ON MULTIPLY TRANSITIVE GROUPS X

Dedicated to Professor Keizo Asano on his 60th birthday

Tuyosi OYAMA

(Received May 27, 1970)

1. Introduction

In this paper we shall prove the following theorems.
Theorem 1. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$ where $n>4$. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following two conditions:
(i) P is a nonidentity semi-regular group.
(ii) P fixes exactly r points.

Then
(I) If $r=4$, then $|\Omega|=6,8$ or 12 , and $G=S_{6}, A_{8}$ or M_{12} respectively.
(II) If $r=5$, then $|\Omega|=7$, 9 or 13. In particular, if $|\Omega|=9$, then $G \leqq A_{9}$, and if $|\Omega|=13$, then $G=S_{1} \times M_{12}$.
(III) If $r=7$ and $N_{G}(P)^{I(P)} \leqq A_{7}$, then $G=M_{23}$.

In a previous paper [10] we proved that if G is a 4-fold transitive group and a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity, then P fixes exactly four, five or seven points. Therefore the following corollary is an immediate consequence of Theorem 1.

Corollary. Let G be a 4-fold transitive group on Ω and assume that a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity. For a point t of $\Omega-I(P)$, assume that a Sylow 2-subgroup R of the stabilizer of any four points in $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ satisfies the following two conditions:
(i) R is a nonidentity semi-regular group.
(ii) $|I(R)|=|I(P)|$.

Then one of the conclusions in Theorem 1 holds for $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$. In particular, if t is a point of a minimal P-orbit, then $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$ satisfies the conditions (i) and (ii).

The last assertion of this corollary follows from Lemma 1 of [9].
By using these theorems we have the following

Theorem 2. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$. If a Sylow 2-subgroup of a stabilizer of four points in G is a nonidentity abelian group. then G must be one of the following groups : $S_{6}, S_{7}, A_{8}, A_{9}$ or M_{23}.

We shall follow the notations of T. Oyama [9].

2. Proof of Theorem 1

Case I. $|I(P)|=4$.
For any four points i, j, k, l of Ω a Sylow 2-subgroup P of $G_{i j k l}$ fixes exactly these four points. Hence, by a lemma of D. Livingstone and A. Wagner [3. Lemma 6], G is a 4 -fold transitive group on Ω. By assumption, P is a nonidentity semi-regular group. Therefore, by a theorem of H. Nagao [6], G is S_{6}, A_{8} or M_{12}.

Case II. $|I(P)|=5$.

First assume $|\Omega|>9$. Let a be an involution of P and $I(P)=\{1,2, \cdots, 5\}$. Since P is a nonidentity semi-regular group, we may assume that a is of the form

$$
a=(1)(2) \cdots(5)(67)(89)(1011) \cdots .
$$

For any two 2-cycles (67), (89) of $a, a \in N_{G}\left(G_{6789}\right)$. Hence by Lemma 1 of [10], there is an involution b of G_{6789} commuting with a. Since $|I(b)|=5$, we may assume

$$
b=(1)(23)(45)(6)(7)(8)(9) \cdots
$$

Since $\langle a, b\rangle<N_{G}\left(G_{2{ }^{67}}\right)$, also by Lemma 1 of [10] there is an involution c of $G_{23_{67}}$ commuting with a and b. Since $|I(c)|=5, c$ is of the form

$$
c=(1)(2)(3)(45)(6)(7)(89) \cdots
$$

Then $I(a c)=\{1,2,3,8,9\}$. Hence $\langle a, c\rangle$ is semi-regular on $\{10,11, \cdots, n\}$, and so we may assume

$$
\begin{aligned}
& a=(1)(2) \cdots(5)(67)(89)(1011)(1213) \cdots, \\
& c=(1)(2)(3)(45)(6)(7)(89)(1012)(1113) \cdots
\end{aligned}
$$

Since $\langle a, c\rangle<N_{G}\left(G_{10111213}\right)$, there is an involution d of $G_{10111213}$ commuting with a and c. Since $|I(d)|=5$ and $I(d) \supset\{10,11,12,13\}, d$ fixes exactly one point of $I(a) \cap I(c)=\{1,2,3\}$ and so d is (1) (23) $\cdots,(2)(13) \cdots$ or (3) (12) \cdots. We may assume that $d=(1)(23) \cdots$ since the proofs in the remaining cases are similar. Therefore d is of the form

$$
d=(1)(23)(45)(67)(89)(10)(11)(12)(13) \cdots .
$$

Since $\langle a, d\rangle<N_{G}\left(G_{231011}\right)$, there is an involution f of G_{231011} commuting with a and $d . f$ is one of the following forms:
(i) $f=(1)(2)(3)(45)(67)(89)(10)(11)(1213) \cdots$,
(ii) $f=(1)(2)(3)(45)(68)(79)(10)(11)(1213) \cdots$.

If f is of the form (i), then

$$
a f=(1)(2)(3)(45)(6)(7)(8)(9) \cdots
$$

Thus $|I(a f)|>5$, which contradicts the assumption. Hence

$$
f=(1)(2)(3)(45)(68)(79)(10)(11)(1213) \cdots,
$$

Then

$$
c f=(1)(2)(3)(4)(5)(6879) \cdots
$$

Since $c f \in G_{I(a)}$, four points $6,7,8,9$ are contained in the same $G_{I(a) \text {-orbit. }}$. Since we took 2-cycles (67) and (89) as arbitrary 2-cycles of $a, G_{I(a)}$ is transitive on $\Omega-I(a)$. Hence for any involution x fixing five points $G_{I(x)}$ is also transitive on $\Omega-I(x)$.

By using this result repeatedly, we prove that G_{1} is 4-fold transitive on $\Omega-\{1\} . G_{I(a)}$ is transitive on $\{6,7, \cdots, n\}$, and $G_{I(d)}$ is transitive on $\Omega-\{1,10$, $11,12,13\}$. Since $G_{1} \geqq\left\langle G_{I(a)}, G_{I(d)}\right\rangle, G_{1}$ is transitive on $\Omega-\{1\}$. Similarly since $G_{123} \geqq\left\langle G_{I(a)}, G_{I(c)}\right\rangle, G_{123}$ is transitive on $\Omega-\{1,2,3\}$. Therefore G_{12} is transitive or has two orbits $\{3\}$ and $\{4,5, \cdots, n\}$ on $\Omega-\{1,2\}$. Since $\langle a, d\rangle$ $<N_{G}\left(G_{671011}\right)$, there is an involution g of G_{671011} commuting with a and d, Similary to f we have

$$
g=(1)(24)(35)(6)(7)(89)(10)(11)(1213) \cdots
$$

Since $\langle a, g\rangle<N_{G}\left(G_{2467}\right)$, there is an involution h of G_{2467} commuting with a and g. Then h is of the form

$$
h=(1)(2)(4)(35)(6)(7) \cdots
$$

Hence

$$
c h=(1)(2)(354) \cdots
$$

Thus $c h \in G_{12}$ and so G_{12} is transitive on $\Omega-\{1,2\}$. Therefore G_{1} is 3 -fold transitive on $\Omega-\{1\}$.

Furthermore $G_{I(c)}$ is transitive on $\{4,5,10,11, \cdots, n\}$ and $G_{I(h)}$ is transitive on $\{3,5,8,9, \cdots, n\}$. Since $G_{1267} \geqq\left\langle G_{I(c)}, G_{I(h)}\right\rangle, G_{1267}$ is transitive on $\Omega-\{1,2,6,7\}$ and so G_{1} is 4-fold transitive on $\Omega-\{1\}$.

By assumption a Sylow 2-subgroup of $\left(G_{1}\right)_{2345}$ is a nonidentity semi-regular group on $\{6,7, \cdots, n\}, G_{1}$ must be S_{6}, A_{8} or M_{12} by Theorem of [6]. Since $|\Omega|>9,|\Omega|=13$ and $G_{1}=M_{12}$. Since there is no transitive extension of M_{12}, $G=S_{1} \times M_{12}$.

Next assume $|\Omega| \leqq 9$. Since $|I(P)|=5$ and $P \neq 1,|\Omega|=7$ or 9 . Now we consider the case $|\Omega|=9$. Since there is not an involution fixing seven points, G has not a transposition. Assume, by way of contradiction, that G has an odd permutation. Then there is a 2 -element in G, which is an odd permutation.

First suppose that G has an element x of order 8 . We may assume

$$
x=(12345678)(9) .
$$

Since

$$
x^{2}=(1357)(2468)(9),
$$

$x^{2} \in N_{G}\left(G_{1357}\right)$ and hence x^{2} commutes with an involution a of $G_{1357} . a$ is of the form

$$
a=(1)(3)(5)(7)(26)(48)(9) .
$$

Then $a \in N_{G}\left(G_{1326}\right)$. Hence a commutes with one of the following elements of G_{1326} :

$$
\begin{aligned}
& b_{1}=(1)(3)(2)(6)(48)(5)(79), \\
& b_{2}=(1)(3)(2)(6)(48)(7)(59), \\
& b_{3}=(1)(3)(2)(6)(48)(9)(57) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& x b_{1}=(1238)(45697), \\
& x b_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right)(49567), \\
& x b_{3}=\left(\begin{array}{ll}
1 & 2 \\
3
\end{array}\right)(47)(56)(9), \\
& \left(x b_{1}\right)^{5}=\left(x b_{2}\right)^{5}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right. \text {) (4) (5) (6) (7) (9). }
\end{aligned}
$$

Thus if G has an element of order 8 , then G has an element consisting of one 4 -cycle or one 4 -cycle and two 2 -cycles.

Suppose that G has an element x consisting of one 4-cycle and two 2-cycles. We may assume that

$$
x=\left(\begin{array}{ll}
1 & 2 \\
3
\end{array}\right)(56)(78)(9) .
$$

Since $x \in N_{G}\left(G_{1234}\right), x$ commutes with an involution a of $G_{1234} . a$ is one of the following forms:

$$
\begin{aligned}
& \text { (i) } \quad a=(1)(2)(3)(4)(9)(56)(78), \\
& \text { (ii) } \quad a=(1)(2)(3)(4)(9)(57)(68) .
\end{aligned}
$$

If a is of the form (i), then

$$
x a=(1234)(9)(5)(6)(7)(8) .
$$

If a is of the form (ii), then $a \in N_{G}\left(G_{1257}\right)$. Hence a commutes with one of the following elements of G_{1257} :

$$
\begin{aligned}
& b_{1}=(1)(2)(5)(7)(68)(3)(49), \\
& b_{2}=(1)(2)(5)(7)(68)(4)(39), \\
& b_{3}=(1)(2)(5)(7)(68)(9)(34) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& x b_{1}=(12394)(5876), \\
& x b_{2}=(12934)(5876), \\
& x b_{3}=(124)(3)(5876) .
\end{aligned}
$$

Thus

$$
\left(x b_{1}\right)^{5}=\left(x b_{2}\right)^{5}=\left(x b_{3}\right)^{-3}=(1)(2)(3)(4)(5876)(9) .
$$

Hence if G has an element of order 8 or consisting of one 4-cycle and two 2 -cycles, then G has an element consisting of one 4 -cycle. Therefore we may assume that G has an element x of the form

$$
x=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)(5)(6)(7)(8)(9) .
$$

Then

$$
x^{2}=(13)(24)(5)(6)(7)(8)(9) .
$$

Since $x^{2} \in N_{G}\left(G_{1356}\right), x^{2}$ commutes with an involution a of G_{1356}. Then a is of the form

$$
a=(1)(3)(5)(6)(24)\left(i_{1}\right)\left(i_{2} i_{3}\right),
$$

where $\left\{i_{1}, i_{2}, i_{3}\right\}=\{7,8,9\}$. Then we have

$$
x a=(14)(23)(5)(6)\left(i_{1}\right)\left(i_{2} i_{3}\right) .
$$

Thus if G has an odd permutation, then G has an element consisting of three 2-cycles.

Therefore finally suppose that G has an element x consisting of three 2 -cycles. We may assume that

$$
x=(12)(34)(56)(7)(8)(9) .
$$

Since $x \in N_{G}\left(G_{5678}\right), x$ commutes with an involution a of $G_{5678} . a$ is one of the following forms:

$$
\begin{aligned}
& \text { (i) } a=(12)(34)(5)(6)(7)(8)(9) . \\
& \text { (ii) } a=(13)(24)(5)(6)(7)(8)(9) .
\end{aligned}
$$

If a is of the form (i), then

$$
x a=(1)(2)(3)(4)(56)(7)(8)(9) .
$$

Thus $x a$ is a transposition, which is a contradiction. Thus a must be of the form (ii). On the other hand $x \in N_{G}\left(G_{1256}\right)$. Hence x commutes with an involution b of G_{1256}, and b is of the form

$$
b=(1)(2)(5)(6)(34)\left(i_{1}\right)\left(i_{2} i_{3}\right),
$$

where $\left\{i_{1}, i_{2}, i_{3}\right\}=\{7,8,9\}$. Then

$$
a b=(1423)(5)(6)\left(i_{1}\right)\left(i_{2} i_{3}\right) .
$$

Thus we have

$$
x(a b)^{2}=(1)(2)(3)(4)(56)(7)(8)(9)
$$

which is also a contradiction. Therefore $G \leqq A_{9}$.
Case III. $|I(P)|=7, N_{G}(P)^{I(P)} \leqq A_{7}$.
Let $I(P)=\{1,2, \cdots, 7\}$. The proof of this case will be given in various steps:
(1) P is elementary abelian.

Proof. If P has an element

$$
x=(1)(2) \cdots(7)(891011) \cdots,
$$

then $x \in N_{G}\left(G_{891011}\right)$. Hence x normalizes some Sylow 2-subgroup P^{\prime} of G_{891011}. By assumption, $x^{I(P)} \in N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)} \leqq A_{7}$. Thus x has a 2-cycle, contrary to the semi-regularity of P. Therefore P has no element of order 4 , whence P is elementary abelian.
(2) $|\Omega| \geqq 15$.

Proof. Let

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

be an involution of P. Then $a \in N_{G}\left(G_{1289}\right)$. Hence a commutes with an involution b of G_{1289}. By assumption, $|I(b)|=7$ and $b^{I(a)} \in A_{7}$. Hence we may assume

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11) \cdots .
$$

Then we have

$$
a=(1)(2) \cdots(7)(89)(1011) \cdots
$$

Since $\langle a, b\rangle\left\langle N_{G}\left(G_{4589}\right)\right.$, there is an involution c of G_{4589} commuting with a and b. By assumption, $|I(c)|=7, c^{I(a)} \in A_{7}$ and $c^{I(b)} \in A_{7}$. Hence we may assume

$$
c=(1)(23)(4)(5)(67)(8)(9)(1011)(12)(13) \cdots
$$

Then we have

$$
\begin{aligned}
& a=(1)(2) \cdots(7)(89)(1011)(1213) \cdots, \\
& a c=(1)(23)(4)(5)(67)(89)(10)(11)(1213) \cdots
\end{aligned}
$$

Since $a c$ is an involution and $|I(a c)| \geqq 5,|I(a c)|=7$. Thus ac fixes two more points in $\{14,15, \cdots, n\}$. Hence $|\Omega| \geqq 15$.
(3) One of the following holds:

Case i. $\quad N_{G}(P)^{I(P)}$ is transitive.
(i. i) $\quad N_{G}(P)^{I(P)}=A_{7}$.
(i. ii) $\quad N_{G}(P)^{I(P)}$ is isomorphic to $L F_{2}(7)$, which will be denoted by $A_{7}{ }^{*}$.

Case ii. $\quad N_{G}(P)^{I(P)}$ has two orbits, say Δ and Γ.
(ii. i) $|\Delta|=1$ and $|\Gamma|=6 . N_{G}(P)^{I(P)}$ is A_{6} on Γ, which will be denoted by A_{6}.
(ii. ii) $|\Delta|=1$ and $|\Gamma|=6 . N_{G}(P)^{I(P)}$ is isomorphic to A_{5} on Γ, which will be denoted by $A_{6}{ }^{*}$.
(ii. iii) $|\Delta|=2$ and $|\Gamma|=5 . \quad N_{G}(P)^{I(P)}$ is $N_{A_{7}}\left(A_{5}\right)$, which will be denoted by $N\left(A_{5}\right)$.
(ii. iv) $|\Delta|=3$ and $|\Gamma|=4 . N_{G}(P)^{I(P)}$ is $N_{A_{7}}\left(A_{4}\right)$, which will be denoted by $N\left(A_{4}\right)$.
(ii. v) $|\Delta|=3$ and $|\Gamma|=4 . N_{G}(P)^{I(P)}=N_{A_{7}}{ }^{*}\left(K_{4}\right)$ where K_{4} is a regular four group on $\Gamma . N_{A_{7}}\left(K_{4}\right)$ will be denoted by $N\left(K_{4}\right)$.

Proof. Let

$$
a=(1)(2) \cdots(7)(i j) \cdots
$$

be an involution of P. For any two points i_{1} and i_{2} of $I(a), a \in N_{G}\left(G_{i_{1} i_{2} i j}\right)$. Hence there is an involution $x_{i_{1} i_{2}}$ of $G_{i_{1} i_{2} i_{j}}$ commuting with a. Set $a_{i_{1} i_{2}}=\left(x_{i_{1} i_{2}}\right)^{I(a)}$, Then

$$
a_{i_{1} i_{2}}=\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(i_{4} i_{5}\right)\left(i_{6} i_{7}\right)
$$

where $\left\{i_{1}, i_{2}, \cdots, i_{7}\right\}=\{1,2, \cdots 7\}$. Let T be the restriction of the group generated by all involutions of $C_{G}(a)_{i_{j}}$ on $I(a)$. Then $a_{i_{1} i_{2}} \in T$.
(3.1) Suppose that T is transitive. By $\S 166$ of [1], T is A_{7} or isomorphic to $L F_{2}(7)$. If $T=L F_{2}(7)$, then $T=\langle(1236457)$, (234)(567), (2763)(45) \rangle.
(3.2) Suppose that T has an orbit of length 1 . Let $\{1\}$ be the orbit of length 1 and set $\Gamma=\{2,3, \cdots, 7\}$. Then for any two points i_{1} and i_{2} of Γ there is an involution $a_{i_{1} i_{2}}$ of the form

$$
a_{i_{1} i_{2}}=(1)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3} i_{4}\right)\left(i_{5} i_{6}\right) .
$$

Thus $\left\langle a_{i_{1} i_{2}}\right\rangle$ is a 2-group fixing exactly two points i_{1} and i_{2} of Γ. Hence from a lemma of D . Livingstone and A . Wagner [3. Lemma 6] T_{1} is a doubly transitive group on Γ. Hence from $\S 166$ in [1] T_{1} is A_{6} or isomorphic to A_{5} on Γ. In the second case $T=\langle(234)(576),(3457),(37)(56)\rangle$.
(3.3) Suppose that T has an orbit of length 2 . Let $\{1,2\}$ be the orbit of length 2 and set $\Gamma=\{3,4, \cdots, 7\}$. For any point i_{1} of Γ there is an involution $a_{1 i_{1}}$ of the form

$$
a_{1 i_{1}}=(1)(2)\left(i_{1}\right)\left(i_{2} i_{3}\right)\left(i_{4} i_{5}\right) .
$$

Hence from Lemma 6 of [3] T_{12} is transitive on Γ. By $\S 166$ in [1] T_{12} is A_{5} or a group of order 10 generated by (3 4567) and (34)(57). Assume $\left|T_{12}\right|=10$. Then there is an element a_{34} of the form

$$
a_{34}=(12)(3)(4)\left(j_{1}\right)\left(j_{2} j_{3}\right) .
$$

Set $y=(34567)$. Since $\langle y\rangle$ is the unique Sylow 5-subgroup of T_{12} and $a_{34} \in N_{T}\left(T_{12}\right), a_{34} y a_{34}=y^{r}$ where $r=1,2,3$ or 4 . But this is impossible since $a_{34} y a_{34}=(34 \cdots)$. Thus $\left|T_{12}\right| \neq 10$. Hence $T_{12}=A_{5}$ and so $T=N_{A_{7}}\left(A_{5}\right)$.
(3.4) Suppose that T has an orbit of length 3. Let $\{1,2,3\}$ be the orbit of length 3. Set $\Delta=\{1,2,3\}$ and $\Gamma=\{4,5,6,7\}$. For any two points i_{1} and i_{2} of Γ there is an involution $a_{i_{1} i_{2}}$ such that $\left(a_{i_{1} i_{2}}\right)^{\Gamma}=\left(i_{1}\right)\left(i_{2}\right)\left(i_{3} i_{4}\right)$. Hence again by Lemma 6 of [3] T^{Γ} is doubly transitive. Thus $T^{\Gamma}=S_{4}$. Since $T \leqq A_{7},\left|T_{\Gamma}\right|=1$ or 3. For any point j_{1} of Δ there is an involution $a_{j_{1} 4}$ such that $\left(a_{j_{1} 4}\right)^{\Delta}=\left(j_{1}\right)\left(j_{2} j_{3}\right)$. Hence similarly T^{Δ} is transitive on Δ, and so $T^{\Delta}=S_{3}$.

First assume $\left|T_{\Gamma}\right|=3$. Then

$$
\left|T_{\Delta}\right|=|T| /\left|T^{\Delta}\right|=\left|T_{\Gamma}\right| \cdot\left|T^{\Gamma}\right| /\left|T^{\Delta}\right|=3 \cdot\left|S_{4}\right| /\left|S_{3}\right|=12 .
$$

Hence $T_{\Delta}=A_{4}$ and $T \leqq N_{A_{7}}\left(A_{4}\right)$. On the other hand

$$
|T|=\left|T_{\Gamma}\right| \cdot\left|T^{\Gamma}\right|=3 \cdot\left|S_{4}\right|=\left|N_{A_{7}}\left(A_{4}\right)\right| .
$$

Thus $T=N_{A_{7}}\left(A_{4}\right)$.
Next assume $\left|T_{\Gamma}\right|=1$. Then

$$
\left|T_{\Delta}\right|=\left|S_{4}\right| /\left|S_{3}\right|=4
$$

Hence T_{Δ} is a regular four-group of degree 4 , which is denoted by K_{4}. Since $\left|T_{\Gamma}\right|=1, T \npreceq N_{A_{7}}\left(K_{4}\right)$. Since $T \cong T^{\Gamma}=S_{4}, K_{4}=\langle(1)$ (2) (3) (45) (67), (1) (2) (3) (46) (5 6) \rangle and $T=\langle(1)(2)(3)(45)(67),(12)(3)(4)(6)(57),(1)(23)(4)$ (5) (67) \rangle. Thus $T<A_{7}{ }^{*}$ and so $T=N_{A_{7}}{ }^{*}\left(K_{4}\right)$.
(3.5) Suppose that T has an orbit with length greater than 3. Then obviously T is one of the groups above.

Now $T \leqq N_{G}\left(G_{I(P)}\right)^{I(P)}$. By Lemma 2 of [10] $N_{G}\left(G_{I(P)}\right)^{I(P)}=N_{G}(P)^{I(P)}$. Hence $T \leqq N_{G}(P)^{I(P)} \leqq A_{7}$. Thus $N_{G}(P)^{I(P)}$ is one of the groups above.

Remark. Since T is contained in $\left(C_{G}(a)_{i j}\right)^{I(a)}$ for a 2-cycle ($\left.i j\right)$ of a, we denote T by $\mathfrak{I}_{i j}(a)$.
(4) Let x be an arbitrary involution of G. Then $|I(x)|=7$.

Proof. Since $|\Omega|$ is odd, $|I(x)|$ is odd. Let x be of the form

$$
x=(i j)(k l) \cdots
$$

Then x normalizes some Sylow 2-subgroup P^{\prime} of $G_{i j k l}$. By assumption $x^{I(P)} \in A_{7}$. Therefore $|I(x)| \geqq 3$. If $|I(x)| \geqq 4$, then $|I(x)|=7$ by assumption.

Suppose by way of contradiction that $|I(x)|=3$. We may assume that x is of the form

$$
x=(1)(2)(3)(45)(67)(89) \cdots
$$

Since $x \in N_{G}\left(G_{4567}\right)$, there is an involution a of G_{4567} commuting with x. Since $|I(a)|=7$ and $x^{I(a)} \in A_{7}, I(a)=\{1,2, \cdots, 7\}$.

First assume that x and a have the same 2-cycle $(8,9)$ namely

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

Then $a x$ is an involution and $|I(a x)| \supset\{1,2,3,8,9\}$. Hence $|I(a x)|=7$. Thus x and a have two 2-cycles in common. Therefore we may assume that

$$
\begin{aligned}
& x=(1)(2)(3)(45)(67)(89)(1011) \cdots, \\
& a=(1)(2) \cdots(7)(89)(1011) \cdots .
\end{aligned}
$$

Then $\langle a, x\rangle$ is semi-regular on $\{12,13, \cdots, n\}$. On the other hand since $\langle a, x\rangle$ $<N_{G}\left(G_{4589}\right)$, there is an involution b of G_{4589} commuting with a and x. Since $b^{I(a)} \in A_{7}$ and $b^{I(a x)} \in A_{7}$, we may assume that

$$
b=(1)(23)(4)(5)(67)(8)(9)(1011) \cdots .
$$

Since $|I(b)|=7, b$ fixes exactly two more points of $\{12,13, \cdots, n\}$. But this is impossible since $b \in C_{G}(\langle a, x\rangle)$ and $\langle a, x\rangle$ is semi-regular on $\{12,13, \cdots, n\}$.

Thus a and x have not the same 2 -cycle. Therefore we may assume that

$$
\begin{aligned}
& x=(1)(2)(3)(45)(67)(89)(1011) \cdots, \\
& a=(1)(2) \cdots(7)(810)(911) \cdots .
\end{aligned}
$$

Let $\left(i_{1} j_{1}\right)$ be an arbitrary 2 -cycle of x other than (45). Then x normalizes some Sylow 2 -subgroup P^{\prime} of $G_{45 i_{1} j_{1}}$. Since $x \in N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)} \leqq A_{7}, I\left(P^{\prime}\right)=$ $\left\{1,2,3,4,5, i_{1}, j_{1}\right\}$. Hence P^{\prime} is also a Sylow 2-subgroup of G_{12345}. By the conjugacy of Sylow 2-subgroups of G_{12345} we have that for any other 2-cycle $\left(i_{2} j_{2}\right)(\neq(45))$ of x there is an element of G_{12345} which takes $\left\{i_{1}, j_{1}\right\}$ into $\left\{i_{2}, j_{2}\right\}$. Therefore the number of G_{12345}-orbits in $\Omega-\{1,2,3,4,5\}$ is one or two. If it is one, then since $P^{\prime} \leqq G_{12345 i_{1}},|\Omega|-5=\left|G_{12345}: G_{12345 i_{1}}\right|$ is odd, which is a contradiction. Hence it must be two and 6 and 7 belong to different orbits of G_{12345}, say T_{6} and T_{7} respectively. Obviously $\left|T_{6}\right|=\left|T_{7}\right|>1$. Thus G_{1234} is transitive or has three orbits $\{5\}, T_{6}, T_{7}$ on $\{5,6, \cdots, n\}$ since P^{\prime} is also a Sylow 2-subgroup of G_{1234}.

Now since $\langle a, x\rangle\left\langle N_{G}\left(G_{891011}\right)\right.$, there is an involution c of G_{891011} commuting with a and x. Since $x^{I(c)} \in A_{7}, c$ fixes $\{1,2,3\}$ pointwise. Hence by the same argument as is used above for $a x$ and c have not the same 2-cycle. Since $c^{I(a)} \in A_{7}$, we have

$$
c=(1)(2)(3)(46)(57)(8)(9)(10)(11) \cdots
$$

Since $\langle x, c\rangle<G_{123}$ and $\{4,5,6,7\}$ is a $\langle x, c\rangle$-orbit, G_{123} is transitive on $\Omega-\{1,2,3\}$.

Next since $\langle a, c\rangle<N_{G}\left(G_{46810}\right)$, there is an involution d of G_{46810} commuting with a and c. Since $d^{I(a)} \in A_{7}$, we may assume that

$$
d=(1)(23)(4)(6)(57)(8)(10)(911) \cdots
$$

Then $d \in N_{G}\left(G_{1234}\right)$. Hence if G_{1234} is intransitive on $\{5,6, \cdots, n\}$, then d must fix the G_{1234}-orbit $\{5\}$, which is impossible. Thus G_{1234} is transitive on $\{5,6, \cdots, n\}$.

Therefore G_{123} is doubly transitive on $\{4,5, \cdots, n\}$. Since G_{12345} has two orbits of odd length in $\{6,7, \cdots, n\}, G_{12346}$ has exactly two orbits of odd length in $\{5,7,8, \cdots, n\}$ by the doubly transitivity of G_{123}. Since $a \in G_{12346}$ and a fixes exactly two points 5 and 7 of $\{5,7,8, \cdots, n\}, 5$ and 7 belong to different $G_{12346}-$ orbits, say T_{5}^{\prime} and T_{7}^{\prime} respectively. Since $d \in N_{G}\left(G_{12346}\right) d$ fixes two orbits T_{5}^{\prime} and T_{7}^{\prime} or interchanges them. But this is impossible since d has a 2 -cycle (57) and fixes a point 8 . This contradiction shows that $|I(x)| \neq 3$. Hence $|I(x)|=7$.
(5) $|\Omega| \geqq 23$ and $|\Omega|-7 \equiv 0(\bmod 8)$.

Proof. By (2) $|\Omega| \geqq 15$. Let

$$
a=(1)(2) \cdots(7)(89)(1011)(1213)(1415) \cdots
$$

be an involution of P. Then there is an involution b of G_{1289} commuting with a. Since $|I(b)|=|I(a b)|=7$, we may assume that b is of the form

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11)(1213)(1415) \cdots
$$

Since $\langle a, b\rangle<N_{G}\left(G_{4589}\right)$, there is an involution c of G_{4589} commuting with a and b. Since $|I(c)|=|I(a c)|=|I(b c)|=|I(a b c)|=7$, we may assume that c is of the form

$$
c=(1)(23)(4)(5)(67)(8)(9)(1011)(12)(13)(1415) \cdots .
$$

Suppose $|\Omega|>15$. Since $\langle a, b, c\rangle$ is an elementary abelian group and every involutions of $\langle a, b, c\rangle$ fix exactly seven points of $\{1,2, \cdots, 15\},\langle a, b, c\rangle$ is semi-regular on $\{16,17, \cdots, n\}$. Since $|\langle a, b, c\rangle|=8,|\Omega|=15+8 k$ where $k \geqq 1$. Hence

$$
|\Omega| \geqq 23 \text { and }|\Omega|-7 \equiv 0 \quad(\bmod 8) .
$$

Therefore to complete the proof we must show that $|\Omega| \neq 15$. Suppose by way of contradiction that $|\Omega|=15$. Since $b^{I(a)}$ and $c^{I(a)}$ are elements of $\mathfrak{X}_{8}{ }_{9}(a)$, we may assume that $\mathfrak{I}_{8}(a)$ is one of the following:
(a) $\mathfrak{Z}_{89}(a)=A_{7}$ or $A_{7}{ }^{*}$,
(b) $\mathfrak{I}_{9}(a)=A_{6}$ or $A_{6}{ }^{*}$, and its orbits are $\{1\}$ and $\{2,3, \cdots, 7\}$.
(c) $\mathfrak{I}_{8}(a)=N\left(A_{5}\right)$ and its orbits are $\{2,3\}$ and $\{1,4,5,6,7\}$,
(d) $\mathfrak{I}_{89}(a)=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, and its orbits are $\{1,2,3\}$ and $\{4,5,6,7\}$.

First assume that $\mathfrak{I}_{89}(a) \neq A_{6}{ }^{*}$. Since $b^{I^{(a)}}=(1)(2)(3)(45)(67)$, by (3) there is an involution x of $C_{G}(a)_{8} 9$ such that x is of the form

$$
x=(1)(2)(3)(46)(57)(8)(9) \cdots
$$

Then we have

$$
b x=(1)(2)(3)(47)(56)(8)(9) \cdots .
$$

Since $|I(b x)| \geqq 5, b x$ is of order $2 r$ where r is odd. Hence $y=(b x)^{r}$ is an involution commuting with b and so $|I(y)|=|I(b y)|=7$. Since $y^{I(b)} \in A_{7}$

$$
y=(1)(2)(3)(47)(56)(8)(9)(10)(11)(1214)(1315) .
$$

Then we have

$$
a y=(1)(2)(3)(47)(56)(89)(1011)(1215)(1314) .
$$

Thus $a y$ is an involution fixing exactly three points, which contradicts (4).
Next assume that $\mathfrak{I}_{8}(a)=A_{6}{ }^{*}$. Since $b^{I(a)}=(1)(2)(3)(45)(67)$ and $c^{I(a)}=(1)(23)(4)(5)(67)$ belong to $\mathfrak{I}_{89}(a)$, by (3) there is an involution z of $C_{G}(a)_{89}$ such that z is of the form

$$
z=(1)(2)(6)(35)(47)(8)(9) \cdots
$$

Since $a z$ fixes three points $1,2,6$ of $\{1,2, \cdots, 9\}, a z$ fixes four more points of $\{10,11, \cdots, 15\}$. Therefore z must be one of the following forms:
(i) $z=(1)(2)(6)(35)(47)(8)(9)(1011) \cdots$,
(ii) $z=(1)(2)(6)(35)(47)(8)(9)(1213) \cdots$.

If z is of the form (i), then

$$
b z=(1)(2)(35764)(8)(9)(1011) \cdots .
$$

Hence $(b z)^{5}$ is of even order and fixes at least nine points, which is a contradiction. If z is of the form (ii), then

$$
c z=(1)(253)(476)(8)(9)(1213) \cdots .
$$

Then similary we have a contradiction. Thus $|\Omega| \neq 15$.
(6) If $|P| \geqq 4$, then $|P| \geqq 8$ and $G_{I(P)}$ is transitive on $\Omega-I(P)$. In particular if $N_{G}(P)^{I(P)}=A_{6}{ }^{*}, N\left(A_{5}\right), N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, then P and $G_{I(P)}$ have these properties.

The proof is by steps.
(6.1) If $N_{G}(P)^{I(P)}$ is $A_{6}{ }^{*}, N\left(A_{5}\right), N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, then $|P| \geqq 4$.

Proof. We may assume that if $N_{G}(P)^{I(P)}=A_{6}{ }^{*}$, then its orbits are $\{1\}$ and $\{2,3, \cdots, 7\}$, if $N_{G}(P)^{I(P)}=N\left(A_{5}\right)$, then its orbits are $\{2,3\}$ and $\{1,4,5,6,7\}$
and if $N_{G}(P)^{I(P)}=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, then its orbits are $\{1,2,3\}$ and $\{4,5,6,7\}$. Let

$$
a=(1)(2) \cdots(7)(89)(1011)(1213)(1415)(1617)(1819) \cdots
$$

be an involution of P. Then there is an involution b of G_{4589} commuting with a. By the assumption on the orbits of $N_{G}(P)^{I(P)}$ we may assume that

$$
b=(1)(23)(4)(5)(67)(8)(9)(10)(11)(1213)(1415)(1618)(1719) \cdots
$$

Furthermore there is an involution c of $G_{16171819}$ commuting with a and b. Since $a^{I(c)} \in A_{7}$ and $b^{I(c)} \in A_{7}$,

$$
c=(1)(4)(5)(26)(37)(16)(17)(18)(19) \cdots
$$

or

$$
c=(1)(4)(5)(23)(67)(16)(17)(18)(19) \cdots .
$$

Suppose that c is of the first form. If $N_{G}(P)^{I(P)}=N\left(A_{5}\right), N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, then 2 and 6 belong to different orbits, which is a contradiction. If $N_{G}(P)^{I(P)}=A_{6}{ }^{*}$, then $\left|\left(N_{G}(P)^{I(P)}\right)_{145}\right|=2$, which is also a contradiction. Thus c must be of the second form. Then we have

$$
b c=(1)(2) \cdots(7)(1618)(1719) \cdots
$$

Hence $\langle a, b c\rangle$ is a four-group in $G_{I(P)}$. Thus a Sylow 2-subgroup P of $G_{I(P)}$ is of order at least 4.
(6.2) If $|P| \geqq 4$, then $|P| \geqq 8$ and $G_{I(P)}$ is transitive on $\Omega-I(P)$.

Proof. Suppose by way of contradiction that $|P|=4$. Since P is a semiregular elementary abelian group, the automorphisum group $A(P)$ of P is isomorphic to S_{3}. Obviously $A(P) \geqq N_{G}(P) / C_{G}(P)$. If $N_{G}(P)_{I(P)} \geqq C_{G}(P)$, then $N_{G}(P) / N_{G}(P)_{I(P)}$ is a homomorphic image of a subgroup of $A(P)$. But this is impossible since $N_{G}(P) / N_{G}(P)_{I(P)} \cong N_{G}(P)^{I(P)}$ and $A(P) \cong S_{3}$. Hence $N_{G}(P)_{I(P)}$ $\nsupseteq C_{G}(P)$. Thus $N_{G}(P)^{I(P)} \triangleq C_{G}(P)^{I(P)} \nsupseteq 1$.

First suppose $N_{G}(P)^{I(P)}=A_{7}, A_{7}{ }^{*}, A_{6}$ or $A_{6}{ }^{*}$. Then $N_{G}(P)^{I(P)}$ is a simple group. Hence $N_{G}(P)^{I(P)}=C_{G}(P)^{I(P)}$.

Next suppose $N_{G}(P)^{I(P)}=N\left(A_{5}\right), N\left(A_{4}\right)$ or $N\left(K_{4}\right)$. Then we may assume that $N_{G}(P)^{I(P)}$ has the orbits mentioned in (6.1). We have also three involutions a, b and c, which are used in the proof of (6.1). Since $|P|=4$, we may assume that $P=\langle a, b c\rangle$. Then $b^{I(P)}=(1)(23)(4)(5)(67) \in C_{G}(P)^{I(P)}$. Since $b^{I(P)}$ is not contained in a proper normal subgroup of $N_{G}(P)^{I(P)}$ in these cases, $N_{G}(P)^{I(P)}=C_{G}(P)^{I(P)}$.

Now $N_{G}(P) / N_{G}(P)_{I(P)} \triangleq\left(C_{G}(P) \cdot N_{G}(P)_{I(P)}\right) / N_{G}(P)_{I(P)}$. Since $\quad N_{G}(P) /$ $N_{G}(P)_{I(P)} \cong N_{G}(P)^{I(P)}$ and $\left(C_{G}(P) \cdot N_{G}(P)_{I(P)}\right) / N_{G}(P)_{I(P)} \cong C_{G}(P) / N_{G}(P)_{I(P)} \cap$ $C_{G}(P)=C_{G}(P) / C_{G}(P)_{I(P)} \cong C_{G}(P)^{I(P)}, N_{G}(P) / N_{G}(P)_{I(P)}=\left(C_{G}(P) \cdot N_{G}(P)_{I(P)}\right) /$ $N_{G}(P)_{I(P)}$. Hence $N_{G}(P)=C_{G}(P) \cdot N_{G}(P)_{I(P)}$. Thus $N_{G}(P) / C_{G}(P)=\left(C_{G}(P)\right.$.
$\left.N_{G}(P)_{I(P)}\right) / C_{G}(P) \cong N_{G}(P)_{I(P)} / C_{G}(P) \cap N_{G}(P)_{I(P)}=N_{G}(P)_{I(P)} / C_{G}(P)_{I(P)}$. On the other hand P is a Sylow 2-subgoup of $N_{G}(P)_{I(P)}$ and contained in $C_{G}(P)_{I(P)}$. Hence $\left|N_{G}(P)_{I(P)} / C_{G}(P)_{I(P)}\right|$ is odd and so $\left|N_{G}(P) / C_{G}(P)\right|$ is odd. Therefore every 2-elements of $N_{G}(P)$ belong to $C_{G}(P)$.

Let

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

be an involution of P. For an arbitrary 2-cycle ($i j$) of a other than (89), there is an involution x of $G_{89 i j}$ commuting with a. Then x normalizes some Sylow 2-subgroup P^{\prime} of $G_{I(P)}$ containing a. By the argument above $x \in C_{G}\left(P^{\prime}\right)$. Since $\left|P^{\prime}\right|=4$ ahd x fixes exactly four points $8,9, i, j$ of $\Omega-I\left(P^{\prime}\right), P^{\prime}$ has an involution

$$
a^{\prime}=(1)(2) \cdots(7)(8 i)(9 j) \cdots
$$

Therefor $\left\langle a, a^{\prime}\right\rangle$ is a subgroup of $G_{I(P)}$ and $\left\langle a, a^{\prime}\right\rangle$ is transitive on $\{8,9, i, j\}$. Since ($i j$) is an arbitrary 2-cycle of a other than (89), $G_{I(P)}$ is transitive on $\Omega-I(P)$. Since $|\Omega-I(P)| \equiv 0(\bmod 8)$ by $(5),\left|G_{I(P)}\right| \equiv 0(\bmod 8)$. But a Sylow 2-subgroup of $G_{I(P)}$ is of order 4 , which is a contradiction. Thus $|P| \geqq 8$.

Next we shall prove that $G_{I(P)}$ is transitive on $\Omega-I(P)$. Let

$$
a=(1)(2) \cdots(7)(89) \cdots
$$

be an involution of P. For an arbitrary 2-cycle (ij) of a other than (89), there is an involution x of $G_{89 i j}$ commuting with a. Then x normalizes smoe Sylow 2-subgroup P^{\prime} of $G_{I(P)}$ containing a. If x commutes with only two elements of P^{\prime}, then by a theorem of H. Zassenhaus [12, Satz 5] P^{\prime} contains a cyclic group of index 2. Since $\left|P^{\prime}\right| \geqq 8$ and P^{\prime} is elementary abelian, we have a contradiction. Thus x commutes with some involution of P^{\prime} other than a. Therefore by the same argument above we have that $G_{I(P)}$ is transitive on $\Omega-I(P)$.
(7) $\quad N_{G}(P)^{I(P)} \neq N\left(A_{5}\right)$.

Proof. Suppose by way of contradiction that $N_{G}(P)^{I(P)}=N\left(A_{5}\right)$. We may assume that $N_{G}(P)^{I(P)}$-orbits are $\{1,2\}$ and $\{3,4, \cdots, 7\}$. Let

$$
a=(1)(2) \cdots(7)(89)(1011)(1213)(1415) \cdots
$$

be an involution of P. Since $\mathfrak{Z}_{89}(a) \leqq N_{G}(P)^{I(P)}=N\left(A_{5}\right), \mathfrak{X}_{89}(a)=N\left(A_{5}\right)$. Therefore there are involutions

$$
b=(1)(2)(3)(45)(67)(8)(9) \cdots
$$

and

$$
c=(1)(2)(3)(46)(57)(8)(9) \cdots
$$

such that b and c commute with a. Then we have

$$
b c=(1)(2)(3)(47)(56)(8)(9) \cdots
$$

Since $|I(b c)| \geqq 5$, bc is of order $2 r$ where r is odd. Therefore $d=(b c)^{r}$ is an involution commuting with b. Since $|I(b)|=|I(a b)|=7$, we may assume that

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11)(1213)(1415) \cdots .
$$

Then since $d^{I(b)} \in A_{7}$,

$$
d=(1)(2)(3)(47)(56)(8)(9)(10)(11) \cdots
$$

Since $\langle b, d\rangle$ is of order $4, G_{123891011}$ is transitive on $\Omega-\{1,2,3,8,9,10,11\}$ by (6). Since $N_{G}(P)^{I(P)}=N\left(A_{5}\right)$, also by (6) $G_{12 \ldots 7}$ is transitive on $\Omega-\{1,2, \cdots, 7\}$. Thus G_{123} is transitive on $\{4,5, \cdots, n\}$.

On the other hand $\{3,4, \cdots, 7\}$ is the orbit of $N_{G}(P)$. Hence G_{12} is transitiveon on $\{3,4, \cdots, n\}$. Therefore G is transitive on Ω or G-orbits are $\{1,2\}$ and $\{3,4, \cdots, n\}$.

Now suppose that G-orbits are $\{1,2\}$ and $\{3,4, \cdots, n\}$. There is an involution f of G_{458} commuting with a and b. Since $\{1,2\}$ is the G-orbit.

$$
f=(12)(3)(4)(5)(67)(8)(9)(1011)(12)(13)(1415) \cdots .
$$

Since G_{1458} fixes \{2\}, a Sylow 2-subgroup of G_{1458} is also a Sylow 2-subgroup of G_{12458}. Since $\langle b, f\rangle<N_{G}\left(G_{12458}\right)$, there is an involution x of G_{12458} commuting with b and f. Let $I(x)=\left\{1,2,4,5,8, i_{1}, i_{2}\right\}$. Then

$$
\begin{aligned}
& b^{I(x)}=(1)(2)(45)(8)\left(i_{1} i_{2}\right), \\
& f^{I(x)}=(12)(4)(5)(8)\left(i_{1} i_{2}\right) .
\end{aligned}
$$

Hence $\left(i_{1} i_{2}\right)=(67)$ or (14 15).
First assume that $\left(i_{1} i_{2}\right)=(67)$. Then $I(x)=\{1,2,4,5,6,7,8\}$. Since $\{1,2\}$ is the G-orbit, $N_{G}\left(G_{I(x)}\right)^{I(x)}=N\left(A_{5}\right)$. Hence $G_{I(x)}$ is transitive on $\Omega-I(x)$ by (6). On the other hand $G_{12 \ldots 7}$ is transitive on $\{8,9, \cdots, n\}$. Hence G_{124567} is transitive on $\{3,8,9, \cdots, n\}$. Since a Sylow 2-subgroup of G_{124567} is a Sylow 2-subgroup of G_{12456} and $|\{3,7,8, \cdots, n\}|$ is even, G_{123456} has two orbits $\{7\},\{3,8, \cdots, n\}$ on $\{3,7,8, \cdots, n\}$. Since $N_{G}(P)^{I(P)}=N\left(A_{5}\right)$, there is an element

$$
z=(12)(37)(4)(5)(6) \cdots
$$

Since $z \in N_{G}\left(G_{12456}\right), z$ fixes the G_{12456}-orbit $\{7\}$, which is a contradiction.
Next assume that $\left(i_{1} i_{2}\right)=(1415)$. Then $I(x)=\{1,2,4,5,8,14,15\}$. Since $x^{I(b)} \in A_{7}$ and $x^{I(f)} \in A_{7}$,

$$
x=(1)(2)(4)(5)(8)(14)(15)(39)(1011)(67)(1213) \cdots .
$$

Then we have

$$
a x=(1)(2)(398)(4)(5)(67)(10)(11)(12)(13) \cdots
$$

Thus $a x$ is of even order and $|I(a x)| \geqq 8$, which is a contradiction.
Therefore G must be transitive on Ω. Let R be a Sylow 2 -subgroup of
$N_{G}(P)_{1}$. Since $N_{G}(P)^{I(P)}=N\left(A_{5}\right), R$ has three orbits of length 1 and one orbit of length 4 on $I(P)$. On the other hand since $|P| \geqq 8, R$-orbits in $\Omega-I(P)$ are of length at least 8 . Therefore if Q be a 2 -group of G_{1} containing R as a normal subgroup, then Q fixes $I(P)$. Since $R_{I(P)}=P, Q$ normalizes P. Thus $Q \in N_{G}(P)_{1}$ and so $Q=R$, namely R is a Sylow 2-subgroup of G_{1}. Similarly a Sylow 2-subgroup R^{\prime} of $N_{G}(P)_{3}$ is a Sylow 2-subgroup of G_{3}. By assumption R^{\prime} has the orbit $\{1,2\}$ of length 2 . Since G is transitive, G_{1} is conjugate to G_{3}. Hence R is conjugate to R^{\prime}, which is impossible.

Thus there is no group such that $N_{G}(P)^{I(P)}=N\left(A_{5}\right)$.
(8) $\quad N_{G}(P)^{I(P)} \neq N\left(A_{4}\right)$ and $N\left(K_{4}\right)$.

Proof. Suppose by way of contradiction that $N_{G}(P)^{I(P)}=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$. We may assume that $N_{G}(P)^{I(P)}$-orbits are $\{1,2,3\}$ and $\{4,5,6,7\}$. Let

$$
a=(1)(2) \cdots(7)(89)(1011) \cdots
$$

be an involution of P. As in the proof of (7) there are commuting involutions b and d in $C_{G}(a)_{8}$:

$$
\begin{aligned}
& b=(1)(2)(3)(45)(67)(8)(9)(10)(11) \cdots \\
& d=(1)(2)(3)(47)(56)(8)(9)(10)(11) \cdots
\end{aligned}
$$

Let R and R^{\prime} be Sylow 2-subgroups of $N_{G}(P)_{1}$ and $N_{G}(P)_{4}$ respectively. Since $N_{G}(P)^{I(P)}=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$, by the same argument as in the proof of (7) G_{123} is transitive on $\{4,5, \cdots, n\}$, and R and R^{\prime} are Sylow 2-subgroups of G_{1} and G_{4} respectively. Since R fixes exactly one point and R^{\prime} fixes exactly two points, R and R^{\prime} are not conjugate in G. Thus G_{1} and G_{4} are not conjugate in G and hence G is intransitive on Ω.

Therefore G has exactly two orbits $\{1,2,3\}$ and $\{4,5, \cdots, n\}$. Set $\Delta=$ $\{4,5, \cdots, n\}$. Since $\langle a, b\rangle<N_{G}\left(G_{4589}\right)$, there is an involution f of G_{4589} commuting with a and b. Then we may assume that

$$
f=(1)(23)(4)(5)(67)(8)(9)(1011)(12)(13) \cdots .
$$

Let P^{\prime} be a Sylow 2-subgroup of G_{4589} containing f. Since $\{1,2,3\}$ is the G-orbit, $\{1\}$ is a $N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)}$-orbit. Hence $N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)}=A_{6}$ or $A_{6}{ }^{*}$.

Since $\{5,6,7\}$ is the $N_{G}(P)_{4}$-orbit, $\{5,8,9,12,13\}$ is the $N_{G}\left(P^{\prime}\right)_{4}$-orbit and $\{8,9, \cdots, n\}$ is the $G_{I(P)}$-orbit, G_{4} is transitive on $\Omega-\{4\}$.

Since $\{4,5,6,7\}$ is the $N_{G}(P)$-orbit, P is a Sylow 2-subgroup of G_{456} and $|I(P) \cap \Delta|=4$. On the other hand since $\{1\}$ and $\{2,3, \cdots, 7\}$ are the $N_{G}\left(P^{\prime}\right)$ orbits, P^{\prime} is a Sylow 2-subgroup of G_{458} and $\left|I\left(P^{\prime}\right) \cap \Delta\right|=6$. Thus P and P^{\prime} are not conjugate in G_{45} and hence G_{45} is intransitive on $\Delta-\{4,5\}$.

Therefore G_{45} has two orbits $\{6,7\}$ and $\{8,9, \cdots, n\}$ on $\Delta-\{4,5\}$. Let $P^{\prime \prime}$ be a Sylow 2-subgroup of G_{4568}. Then $P^{\prime \prime}$ fixes one or three points of the G-orbit $\{1,2,3\}$. If $I\left(P^{\prime \prime}\right)=\{1,2, \cdots, 6,8\}$, then $\{1,2,3\}$ is a $N_{G}\left(P^{\prime \prime}\right)$-orbit.

Hence $N_{G}\left(P^{\prime \prime}\right)^{I\left(P^{\prime \prime}\right)}=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$. By the same argument as is used for P, $\{6,8\}$ is a G_{45}-orbit, which is a contradiction. Therefore $I\left(P^{\prime \prime}\right)=\left\{j_{1}, 4,5,6,8\right.$, $\left.k_{1}, k_{2}\right\}$, where $j_{1} \in\{1,2,3\}$ and $\left\{k_{1}, k_{2}\right\} \subset \Omega-\{1,2,3,4,5,6,8\}$. Then $\left\{j_{1}\right\}$ is a $N_{G}\left(P^{\prime \prime}\right)^{I\left(P^{\prime \prime}\right)}$-orbit. Thus $N_{G}\left(P^{\prime \prime}\right)^{I\left(P^{\prime \prime}\right)}=A_{6}$ or $A_{6}{ }^{*}$. Since $P^{\prime \prime}$ has an orbit of length 2 in $\{1,2,3\}$ and is semi-regular, $\left|P^{\prime \prime}\right|=2$. Therefore by (6) $N_{G}\left(P^{\prime \prime}\right)^{\left.I P^{\prime \prime}\right)}$ $=A_{6}$. Hence $\left\{6,8, k_{1}, k_{2}\right\}$ is a $N_{G}\left(P^{\prime \prime}\right)_{45}$-orbit, which is a contradiction.

Thus we have no group such that $N_{G}(P)^{I(P)}=N\left(A_{4}\right)$ or $N\left(K_{4}\right)$.
(9) $N_{G}(P)^{I(P)} \neq A_{6}^{*}$. If $N_{G}(P)^{I(P)}=A_{6}$, then $|P|=2$.

Proof. If $N_{G}(P)^{I(P)}=A_{6}{ }^{*}$, then $|P| \geqq 8$ by (6). Therefore suppose by way of contradiction that $N_{G}(P)^{I(P)}=A_{6}$ or $A_{6}{ }^{*}$ and $|P| \geqq 4$. We may assume that $N_{G}(P)^{I(P)}$-orbits are $\{1\}$ and $\{2,3, \cdots, 7\}$. Let

$$
a=(1)(2) \cdots(7)(89)(1011) \cdots
$$

be an involution of P. Since $a \in N_{G}\left(G_{2389}\right)$, there is an involution b of G_{2389} commuting with a. We may assume

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11) \cdots .
$$

Let P^{\prime} be a Sylow 2-subgroup of $G_{I(b)}$ containing b.
Assume that G is intransitive on Ω. By (6) $G_{I(P)}$ is transitive on $\{8,9, \cdots, n\}$, and $\{1\},\{2,3, \cdots, 7\}$ are $N_{G}(P)^{I(P)}$-orbits. On the other hand $I(b)=\{1,2,3$, $8,9,10,11\}$ and $N_{G}\left(G_{I(b)}\right)^{I(b)}=A_{7}, A_{7}{ }^{*}, A_{6}$ or $A_{6}{ }^{*}$. Therefore G has two orbits $\{1\}$ and $\{2,3, \cdots, n\}$. Then $G=G_{1}$ satisfies the condition (*) of [9], which is a contradiction. Thus G must be transitive on Ω.

Since $|P| \geqq 8$ by (6), a Sylow 2-subgroup of $N_{G}(P)_{1}$ is a Sylow 2-subgroup of G_{1} and fixes exactly one point. Similarly a Sylow 2-subgroup of $N_{G}(P)_{2}$ is a Sylow 2-subgroup of G_{2} and fixes exactly three points. Thus G_{1} and G_{2} are not conjugate in G, which contradicts the transitivity of G. Thus we complete the proof of (9).
(10) There are four points i, j, k and l of Ω such that a Sylow 2-subgroup of $G_{i j k l}$ is of order at least 4.

Proof. Suppose by way of contradiction that for any four points i, j, k and l a Sylow 2-subgroup of $G_{i j k l}$ is of order 2. Let

$$
a=(1)(2) \cdots(7)(89)(1011)(1213)(1415)(1617)(1819) \cdots
$$

be an involution. Since $a \in N_{G}\left(G_{891011}\right)$, there is an involution b of G_{891011} commuting with a. We may assume that

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11)(1213)(1415)(1618)(1719) \cdots
$$

Since $\langle a, b\rangle\left\langle N_{G}\left(G_{16171819}\right)\right.$, there is an involution c of $G_{16171819}$ commuting with a and b. Then $c^{I(a)}$ is one of the following:
(i) $c^{I(a)}=(1)(23)(4)(5)(67)$,
(ii) $c^{I(a)}=(1)(2)(3)(45)(67)$,
(iii) $c^{I(a)}=(1)(2)(3)(46)(57)$.

Assume $c^{I(a)}$ is of the form (i). Since $c^{I(b)} \in A_{7}$,
$c=(1)(23)(4)(5)(67)(8)(9)(1011)(16)(17)(18)(19) \cdots$.
Thus $|I(c)| \geqq 9$, which is a contradiction.
Next assume that $c^{I(a)}$ is of the form (ii). Then $\langle b c, a\rangle$ is a subgroup of $G_{I(P)}$ and of order 4, contrary to the assumption.

Therefore $c^{I(a)}$ must be of the form (iii). Then similarly $c^{I(b)}$ and $a^{I(b)}$ have no 2 -cycle in common, $c^{I(a b)}$ and $a^{I(a b)}$ also have no 2-cycle in common. Therefore

$$
c=(1)(2)(3)(46)(57)(810)(911)(1214)(1315)(16)(17)(18)(19) \cdots .
$$

On the other hand $\langle a, b\rangle\left\langle N_{G}\left(G_{4589}\right)\right.$. Hence there is an involution d of G_{4589} commuting with a and b. Then

$$
d=(1)(23)(4)(5)(67)(8)(9)(1011)(12)(13)(1415) \cdots .
$$

Therefore we have

$$
\begin{aligned}
& c d=(1)(23)(4756)(811910)(12151314) \cdots, \\
& a(c d)^{2}=(1)(2)(3)(45)(67)(8)(9) \cdots(14) \cdots .
\end{aligned}
$$

Thus $a(c d)^{2}$ is of even order and $\left|I\left(a(c d)^{2}\right)\right| \geqq 11$, which is a contradiction. Thus (10) is proved.
(11) $G=M_{23}$.

Proof. By (10) we may assume that $|P| \geqq 4$. Then by (6) and (9) $N_{G}(P)^{I(P)}$ $=A_{7}$ or $A_{7}{ }^{*}$ and $G_{I(P)}$ is transitive on $\Omega-I(P)$. Hence G is transitive on Ω or has two orbits $\{1,2, \cdots, 7\}$ and $\{8,9, \cdots, n\}$. Let

$$
a=(1)(2) \cdots(7)(89)(1011) \cdots
$$

be an involution of P. Since $a \in N_{G}\left(G_{1289}\right)$, there is an involution b of G_{1289} commuting with a. We may assume that

$$
b=(1)(2)(3)(45)(67)(8)(9)(10)(11) \cdots
$$

By (9) $N_{G}\left(G_{I(b)}\right)^{I(b)}=A_{7}, A_{7} *$ or A_{6}. Hence G is transitive on Ω.
Now we may assume that if $N_{G}\left(G_{I(b)}\right)^{I(b)}=A_{6}$ then its orbits are $\{1\}$ and $\{2,3,8,9,10,11\}$. Then since $G_{I(P)}$ is transitive on $\{8,9, \cdots, n\}$, and $\{2,3, \cdots, 7\}$ is an orbit of $N_{G}(P)_{1}, G_{1}$ is transitive on $\{2,3, \cdots, n\}$.

Since $b^{I(a)} \in N_{G}(P)^{I(P)},\{4,5,6,7\}$ is a $N_{G}(P)_{123}$-orbit. Hence G_{123} is transitive or has two orbits $\{4,5,6,7\}$ and $\{8,9, \cdots, n\}$ on $\{4,5, \cdots, n\}$. Set $|P|=2^{r}$ where $r \geqq 3$. Since $G_{I(P)}$ is transitive on $\Omega-I(P)$ and P is semiregular, $|\Omega-I(P)|=2^{r} \cdot s$ where s is odd. On the other hand a Sylow 2-subgroup
Q of $N_{G}(P)_{123}$ is also a Sylow 2-subgroup of G_{123}. Hence $|Q|=2^{r} \cdot 4$ and there is at least one Q-orbit T in $\Omega-I(P)$, which is of length 2^{r}. Let i be a point of T. Then $\left|Q_{i}\right|=4$ and Q_{i} is a 2-group of $G_{123 i}$. Thus $G_{I\left(Q_{i}\right)}$ is transitive on $\Omega-I\left(Q_{i}\right)$ by (6). Since $i \notin\{4,5,6,7\}, I\left(Q_{i}\right) \nexists\{4,5,6,7\}$. Therefore G_{123} is transitive on $\{4,5, \cdots, n\}$.

Hence this implies that G_{12} is transitive or has two orbits $\{3\}$ and $\{4,5, \cdots, n\}$ on $\{3,4, \cdots, n\}$. If G_{12} is transitive on $\{3,4, \cdots, n\}$, then G is 4 -fold transitive on Ω. Since a Sylow 2-subgroup P of G_{1234} is semi-regular, $G=M_{23}$ by a theorem of [8].

Thus to complete the proof of (11) we must show that G_{12} is transitive. Hence suppose by way of contradiction that G_{12} has two orbits $\{3\}$ and $\{4,5, \cdots, n\}$ on $\{3,4, \cdots, n\}$. Then $N_{G}(P)^{I(P)}=A_{7}{ }^{*}$. Since G is doubly transitive on Ω, any stabilizer of two points in G fixes exactly three points. Therefore $N_{G}\left(G_{I(b)}\right)_{12}$ fixes at least three points. Hence $N_{G}\left(G_{I(b)}\right)^{I(b)}=A_{7}{ }^{*}$. On the other hand since $\langle a, b\rangle<N_{G}\left(G_{4589}\right)$, there is an involution c of G_{4589} commuting with a and b. We may assume

$$
c=(1)(23)(4)(5)(67)(8)(9)(1011) \cdots
$$

Now b normalizes some Sylow 2-subgroup P^{\prime} of $G_{I(a)}$ containing a. Since P^{\prime} is conjugate to $P,\left|P^{\prime}\right| \geqq 8$ and $N_{G}\left(P^{\prime}\right)^{I\left(P^{\prime}\right)}=A_{7}{ }^{*}$. If b commutes with only two elements 1 and a of P^{\prime}, then by a theorem of H. Zassenhaus [12, Satz 5] P^{\prime} has a cyclic subgroup of order at least 4 , which is a contradiction. Therefore there is an involution a^{\prime} of P^{\prime} which is different from a and commutes with b. We may assume

$$
a^{\prime}=(1)(2) \cdots(7)(810)(9.11) \cdots
$$

Since $\left\langle a^{\prime}, b\right\rangle<N_{G}\left(G_{45810}\right)$, there is an involution c^{\prime} of G_{45810} commuting with a^{\prime} and b. Then c and c^{\prime} fix two points 4,5 and have the same 2 -cycle (67) in $I(P)$. Since $N_{G}\left(G_{I(P)}\right)^{I(P)}=A_{7}{ }^{*}, c^{I(P)}=c^{\prime I(P)}$. Thus we have

$$
c^{\prime}=(1)(23)(4)(5)(67)(8)(10)(911) \cdots
$$

Then

$$
\left(c c^{\prime}\right)^{I(b)}=(1)(2)(3)(8)(91110),
$$

which is a contradiction since $\left(c c^{\prime}\right)^{I(b)} \in A_{7}{ }^{*}$. Thus we complete the proof.

3. Proof of Theorem 2

By Corollary of [10] $|I(P)|=4,5$ or 7 and $N_{G}(P)^{I(P)}=S_{4}, S_{5}$ or A_{7} respectively. If P is a semi-regular abelian group, then $G=S_{6}, S_{7}, A_{8}, A_{9}$ or M_{23} by a theorem of [8]. Therefore from now on we assume by way of contradiction that P is not semi-regular.

We shall treat the following three cases separately:
Case I. $\quad|I(P)|=4$ and $N_{G}(P)^{I(P)}=S_{4}$.
Case II. $\quad|I(P)|=5$ and $N_{G}(P)^{I(P)}=S_{5}$.
Case III. $|I(P)|=7$ and $N_{G}(P)^{I(P)}=A_{7}$.
Case I. $\quad|I(P)|=4$ and $N_{G}(P)^{I(P)}=S_{4}$.
Let $\left|I\left(P_{t_{1} t_{2}}\right)\right|$ is the smallest number such that $t_{1} \in \Omega-I(P)$ and $t_{2} \in \Omega-I\left(P_{t_{1}}\right)$. For any four points i, j, k and l of $I\left(P_{t_{1} t_{2}}\right)$ let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing $P_{t_{1} t_{2}}$. Since P^{\prime} is abelian, $P^{\prime} \subseteq N_{G}\left(P_{t_{1} t_{2}}\right)$. By minimality of $\left|I\left(P_{t_{1} t_{2}}\right)\right|$ for any point t of $I\left(P_{t_{1} t_{2}}\right)-I\left(P^{\prime}\right)\left(P_{t}^{\prime}\right)^{I\left(P_{t_{1} t_{2}}\right)}$ is a semiregular group ($\geqq 1$). Thus $N_{G}\left(P_{t_{1} t_{2}}\right)^{I\left(P_{\left.t_{1} t_{2}\right)}\right)}$ satisfies the conditions (i), (ii) and (iii) of the following lemma.

Therefore to complete the proof of this case it is sufficient to prove the following lemma.

Lemma 1. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$. Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following three conditions:
(i) $|I(P)|=4$.
(ii) P is a non-identity abelian group.
(iii) For any point t of $\Omega-I(P) P_{t}$ is a semi-regular group $(\geqq 1)$.

Then P is semi-regular.

Proof. For any four points of Ω there is a 2-group fixing exactly these four points by (i). Hence by the lemma of [3] G is 4 -fold transitive on Ω. Assume by way of contradiction that P is not semi-regular. Then there is a point t of $\Omega-I(P)$ such that P_{t} is a non-identity semi-regular group by (iii). By Corollary $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{6}, A_{8}$ or M_{12}. Since P is abelian, $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)} \neq M_{12}$. Furthermore since $\left|I\left(P_{t}\right)-I(P)\right|=2$ or $4, t$ belongs to a P-orbit of length 2 or 4 , and a non-identity element of P fixes 4,6 or 8 points of Ω. Since there is no 4 -fold transitive group of degree less than 35 except known one [2. p. 80], the degree of G is not less than 35 .

From now on we assume that P is a Sylow 2-subgroup of G_{1234}.
(1) Suppose that P has exactly one orbit of length 2 . We may assume that this orbit is $\{5,6\}$. Let

$$
a=(1)(2) \cdots(6)(78) \cdots
$$

be an involution of P_{5}. Since P is abelian, there is an element (1)(2)(3)(4)(56) \cdots in $C_{G}\left(P_{5}\right)$. Since (1)(2)(3)(4)(56) $\in C_{G}\left(P_{5}\right)^{I\left(P_{5}\right)} \triangleq N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}=S_{6}, N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}$ $=C_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}$. Hence $N_{G}\left(P_{5}\right)=C_{G}\left(P_{5}\right) \cdot N_{G}\left(P_{5}\right)_{I\left(P_{5}\right)}$. By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_{G}\left(P_{5}\right)$ belong to $C_{G}\left(P_{5}\right)$.

Since $a \in N_{G}\left(G_{1278}\right), a$ normalizes a Sylow 2-subgroup P^{\prime} of G_{1278}. By the

4-fold transitivity of $G P^{\prime}$ has exactly one orbit $\left\{i_{1}, i_{2}\right\}$ of length 2 . Then a fixes $\left\{i_{1}, i_{2}\right\}$ as a set. Hence a commutes with an involution b of $P_{i_{1}}^{\prime}$. Since $|I(b)|=6$,

$$
b=(1)(2)(7)(8)\left(i_{1}\right)\left(i_{2}\right) \cdots
$$

First suppose that a fixes $\left\{i_{1}, i_{2}\right\}$ pointwise. Then we may assume that $\left\{i_{1}, i_{2}\right\}=\{3,4\}$. Thus we have

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(78) \cdots, \\
& b=(1)(2)(3)(4)(5)(7)(8) \cdots .
\end{aligned}
$$

Let $P^{\prime \prime}$ be a Sylow 2-subgroup of G_{1234} containing $\langle a, b\rangle$. Since $P^{\prime \prime}$ is abelian, $\{5,6\}$ and $\{7,8\}$ are $P^{\prime \prime}$-orbits of length 2 , which is a contradiction.

Next suppose that a has a 2 -cycle $\left(i_{1} i_{2}\right)$. We may assume that $\left(i_{1} i_{2}\right)=(910)$. Then

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(78)(910) \cdots, \\
& b=(1)(2)(34)(56)(7)(8)(9)(10) \cdots .
\end{aligned}
$$

Since $\langle a, b\rangle\left\langle N_{G}\left(G_{3478}\right),\langle a, b\rangle\right.$ normalizes a Sylow 2-subgroup $P^{\prime \prime \prime}$ of G_{3478}. By the same argument above a and b have the same 2-cycle on a $P^{\prime \prime \prime}$-orbit of length 2. We may assume that this $P^{\prime \prime \prime}$-orbit is $\{11,12\}$. Then $\langle a, b\rangle<C_{G}\left(P^{\prime \prime \prime}{ }_{11}\right)$ and $I\left(P^{\prime \prime}{ }_{11}\right)=\{3,4,7,8,11,12\}$. Since $P^{\prime \prime \prime}{ }_{11}$ is semi-regular on $\Omega-I\left(P^{\prime \prime \prime}{ }_{11}\right)$ and $I(\langle a, b\rangle) \cap\left\{\Omega-I\left(P^{\prime \prime \prime}{ }_{11}\right)\right\}=\{1,2\},\left|P^{\prime \prime \prime}{ }_{11}\right|=2$. Hence $|P|=\left|P^{\prime \prime \prime}\right|=4$. By Theorem 1 of [7] P is elementary abelian. Let c be an involution of $P^{\prime \prime \prime}{ }_{11}$. Then we have

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(78)(910)(1112) \cdots, \\
& b=(1)(2)(34)(56)(7)(8)(9)(10)(1112) \cdots, \\
& c=(12)(3)(4)(56)(7)(8)(910)(11)(12) \cdots
\end{aligned}
$$

Since $\langle b, c\rangle<N_{G}\left(G_{1234}\right),\langle b, c\rangle$ normalizes a Sylow 2-subgroup Q of G_{1234} containing a. Then Q is semi-regular on $\{7,8, \cdots, n\}$, and Q-orbits in $\{7,8, \cdots, n\}$ are of length 4. Since $I(\langle b, c\rangle) \cap\{7,8, \cdots, n\}=\{7,8\},\langle b, c\rangle$ fixes a Q-orbit containing 7 and 8 , say $\left\{7,8, j_{1}, j_{2}\right\}$. Then there is an involution

$$
a^{\prime}=(1)(2)(3)(4)(56)\left(7 j_{1}\right)\left(8 j_{2}\right) \cdots
$$

of Q. If b has a 2 -cycle $\left(j_{1} j_{2}\right)$, then

$$
b a^{\prime}=(1)(2)(34)(5)(6)\left(7 j_{1} 8 j_{2}\right) \cdots
$$

Thus $b a^{\prime}$ is of order 4 and contained in G_{1256}. Since a Sylow 2-subgroup of G_{1256} is elementary abelian, we have a contradiction. If b fixes $\left\{7,8, j_{1}, j_{2}\right\}$ pointwise, then $\left\{7,8, j_{1}, j_{2}\right\}=\{7,8,9,10\}$. Then we have

$$
c a^{\prime}=(12)(3)(4)(5)(6)\left(7 j_{1} 8 j_{2}\right) \cdots,
$$

which is also a contradiction.

Therefore it is impossible that P has only one orbit of length 2 .
(2) Suppose that P has at least two orbits of length 2 . Then P is an elementary abelian group of order 4 and any involution of P fixes four or six points in Ω. Let r be a number of P-orbits of length 2, and s a number of involutions of P fixing six points. Since for any P-orbit of length 2 there is exactly one involution of P such that it fixes this P-orbit pointwise, $s=r$. Since $r \geqq 2$ and $s \leqq 3, r=s=2$ or 3. We may assume that P-orbits of length 2 are $\{5,6\},\{7,8\}, \cdots$. Then there are two involutions

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(78) \cdots, \\
& b=(1)(2)(3)(4)(56)(7)(8) \cdots
\end{aligned}
$$

such that $\langle a, b\rangle=P$.
Assume that $r=s=2$. Since $N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}=S_{6}$, there is a 2-element

$$
x=(1)(2)(3456) \cdots
$$

in $N_{G}\left(P_{5}\right)$ such that $\langle x, P\rangle$ is a 2-group. Then $x^{2} \in N_{G}(P)$. Since x^{2} fixes the P-orbit $\{5,6\}, x^{2}$ fixes also the P-orbit $\{7,8\}$. Thus $\left\langle x^{2}, P\right\rangle$ has exactly three orbits $\{3,4\},\{5,6\},\{7,8\}$ of length 2 . Since $x \in N_{G}\left(\left\langle x^{2}, P\right\rangle\right)$ and x takes $\{3,4\}$ into $\{5,6\}, x$ fixes $\{7,8\}$ as a set. By taking $x a$ instead of x if necessary, we may assume that

$$
x=(1)(2)(3546)(7)(8) \cdots
$$

Then $\langle x, b\rangle$ is a non-abelian 2-group, which is a contradiction.
Thus $r=s=3$. Then P has one more orbit of length 2, say $\{910\}$.
Hence

$$
\begin{aligned}
& a=(1)(2) \cdots(6)(78)(910) \cdots, \\
& b=(1)(2)(3)(4)(56)(7)(8)(910) \cdots .
\end{aligned}
$$

Since $P<N_{G}\left(G_{5678}\right)$, there is an involution c of G_{5678} such that $c \in C_{G}(P)$. By assumption $|I(c)|=6$. Hence $|I(c) \cap I(P)|=2$ or 0 .

First assume that $|I(c) \cap I(P)|=2$. Then we may assume that

$$
c=(1)(2)(34)(5)(6)(7)(8) \cdots .
$$

Since $c^{I(P)}=(1)(2)(34) \in C_{G}(P)^{I(P)} \triangleq N_{G}(P)^{I(P)}=S_{4}, C_{G}(P)^{I(P)}=N_{G}(P)^{I(P)} . \quad$ By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_{G}(P)$ belong to $C_{G}(P)$. Hence there is a 2-element

$$
y=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \cdots
$$

in $C_{G}(P)$ such that $\langle y, c, P\rangle$ is a 2-group. Since $y \in C_{G}(P), y$ fixes the three P-orbits $\{5,6\},\{7,8\},\{9,10\}$ as a set. Therefore $y, y a, y b$ or $y a b$ fixes $\{5,6,7,8\}$ pointwise, and so one of these elements and c generate a non-abelian 2-group of G_{5678}, which is a contradiction.

Next assume that $|I(c) \cap I(P)|=0$. Then we may assume that

$$
c=(12)(34)(5)(6)(7)(8)(9)(10) \cdots .
$$

Since $P<N_{G}\left(G_{5678}\right), P$ normalizes a Sylow 2-subgroup P^{\prime} of G_{5678} containing c. Then $\{9,10\}$ is a P^{\prime}-orbit. Furthermore P fixes a P^{\prime}-orbit containing $\{1,2\}$. If $\{1,2\}$ is a P^{\prime}-orbit then $a \in C_{G}\left(P^{\prime}\right)$. Since $a^{I\left(P^{\prime}\right)}=(5)(6)(78)$, from the same reason as above we have a contradiction. Therefore the length of the $P^{\prime}-$ orbit containing $\{1,2\}$ is 4 . Since every P-orbits in $\{11,12, \cdots, \mathrm{n}\}$ are of length 4 , the P^{\prime}-orbit containing $\{1,2\}$ is $\{1,2,3,4\}$. Then also $a \in C_{G}\left(P^{\prime}\right)$. Hence similarly we have a contradiction.

Thus the minimal P-orbit is of length 4 and any involution of P fixes four or eight points.
(3) Suppose that the minimal P-orbit on $\Omega-I(P)$ is of length 4 and P has exactly one orbit of length 4 . We may assume that there is an involution

$$
a=(1)(2) \cdots(8)(910)(1112) \cdots
$$

in P such that a fixes exactly eight points. Since $a \in N_{G}\left(G_{12910}\right), a$ normalizes a Sylow 2-subgroup P^{\prime} of G_{12910}. By assumption P^{\prime} has exactly one orbit of length 4. Hence a fixes this P^{\prime}-orbit, and hence a commutes with an invlution b of P^{\prime} which fixes exactly eight points. Since $b^{I(a)} \in A_{8}$ and $a^{I(b)} \in A_{8}$, we may assume that

$$
b=(1)(2)(3)(4)(56)(78)(9)(10)(11)(12) \cdots .
$$

Since a Sylow 2-subgroup $P^{\prime \prime}$ of G_{1234} containing $\langle a, b\rangle$ has not an orbit of length $2, P^{\prime \prime}$ has two orbits $\{5,6,7,8\}$ and $\{9,10,11,12\}$ of length 4 , which is a contradiction. Thus P has at least two orbits of length 4 .
(4) Suppose that a minimal P-orbit on $\Omega-I(P)$ is of length 4 and P has at least two orbits of length 4 . Then we may assume that P-orbits of length 4 are $\{5,6,7,8\},\{9,10,11,12\}, \cdots$. Since $\left|P: P_{5}\right|=4$ and $\left|P_{5}\right|=2$ or $4,|P|=8$ or 16. If P has an element of order 4 , then this element has a 4 -cycle on $\{5,6,7,8\}$ or $\{9,10,11,12\}$. But this is a contracidtion since $N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}=N_{G}\left(P_{9}\right)^{I\left(P_{9}\right)}=A_{8}$. Thus P is elementary abelian.

First assume that $|P|=16$. Then we may assume that there are three involutions

$$
\begin{aligned}
& a=(1)(2) \cdots(8)(910)(1112) \cdots \\
& b=(1)(2) \cdots(8)(911)(1012) \cdots \\
& c=(1)(2)(3)(4)(56)(78)(9)(10)(11)(12) \cdots
\end{aligned}
$$

in P. Since $c^{I\left(P_{5}\right)}=(1)(2)(3)(4)(56)(78) \in C_{G}\left(P_{5}\right)^{I\left(P_{5}\right)} \triangleq N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}=A_{8}, C_{G}$ $\left(P_{5}\right)^{I\left(P_{5}\right)}=N_{G}\left(P_{5}\right)^{I\left(P_{5}\right)}=A_{8}$. Hence there is an involution

$$
d=(1)(2)(34)(5)(6)(78) \cdots
$$

in $C_{G}\left(P_{5}\right)$ such that d is conjugate to c. Then we have

$$
c d=(1)(2)(34)(56)(7)(8) \cdots
$$

Since $|I(c d)| \geqq 4, c d$ is of order 2 r where r is odd. Hence $x=(c d)^{r}$ is an involution commuting with a, b and c. Since $x^{I(c)} \in A_{8}$,

$$
x^{I(c)}=(1)(2)(34)(i)(j)(k l)
$$

where $\{i, j, k, l\}=\{9,10,11,12\}$. On the other hand $\langle a, b\rangle$ is regular on $\{9,10,11,12\}$. Therefore $x \notin C_{G}(\langle a, b\rangle)$, which is a contradiction.

Next assume that $|P|=8$. Then there is involutions

$$
\begin{aligned}
& a=(1)(2) \cdots(8)(910)(1112) \cdots, \\
& b=(1)(2)(3)(4)(56)(78)(9)(10)(11)(12) \cdots
\end{aligned}
$$

in P. From the same argument as above there is an involution

$$
x=(1)(2)(34)(56)(7)(8) \cdots
$$

commuting with a and b. Since $x^{I(b)} \in A_{8}$, we may assume that

$$
x=(1)(2)(34)(56)(7)(8)(9)(10)(1112) \cdots
$$

If $|I(a b)|=8$, then we have

$$
\begin{aligned}
& a=(1)(2) \cdots(8)(910)(1112)(1314)(1516) \cdots, \\
& b=(1)(2)(3)(4)(56)(78)(9)(10)(11)(12)(1314)(1516) \cdots, \\
& x=(1)(2)(34)(56)(7)(8)(9)(10)(1112)(13)(14)(1516) \cdots .
\end{aligned}
$$

Since $|P|=8$, there is an invluiton

$$
c=(1)(2)(3)(4)(57)(68)(911)(1012)(1315)(1416) \cdots
$$

In P. Then we have

$$
\begin{aligned}
& c x=(1)(2)(34)(5768)(9121011)(13161415) \cdots, \\
& a(c x)^{2}=(1)(2)(3)(4)(56)(78)(9)(10) \cdots(15) \cdots
\end{aligned}
$$

Thus $a(c x)^{2}$ is of even order and $\left|I\left(a(c x)^{2}\right)\right| \geqq 12$, which is a contradiction.
Next if $|I(a b)|=4$, then $\langle a, b\rangle$ is semi-regular on $\{13,14, \cdots, n\}$. On the other hand x fixes six points of $\{1,2, \cdots, 12\}$. Hence x fixes exactly two points of $\{13,14, \cdots, \mathrm{n}\}$, contrary to the result that $x \in C_{G}(\langle a, b\rangle)$. The lemma is proved.

Case II. $|I(P)|=5$ and $N_{G}(P)^{I(P)}=S_{5}$.
Let t be a point of $\Omega-I(P)$ such that t belongs to the minimal P-orbit. Since $|I(P)|=5$, by Corollary $\left|I\left(P_{t}\right)\right|=7,9$ or 13. If $\left|I\left(P_{t}\right)\right|=13$, then $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=$ $S_{1} \times M_{12}$, which is a contradiction since P is abelian. Therefore $\left|I\left(P_{t}\right)\right|=7$ or 9 and t belongs to a P-orbit of length 2 or 4 . From now on we assume that $I(P)=\{1,2, \cdots, 5\}$.
(1) First we shall ahow that if $\left|I\left(P_{t}\right)\right|=9$, then t belongs to a P-orbit of length 4. Assume by way of contradiction that t is a point of a P-orbit of length 2 . Set $I\left(P_{t}\right)=\{1,2, \cdots, 9\}$ and $H=N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}$. Since $\left|P: P_{t}\right|=2$, a Sylow 2-subgroup of the stabilizer of any four points in H is of order 2 and $H \nsubseteq A_{9}$.

If H_{i} is transitive on $\{1,2, \cdots, 9\}-\{i\}$ for any point i of $I\left(P_{t}\right)$, then H is doubly transitive. Since H has an invloution consisting of two 2-cycles, $H=A_{9}$. This is a contradiction. Therefore we may assume that H_{1} is intransitive on $\{2,3, \cdots, 9\}$.

First assume that H_{1} has an orbit of length 1 in $\{2,3, \cdots, 9\}$. Then we may assume that this orbit is $\{2\}$. Set $\Delta=\{3,4, \cdots, 9\}$. For any three points i_{1}, i_{2} and i_{3} of Δ there is an involution

$$
x=(1)(2)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(i_{4} i_{5}\right)\left(i_{6} i_{7}\right) .
$$

Thus x fixes exactly these three points i_{1}, i_{2} and i_{3}. From Lemma 6 of [3] H_{12} is 3-fold transitive on Δ. By $\S 166$ in [1], $H_{12}=A_{7}$. Hence a Sylow 2-subgroup of $H_{12{ }_{34}}$ is of order 4, which is a contradiction.

Next assume that H_{1} has an orbit of length 2. Then we may assume that $\{2,3\}$ is the H_{1}-orbit. Set $\Delta=\{4,5, \cdots, 9\}$. For any two points i_{1} and i_{2} of Δ there is an involution

$$
x=(1)(2)(3)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3} i_{4}\right)\left(i_{5} i_{6}\right) .
$$

Then from the same reason as above, H_{123} is doubly transitive on Δ. On the other hand there is an involution (1) $(23)\left(j_{1}\right)\left(j_{2}\right)\left(j_{3}\right)\left(j_{4}\right)\left(j_{5} j_{6}\right)$. Thus $H_{1}{ }^{\Delta}=S_{6}$. Hence there is an involution

$$
y=(1)(2)(3)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3} i_{5}\right)\left(i_{4} i_{6}\right) .
$$

Then $\langle x, y\rangle$ is a 2-group of $H_{123 i_{1}}$ and of order 4, which is a contradiction.
For the remaining cases by the same argument as above we have also a contradiction. Thus we complete the proof.
(2) Next we shall show that if t is a point of a P-orbit of length 2 , then $\left|I\left(P_{t}\right)\right|=7$ and $C_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7} \cdot$ Let t be a point of a P-orbit $\{6,7\}$. Then by (1) $I\left(P_{6}\right)=\{1,2, \cdots, 7\}$. For any four points i_{1}, i_{2}, i_{3} and i_{4} of $I\left(P_{6}\right)$ there is a Sylow 2-subgroup P^{\prime} of $G_{i_{1} i_{2} i_{3} i_{4}}$ containing P_{6}. Set $C=C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$. Since P^{\prime} is abelian, $P^{\prime}<\mathrm{C}_{G}\left(P_{6}\right)$. Thus C has an involution $\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(i_{4}\right)\left(i_{5}\right)\left(i_{6} i_{7}\right)$. By the same argument as in (1) we have that C is one of the following groups:
(i) If C is transitive on $I\left(P_{6}\right)$, then by Theorem 8.3 and Theorem 13.3 of [11] $C=S_{7}$.
(ii) If C has two orbits of length 1 and 6 , then $C=S_{1} \times S_{6}$. We may assume that the C-orbits are $\{1\}$ and $\{2,3, \cdots, 7\}$.
(iii) If C has two orbits of length 2 and 5 , then $C=S_{2} \times S_{5}$. We may assume that the C-orbits are $\{1,2\}$ and $\{3,4, \cdots, 7\}$.
(iv) If C has two orbits of length 3 and 4, then $C=S_{3} \times S_{4}$. We may assume that C-orbits are $\{1,2,3\}$ and $\{4,5,6,7\}$.
Since $N_{G}(P)^{I(P)}=S_{5}$, there is a 2-element
$x=(14)(2)(3)(5) \cdots$
in $N_{G}(P)$.
First suppose that $\{6,7\}^{x}=\{6,7\}$. Since P has an element $y=(1)(2) \cdots(5)$ (67) \cdots, x or $x y$ is of the form (14)(2)(3)(5)(6)(7) \cdots. Therefore we may assume that

$$
x=(14)(2)(3)(5)(6)(7) \cdots
$$

Since $\left\langle x, P_{6}\right\rangle<G_{23567}, x \in C_{G}\left(P_{6}\right)$. On the other hand $C=C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ is one of the groups listed above. Hence the points 1 and 4 are contained in the same C-oribt. Thus $C=S_{7}$.

Next suppose that $\{6,7\}^{x} \neq\{6,7\}$. Set $\{8,9\}=\{6,7\}^{x}$. Since $x^{2} \in P,\{8,9\}^{x}=$ $\{6,7\}^{x^{2}}=\{6,7\}$. Hence $x \in N_{G}\left(P_{68}\right)$. Set $H=N_{G}\left(P_{68}\right)$ and $\Delta=I\left(P_{68}\right)$. Since $\left.C_{G}\left(P_{68}\right)>C_{G}\left(P_{6}\right), H\right\rangle\left\langle x, \mathrm{C}_{G}\left(P_{6}\right)\right\rangle$. On the other hand C is one of the groups listed above. Therefore x and all elements of C fixing the set $I(P)=\{1,2, \cdots, 5\}$ generate S_{5} on $I(P)$. Thus $N_{H}\left(H_{I(P)}\right)^{I(P)}=S_{5}$. New P^{Δ} is an elementary abelian group of order 4 and a Sylow 2-subgroup of $\left(H^{\Delta}\right)_{I(P)}$. Hence $N_{H^{\Delta}}\left(P^{\Delta}\right)^{I(P)}=N_{H^{\Delta}}$ $\left(H_{I(P)}^{\Delta}\right)^{I(P)}=S_{5}$. Since the automorphism group of P^{Δ} is a subgroup of S_{3} and $N_{H^{\Delta}}\left(P^{\Delta}\right)^{I(P)} / C_{H^{\Delta}}\left(P^{\Delta}\right)^{I(P)}$ is a homomorphic image of a subgroup of this automorphism group, $C_{H^{\Delta}}\left(P^{\Delta}\right)^{I(P)} \geqq A_{5}$. Since $\{6,7\}$ is the P^{Δ}-orbit, there is an element

$$
y=(14)(23)(5)(6)(7) \cdots
$$

such that $y^{\Delta} \in C_{H^{\Delta}}\left(P^{\Delta}\right)$. Thus $N_{G}\left(G_{I\left(P_{6}\right)}\right)^{I\left(P_{6}\right)} \geqq\left\langle y, C_{G}\left(P_{6}\right)\right\rangle^{I\left(P_{6}\right)}=S_{7}$. Since P_{6} is a Sylow 2-subgroup of $G_{I(P)}, N_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=N_{G}\left(G_{I\left(P_{6}\right)}\right)^{I\left(P_{6}\right)}=S_{7}$. Furthermore $N_{G}\left(P_{6}\right)^{I\left(P_{6}\right)} \stackrel{\unrhd}{ } C$ and C has a transposition. Therefore $C=S_{7}$.
(3) Suppose that P has exactly one orbit of length 2 . Let $\left\{t_{1}, t_{1}^{\prime}\right\}$ be the P-orbit of length 2, and let t_{2} be a point of the minimal $P_{t_{1}}$-orbit on $\Omega-I\left(P_{t_{1}}\right)$. Since P is abelian, $I\left(P_{t_{1} t_{2}}\right)-I(P)$ consists of one P-orbit of length 2 and several P-orbits of length at least 4. Thus $\left|I\left(P_{t_{1} t_{2}}\right)\right|-5 \equiv 2(\bmod 4)$.

Set $H=N_{G}\left(P_{t_{1} t_{2}}\right)$ and $\Delta=I\left(P_{t_{1} t_{2}}\right)$. For any four points i_{1}, i_{2}, i_{3} and i_{4} of Δ let P^{\prime} be a Sylow 2-subgroup of $G_{i_{1} i_{2} i_{3} i_{4}}$ containing $P_{t_{1} t_{2}}$. Then $P^{\prime} D P_{t_{1} t_{2}}$ and $P^{\prime \Delta}$ is a Sylow 2-subgroup of $\left(H^{\Delta}\right)_{i_{1} i_{2} i_{3} i_{4}}$. Since $|\Delta|-5 \equiv 2(\bmod 4), P^{\prime \Delta}$ has exactly one orbit $\left\{u_{1}, u_{1}^{\prime}\right\}$ of length 2. By (2) $I\left(P_{u_{1}}^{\prime}\right) \neq \Delta$. Since t_{2} is the point of the minimal $P_{t_{1}}$-orbit, for any point v of $\Delta-I\left(P_{u_{1}}^{\prime}\right) P_{t_{1} t_{2}}=P_{u_{1} v}^{\prime}$. Thus $\left|P^{\Delta}\right|=\left|P^{\prime \Delta}\right|$ and $\left(P^{\Delta}\right)_{u_{1} v}=1$. Since $C_{G}\left(P_{u_{1}}^{\prime}\right)<C_{G}\left(P_{u_{1} v}^{\prime}\right)=C_{G}\left(P_{t_{1} t_{2}}\right)<H$ and $C_{G}\left(P_{u_{1}}^{\prime}\right)^{I\left(P^{\prime}{ }_{u_{1}}\right)}=S_{7}$ by (2), $\left.C_{H^{\Delta}}\left(P_{u_{1}}^{\prime}\right)^{I\left(P^{\prime}\right.}{ }_{u_{1}}\right)=S_{7}$.

Thus H^{Δ} satisfies the conditions (i), (ii) and (iii) of the following lemma.

Hence if we prove the following lemma, then the number of P-orbits of length 2 is greater than 1.

Lemma 2. Let G be a permutation group on $\Omega=\{1,2, \cdots, n\}$. Then it is impossible that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the following three conditions:
(i) $|I(P)|=5$ and $|P|$ is constant.
(ii) P is an abelian group.
(iii) P has exactly one orbit of length 2. Let t be a point of the orbit of length 2, then $C_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=S_{7}$ and P_{t} is a non-identity semi-regular group.

Proof. Assume by way of contradiction that G is a counter-example to Lemma 2. Let P be a Sylow 2-subgroup of G_{1234} and $I(P)=\{1,2,3,4,5\}$. Since P has an orbit of length 2 and some orbits of length at least $4,|\Omega| \geqq$ $5+2+4=11$. Let $\{6,7\}$ be a P-orbit of length 2 . By the same argument as in the proof of (1) of Lemma $1,|\Omega| \geqq 13$ and for an involution

$$
a=(1)(2) \cdots(7)(89)(1011)(1213) \cdots
$$

of P_{6}, there is two commuting involutions

$$
\begin{aligned}
& b=(1)(2)(3)(45)(67)(8)(9)(10)(11)(1213) \cdots \\
& c=(1)(23)(4)(5)(67)(8)(9)(1011)(12)(13) \cdots
\end{aligned}
$$

in $\mathrm{C}_{G}(a)$. Moreover P is a cyclic group or an elementary abelian group of order 4.
(a) Suppose that P is an elementary abelian group. Then by the same argument as in the proof (1) of Lemma 1, there is an element (1)(2) (3) (6) (7) (45) $\left(8 j_{1} 9 j_{2}\right) \cdots$ in G_{12367} or (1) (4) (5) (6) (7) (23) (8 $\left.j_{1} 9 j_{2}\right) \cdots$ in G_{14567}. Since $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=S_{7}$, a Sylow 2-subgroup of G_{12367} and a Sylow 2-subgroup of G_{14567} are conjugate to P. But P is an elementary abelian group, which is a contradiction.
(b) Therefore for any four points i, j, k and l a Sylow 2 -subgroup of $G_{i j k l}$ is cyclic. Since $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=S_{7}$, there is a 2-element

$$
x=(1)(2)(3)(4657) \cdots
$$

in $C_{G}\left(P_{6}\right)$ such that $\langle x, P\rangle$ is a 2-group and $x^{2} \in N_{G}(P)$. Assume that $\langle x, P\rangle$ has an orbit $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ of length 4 , which is different from $\{4,5,6,7\}$. Since P is cyclic, we may assume that

$$
d=(1)(2) \cdots(5)(67)\left(i_{1} i_{2} i_{3} i_{4}\right) \cdots
$$

is the generator of P. If x has a 4 -cycle on $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$, then x or x^{-1} is of the the form $\left(i_{1} i_{2} i_{3} i_{4}\right)$ on $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$. Hence

$$
x^{2}=(1)(2)(3)(45)(67)\left(i_{1} i_{2}\right)\left(i_{3} i_{4}\right) \cdots
$$

Thus $x^{2} \in C_{G}(P)$. If x has not a 4-cycle on $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$, then

$$
x^{2}=(1)(2)(3)(45)(67)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(i_{4}\right) \cdots
$$

Thus also $x^{2} \in C_{G}(P)$. On the other hand since $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=S_{7}, N_{G}\left(G_{I(P)}\right)^{I(P)}=$ $N_{G}(P)^{I(P)}=S_{5}$. Then $\left(x^{2}\right)^{I(P)}=(1)(2)(3)(45) \in C_{G}(P)^{I(P)} \triangleq N_{G}(P)^{I(P)}=S_{5}$. Hence $N_{G}(P)^{I(P)}=C_{G}(P)^{I(P)}$. By the same argument as in the proof of (6.2) in Section 2, every 2-elements of $N_{G}(P)$ belong to $C_{G}(P)$. Since $\langle b, c\rangle<N_{G}\left(G_{12}\right.$ ${ }_{345}$), there is a Sylow 2-subgroup P^{\prime} of G_{12345} such that $\mathrm{a} \in P^{\prime}$ and $\langle b, c\rangle<N_{G}$ $\left(P^{\prime}\right)$. Since P^{\prime} is conjugate to $P,\langle b, c\rangle<C_{G}\left(P^{\prime}\right)$. Since $I(\langle b, c\rangle) \cap\{8,9, \cdots, n\}$ $=\{8,9\}$ and P^{\prime} is semi-regular on $\{8,9, \cdots, n\}, P$ is of order 2 , which is a contradiction.

Therefore $\langle x, P\rangle$ has exactly one orbit of length 4 , namely $\{4,5,6,7\}$. Let Q be a 2-group of G_{123} containing $\langle x, P\rangle$ as a normal subgroup. Then Q fixes $\{4,5,6,7\}$. Hence $Q=\langle x, P\rangle$. Thus $\langle x, P\rangle$ is a Sylow 2-sbubgroup of G_{123}. For any point i of $\{4,5, \cdots, \mathrm{n}\}$ let $P^{\prime \prime}$ be a Sylow 2-subgroup of $G_{123 i}$. Then similarly a Sylow 2-subgroup Q^{\prime} of G_{123} containing $P^{\prime \prime}$ has exactly one orbit of length 4 , which contains i. By the conjugacy of Sylow 2-subgroups of G_{123} there is an element of G_{123} which takes $\{4,5,6,7\}$ into the Q^{\prime}-orbit containing i. Thus G_{123} is transitive on $\{4,5, \cdots, \mathrm{n}\}$. On the other nand $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ $=S_{7}$. Hence G is 4 -fold transitive on Ω. By Theorem 1 of [7] this is a contradiction. Thus lemma is proved.
(4) Suppose that P has at least two orbits of length 2 . Let $\{6,7\},\{8,9\} \cdots$ be P-orbits of length 2. Then $I\left(P_{6}\right)=\{1,2, \cdots, 7\}$. Since $\left|P: P_{68}\right|=4, P^{I\left(P_{68}\right)}$ is an elementary abelian group of order 4. For any four points i, j, k and l of $I\left(P_{68}\right)$ let P^{\prime} be a Sylow 2-subgroup of $G_{i j k l}$ containing P_{68}. Then $\left|I\left(P^{\prime I\left(P_{68}\right)}\right)\right|=5$ and $P^{\prime I\left(P_{68}\right)}$ is a Sylow 2-subgroup of $\left(N_{G}\left(P_{68}\right)^{I\left(P_{68}\right)}\right)_{i_{j k} l}$ of order 4. Set $\Delta=I$ $\left(P_{68}\right), H=N_{G}\left(P_{68}\right)^{I\left(P_{68}\right)}$ and $P^{\Delta}=Q$. Since $C_{G}\left(P_{6}\right)<C_{G}\left(P_{68}\right) \leqq N_{G}\left(P_{68}\right), C_{H}\left(Q_{6}\right)$ $I\left(Q_{6}\right)=S_{7}$.

From now on we deal with H. Then the proof is similar to the proof (2) of Lemma 1. Let r be a number of Q-orbits of length 2 and s a number of involutions of Q. Then $r=s=2$ or 3 .

If $r=s=2$, then by the same argument as in the proof (2) of Lemma 1 we have a contradiction.

Therefore $r=s=3$. Hence we may assume that Q has exactly three orbits $\{6,7\},\{8,9\}$ and $\{10,11\}$ of length 2 . Then Q has the following two involutions

$$
\begin{aligned}
& a=(1)(2) \cdots(7)(89)(1011) \cdots, \\
& b=(1)(2) \cdots(5)(67)(8)(9)(1011) \cdots
\end{aligned}
$$

Since $|Q|=4$ and Q is semi-regular on $\{12,13, \cdots, n\},|\Delta|-5 \equiv 2(\bmod 4)$. Therefore a Sylow 2-subgroup of the stabilizer of any four points in H has exactly
one or three orbits of length 2. Since $Q<N_{H}\left(H_{6789}\right), Q$ normalizes a Sylow 2-subgroup Q^{\prime} of H_{6789}. Then Q fixes at least one Q^{\prime}-orbit of length 2. Thus Q centralizes an involution c of Q^{\prime} fixing exactly seven points. Since $I(c) \supset$ $\{6,7,8,9\},|I(c) \cap I(Q)|=3$ or 1 .

In the case $|I(c) \cap I(Q)|=3$ using the same argument as in the proof (2) of Lemma 1, we have a contradiction.

Hence $|I(c) \cap I(Q)|=1$. Then we may assume that

$$
c=(1)(23)(45)(6)(7)(8)(9)(10)(11) \cdots .
$$

Since $\langle b, c\rangle<N_{H}\left(H_{4567}\right)$ and $\langle b, c\rangle<C_{H}(a),\langle b, c\rangle$ normalizes a Sylow 2-subgroup $Q^{\prime \prime}$ of H_{4567} containing a. Then $I\left(Q^{\prime \prime}\right)=\{1,4,5,6,7\}$. Since $C_{H}\left(Q_{6}\right)^{I\left(Q_{6}\right)}$ $=S_{7}, H_{4567}$ is conjugate to H_{1234}, and so $Q^{\prime \prime}$ is conjugate to Q. Thus $Q^{\prime \prime}$ has exactly three orbits of length 2 . If $\{8,9\}$ is a $Q^{\prime \prime}$-orbit, then $b \in C_{H}\left(Q^{\prime \prime}\right)$. Since $\left|I(b) \cap I\left(Q^{\prime \prime}\right)\right|=3$, as is shown above, we have a contradiction. Hence the $Q^{\prime \prime}$-orbit containing $\{8,9\}$ is of length 4 say $\left\{8,9, i_{1}, i_{2}\right\}$. If $\left\{8,9, i_{1}, i_{2}\right\}=\{8,9,10$, $11\}$, then c belongs to $C_{G}\left(Q^{\prime \prime}\right)$. Since $\left|I(c) \cap I\left(Q^{\prime \prime}\right)\right|=3$, we have also a contradiction. Thus $\left\{i_{1}, i_{2}\right\} \subset\{12,13, \cdots, n\}$. Since $\langle a, b\rangle$ is semi-regular on $\{12,13$, $\cdots, n\}$ and a has a 2 -cycle $\left(i_{1} i_{2}\right), b$ has not a 2 -cycle $\left(i_{1} i_{2}\right)$. Thus $\left\{i_{1}, i_{2}\right\}^{b} \neq\left\{i_{1}, i_{2}\right\}$. On the other hand $b \in N_{H}\left(Q^{\prime \prime}\right)$. Hence $\left\{8,9, i_{1}, i_{2}\right\}^{b}=\left\{8,9, i_{1}^{b}, i_{2}^{b}\right\}$ is a $Q^{\prime \prime}$-orbit, which is a contradiction. Thus the minimal P-orbit is of length 4.
(5) We shall ahow that if t belongs to a P-orbit of length 4, then $\left|I\left(P_{t}\right)\right|=9$ and $C_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=A_{9}$ or $S_{1} \times A_{8}$. By the argument above the minimal P-orbit on $\Omega-I(P)$ is of length 4 and P is abelian. Hence by Corollary $\left|I\left(P_{t}\right)\right|=9$ and $N_{G}\left(P_{t}\right)^{I(t)} \leqq A_{9}$. Let $I\left(P_{t}\right)=\{1,2, \cdots, 9\}$. Then there are elements

$$
\begin{aligned}
& a_{1}=(1)(2) \cdots(5)(67)(89) \cdots, \\
& a_{2}=(1)(2) \cdots(5)(68)(79) \cdots
\end{aligned}
$$

in P. Since $\left\langle a_{1}, a_{2}\right\rangle<N_{G}\left(G_{6789}\right) \cap C_{G}\left(P_{6}\right)$, there is a Sylow 2-subgroup P^{\prime} of G_{6789} such that $\left\langle a_{1}, a_{2}\right\rangle<N_{G}\left(P^{\prime}\right)$ and $P^{\prime}>P_{6}$. Since $P^{\prime}<C_{G}\left(P_{6}\right)$, we may assume that there are elements

$$
\begin{aligned}
& b_{1}=(1)(23)(45)(6)(7)(8)(9) \cdots \\
& b_{2}=(1)(24)(35)(6)(7)(8)(9) \cdots
\end{aligned}
$$

in P^{\prime}. Since $\left\langle a_{1}, b_{1}\right\rangle<N_{G}\left(G_{2{ }_{36} 7}\right)$, similarly we may assume that there are elements

$$
\begin{aligned}
& c_{1}=(1)(2)(3)(45)(6)(7)(89) \cdots, \\
& c_{2}=(1)(2)(3)(48)(6)(7)(59) \cdots
\end{aligned}
$$

in $C_{G}\left(P_{6}\right) \cap G_{2367}$. Then $\left.C_{G}\left(P_{6}\right)\right\rangle\left\langle a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}\right\rangle$. Hence $C_{G}\left(P_{6}\right)_{1}$ is transitive on $\{2,3, \cdots, 9\}$. Therefore $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ is transitive or has two orbits $\{1\}$ and $\{2$, $3, \cdots, 9\}$ on $I\left(P_{6}\right)$. If $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ is transitive, then $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ is doubly transitive.

Since $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ has an involution consisting of two 2-cycles, $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=A_{9}$. Next suppose that $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}$ is intransitive. Then for any four points of $\{2,3, \cdots, 9\}\left(C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}\right)_{1}$ has an involution fixing exactly these four points. Hence from Lemma 6 of [3] $\left(C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)^{\prime}}\right)_{1}$ is 4-fold transitive on $\{2,3, \cdots, 9\}$. Thus $C_{G}\left(P_{6}\right)^{I\left(P_{6}\right)}=S_{1} \times A_{8}$.
(6) By (4) the minimal P-orbit on $\Omega-I(P)$ is of length 4. Let $\left|I\left(P_{t_{1} t_{2}}\right)\right|$ be the smallest number such that $t_{1} \in \Omega-I(P)$ and $t_{2} \in \Omega-I\left(P_{t_{1}}\right)$. Then $\left|I\left(P_{t_{1} t_{2}}\right)\right|$ $\supsetneqq 9$. Let R be a Sylow 2-subgroup of $G_{I\left(P t_{1} t_{2}\right)}$. Set $H=N_{G}(R)^{I(R)}$ and $\Delta=I(R)$. Then if a Sylow 2 -subgroup of the stabilizer of any four points in H is semiregular on Δ, then by Theorem $1|\Delta|=9$, which is a contradiction. Hence there are four points j, j, k and l of Δ such that a Sylow 2 -subgroup Q of $H_{i j k l}$ is not semi-regular on $\Delta-I(Q)$. By the minimality of $|\Delta|$, there is a point t of $\Delta-I(Q)$ such that Q_{t} is a non-identity semi-regular group. By (3) and (4), $\left|I\left(Q_{t}\right)\right|=9$ and t belongs to a Q-orbit of length 4. By (5) $C_{H}\left(Q_{t}\right)^{I\left(Q_{t}\right)}=A_{9}$ or $S_{1} \times A_{8}$. Therefore by the same argument as in the proof of Lemma 1 we have a contradiction. Thus Case II is proved.

Case III. $\quad|I(P)|=7$ and $N_{G}(P)^{I(P)}=A_{7}$.
Let $\left|I\left(P_{t_{1} t_{2}}\right)\right|$ be the smallest number such that $t_{1} \in \Omega-I(P)$ and $t_{2} \in \Omega-I$ $\left(P_{t_{1}}\right)$. Since P is abelian, $I\left(P_{t_{1} t_{2}}\right)$ consists of some P-orbits. By Theorem 1 $\left|I\left(P_{t_{1}}\right)\right|=23$. Hence $\left|I\left(P_{t_{1} t_{2}}\right)\right| \varsubsetneqq 23$.

Let R be a Sylow 2-subgroup of $G_{I\left(P_{\left.t_{1} t_{2}\right)}\right)}$. Set $H=N_{G}(R)^{I(R)}$ and $\Delta=I(R)$. Let Q be a Sylo w 2-subgroup of the stabilizer of any four points in H. Then Q satisfies the following conditions:
(i) $|I(Q)|=7$
(ii) Q is abelian and $|Q|$ is constant for any four points i, j, k and l.
(iii) For any point t of $\Delta-I(Q) Q_{t}$ is a semi-regular group $\geqq 1$. If $Q_{t} \neq 1$, then $N_{H}\left(Q_{t}\right)^{I\left(Q_{t}\right)}=M_{23}$.
If a Sylow 2-subgroup of the stabilizer of any four points in H is semi-regular, then by Theorem $1|\Delta|=23$, which is a contradiction. Hence we may assume that a Sylow 2-subgroup Q of H_{1234} is not semi-regular. Therefore there is a point t of the minimal Q-orbit such that $N_{H}\left(Q_{t}\right)^{I\left(Q_{t}\right)}=M_{23}$ and $\left|I\left(Q_{t}\right)\right|=23$.

Let Q^{\prime} be a Sylow 2-subgroup of $H_{123 i}$, where $i \in \Delta-\{1,2,3\}$. Then by (iii) the minimal Q^{\prime}-orbit is of length at least 16. Since $N_{H}\left(Q_{t}\right)^{I\left(Q_{t}\right)}=M_{23}$, a Sylow 2-subgroup of H_{123} containing Q has exactly one orbit of length 4 and the point 4 belongs to this orbit. By the conjugacy of Sylow 2-subgroups of H_{123}, a Sylow 2-subgroup of H_{123} containing Q^{\prime} has exactly one orbit of length 4 which contains i. Thus H_{123} has an element carrying 4 into i, and so H_{123} is transitive on $\Delta-\{1,2,3\}$. On the other hand $N_{H}\left(Q_{t}\right)^{I\left(Q_{t}\right)}=M_{23}$. Hence H is 4-fold transitive on Δ. Therefore to prove Case III it is sufficient to prove the following lemma.

Lemma 3. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$, and P a Sylow 2-subgroup of G_{1234}. Assume that P satisfies the following conditions:
(i) $P \neq 1$ and $|I(P)|=7$.
(ii) For any point t of $\Delta-I(P) P_{t}$ is a semi-regular group $\geqq 1$. Then $G=M_{23}$.

Proof. If P is semi-regular, then by the theorem of [8] $G=M_{23}$. Therefore from now on suppose by way of contradiction that P is not semi-regular. Let $I(P)$ $=\{1,2, \cdots, 7\}$. The proof will be given in various steps:
(1) For a point t of $\Omega-I(P)$ if $P_{t} \neq 1$, then P_{t} is an elementary abelian group.

Proof. The proof is similar to the proof (1) of Case III in Section 2.
(2) For any point t of $\Omega-I(P)\left|I\left(P_{t}\right)\right| \geqq 23$.

Proof. This is a direct consequence of Corollary.
(3) For a point t of $\Omega-I(P)$ if $P_{t} \neq 1$, then $\left|I\left(P_{t}\right)\right|=23$ and $N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)}=M_{23}$.

Proof. This follows from Theorem 1.
(4) For a point t of $\Omega-I(P)$ if $P_{t} \neq 1$, then $\left|P_{t}\right|=2$ or 4 and every 2-elements of $N_{G}\left(P_{t}\right)$ belong to $C_{G}\left(P_{t}\right)$.

Proof. Since $\left.M_{23}=N_{G}\left(P_{t}\right)^{I\left(P_{t}\right)} \cong N_{G}\left(P_{t}\right) / N_{G}\left(P_{t}\right)_{I\left(P_{t}\right)} \unrhd C_{G}\left(P_{t}\right) \cdot N_{G}\left(P_{t}\right)_{I\left(P_{t}\right)}\right)$ $N_{G}\left(P_{t}\right)_{I\left(P_{t}\right)}$ and M_{23} is a simple group, $N_{G}\left(P_{t}\right)=C_{G}\left(P_{t}\right) \cdot N_{G}\left(P_{t}\right)_{I\left(P_{t}\right)}$ or $C_{G}\left(P_{t}\right) \leqq$ $N_{G}\left(P_{t}\right)_{I\left(P_{t}\right)}$. Let $I\left(P_{t}\right)=\{1,2, \cdots, 23\}$. Then we may assume that P_{t} has an involution

$$
a=(1)(2) \cdots(23)(2425) \cdots
$$

Since $a \in N_{G}\left(G_{122425}\right)$, there is an involution b of G_{122425} commuting with a. Since $b^{I(a)} \in M_{23},\left|I\left(b^{I(a)}\right)\right|=7$. Hence $|I(b)|=23$ and we may assume that

$$
b=(1)(2) \cdots(7)(89)(1011) \cdots(2223)(24)(25) \cdots(29) \cdots .
$$

Thus $|\Omega| \geqq 29$. Since $b \in N_{G}(a), b$ normalizes a Sylow 2-subgroup Q of $G_{I(a)}$ containing a. Then Q is a semi-regular elementary abelian group on $\{24,25, \cdots$, $n\}$. Since $b \in N_{G}(Q)$ and $|I(b) \cap(\Omega-I(Q))|=16$, by Lemma of H. Nagao [4] $|Q| \leqq 2^{2 \cdot 4}=2^{8}$. On the other hand the automorphism group $A(Q)$ of an elementary abelian group of order 2^{r} is of order $\left(2^{r}-1\right)\left(2^{r}-2\right) \cdots\left(2^{r}-2^{r-1}\right)$.

Suppose that $N_{G}(Q)_{I(Q)} \geqq C_{G}(Q)$. Since $N_{G}(Q) / C_{G}(Q)$ is a subgroup of $A(Q), N_{G}(Q) / N_{G}(Q)_{I(Q)}$ being isomorphic to $N_{G}(Q)^{I(Q)}=M_{23}$ is a homomorphic image of a subgroup of $A(Q)$. But if $r \leqq 8$, then the order of $A(Q)$ is not divisible by 23 , which is a contradiction. Thus $N_{G}(Q)_{I(Q)} \nexists C_{G}(Q)$. Hence $N_{G}(Q)=$ $C_{G}(Q) \cdot N_{G}(Q)_{I(Q)}$. Therefore by the same argument as in the proof (6.2) of Case III in Section 2 every 2-elements of $N_{G}(Q)$ belong to $C_{G}(Q)$.

Since $\langle a, b\rangle<N_{G}\left(G_{8924}{ }_{25}\right)$, there is an involution c of $G_{89}{ }_{9425}$ commuting with a and b. Since $I\left(b^{I(a)}\right) \neq I\left(c^{I(a)}\right)$ and $b^{I(a)}$ and $c^{I(a)}$ are the commuting involutions of M_{23}. $\left|I\left(b^{I(a)}\right) \cap I\left(c^{I(a)}\right)\right|=3$. On the other hand since $c^{I(b)} \in M_{23}$,
$|I(b) \cap I(c)|=7$. Hence $\left|I\left(b^{0-I(a)}\right) \cap I\left(c^{0-I(a)}\right)\right|=4$.
Now since $\langle b, c\rangle<N_{G}\left(C_{I(a)}\right),\langle b, c\rangle$ normalizes a Sylow 2-subgroup Q^{\prime} of $G_{I(a)}$. Then since Q^{\prime} is conjugate to Q in $G_{I(a)},\langle b, c\rangle<C_{G}\left(Q^{\prime}\right)$. Since Q^{\prime} is semi-regular on $\Omega-I(a)$ and $|I(\langle b, c\rangle) \cap(\Omega-I(a))|=4,|Q|=\left|Q^{\prime}\right| \leqq 4$.
(5) Let x be an involution. If $|I(x)| \geqq 4$, then $|I(x)|=23$.

Proof. If $|I(x)| \geqq 4$, then $|I(x)|=7$ or 23 . Suppose by way of contradiction that $|I(x)|=7$. Then P has an involution a fixing 7 points and an involution b fixing 23 points. We may assume that $I(b)=\{1,2, \cdots, 23\}$ and

$$
a=(1)(2) \cdots(7)(89)(1011) \cdots(2223) \cdots .
$$

Since $N_{G}(P)^{I(P)}=A_{7}, G_{1234}$ has an element (1) (2) (3)(4)(567) \cdots. Let Δ be a G_{1234}-orbit containing $\{5,6,7\}$. Since P is a Sylow 2-subgroup of G_{1234}, Δ is of odd length. Then by the conjugacy of Sylow 2-subgroups of $G_{1234} \Delta$ is only one G_{1234}-orbit of odd length in $\{5,6, \cdots, n\}$.

Now suppose that there is a point i of $\Delta-\{5,6,7\}$ such that $P_{i} \neq 1$. Then N_{G} $\left(P_{i}\right)^{I\left(P_{i}\right)}=M_{23}$. On the other hand i belongs to Δ, which is of odd length. Hence a Sylow 2-subgroup P^{\prime} of $G_{1234 i}$ containing P_{i} is also a Sylow 2-subgroup of G_{1234}. Since $N_{P}\left(P_{i}\right)^{I\left(P_{i}\right)}$ and $N_{P^{\prime}}\left(P_{i}\right)^{I\left(P_{i}\right)}$ are non-identity 2-subgroups of $\left(N_{G}\left(P_{i}\right)^{I\left(P_{i}\right)}\right)_{1234}, \quad I\left(N_{P}\left(P_{i}\right)^{I\left(P_{i}\right)}\right)=I\left(N_{P^{\prime}}\left(P_{i}\right)^{I\left(P_{i}\right)}\right) . \quad$ But $i \notin\{1,2, \cdots, 7\}$, which is a contradiction. Thus $P_{i}=1$.

If a and b have a 2-cycle ($i_{1} i_{2}$) in common, then we have

$$
a b=(1)(2) \cdots(7)(89)(1011) \cdots(2223)\left(i_{1}\right)\left(i_{2}\right) \cdots .
$$

Since $P_{i_{1}}=P_{i_{2}} \neq 1$, both i_{1} and i_{2} are not points of Δ.
Next if a 2 -cycle $\left(i_{1} i_{2}\right)$ of a is not a 2-cycle of b, then we may assuem that

$$
\begin{aligned}
& a=(1)(2) \cdots(7)(89)(1011) \cdots(2223)\left(i_{1} i_{2}\right)\left(i_{3} i_{4}\right) \cdots, \\
& b=(1)(2) \cdots(23)\left(i_{1} i_{3}\right)\left(i_{2} i_{4}\right) \cdots
\end{aligned}
$$

Since $\langle a, b\rangle<N_{G}\left(G_{i_{1} i_{2} i_{3} i_{4}}\right)$, there is an involution c of $G_{i_{1} i_{2} i_{3} i_{4}}$ commuting with a and b. Since $c^{I(b)} \in M_{23},|I(c) \cap I(b)|=7$. Hence $|I(c)|=23$. Since $a^{I(c)}$ and $b^{I(c)}$ are the commuting elements of M_{23} and $I(b) \supset I(a), I\left(a^{I(c)}\right)=I\left(b^{I(c)}\right)=$ $\{1,2, \cdots, 7\}$. Hence a Sylow 2-subgroup of G_{1234} containing a and c fixes $\{5,6,7\}$ pointwise. Hence i_{1}, i_{2}, i_{3} and i_{4} do not belong to Δ. Thus $\Delta=\{5,6,7\}$.

Now in the proof of Case II of Theorem 2 in [5] we used only the following conditions: In a 4 -fold transitive group G an involution a fixes exactly seven points and a G_{1234}-orbit of odd length is $\{5,6,7\}$. Therefore similarly $G=M_{23}$, which is a contradiction. Thus we complete the proof of (5).
(6) If P is not semi-regular, then we have a contradiction.

Proof. For a point t of $\Omega-I(P)$ suppose that $P_{t} \neq 1$. We may assume that
$I\left(P_{t}\right)=\{1,2, \cdots, 23\}$ and P_{t} has an involution
$a=(1)(2) \cdots(23)(2425) \cdots$.
Since $a \in N_{G}\left(G_{1224} 25\right)$, there is an involution b of G_{12245} commuting with a. We may assume that

$$
b=(1)(2) \cdots(7)(89)(1011) \cdots(2223)(24)(25) \cdots
$$

Since $b \in N_{G}\left(G_{I(a)}\right), b$ normalizes a Sylow 2-subgroup Q of $G_{I(a)}$. Then by (3) and (4) $b \in C_{G}(Q)$ and $C_{G}(Q)^{I(Q)}=M_{23}$.

Let x be an arbitrary 2-element of $C_{G}(Q)$ such that $x^{I(Q)}$ is an involution. Since all involutions in M_{23} are conjugate, there is an involution y of $C_{G}(Q)$ such that y is conjugate to b and $x^{I(Q)}=y^{I(Q)}$. Then $x y \in Q$. Hence $x y=a^{\prime} \in Q$, and so $x=a^{\prime} y$. Since a^{\prime} is an involution commuting with y, x is also an involution.

Now there is a 2-element

$$
z=(1)(2)(3)(45)(67)(810911)(12141315)(16181719)(20222123) \cdots
$$

in $C_{G}(Q)$. By the argument above z^{2} is an involution. Hence $\left|I\left(z^{2}\right)\right|=23$ by (5). By the same reason z is an involution since $z^{I\left(z^{2}\right)}$ is an involution, which is a contradiction. Thus we complete the proof.

Yamaguchi University

References

[1] W. Burnside: Theory of Groups of Finite Order, Second edition, Cambridge Univ. Press, 1911.
[2] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
[3] D. Livingstone and A. Wagner: Transitivity of finite permutation groups on unordered sets, Math. Z. 90 (1965), 393-403.
[4] H. Nagao: On multiply transitive groups I, Nagoya Math. J. 27 (1966), 15-19.
[5] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
[6] H. Nagao: On multiply transitive groups V, J. Algebra 9 (1968), 240-248.
[7] R. Noda and T. Oyama: On multiply transitive groups VI, J. Algebra 11 (1969), 145-154.
[8] T. Oyama: On multiply transitive groups VII, Osaka J. Math. 5 (1968), 155-164.
[9] T. Oyama: On multiply transitive groups VIII, Osaka J. Math. 6 (1969), 315-319.
[10] T. Oyama: On multiply transitive groups IX, Osaka J. Math. 7 (1970), 41-56.
[11] H. Wielandt: Finite Permutation Groups, Academic Press, New York, 1964.
[12] H. Zassenhaus: Kenzeichnung endlicher linear Gruppen als Permutation Gruppen, Abh. Math. Sem. Hansischen Univ. 11 (1936), 17-40.

