9 and t belongs to a P-orbit of length 2 or 4. From now on we assume that $I(P)=\{1,2,\cdots,5\}$.

122 Т. Оуама

(1) First we shall ahow that if $|I(P_t)| = 9$, then t belongs to a P-orbit of length 4. Assume by way of contradiction that t is a point of a P-orbit of length 2. Set $I(P_t) = \{1, 2, \dots, 9\}$ and $H = N_G(P_t)^{I(P_t)}$. Since $|P: P_t| = 2$, a Sylow 2-subgroup of the stabilizer of any four points in H is of order 2 and $H \leq A_g$.

If H_i is transitive on $\{1, 2, \dots, 9\} - \{i\}$ for any point i of $I(P_t)$, then H is doubly transitive. Since H has an involution consisting of two 2-cycles, $H = A_0$. This is a contradiction. Therefore we may assume that H_1 is intransitive on $\{2, 3, \dots, 9\}$.

First assume that H_1 has an orbit of length 1 in $\{2, 3, \dots, 9\}$. Then we may assume that this orbit is $\{2\}$. Set $\Delta = \{3, 4, \dots, 9\}$. For any three points i_1 , i_2 and i_3 of Δ there is an involution

$$x = (1) (2) (i_1) (i_2) (i_3) (i_4 i_5) (i_6 i_7).$$

Thus x fixes exactly these three points i_1 , i_2 and i_3 . From Lemma 6 of [3] $H_{1,2}$ is 3-fold transitive on Δ . By § 166 in [1], $H_{1,2}=A_7$. Hence a Sylow 2-subgroup of $H_{1,2,3,4}$ is of order 4, which is a contradiction.

Next assume that H_1 has an orbit of length 2. Then we may assume that $\{2,3\}$ is the H_1 -orbit. Set $\Delta = \{4,5,\cdots,9\}$. For any two points i_1 and i_2 of Δ there is an involution

$$x = (1) (2) (3) (i_1) (i_2) (i_3 i_4) (i_5 i_6).$$

Then from the same reason as above, $H_{1\ 2\ 3}$ is doubly transitive on Δ . On the other hand there is an involution (1) (2 3) (j_1) (j_2) (j_3) (j_4) $(j_5\ j_6)$. Thus $H_1^{\Delta} = S_6$. Hence there is an involution

$$y = (1) (2) (3) (i_1) (i_2) (i_3 i_5) (i_4 i_6).$$

Then $\langle x, y \rangle$ is a 2-group of $H_{1\,2\,3\,i_1}$ and of order 4, which is a contradiction. For the remaining cases by the same argument as above we have also a contradiction. Thus we complete the proof.

- (2) Next we shall show that if t is a point of a P-orbit of length 2, then $|I(P_t)| = 7$ and $C_G(P_t)^{I(P_t)} = S_7$. Let t be a point of a P-orbit $\{6, 7\}$. Then by (1) $I(P_6) = \{1, 2, \dots, 7\}$. For any four points i_1, i_2, i_3 and i_4 of $I(P_6)$ there is a Sylow 2-subgroup P' of $G_{i_1 i_2 i_3 i_4}$ containing P_6 . Set $C = C_G(P_6)^{I(P_6)}$. Since P' is abelian, $P' < C_G(P_6)$. Thus C has an involution (i_1) (i_2) (i_3) (i_4) (i_5) $(i_6 i_7)$. By the same argument as in (1) we have that C is one of the following groups:
 - (i) If C is transitive on $I(P_6)$, then by Theorem 8.3 and Theorem 13.3 of [11] $C=S_7$.
 - (ii) If C has two orbits of length 1 and 6, then $C = S_1 \times S_6$. We may assume that the C-orbits are $\{1\}$ and $\{2, 3, \dots, 7\}$.
 - (iii) If C has two orbits of length 2 and 5, then $C=S_2\times S_5$. We may assume that the C-orbits are $\{1, 2\}$ and $\{3, 4, \dots, 7\}$.

(iv) If C has two orbits of length 3 and 4, then $C=S_3\times S_4$. We may assume that C-orbits are $\{1, 2, 3\}$ and $\{4, 5, 6, 7\}$.

Since $N_G(P)^{I(P)} = S_5$, there is a 2-element

$$x = (1 \ 4) (2) (3) (5) \cdots$$

in $N_G(P)$.

First suppose that $\{6, 7\}^x = \{6, 7\}$. Since P has an element $y = (1)(2)\cdots(5)(67)\cdots$, x or xy is of the form $(14)(2)(3)(5)(6)(7)\cdots$. Therefore we may assume that

$$x = (1 \ 4) (2) (3) (5) (6) (7) \cdots$$

Since $\langle x, P_6 \rangle < G_{23567}$, $x \in C_G(P_6)$. On the other hand $C = C_G(P_6)^{I(P_6)}$ is one of the groups listed above. Hence the points 1 and 4 are contained in the same C-oribt. Thus $C = S_7$.

Next suppose that $\{6,7\}^x \neq \{6,7\}$. Set $\{8,9\} = \{6,7\}^x$. Since $x^2 \in P$, $\{8,9\}^x = \{6,7\}^{x^2} = \{6,7\}$. Hence $x \in N_G(P_{6\,8})$. Set $H = N_G(P_{6\,8})$ and $\Delta = I(P_{6\,8})$. Since $C_G(P_{6\,8}) > C_G(P_6)$, $H > \langle x, C_G(P_6) \rangle$. On the other hand C is one of the groups listed above. Therefore x and all elements of C fixing the set $I(P) = \{1, 2, \dots, 5\}$ generate S_5 on I(P). Thus $N_H(H_{I(P)})^{I(P)} = S_5$. New P^Δ is an elementary abelian group of order 4 and a Sylow 2-subgroup of $(H^\Delta)_{I(P)}$. Hence $N_{H^\Delta}(P^\Delta)^{I(P)} = N_{H^\Delta}(H^\Delta_{I(P)})^{I(P)} = S_5$. Since the automorphism group of P^Δ is a subgroup of P^Δ and $P^\Delta = P^\Delta = P^\Delta$ is a subgroup of this automorphism group, $P^\Delta = P^\Delta = P^\Delta$. Since $P^\Delta = P^\Delta = P^\Delta$ is an element

$$y = (1 \ 4) (2 \ 3) (5) (6) (7) \cdots$$

such that $y^{\Delta} \in C_{H^{\Delta}}(P^{\Delta})$. Thus $N_G(G_{I(P_6)})^{I(P_6)} \ge \langle y, C_G(P_6) \rangle^{I(P_6)} = S_7$. Since P_6 is a Sylow 2-subgroup of $G_{I(P)}$, $N_G(P_6)^{I(P_6)} = N_G(G_{I(P_6)})^{I(P_6)} = S_7$. Furthermore $N_G(P_6)^{I(P_6)} \ge C$ and C has a transposition. Therefore $C = S_7$.

(3) Suppose that P has exactly one orbit of length 2. Let $\{t_1, t'_1\}$ be the P-orbit of length 2, and let t_2 be a point of the minimal P_{t_1} -orbit on Ω - $I(P_{t_1})$. Since P is abelian, $I(P_{t_1,t_2})$ -I(P) consists of one P-orbit of length 2 and several P-orbits of length at least 4. Thus $|I(P_{t_1,t_2})|$ - $5\equiv 2 \pmod{4}$.

Set $H = N_G(P_{t_1 \ t_2})$ and $\Delta = I(P_{t_1 \ t_2})$. For any four points i_1, i_2, i_3 and i_4 of Δ let P' be a Sylow 2-subgroup of $G_{i_1 \ i_2 \ i_3 \ i_4}$ containing $P_{t_1 \ t_2}$. Then $P' \triangleright P_{t_1 \ t_2}$ and P'^{Δ} is a Sylow 2-subgroup of $(H^{\Delta})_{i_1 \ i_2 \ i_3 \ i_4}$. Since $|\Delta| - 5 \equiv 2 \pmod{4}$, P'^{Δ} has exactly one orbit $\{u_1, \ u_1'\}$ of length 2. By (2) $I(P'_{u_1}) \neq \Delta$. Since t_2 is the point of the minimal P_{t_1} -orbit, for any point v of $\Delta - I(P'_{u_1}) P_{t_1 \ t_2} = P'_{u_1 v}$. Thus $|P^{\Delta}| = |P'^{\Delta}|$ and $(P^{\Delta})_{u_1 v} = 1$. Since $C_G(P'_{u_1}) < C_G(P'_{u_1 v}) = C_G(P_{t_1 \ t_2}) < H$ and $C_G(P'_{u_1})^{I(P''_{u_1})} = S_7$ by (2), $C_H^{\Delta}(P'_{u_1})^{I(P''_{u_1})} = S_7$.

Thus H^{Δ} satisfies the conditions (i), (ii) and (iii) of the following lemma.

124 Т. Оуама

Hence if we prove the following lemma, then the number of P-orbits of length 2 is greater than 1.

Lemma 2. Let G be a permutation group on $\Omega = \{1, 2, \dots, n\}$. Then it is impossible that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following three conditions:

- (i) |I(P)| = 5 and |P| is constant.
- (ii) P is an abelian group.
- (iii) P has exactly one orbit of length 2. Let t be a point of the orbit of length 2, then $C_G(P_t)^{I(P_t)} = S_7$ and P_t is a non-identity semi-regular group.

Proof. Assume by way of contradiction that G is a counter-example to Lemma 2. Let P be a Sylow 2-subgroup of $G_{1\,2\,3\,4}$ and $I(P)=\{1,\,2,\,3,\,4,\,5\}$. Since P has an orbit of length 2 and some orbits of length at least 4, $|\Omega| \ge 5+2+4=11$. Let $\{6,\,7\}$ be a P-orbit of length 2. By the same argument as in the proof of (1) of Lemma 1, $|\Omega| \ge 13$ and for an involution

$$a = (1)(2)\cdots(7)(89)(1011)(1213)\cdots$$

of P_6 , there is two commuting involutions

$$b = (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) \cdots,$$

 $c = (1) (2 3) (4) (5) (6 7) (8) (9) (10 11) (12) (13) \cdots$

in $C_G(a)$. Moreover P is a cyclic group or an elementary abelian group of order 4

- (a) Suppose that P is an elementary abelian group. Then by the same argument as in the proof (1) of Lemma 1, there is an element (1) (2) (3) (6) (7) (4 5) $(8 j_1 9 j_2) \cdots$ in $G_{1\ 2\ 3\ 6\ 7}$ or (1) (4) (5) (6) (7) (2 3) $(8 j_1 9 j_2) \cdots$ in $G_{1\ 4\ 5\ 6\ 7}$. Since $C_G(P_6)^{I(P_6)} = S_7$, a Sylow 2-subgroup of $G_{1\ 2\ 3\ 6\ 7}$ and a Sylow 2-subgroup of $G_{1\ 4\ 5\ 6\ 7}$ are conjugate to P. But P is an elementary abelian group, which is a contradiction.
- (b) Therefore for any four points i, j, k and l a Sylow 2-subgroup of $G_{i j k l}$ is cyclic. Since $C_G(P_6)^{I(P_6)} = S_7$, there is a 2-element

$$x = (1)(2)(3)(4657)\cdots$$

in $C_G(P_6)$ such that $\langle x, P \rangle$ is a 2-group and $x^2 \in N_G(P)$. Assume that $\langle x, P \rangle$ has an orbit $\{i_1, i_2, i_3, i_4\}$ of length 4, which is different from $\{4, 5, 6, 7\}$. Since P is cyclic, we may assume that

$$d = (1) (2) \cdots (5) (6 7) (i_1 i_2 i_3 i_4) \cdots$$

is the generator of P. If x has a 4-cycle on $\{i_1, i_2, i_3, i_4\}$, then x or x^{-1} is of the the form $(i_1 i_2 i_3 i_4)$ on $\{i_1, i_2, i_3, i_4\}$. Hence

$$x^2 = (1)(2)(3)(45)(67)(i_1 i_2)(i_3 i_4)\cdots$$

Thus $x^2 \in C_G(P)$. If x has not a 4-cycle on $\{i_1, i_2, i_3, i_4\}$, then

$$x^2 = (1) (2) (3) (4 5) (6 7) (i_1) (i_2) (i_3) (i_4) \cdots$$

Thus also $x^2 \in C_G(P)$. On the other hand since $C_G(P_6)^{I(P_6)} = S_7$, $N_G(G_{I(P)})^{I(P)} = N_G(P)^{I(P)} = S_5$. Then $(x^2)^{I(P)} = (1) (2) (3) (4.5) \in C_G(P)^{I(P)} \stackrel{d}{=} N_G(P)^{I(P)} = S_5$. Hence $N_G(P)^{I(P)} = C_G(P)^{I(P)}$. By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_G(P)$ belong to $C_G(P)$. Since $\langle b, c \rangle < N_G(G_{1.2.3.4.5})$, there is a Sylow 2-subgroup P' of $G_{1.2.3.4.5}$ such that $a \in P'$ and $\langle b, c \rangle < N_G(P')$. Since P' is conjugate to P, $\langle b, c \rangle < C_G(P')$. Since P' is of order 2, which is a contradiction.

Therefore $\langle x, P \rangle$ has exactly one orbit of length 4, namely $\{4, 5, 6, 7\}$. Let Q be a 2-group of $G_{1\,2\,3}$ containing $\langle x, P \rangle$ as a normal subgroup. Then Q fixes $\{4, 5, 6, 7\}$. Hence $Q = \langle x, P \rangle$. Thus $\langle x, P \rangle$ is a Sylow 2-subgroup of $G_{1\,2\,3}$. For any point i of $\{4, 5, \cdots, n\}$ let P'' be a Sylow 2-subgroup of $G_{1\,2\,3\,i}$. Then similarly a Sylow 2-subgroup Q' of $G_{1\,2\,3}$ containing P'' has exactly one orbit of length 4, which contains i. By the conjugacy of Sylow 2-subgroups of $G_{1\,2\,3}$ there is an element of $G_{1\,2\,3}$ which takes $\{4, 5, 6, 7\}$ into the Q'-orbit containing i. Thus $G_{1\,2\,3}$ is transitive on $\{4, 5, \cdots, n\}$. On the other nand $C_G(P_6)^{I(P_6)} = S_7$. Hence G is 4-fold transitive on Ω . By Theorem 1 of [7] this is a contradiction. Thus lemma is proved.

(4) Suppose that P has at least two orbits of length 2. Let $\{6,7\}$, $\{8,9\}$... be P-orbits of length 2. Then $I(P_6) = \{1,2,\cdots,7\}$. Since $|P:P_{6|8}| = 4$, $P^{IP_{6|8}}$ is an elementary abelian group of order 4. For any four points i,j,k and l of $I(P_{6|8})$ let P' be a Sylow 2-subgroup of $G_{i,j,k,l}$ containing $P_{6|8}$. Then $|I(P'^{IP_6|8})| = 5$ and $P'^{IP_6|8}$ is a Sylow 2-subgroup of $(N_G(P_{6|8})^{IP_6|8})_{i,j,k,l}$ of order 4. Set $\Delta = I$ $(P_{6|8})$, $H = N_G(P_{6|8})^{IP_6|8}$ and $P^{\Delta} = Q$. Since $C_G(P_6) < C_G(P_{6|8}) \le N_G(P_{6|8})$, $C_H(Q_6)$ $I^{IQ_6} > S_7$.

From now on we deal with H. Then the proof is similar to the proof (2) of Lemma 1. Let r be a number of Q-orbits of length 2 and s a number of involutions of Q. Then r=s=2 or 3.

If r=s=2, then by the same argument as in the proof (2) of Lemma 1 we have a contradiction.

Therefore r=s=3. Hence we may assume that Q has exactly three orbits $\{6, 7\}, \{8, 9\}$ and $\{10, 11\}$ of length 2. Then Q has the following two involutions

$$a = (1)(2)\cdots(7)(89)(1011)\cdots,$$

$$b = (1)(2)\cdots(5)(67)(8)(9)(1011)\cdots$$

Since |Q|=4 and Q is semi-regular on $\{12, 13, \dots, n\}$, $|\Delta|-5\equiv 2 \pmod{4}$. Therefore a Sylow 2-subgroup of the stabilizer of any four points in H has exactly

126 Т. Оуама

one or three orbits of length 2. Since $Q < N_H(H_{6789})$, Q normalizes a Sylow 2-subgroup Q' of H_{6789} . Then Q fixes at least one Q'-orbit of length 2. Thus Q centralizes an involution c of Q' fixing exactly seven points. Since $I(c) \supset \{6, 7, 8, 9\}$, $|I(c) \cap I(Q)| = 3$ or 1.

In the case $|I(c) \cap I(Q)| = 3$ using the same argument as in the proof (2) of Lemma 1, we have a contradiction.

Hence $|I(c) \cap I(Q)| = 1$. Then we may assume that

$$c = (1) (2 3) (4 5) (6) (7) (8) (9) (10) (11) \cdots$$

Since $\langle b,c\rangle < N_H(H_{4\,5\,6\,7})$ and $\langle b,c\rangle < C_H(a)$, $\langle b,c\rangle$ normalizes a Sylow 2-subgroup Q'' of $H_{4\,5\,6\,7}$ containing a. Then $I(Q'')=\{1,4,5,6,7\}$. Since $C_H(Q_6)^{I(Q_6)}=S_7$, $H_{4\,5\,6\,7}$ is conjugate to $H_{1\,2\,3\,4}$, and so Q'' is conjugate to Q. Thus Q'' has exactly three orbits of length 2. If $\{8,9\}$ is a Q''-orbit, then $b\in C_H(Q'')$. Since $|I(b)\cap I(Q'')|=3$, as is shown above, we have a contradiction. Hence the Q''-orbit containing $\{8,9\}$ is of length 4 say $\{8,9,i_1,i_2\}$. If $\{8,9,i_1,i_2\}=\{8,9,10,11\}$, then c belongs to $C_G(Q'')$. Since $|I(c)\cap I(Q'')|=3$, we have also a contradiction. Thus $\{i_1,i_2\}\subset\{12,13,\cdots,n\}$. Since $\langle a,b\rangle$ is semi-regular on $\{12,13,\cdots,n\}$ and a has a 2-cycle $(i_1\,i_2)$, b has not a 2-cycle $(i_1\,i_2)$. Thus $\{i_1,i_2\}^b \neq \{i_1,i_2\}$. On the other hand $b\in N_H(Q'')$. Hence $\{8,9,i_1,i_2\}^b = \{8,9,i_1^b,i_2^b\}$ is a Q''-orbit, which is a contradiction. Thus the minimal P-orbit is of length 4.

(5) We shall ahow that if t belongs to a P-orbit of length 4, then $|I(P_t)| = 9$ and $C_G(P_t)^{I(P_t)} = A_9$ or $S_1 \times A_8$. By the argument above the minimal P-orbit on Ω -I(P) is of length 4 and P is abelian. Hence by Corollary $|I(P_t)| = 9$ and $N_G(P_t)^{I(t)} \le A_9$. Let $I(P_t) = \{1, 2, \dots, 9\}$. Then there are elements

$$a_1 = (1)(2)\cdots(5)(67)(89)\cdots,$$

$$a_2 = (1)(2)\cdots(5)(6\ 8)(7\ 9)\cdots$$

in P. Since $\langle a_1, a_2 \rangle < N_G(G_{6789}) \cap C_G(P_6)$, there is a Sylow 2-subgroup P' of G_{6789} such that $\langle a_1, a_2 \rangle < N_G(P')$ and $P' > P_6$. Since $P' < C_G(P_6)$, we may assume that there are elements

$$b_1 = (1)(23)(45)(6)(7)(8)(9) \cdots$$

$$b_2 = (1) (2 4) (3 5) (6) (7) (8) (9) \cdots$$

in P'. Since $\langle a_1, b_1 \rangle < N_G(G_{2367})$, similarly we may assume that there are elements

$$c_1 = (1)(2)(3)(45)(6)(7)(89)\cdots$$

$$c_2 = (1)(2)(3)(48)(6)(7)(59)\cdots$$

in $C_G(P_6) \cap G_{2367}$. Then $C_G(P_6) > \langle a_1, a_2, b_1, b_2, c_1, c_2 \rangle$. Hence $C_G(P_6)_1$ is transitive on $\{2, 3, \dots, 9\}$. Therefore $C_G(P_6)^{I(P_6)}$ is transitive or has two orbits $\{1\}$ and $\{2, 3, \dots, 9\}$ on $I(P_6)$. If $C_G(P_6)^{I(P_6)}$ is transitive, then $C_G(P_6)^{I(P_6)}$ is doubly transitive.

Since $C_G(P_6)^{I(P_6)}$ has an involution consisting of two 2-cycles, $C_G(P_6)^{I(P_6)} = A_9$. Next suppose that $C_G(P_6)^{I(P_6)}$ is intransitive. Then for any four points of $\{2, 3, \dots, 9\}$ $(C_G(P_6)^{I(P_6)})_1$ has an involution fixing exactly these four points. Hence from Lemma 6 of [3] $(C_G(P_6)^{I(P_6)})_1$ is 4-fold transitive on $\{2, 3, \dots, 9\}$. Thus $C_G(P_6)^{I(P_6)} = S_1 \times A_8$.

(6) By (4) the minimal P-orbit on $\Omega - I(P)$ is of length 4. Let $|I(P_{t_1 t_2})|$ be the smallest number such that $t_1 \in \Omega - I(P)$ and $t_2 \in \Omega - I(P_{t_1})$. Then $|I(P_{t_1 t_2})| \ge 9$. Let R be a Sylow 2-subgroup of $G_{I(Pt_1 t_2)}$. Set $H = N_G(R)^{I(R)}$ and $\Delta = I(R)$. Then if a Sylow 2-subgroup of the stabilizer of any four points in H is semi-regular on Δ , then by Theorem $1 \mid \Delta \mid = 9$, which is a contradiction. Hence there are four points j, j, k and l of Δ such that a Sylow 2-subgroup Q of $H_{i j k l}$ is not semi-regular on $\Delta - I(Q)$. By the minimality of $|\Delta|$, there is a point t of $\Delta - I(Q)$ such that Q_t is a non-identity semi-regular group. By (3) and (4), $|I(Q_t)| = 9$ and t belongs to a Q-orbit of length 4. By (5) $C_H(Q_t)^{I(Q_t)} = A_9$ or $S_1 \times A_8$. Therefore by the same argument as in the proof of Lemma 1 we have a contradiction. Thus Case II is proved.

Case III. |I(P)|=7 and $N_G(P)^{I(P)}=A_7$.

Let $|I(P_{t_1 t_2})|$ be the smallest number such that $t_1 \in \Omega - I(P)$ and $t_2 \in \Omega - I(P_{t_1})$. Since P is abelian, $I(P_{t_1 t_2})$ consists of some P-orbits. By Theorem 1 $|I(P_{t_1})| = 23$. Hence $|I(P_{t_1 t_2})| \geqslant 23$.

Let R be a Sylow 2-subgroup of $G_{I(P_{I_1}, I_2)}$. Set $H=N_G(R)^{I(R)}$ and $\Delta=I(R)$. Let Q be a Sylow 2-subgroup of the stabilizer of any four points in H. Then Q satisfies the following conditions:

- (i) |I(Q)| = 7
- (ii) Q is abelian and |Q| is constant for any four points i, j, k and l.
- (iii) For any point t of $\Delta I(Q)$ Q_t is a semi-regular group ≥ 1 . If $Q_t \neq 1$, then $N_H(Q_t)^{I(Q_t)} = M_{23}$.

If a Sylow 2-subgroup of the stabilizer of any four points in H is semi-regular, then by Theorem 1 $|\Delta|=23$, which is a contradiction. Hence we may assume that a Sylow 2-subgroup Q of $H_{1\,2\,3\,4}$ is not semi-regular. Therefore there is a point t of the minimal Q-orbit such that $N_H(Q_t)^{I(Q_t)}=M_{23}$ and $|I(Q_t)|=23$.

Let Q' be a Sylow 2-subgroup of $H_{1\ 2\ 3}$, where $i\in\Delta-\{1,2,3\}$. Then by (iii) the minimal Q'-orbit is of length at least 16. Since $N_H(Q_t)^{I(Q_t)}=M_{23}$, a Sylow 2-subgroup of $H_{1\ 2\ 3}$ containing Q has exactly one orbit of length 4 and the point 4 belongs to this orbit. By the conjugacy of Sylow 2-subgroups of $H_{1\ 2\ 3}$, a Sylow 2-subgroup of $H_{1\ 2\ 3}$ containing Q' has exactly one orbit of length 4 which contains i. Thus $H_{1\ 2\ 3}$ has an element carrying 4 into i, and so $H_{1\ 2\ 3}$ is transitive on Δ - $\{1,2,3\}$. On the other hand $N_H(Q_t)^{I(Q_t)}=M_{23}$. Hence H is 4-fold transitive on Δ . Therefore to prove Case III it is sufficient to prove the following lemma.

Lemma 3. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, and P a Sylow 2-subgroup of $G_{1,2,3,4}$. Assume that P satisfies the following conditions:

128 T. OYAMA

- (i) P = 1 and |I(P)| = 7.
- (ii) For any point t of Δ -I(P) P_t is a semi-regular group ≥ 1 . Then $G = M_{23}$.

Proof. If P is semi-regular, then by the theorem of [8] $G=M_{23}$. Therefore from now on suppose by way of contradiction that P is not semi-regular. Let $I(P) = \{1, 2, \dots, 7\}$. The proof will be given in various steps:

(1) For a point t of Ω -I(P) if $P_t \neq 1$, then P_t is an elementary abelian group.

Proof. The proof is similar to the proof (1) of Case III in Section 2.

(2) For any point t of $\Omega - I(P) |I(P_t)| \ge 23$.

Proof. This is a direct consequence of Corollary.

(3) For a point t of Ω -I(P) if $P_t \neq 1$, then $|I(P_t)| = 23$ and $N_G(P_t)^{I(P_t)} = M_{23}$.

Proof. This follows from Theorem 1.

(4) For a point t of Ω -I(P) if $P_t \neq 1$, then $|P_t| = 2$ or 4 and every 2-elements of $N_G(P_t)$ belong to $C_G(P_t)$.

Proof. Since $M_{23} = N_G(P_t)^{I(P_t)} \cong N_G(P_t)/N_G(P_t)_{I(P_t)} \stackrel{\triangleright}{=} C_G(P_t) \cdot N_G(P_t)_{I(P_t)}/N_G(P_t)_{I(P_t)}$ and M_{23} is a simple group, $N_G(P_t) = C_G(P_t) \cdot N_G(P_t)_{I(P_t)}$ or $C_G(P_t) \leq N_G(P_t)_{I(P_t)}$. Let $I(P_t) = \{1, 2, \dots, 23\}$. Then we may assume that P_t has an involution

$$a = (1)(2) \cdots (23)(24\ 25) \cdots$$

Since $a \in N_G(G_{1\ 2\ 24\ 25})$, there is an involution b of $G_{1\ 2\ 24\ 25}$ commuting with a. Since $b^{I(a)} \in M_{23}$, $|I(b^{I(a)})| = 7$. Hence |I(b)| = 23 and we may assume that

$$b = (1)(2)\cdots(7)(89)(1011)\cdots(2223)(24)(25)\cdots(29)\cdots$$

Thus $|\Omega| \ge 29$. Since $b \in N_G(a)$, b normalizes a Sylow 2-subgroup Q of $G_{I(a)}$ containing a. Then Q is a semi-regular elementary abelian group on $\{24, 25, \dots, n\}$. Since $b \in N_G(Q)$ and $|I(b) \cap (\Omega - I(Q))| = 16$, by Lemma of H. Nagao [4] $|Q| \le 2^{2\cdot 4} = 2^8$. On the other hand the automorphism group A(Q) of an elementary abelian group of order 2^r is of order $(2^r-1)(2^r-2) \cdots (2^r-2^{r-1})$.

Suppose that $N_G(Q)_{I(Q)} \ge C_G(Q)$. Since $N_G(Q)/C_G(Q)$ is a subgroup of A(Q), $N_G(Q)/N_G(Q)_{I(Q)}$ being isomorphic to $N_G(Q)^{I(Q)} = M_{23}$ is a homomorphic image of a subgroup of A(Q). But if $r \le 8$, then the order of A(Q) is not divisible by 23, which is a contradiction. Thus $N_G(Q)_{I(Q)} \ge C_G(Q)$. Hence $N_G(Q) = C_G(Q) \cdot N_G(Q)_{I(Q)}$. Therefore by the same argument as in the proof (6.2) of Case III in Section 2 every 2-elements of $N_G(Q)$ belong to $C_G(Q)$.

Since $\langle a,b\rangle < N_G(G_{8,9,24,25})$, there is an involution c of $G_{8,9,24,25}$ commuting with a and b. Since $I(b^{I(a)}) \neq I(c^{I(a)})$ and $b^{I(a)}$ and $c^{I(a)}$ are the commuting involutions of M_{23} . $|I(b^{I(a)}) \cap I(c^{I(a)})| = 3$. On the other hand since $c^{I(b)} \in M_{23}$,

 $|I(b) \cap I(c)| = 7$. Hence $|I(b^{\Omega - I(a)}) \cap I(c^{\Omega - I(a)})| = 4$.

Now since $\langle b,c\rangle < N_G(C_{I(a)})$, $\langle b,c\rangle$ normalizes a Sylow 2-subgroup Q' of $G_{I(a)}$. Then since Q' is conjugate to Q in $G_{I(a)}$, $\langle b,c\rangle < C_G(Q')$. Since Q' is semi-regular on $\Omega - I(a)$ and $|I(\langle b,c\rangle) \cap (\Omega - I(a))| = 4$, $|Q| = |Q'| \le 4$.

(5) Let x be an involution. If $|I(x)| \ge 4$, then |I(x)| = 23.

Proof. If $|I(x)| \ge 4$, then |I(x)| = 7 or 23. Suppose by way of contradiction that |I(x)| = 7. Then P has an involution a fixing 7 points and an involution b fixing 23 points. We may assume that $I(b) = \{1, 2, \dots, 23\}$ and

$$a=(1)(2)\cdots(7)(89)(1011)\cdots(2223)\cdots$$

Since $N_G(P)^{I(P)} = A_7$, $G_{1\ 2\ 3\ 4}$ has an element (1) (2) (3) (4) (5 6 7) ···. Let Δ be a $G_{1\ 2\ 3\ 4}$ -orbit containing $\{5, 6, 7\}$. Since P is a Sylow 2-subgroup of $G_{1\ 2\ 3\ 4}$, Δ is of odd length. Then by the conjugacy of Sylow 2-subgroups of $G_{1\ 2\ 3\ 4}$ Δ is only one $G_{1\ 2\ 3\ 4}$ -orbit of odd length in $\{5, 6, \cdots, n\}$.

Now suppose that there is a point i of Δ - $\{5, 6, 7\}$ such that $P_i \neq 1$. Then N_G $(P_i)^{I(P_i)} = M_{23}$. On the other hand i belongs to Δ , which is of odd length. Hence a Sylow 2-subgroup P' of $G_{1\ 2\ 3\ 4}$ containing P_i is also a Sylow 2-subgroup of $G_{1\ 2\ 3\ 4}$. Since $N_P(P_i)^{I(P_i)}$ and $N_{P'}(P_i)^{I(P_i)}$ are non-identity 2-subgroups of $(N_G(P_i)^{I(P_i)})_{1\ 2\ 3\ 4}$, $I(N_P(P_i)^{I(P_i)}) = I(N_{P'}(P_i)^{I(P_i)})$. But $i \notin \{1, 2, \dots, 7\}$, which is a contradiction. Thus $P_i = 1$.

If a and b have a 2-cycle $(i_1 i_2)$ in common, then we have

$$ab = (1)(2)\cdots(7)(89)(1011)\cdots(2223)(i_1)(i_2)\cdots$$

Since $P_{i_1}=P_{i_2}\pm 1$, both i_1 and i_2 are not points of Δ .

Next if a 2-cycle $(i_1 i_2)$ of a is not a 2-cycle of b, then we may assuem that

$$a = (1)(2)\cdots(7)(89)(1011)\cdots(2223)(i_1 i_2)(i_3 i_4)\cdots$$

$$b = (1)(2) \cdots (23)(i_1 i_3)(i_2 i_4) \cdots$$

Since $\langle a,b\rangle < N_G(G_{i_1\,i_2\,i_3\,i_4})$, there is an involution c of $G_{i_1\,i_2\,i_3\,i_4}$ commuting with a and b. Since $c^{I(b)} \in M_{23}$, $|I(c) \cap I(b)| = 7$. Hence |I(c)| = 23. Since $a^{I(c)}$ and $b^{I(c)}$ are the commuting elements of M_{23} and $I(b) \supset I(a)$, $I(a^{I(c)}) = I(b^{I(c)}) = \{1, 2, \dots, 7\}$. Hence a Sylow 2-subgroup of $G_{1\,2\,3\,4}$ containing a and c fixes $\{5, 6, 7\}$ pointwise. Hence i_1, i_2, i_3 and i_4 do not belong to Δ . Thus $\Delta = \{5, 6, 7\}$.

Now in the proof of Case II of Theorem 2 in [5] we used only the following conditions: In a 4-fold transitive group G an involution a fixes exactly seven points and a $G_{1\ 2\ 3\ 4}$ -orbit of odd length is $\{5, 6, 7\}$. Therefore similarly $G=M_{23}$, which is a contradiction. Thus we complete the proof of (5).

(6) If P is not semi-regular, then we have a contradiction.

Proof. For a point t of Ω -I(P) suppose that $P_t \neq 1$. We may assume that

130 T. OYAMA

 $I(P_t) = \{1, 2, \dots, 23\}$ and P_t has an involution

$$a = (1)(2) \cdots (23)(24\ 25) \cdots$$

Since $a \in N_G(G_{1\ 2\ 24\ 25})$, there is an involution b of $G_{1\ 2\ 24\ 25}$ commuting with a. We may assume that

$$b = (1)(2)\cdots(7)(89)(1011)\cdots(2223)(24)(25)\cdots$$

Since $b \in N_G(G_{I(a)})$, b normalizes a Sylow 2-subgroup Q of $G_{I(a)}$. Then by (3) and (4) $b \in C_G(Q)$ and $C_G(Q)^{I(Q)} = M_{23}$.

Let x be an arbitrary 2-element of $C_G(Q)$ such that $x^{I(Q)}$ is an involution. Since all involutions in M_{23} are conjugate, there is an involution y of $C_G(Q)$ such that y is conjugate to b and $x^{I(Q)} = y^{I(Q)}$. Then $xy \in Q$. Hence $xy = a' \in Q$, and so x = a'y. Since a' is an involution commuting with y, x is also an involution.

Now there is a 2-element

$$z = (1)(2)(3)(45)(67)(810911)(12141315)(16181719)(20222123)\cdots$$

in $C_G(Q)$. By the argument above z^2 is an involution. Hence $|I(z^2)| = 23$ by (5). By the same reason z is an involution since $z^{I(z^2)}$ is an involution, which is a contradiction. Thus we complete the proof.

YAMAGUCHI UNIVERSITY

References

- [1] W. Burnside: Theory of Groups of Finite Order, Second edition, Cambridge Univ. Press, 1911.
- [2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [3] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
- [4] H. Nagao: On multiply transitive groups I, Nagoya Math. J. 27 (1966), 15-19.
- [5] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
- [6] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
- [7] R. Noda and T. Oyama: On multiply transitive groups VI, J. Algebra 11 (1969), 145-154.
- [8] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 155-164.
- [9] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
- [10] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
- [11] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.
- [12] H. Zassenhaus: Kenzeichnung endlicher linear Gruppen als Permutation Gruppen, Abh. Math. Sem. Hansischen Univ. 11 (1936), 17-40.