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1. Introduction

In this paper we shall prove the following theorems.

Theorem 1. Let G be a permutation group on Q={1, 2, ---, n} where n>>4.
Assume that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies
the following two conditions :

(1) P is a nonidentity semi-regular group.

(ii) P fixes exactly r points.

Then
(1) Ifr=4, then |Q|=6, 8 or 12, and G=S,, A, or M, respectively.
(II) If r=5, then |Q|=7,90r 13. In particular, if |Q|=9, then G<A4,,
and if |Q|=13, then G=S, X M,.
(1) Ifr=7 and Ng(P)'P> < A4,, then G=M,,.

In a previous paper [10] we proved that if G is a 4-fold transitive group and
a Sylow 2-subgroup P of a stabilizer of four points in G is not the identity, then
P fixes exactly four, five or seven points. Therefore the following corollary is
an immediate consequence of Theorem 1.

Corollary. Let G be a 4-fold transitive group on Q. and assume that a Sylow
2-subgroup P of a stabilizer of four points in G is not the identity. For a point t of
Q—I(P), assume that a Sylow 2-subgroup R of the stabilizer of any four points in
Ng(P) e satisfies the following two conditions :

(i) R is a nonidentity semi-regular group.

(ii) HR)|=[I(P)].

Then one of the conclusions in Theorem 1 holds for Ng(P,)*®r. In particular,
if t is a point of a minimal P-orbit, then Ng(P,)'Fr satisfies the conditions (i)
and (ii).

The last assertion of this corollary follows from Lemma 1 of [9].
By using these theorems we have the following
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Theorem 2. Let G be a 4-fold transitive group on Q={1,2, -, n}. Ifa
Sylow 2-subgroup of a stabilizer of four points in G is a nonidentity abelian group.
then G must be one of the following groups : S,, S,, A,, A, or M,,.

We shall follow the notations of T. Oyama [9].

2. Proof of Theorem 1

Case I. |I(P)|=4.

For any four points i, 7, k, [ of 3 a Sylow 2-subgroup P of G;, fixes
exactly these four points. Hence, by a lemma of D. Livingstone and A. Wagner
[3. Lemma 6], G is a 4-fold transitive group on Q. By assumption, P is a
nonidentity semi-regular group. Therefore, by a theorem of H. Nagao [6], G
is S,, 4, or M,,.

Case II. |I(P)|=S5.

First assume |Q|>9. Let a be an involution of P and I(P)={1, 2, -, 5}.
Since P is a nonidentity semi-regular group, we may assume that a is of the
form

a=(1)(2) - (5) (6 7) (89) (10 11) -.- .

For any two 2-cycles (6 7), (8 9) of a, ac N;(G,,5,). Hence by Lemma 1 of
[10], there is an involution b of G,,,, commuting with a. Since |I(d)|=35, we
may assume

b= (1)(23)(45)(©6)(7)(8) (9.
Since <a, b> <Ng(G,,5,), also by Lemma 1 of [10] there is an involution ¢ of
G, ., commuting with @ and 4. Since |I(c)|=S5, c is of the form

c=(1)(2) (3) 45)(6)(7) (89) ---.
Then I(ac)={1, 2, 3, 8, 9}. Hence <a, ¢> is semi-regular on {10, 11, ---, n},
and so we may assume

a=(1)(2)--(5)(67)(89) (10 11) (12 13) .-,

c=(1)(2) (3) (4 5) (6) (7) (8 9) (10 12) (11 13) --- .
Since <a, ¢) <Ng(Gy 1 1213), there is an involution d of Gy, ,; ,,,, commuting with
a and ¢. Since |I(d)| =5 and I(d)D{10, 11, 12, 13}, d fixes exactly one point of
I(a)N1I(c)={1,2,3}andsodis (1) (23)-++,(2)(13) ---or (3) (1 2) --- . We may

assume that d=(1) (2 3)-- since the proofs in the remaining cases are similar.
Therefore d is of the form

d = (1) (2 3) (4 5) (6 7) (8 9) (10) (11) (12) (13) --- .
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Since <{a, d> <Ng(G, ;10 11), there is an involution f of G,,,,, commuting with a
and d. f is one of the following forms:

(1) f=10)(2) @A) #5)(©67) @9 (10)(11) (12 13) -+,

(i) f=(1)(2)(3)(45)(68)(79)(10) (11) (12 13) --- .
If f is of the form (i), then

af = (1) (2) 3) (45) (6) (7) (8) (9) -

Thus |I(af)|>5, which contradicts the assumption. Hence

f=(@1)(2)(3)(45)(68)(79) (10) (11) (12 13) ---,
Then

f=(1)(2)B)#) () (6879) .

Since ¢f € Gy(,», four points 6, 7, 8, 9 are contained in the same G;,-orbit.
Since we took 2-cycles (6 7) and (8 9) as arbitrary 2-cycles of a, G, is transitive
on Q—I(a). Hence for any involution x fixing five points G,,, is also transitive
on Q—I(x).

By using this result repeatedly, we prove that G, is 4-fold transitive on
Q—{1}. Gy, is transitive on {6, 7, ---,n}, and G, is transitive on Q— {1, 10,
11, 12, 13}. Since G, =<{Grpy Greay, G, is transitive on Q—{1}. Similarly
since G, ,,=2<{G 10 Gr>)s Gi,, 1s transitive on Q—{1, 2, 3}. Therefore G,,
is transitive or has two orbits {3} and {4, 5, ---,#} on Q—{1, 2}. Since <a, d>
<Ng(Ggr101), there is an involution g of Gy,,, commuting with ¢ and d,
Similary to f we have

&= (1)24)(3 5) (6) (7)(8 9) (10) (11) (12 13) --- .

Since <a, g> <Ng(G,,,1), there is an involution % of G,,,, commuting with a
and g. Then 4 is of the form

h=(1)(2) (4) (35)(6) (7).
Hence

ch=(1)2)(354) .

Thus cheG,, and so G,, is transitive on Q—{1, 2}. Therefore G, is 3—fold
transitive on Q— {1}.

Furthermore Gy, is transitive on {4, 5, 10, 11, -+, n} and G, is transitive
on {3,5,8,9,--,n. Since G,,s;=<{Gr», Grwy, Gi,¢: is transitive on
Q—{1, 2, 6, 7} and so G, is 4-fold transitive on QO — {1}.

By assumption a Sylow 2-subgroup of (G,), ,,s is a nonidentity semi-regular
group on {6, 7, -+, n}, G, must be S;, 4, or M,, by Theorem of [6]. Since
|Q]>9, |Q|=13 and G,=M,,. Since there is no transitive extension of M,,,
G=S, XM,
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Next assume [Q]=9. Since |I(P)|=5 and P=1, |Q|=7 or 9. Now we
consider the case [Q|=9. Since there is not an involution fixing seven points,
G has not a transposition. Assume, by way of contradiction, that G has an odd
permutation. Then there is a 2-element in G, which is an odd permutation.

First suppose that G has an element x of order 8. We may assume

x=(12345678)(9).
Since
x¥=(1357)(2468)(9),

x*€ Ng(G, ,5,) and hence x* commutes with an involution a of G, ,,,. ais of the
form

a=(1)(3) () (7) (26) (4 8)(9).
Then a=Ng(G,,,,). Hence a commutes with one of the following elements of
G, .56
by=(1)(3)(2) (6) (48)(5)(79),
b,=(1)(3)(2) (6) (4 8) (1) (59),
by=(1)(3)(2) (6) (48) (9 (57).
Then we have
xb, =(1238)(45697),
xb,=(1238)(49567),
xb,=(1238)(47)(56)(9),
(xb,)° = (xb,) = (123 8) (4) (5) (6) (7) (9).

Thus if G has an element of order 8, then G has an element consisting of one
4—cycle or one 4—cycle and two 2—cycles.

Suppose that G has an element x consisting of one 4—cycle and two 2—cycles.
We may assume that

x=(1234)(56)(78)(9).

Since x& N¢(G, ,5,), ¥ commutes with an involution a of G,,,,. aisone of the
following forms:

(i) a=1) @B HO)G6) (78,

(i) a=1)@)B)HO)G7)(68).
If a is of the form (i), then

xa=(1234)(9)(5) ()7 (@9).

If a is of the form (ii), then a€ Ng(G, ,5,). Hence a commutes with one of the
following elements of G, ,;,:



ON MuLTIpLY TRANSITIVE GROUPS X 103

b=1)2) () (7)(68) () (#9),
b=1)@ G @6 HEI,
bs=(1)(2) ) (1) (68) (B 4).
Then we have
xb,=(12394)(5876),
xb,=(12934)(5876),
xb,=(124)(3)(5876).
Thus
(x0,)° = (xb,)° = (xb;)* = (1) (2) 3) () (58 7 6) (9) .
Hence if G has an element of order 8 or consisting of one 4—cycle and two

2-cycles, then G has an element consisting of one 4-cycle. Therefore we may
assume that G has an element x of the form

x=(1234)(5)(6)(7)(8) (9.
Then

& =(13)(24) (5)(6) ()8 ).
Since #*€Ng(G, ;5 4), ¥* commutes with an involution a of G,,;,. Then a is of
the form

a=(1)(3) (5) (6) (24) (z) (2. 2,),
where {1, 2, 2,)={7, 8, 9}. Then we have

xa=(14)(23)(5)(6) (&) (7).
Thus if G has an odd permutation, then G has an element consisting of three
2-cycles.

Therefore finally suppose that G has an element x consisting of three
2—cycles. We may assume that

x=(12)34)(56)(7)(8)(9).
Since x& Ng(Gs¢15), ¥ commutes with an involution a of Gy ,,,. a is one of the
following forms:

(i) a=(12)(34)(5)(6)(7)(8) (9.

(i) a=(13)(24)(5)(6)(7)(8)(9).
If a is of the form (i), then

xa= (1) (2) 3) (4) (56) (7) (8) (9) -
Thus xa is a transposition, which is a contradiction. Thus @ must be of the form

(ii). On the other hand x& Ng(G, ,5,). Hence x commutes with an involution
of G, and b is of the form
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b=(1)(2) () (6) B4) () (= %),
where {i,, ,, i,}={7, 8, 9}. Then
ab = (142 3)(5)(6) (1) (z,1,) .
Thus we have
x(ab)* = (1) (2) (3) (4) (5 6) (7) (8) (9),
which is also a contradiction. Therefore G<A,.
Case III. |I(P)|=7, No(P)' P < A,.
Let I(P)={1, 2, --+,7}. The proof of this case will be given in various steps:
(1) P is elementary abelian.
Proof. If P has an element
x=(1)(2)--(7) (8910 11) -+,

then x&Ng(Gyg101,). Hence x normalizes some Sylow 2-subgroup P’ of G40 1;-
By assumption, '@ & Ng(P')'*” < A,. Thus x has a 2-cycle, contrary to the
semi-regularity of P. Therefore P has no element of order 4, whence P is
elementary abelian.

(2) |1Ql=15.

Proof. Let

a=(1)(2)-(7)@89)

be an involution of P. Then ac Ny(G,,,,). Hence a commutes with an involu-
tion b of G,,,,. By assumption, |I(b)|=7 and b’ 4,. Hence we may assume

b= (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) ---.
Then we have
a=(1)(2) - (7)(89) (10 11) --- .

Since <a, b)><Ng(G,55,), there is an involution ¢ of G,,,, commuting with
a and b. By assumption, |I(c)|=7, {!“>€4, and ¢ /= 4,. Hence we may
assume

c=(1)(23)(4) (5) (67)(8) (9) (10 11) (12) (13) --- .
Then we have

a= (1) (2) --- (7)(8 9) (10 11) (12 13) ---,

ac= (1) (23) (4) (5) (6 7) (8 9) (10) (11) (12 13) --- .

Since ac is an involution and |I(ac)| =5, |I(ac)|=7. Thus ac fixes two more
points in {14, 15, ---, n}. Hence |Q|=15.
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(3) One of the following holds :

Case i. Ng(P)'® is transitive.

(i.1)  Ng(P)Y®=A4,.

(1.11)  Ng(P)'® is isomorphic to LF,(7), which will be denoted by A.*.

Case ii. Ng(P)'® has two orbits, say A and T.

(ii.i) |A|=1 and |T'|=6. Ng(P)'® is A, on T, which will be denoted
by A,.

(ii.ii) |A|=1and |T|= 6. Ng(P)'® is isomorphic to A; on T', which will
be denoted by A*.

il ill) |A|=2and |T'|=5. Ng(P)'® is N 4,(A;), which will be denoted by

N(4;).

(ii.iv) |A|=3and |T'|=4. Ng(P)'® is N 4,(4,), which will be denoted by
N(4,).

(ii.v) [A|=3and |T'|=4. Ng(P)'®=N 4,(K,) where K, is a regular four
group on T'. N 4 +(K,) will be denoted by N(K,).

Proof. Let
a=(1) @) (i)

be an involution of P. For any two points 7, and 7, of I(a), ac Ng(G},s,: ;)-
Hence there is an involution x;; of G commuting with a. Set
a;, i,=(%:, ,-2)’ @ Then

a; i, = () (22) (8) (5 25)(Zs 22)

where {i,, i, =+, 5;}={1, 2, .-+ 7}. Let T be the restriction of the group gene-
rated by all involutions of Cg(a); ; on I(a). Then a; ;,&T.
(3.1) Suppose that T is transitive. By § 166 of [1], T is A4, or isomorphic
to LF(7). If T=LF,7),then T=<(1236457),(234)(567), (27 6 3)(4 5)>.
(3.2) Suppose that T has an orbit of length 1. Let {1} be the orbit of
length 1 and set T'={2, 3, ---, 7}. Then for any two points 7, and 7, of I" there is
an involution a; ; of the form

i164 7

a5, = (1) (32) () (2 2) (3 %6) -

Thus <a;, ;,» is a 2-group fixing exactly two points 7, and 7, of T'. Hence from
a lemma of D. Livingstone and A. Wagner [3. Lemma 6] T is a doubly transi-
tive group on I'. Hence from §166 in [1] T is 4, or isomorphic to 4; on T
In the second case T=<(234)(576), (345 7), (37) (5 6).

(3.3) Suppose that T has an orbit of length 2. Let {1, 2} be the orbit of
length 2 and set I'={3, 4, ---, 7}. For any point 7, of T" there is an involution a, ;,
of the form

a5, = (1) (2) (&) (2. 7:)(E ) -
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Hence from Lemma 6 of [3] T, is transitiveon I". By §166in [1] T, ,is A; or a
group of order 10 generated by (34 5 6 7) and (3 4)(5 7). Assume |T;,|=10.
Then there is an element a,, of the form

a3 = (12) 3) (4) ()=o) -

Set y=(34567). Since {y> is the unique Sylow 5-subgroup of T,, and
a3, N(T,,), a5, ya,,—y" where r=1,2, 3 or 4. But this is impossible since
a;,ya;,=(3 4.--). Thus |T,,[=410. Hence T,,=4; and so T=N 4 (4;).

(3.4) Suppose that T has an orbit of length 3. Let {1, 2, 3} be the orbit
of length 3. Set A={l, 2, 3} and T'={4, 5, 6, 7}. For any two points , and 7,
of T" there is an involution g, ;, such that (a;, ;,)"=(%,) (,) (¢4, 4,). Hence again by
Lemma 6 of [3] TT is doubly transitive. Thus T7=S,. Since T<4,, | Tr|=1
or 3. For any point j, of A there is an involution a; , such that (a;, ,)*=(j.) (J.Js)-
Hence similarly 72 is transitive on A, and so T*=S,.

First assume |Tn|=3. Then

| Tsl =IT/IT*| = |Tc|- |TT|[IT*|=3-1S8,1/18,| = 12.
Hence Ty=A, and T <N 4,(A4,). On the other hand
|T|=|Tc|-|TT|=3-|8,] = | Na,(4)]|.

Thus T=N,4,(4,).
Next assume |Tn|=1. Then

[ Tal = [S,1/1S,| =4

Hence T, is a regular four-group of degree 4, which is denoted by K,. Since
| Tol=1, TSN, (K). Since T=T*=S, K,=<(1)(2) (3) (#5)(67), (1) (2)
(3) (46) (5 6)>and T=<(1) (2) (3) (45) (67), (12) (3) (4) (6) 5 7), (1) (23) (4)
(5) (67)>. Thus T<A;* and so T=N 4 «(K,).

(3.5) Suppose that T has an orbit with length greater than 3. Then obviously
T is one of the groups above.

Now T < Ng(Grepy)'®. By Lemma 2 of [10] Ng(Grepy)'® = Ng(P)'®.
Hence T < Ng(P)Y®<A4,. Thus Ng(P)'® is one of the groups above.

ReMARK. Since T is contained in (Cg(a); ;) for a 2-cycle (i j) of a, we
denote T by Z,; ,(a).

(4) Let x be an arbitrary involution of G. Then |I(x)|=7.
Proof. Since |Q] is odd, |I(x)| is odd. Let x be of the form

x=(©j)(RI)-.
Then x normalizes some Sylow 2-subgroup P’ of G;;,;. By assumption
2P 4,. Therefore |I(x)| =3. If |I(x)| =4, then |I(x)|=7 by assumption.
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Suppose by way of contradiction that |I(x)|=3. We may assume that x is
of the form

x=(1)(2)B)(*#5)((67)(89) .

Since x& Ng(G, 5 41), there is an involution a of G, 5, commuting with x. Since
|I(a)| =7 and '€ 4,, I(a)={1, 2, ---, 7}.
First assume that x and a have the same 2-cycle (8, 9) namely

a=(1)(2)(7)@®9) .

Then ax is an involution and |I(ax)| D{1, 2, 3, 8, 9}. Hence |I(ax)|=7.
Thus x and a have two 2-cycles in common. Therefore we may assume that

x=(1)(2)(3) 45)(67)(89) (10 11) -+,
a=(1)(2) - (7) (89) (10 11) .

Then <{a, x> is semi-regular on {12, 13, ..., n}. On the other hand since <a, x)>
<Ng(G,s5,), there is an involution b of G,;,, commuting with ¢ and x. Since
Ve 4, and b'“° < 4,, we may assume that

b=(1)(23) (#) (5 (67) (8) (9) (10 11) ---.

Since |I(b)|=7, b fixes exactly two more points of {12, 13, ..., n}. But this is
impossible since b C¢(<a, ¥>) and {a, x> is semi-regular on {12, 13, ---, n}.
Thus a and x have not the same 2-cycle. Therefore we may assume that

x=(1)(2) 3) (45)(67)(89) (10 11) -+,
a=(1)(2) - (7) (8 10) (9 11) --- .

Let (¢,7,) be an arbitrary 2-cycle of x other than (4 5). Then x normalizes
some Sylow 2-subgroup P’ of G,; ;. Since x&Ng(P)Y®"< 4, I(P)=
{1, 2, 3,4,5,1,j}. Hence P’ is also a Sylow 2-subgroup of G,,,,s- By the
conjugacy of Sylow 2-subgroups of G,,,,s we have that for any other 2-cycle
(#,72) (£(4 5)) of x there is an element of G, ,,,; which takes {7,, j,} into {z,, j,}.
Therefore the number of G,,,,~orbits in O—{1, 2, 3, 4, 5} is one or two. If it
is one, then since P'<G, ;4,5 |Q|—5=|G,,5,5: Gip5454 ] 1s 0dd, which is a
contradiction. Hence it must be two and 6 and 7 belong to different orbits of
Gy,345 82y Tgand T, respectively. Obviously |Ts|=|T,|>1. Thus G,,,, is
transitive or has three orbits {5}, T, T, on {5, 6, ---, n} since P’ is also a Sylow
2-subgroup of G, ,,,.

Now since <{a, ) <Ng(G;4101), there is an involution ¢ of G40, com-
muting with 2 and x. Since ¥’“°& 4,, ¢ fixes {1, 2, 3} pointwise. Hence by the
same argument as is used above for a x and ¢ have not the same 2-cycle. Since
I = A4,, we have

¢=(1)(2) 3) (#6) (57) (8) (9) (10) (11) --- .
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Since <x, ¢><G,,, and {4, 5,6, 7} is a <{x, c)-orbit, G,,; is transitive on
0-{1, 2, 3}.

Next since <a, ¢> <Ng(G,4410), there is an involution d of G,,,, commu-
ting with @ and ¢. Since d’“> & 4,, we may assume that

d=(1)(23)(4)(6) (57)(8) (10) (9 11) ---.

Then d € Ny(G,,,,). Hence if G,,,, is intransitive on {5, 6, **+, n}, then d must
fix the G,,,orbit {5}, which is impossible. Thus G,,,, is transitive on
{5, 6, -+, m}.

Therefore G, ,, is doubly transitive on {4, 5, .-+, n}. Since G, ,,,; has two
orbits of odd length in {6, 7, ---, n}, G, ,,,, has exactly two orbits of odd length
in {5, 7, 8, -++, n} by the doubly transitivity of G, ,,. Since a€G,,,,, and a fixes
exactly two points 5 and 7 of {5, 7, 8, .-+, s}, 5 and 7 belong to different G,
orbits, say T and T/ respectively. Since d € Ng(G,,,,) d fixes two orbits T’
and T or interchanges them. But this is impossible since d has a 2-cycle (5 7)
and fixes a point 8. This contradiction shows that |I(x)|=3. Hence |I(x)|=7.

(5) 1Q|=23 and |Q|—7=0 (mod 8).
Proof. By (2) |Q]|=15. Let

a=(1)(2) - (7) (8 9) (10 11) (12 13) (14 15) ---

be an involution of P. Then there is an involution b of G, ,,, commuting with a.
Since |I(b)|=|I(ab)| =7, we may assume that b is of the form

b= (1)(2) (3) (4 5) (67) (8) (9) (10) (11) (12 13) (14 15) ---.

Since <{a, b)<Ng(G,s,,), there is an involution ¢ of G,;,, commuting with
a and b. Since |I(c)|=|I(ac)|=|I(bc)|=|I(abc)| =7, we may assume that ¢
is of the form

c=(1)(23)4) (5) (67)(8) (9) (10 11) (12) (13) (14 15) ---.

Suppose [Q|>15. Since <a, b, ¢ is an elementary abelian group and every
involutions of <a, b, ¢)> fix exactly seven points of {1, 2, .-+, 15}, <a, b, ¢> is
semi-regular on {16, 17, ---, n}. Since |<a, b, ¢>|=38, |Q|=15+8k where k=1.
Hence

Q=23 and [Q]|—7=0 (mod 8).

Therefore to complete the proof we must show that |Q|=15. Suppose
by way of contradiction that |[Q|=15. Since 5 and ¢! are elements of
<, o(a), we may assume that T, ,(a) is one of the following:

(a) Z,4(a)=4, or 4*,

(0) F;(a)=A, or A*, and its orbits are {1} and {2, 3, ---, 7}.

() T,4(a)=N(4,) and its orbits are {2, 3} and {1, 4, 5, 6, 7},
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(d) Z,4(a)=N(4,) or N(K,), and its orbits are {1, 2, 3} and {4, 5, 6, 7}.
First assume that ;,(a)=+4,*. Since b/’ =(1) (2) (3) (4 5) (6 7), by (3)
there is an involution x of Cs(a),, such that x is of the form
x=(1)(2)(3) (46)(57)(8) () -
Then we have
bx= (1) (2) ) (#7) (56) (8) (9) -
Since [I(bx)| =5, bx is of order 2r where r is odd. Hence y=(bx)” is an involu-
tion commuting with 4 and so |I(y)|=|I(by)|=7. Since y'® <4,

y=(1)(2) (3) (#7)(506)(8) (9 (10) (11) (12 14) (13 15) .
Then we have
ay=(1)(2)(3) (4 7)(56)(89) (10 11) (12 15) (13 14).
Thus ay is an involution fixing exactly three points, which contradicts (4).

Next assume that ¥ ,(a)=A* Since b’ =(1) (2) (3) (45)(67) and
cI®=(1) (2 3) (4) (5) (6 7) belong to T, (a), by (3) there is an involution z of
Cs(a),, such that z is of the form

z=(1)(2) (6) 35) (#7)(8) (9) -+ -
Since az fixes three points 1, 2, 6 of {1, 2, -+, 9}, az fixes four more points of
{10, 11, ---, 15}. Therefore 2 must be one of the following forms:

(i) 2=(1)(2)(6) 35) (¢ 7)(8) (9 (10 11) .-,

(i) =2=(1) (2) (6) (35)47)(8)(9) (12 13) ---.
If z is of the form (i), then

bz=(1)(2)(35764)(8) (9 (10 11) ---.

Hence (bz)° is of even order and fixes at least nine points, which is a contradiction.
If 2 is of the form (ii), then

cz=1(1)(253)(476)(8) (9) (12 13) ---.
Then similary we have a contradiction. Thus Q] =15.

(6) If |P|=4, then |P|=8 and G is transitive on Q—I(P). In parti-
cular if Ng(P)'® = A*, N(4,), N(4,) or N(K,), then P and G;p, have these
properties.

The proof is by steps.

(6.1) If No(PY'® is A*, N(4;), N(4,) or N(K,), then |P|=4.

Proof. We may assume that if Ng(P)!®=4*, then its orbits are {1}
and {2, 3, «++, 7}, if Ng(P)!®=N(4,), then its orbits are {2, 3} and {1, 4, 5, 6, 7}
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and if Ng(P)'®=N(4,) or N(K,), then its orbits are {1, 2, 3} and {4, 5, 6, 7}.
Let

a= (1) (2) - (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) ---

be an involution of P. Then there is an involution b of G, ,, commuting with
a. By the assumption on the orbits of N(P)!® we may assume that

b= (1) (23)(4) (5) (6 7) (8) (9) (10) (11) (12 13) (14 15) (16 18) (17 19) --- .

Furthermore there is an involution ¢ of Gy, ;, commuting with @ and b. Since
a’®e 4, and b*= A4,

¢= (1) (%) (5) (2 6) 3 7) (16) (17) (18) (19) -+

c= (1) (4) (5) (2 3) (6 7) (16) (17) (18) (19) - .

Suppose that ¢ is of the first form. If Ng(P)!®=N(4,), N(4,) or N(K,), then
2 and 6 belong to different orbits, which is a contradiction. If Ng(P)'®=A4*,
then [(Ng(P)'®),,,|=2, which is also a contradiction. Thus ¢ must be of
the second form. Then we have

be = (1) (2) -+ (7) (16 18) (17 19) - .

Hence <a, bc) is a four-group in Gpy. Thus a Sylow 2-subgroup P of G;cp)
is of order at least 4.

(6.2) If |P|=4, then |P|=8 and Gy, is transitive on Q—I(P).

Proof. Suppose by way of contradiction that |P|=4. Since P is a semi-
regular elementary abelian group, the automorphisum group A(P) of P is iso-
morphic to S,. Obviously A(P)=Ng(P)/Ce(P). If Ng(P)rpr=Cos(P), then
Ng(P)[Ng(P);cp> is 2 homomorphic image of a subgroup of A(P). But this is
impossible since Ng(P)/Ng(P)rcpy==Ng(P)'® and A(P)==S,. Hence Ng(P)rcp>
#Cg(P). Thus Ng(P)!®2Cy(P) P 1.

First suppose Ng(P)'®=A4,, A*, A, or A*. Then Ng(P)*® is a simple
group. Hence Ng(P)'®=Cg(P)'®,

Next suppose Ng(P)'®=N(4,), N(4,) or N(K,). Then we may assume
that Ng(P)'® has the orbits mentioned in (6.1). We have also three involutions
a, b and ¢, which are used in the proof of (6. 1). Since |P|=4, we may assume
that P=<a, bc>. Then b'® = (1) (2 3) (4) (5) (6 7) € Cx(P)™®. Since b'®
is not contained in a proper normal subgroup of Ng(P)'® in these cases,
N(P)1®=Cs(P)P,

Now Ng(P)/Ng(P)rp> 2 (Cs(P)+ No(P)rer) | Ne(P)rem.  Since Ng(P)/
Ng(P)cpy == NG(P)I(P) and (CG(P)'NG(P)I(P))/NG(P)I(P) = Cs(P)[Ne(P)rcp> N
Co(P) = C5(P)/Co(P)1cp> =% Cs (P)"™®, Ng(P)/Ne(P)rpy=(Cs(P)* Ne(P)1ew)
Ng(P);py. Hence Ng(P)= Cg(P)-Ng(P)ipy. Thus Ng(P)/Ce(P)=(Cs(P)-
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Ne(P)1p)|Co(P)=Ng(P);1cp>|Co(P) N No(P)rep> = Ng(P)1cpy|Co(P)rcpr- On the
other hand P is a Sylow 2-subgoup of Ng(P);cp> and contained in Cg(P);cp>-
Hence |Ng(P)rps/Co(P)icps| is odd and so |Ng(P)/Ce(P)| is odd. Therefore
every 2-elements of Ng(P) belong to Cg(P).

Let

a=(1)(2) (7)) @89) -
be an involution of P. For an arbitrary 2-cycle (7 j) of @ other than (8 9), there
is an involution x of Gy, ; ; commuting with a. Then x normalizes some Sylow
2-subgroup P’ of G¢p) containing a. By the argument above xe C(P’). Since
| P’'| =4 ahd x fixes exactly four points 8, 9, 7, j of Q—I(P’), P’ has an involution

a'=(1)(2)(7) (89 (9j) -

Thereforg <a, a"> is a subgroup of G, and <{a, @’> is transitive on {8, 9, 7,}.

Since (Zj) is an arbitrary 2-cycle of a other than (8 9), G,, is transitive on

Q—I(P). Since |Q—I(P)| =0 (mod 8) by (5), | Gyp>| =0 (mod 8). But a Sylow

2-subgroup of Gy, is of order 4, which is a contradiction. Thus |P|=8.
Next we shall prove that G;p, is transitive on Q—I(P). Let

a= (1)@ (7) (89

be an involution of P. For an arbitrary 2-cycle (7 j) of a other than (8 9), there
is an involution x of Gj,; ; commuting with a. Then x normalizes smoe Sylow
2-subgroup P’ of Gy containing a. If x commutes with only two elements of
P’, then by a theorem of H. Zassenhaus [12, Satz 5] P’ contains a cyclic group of
index 2. Since |P’| =8 and P’ is elementary abelian, we have a contradiction.
Thus x commutes with some involution of P’ other than a. Therefore by the
same argument above we have that G;p, is transitive on Q— I(P).

(7) Ne(P)®=+N(4).

Proof. Suppose by way of contradiction that Ng(P)"®=N(4,). We may
assume that Ng(P)"®-orbits are {1, 2} and {3, 4, ---,7}. Let

a=(1)(2)--(7)(89) (10 11) (12 13) (14 15) ---
be an involution of P. Since T, (a)=<Ng(P)'®=N(4;), T,qa)=N(4,).
Therefore there are involutions
b=(1)(2)(3)(45)(67)(8)(9) -
and
c=1)2)(3)(“46)(57)(8)(9)
such that b and ¢ commute with a. Then we have

be=(1)(2)(3)(#7)(56)(8)(9) -
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Since |I(bc)| =5, be is of order 2r where r is odd. Therefore d=(bc)” is an
involution commuting with . Since |I()|=|I(ab)|=7, we may assume that

b=(1)(2) (3)(45)(67)(8)(9) (10) (11) (12 13) (14 15) --.
Then since d’® < A4,,

d=(1)(2) 3) 4+ 7) (5 6) (8) (9) (10) (11) --- .

Since <b, d> is of order 4, G, , ;440 is transitive on Q—{1, 2, 3, 8, 9, 10, 11} by
(6). Since Ng(P)'®=N(4,), also by (6) G,,.., is transitive on Q—{1, 2, --+, 7}.
Thus G, ,, is transitive on {4, 5, -+, n}.

On the other hand {3,4,--:,7} is the orbit of Ng(P). Hence G,, is
transitiveon on {3, 4, --+, n}. Therefore G is transitive on Q or G-orbits are
{1, 2} and {3, 4, -+, n}.

Now suppose that G-orbits are {1, 2} and {3, 4, ---, n}. There is an involu-
tion f of G,,,, commuting with 4 and 4. Since {1, 2} is the G-orbit.

F=@12)@3)# () (67)(8) (9 (10 11) (12) (13) (14 15) ---.

Since G, ,;, fixes {2}, a Sylow 2-subgroup of G, ,, is also a Sylow 2-subgroup
of G,,,5, Sinced, fO<Ng(G,,,s,), there is an involution x of G,,,5, com-
muting with b and f. Let I(x)={1, 2, 4, 5, 8, 7,, 7,}. Then

b’ = (1) (2) (4 5) (8) (i1 is) »

JrO=(12)(4) (5) (8) (i 4) -
Hence (7, 7,)=(6 7) or (14 15).

First assume that (7, 7,)=(6 7). Then I(x)={1,2,4,5, 6,7, 8}. Since {1, 2}
is the G-orbit, No(G )" ®=N(4;). Hence G, is transitive on Q— I(x) by (6).
On the other hand G, ,..., is transitive on {8,9, .-, n}. Hence G, , ¢, is transitive
on {3,8,9, ---,n}. Since a Sylow 2-subgroup of G, ,,;,, is a Sylow 2-subgroup
of G,,,ssand |{3,7,8, .-+, n}| is even, G, ;4,5 has two orbits {7}, {3, 8, -+, n}
on {3, 7, 8, -+, m}. Since Ng(P)"®=N(4,), there is an element

2= (12)(37)(4) (5)(6) .

Since 2ENg(G, ,,56), 2 fixes the G, , 5 -orbit {7}, which is a contradiction.
Next assume that (z, 7,)=(14 15). Then I(x)={l, 2, 4, 5, 8, 14, 15}. Since
x4, and ' P 4,
x = (1) (2) (4) (5) (8) (14) (15) (3 9) (10 11) (6 7) (12 13) --- .
Then we have
ax = (1) (2) (39 8) (4) (5) (6 7) (10) (11) (12) (13) ---.
Thus ax is of even order and |I(ax)| =8, which is a contradiction.
Therefore G must be transitive on Q. Let R be a Sylow 2-subgroup of
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Ng(P),. Since Ng(P)®=N(4;), R has three orbits of length 1 and one orbit
of length 4 on I(P). On the other hand since |P| =8, R-orbits in Q—I(P)
are of length at least 8. Therefore if O be a 2-group of G, containing R as a
normal subgroup, then Q fixes I(P). Since R;ppy=P, Q normalizes P. Thus
Q& Ng(P), and so Q=R, namely R is a Sylow 2-subgroup of G,. Similarly a
Sylow 2-subgroup R’ of Ny(P), is a Sylow 2-subgroup of G,. By assumption
R’ has the orbit {1, 2} of length 2. Since G is transitive, G, is conjugate to
G.. Hence R is conjugate to R’, which is impossible.
Thus there is no group such that Ng(P)'®=N(4,).

(8) Ng(P)®=*N(4,) and N(K,).
Proof. Suppose by way of contradiction that Ng(P)’®=N(4,) or N(K,).
We may assume that Ng(P)*®-orbits are {1, 2, 3} and {4, 5, 6, 7}. Let

a=(1)(2) - (7)(89) (10 11) ---

be an involution of P. As in the proof of (7) there are commuting involutions
b and d in Cg(a),,:

b= (1) (2) (3) (45) (6 7)(8) (9) (10) (11) ---,

d= (1) (2) 3) (¢ 7) (5 6) (8) (9) (10) (11) ---,
Let R and R’ be Sylow 2-subgroups of Ng(P), and Ng(P), respectively. Since
Ng(P)"®=N(A,) or N(K,), by the same argument as in the proof of (7) G, ,, is
transitive on {4, 5, ---, n}, and R and R’ are Sylow 2-subgroups of G, and G,
respectively. Since R fixes exactly one point and R’ fixes exactly two points,
R and R’ are not conjugate in G. Thus G, and G, are not conjugate in G and
hence G is intransitive on Q. :

Therefore G has exactly two orbits {1, 2,3} and {4,5, ---,n}. Set A=
{4, 5, .-+, m}. Since <{a, b> <Ng(G,;,s), there is an involution f of G,;,, com-
muting with @ and 5. Then we may assume that

f=1)(23)(4)(5)(67)(8)(9) (10 11) (12) (13) --- .

Let P’ be a Sylow 2-subgroup of G,,,, containing f. Since {1, 2, 3} is the
G-orbit, {1} is a Ng(P')*®"-orbit. Hence Ny (P')/® =4, or A*.

Since {5, 6, 7} is the Ng(P),-orbit, {5, 8, 9, 12, 13} is the Ng(P’),-orbit and
{8, 9, -+, n} is the Gy py-orbit, G, is transitive on Q— {4}.

Since {4, 5, 6, 7} is the Ng(P)-orbit, P is a Sylow 2-subgroup of G, and
|I(P)NA|=4. On the other hand since {1} and {2, 3, :--, 7} are the Ng(P')-
orbits, P’ is a Sylow 2-subgroup of G,;, and |I(P’)NA|=6. Thus P and P’
are not conjugate in G, ; and hence G, is intransitive on A— {4, 5}.

Therefore G, ; has two orbits {6, 7} and {8, 9, --*, n} on A—{4, 5}. Let P’
be a Sylow 2-subgroup of G,;s,. Then P’’ fixes one or three points of the
G-orbit {1, 2, 3}. If I(P"")={1, 2, --+, 6, 8}, then {1, 2, 3} is a Ng(P'')-orbit.
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Hence Ng(P'')'®">=N(4,) or N(K,). By the same argument as is used for P,
{6, 8} is a G,;-orbit, which is a contradiction. Therefore I(P'")={j,, 4, 5, 6, 8,
k,, k;}, where j,e{1, 2, 3} and {k, k}CQ—{1,2,3,4,5,6, 8. Then {j,} is
a Ng(P"')*®"-orbit. Thus Ng(P'')®" =A, or A*. Since P'’ has an orbit of
length 2in {1, 2, 3} and is semi-regular, |P’'|=2. Therefore by (6) Ng(P'')’®"
=4, Hence {6, 8, k,, k,} is a Ng(P'’),s-orbit, which is a contradiction.

Thus we have no group such that Ng(P)!®=N(4,) or N(K,).

(9) No(P)Y® =+ A*. If No(PY®=A,, then |P|=2.

Proof. If Ng(P)*®=A4g*, then |P|=8 by (6). Therefore suppose by way
of contradiction that Ng(P)*®=4, or Ag* and |P|=4. We may assume that
Ng(P)®—orbits are {1} and {2, 3, --+, 7}. Let

a=(1)(2) -~ (7) (8 9) (10 11) ---

be an involution of P. Since ac&Ng(G,,,,), there is an involution b of G,,,,
commuting with a. We may assume

b=(1)(2) (3) 4 3) (67) (8) (9) (10) (11) ---..
Let P’ be a Sylow 2-subgroup of G/, containing .

Assume that G is intransitive on Q. By (6) G;p, is transitive on {8,9, -+, n},
and {1}, {2, 3, --*, 7} are Ng(P)!®—orbits. On the other hand I(b)= {1, 2, 3,
8,9, 10, 11} and Ng(Gypy)®=A4,, A*, A, or A*. Therefore G has two orbits
{1}and {2, 3, ---,n}. Then G=G, satisfies the condition (x) of [9], which is a
contradiction. Thus G must be transitive on Q.

Since |P|=8 by (6), a Sylow 2-subgroup of Ng(P), is a Sylow 2-subgroup
of G, and fixes exactly one point. Similarly a Sylow 2-subgroup of N(P), is a
Sylow 2-subgroup of G, and fixes exactly three points. Thus G, and G, are not

conjugate in G, which contradicts the transitivity of G. Thus we complete the
proof of (9).

(10) There are four points i, j, k and I of Q such that a Sylow 2-subgroup
of G; j 41 15 of order at least 4.

Proof. Suppose by way of contradiction that for any four points 7, j, &
and / a Sylow 2-subgroup of G; ;;,is of order 2. Let

a=(1)(2) - (7) (8 9) (10 11) (12 13) (14 15) (16 17) (18 19) ---

be an involution. Since a&Ng(G,, 4 4,), there is an involution b of Gy, ,,,, cOm-
muting with a. We may assume that

b= (1) (2) (3) (4 5) (6 7) (8) (9) (10) (11) (12 13) (14 15) (16 18) (17 19)---.

Since <a, b><Ng(Gig171510), there is an involution ¢ of Gyg,744,, COmMmuting
with @ and 4. Then ¢/ is one of the following:
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(i) =023 E)67),

(i) d2=(1)2)B)(*#5)(67),

(i) “=(1)(2)E)(*#6)(7).

Assume ¢’ is of the form (i). Since /< 4,,

¢=(1)(23) (%) (5) (6 7) (8) (9) (10 11) (16) (17) (18) (19) ---.
Thus |I(c)| =9, which is a contradiction.

Next assume that ¢’ is of the form (ii). Then <bc, a) is a subgroup of
G/ cp; and of order 4, contrary to the assumption.

Therefore ¢/ must be of the form (iii). Then similarly ¢!® and a’® have
no 2-cycle in common, ¢’**> and a’®“» also have no 2-cycle in common. Therefore

¢ = (1) (2) 3) (4 6) (57) (810) (9 11) (12 14) (13 15) (16) (17) (18) (19) --- .

On the other hand <a, 6><<Ng(G,s,,). Hence there is an involution d of G, 4,
commuting with @ and 4. Then

d=(1)(23)4) (5 (67)(8)(9) (10 11) (12) (13) (14 15) ---.
Therefore we have

cd=(1)(23)(4756)(811910) (12 15 13 14) ---,

a(cd)’ = (1) (2) (3) (45) (6 7) (8) (9) -~ (14) - .
Thus a(cd)? is of even order and |I(a(cd)?)| =11, which is a contradiction. Thus
(10) is proved.

(11) G=M,,

Proof. By (10) we may assume that | P| =4. Then by (6) and (9) Ng(P)!®>

=4, or A,* and G, is transitive on Q— I(P). Hence G is transitive on Q or
has two orbits {1, 2, .-+, 7} and {8, 9, -*-, n}. Let

a=(1)(2) - (7) (8 9) (10 11) ---

be an involution of P. Since a=Ng(G,,,,), there is an involution b of G, ,,,
commuting with a. We may assume that

b=(1)(2) (3) (45) (67)(8) (9) (10) (11) ---.

By (9) Ng(Gyep)®=A4,, A* or A,. Hence G is transitive on Q.

Now we may assume that if Ng(G,) ®=A4, then its orbits are {1} and
{2,3,8,9,10,11}. Then since Gy, is transitive on {8, 9, --+,n}, and {2, 3, ---, 7}
is an orbit of Ng(P),, G, is transitive on {2, 3, ---, n}.

Since 4’ & Ng(P)'®, {4,5, 6,7} is a Ng(P),,,—orbit. Hence G,,, is
transitive or has two orbits {4, 5, 6, 7} and {8, 9, --,n} on {4, 5, .-, m}. Set
|P|=2" where r=3. Since Gy, is transitive on Q—I(P) and P is semi-
regular, |Q—I(P)|=2"-s where s is odd. On the other hand a Sylow 2-subgroup
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O of Ng(P), . is also a Sylow 2-subgroup of G,,,. Hence |Q|=2"-4 and there
is at least one Q-orbit T in Q— I(P), which is of length 2”. Let 7 be a point of
T. Then |Q;|=4and Q; is a 2-group of G,,,;. Thus Gy, is transitive on
Q—1(Q;) by (6). Since ie:{4, 5, 6, 7}, I1(Q;)2{4, 5, 6, 7}. Therefore G, ,; is
transitive on {4, 5, -+, n}.

Hence this implies that G,, is transitive or has two orbits {3} and
{4,5,---,n} on {3, 4, ---,n}. If G,, is transitive on {3, 4, -+, n}, then G is 4-fold
transitive on Q. Since a Sylow 2-subgroup P of G, ,,, is semi-regular, G=M,,
by a theorem of [8].

Thus to complete the proof of (11) we must show that G, , is transitive. Hence
suppose by way of contradiction that G,, has two orbits {3} and {4, 5, ---, n}
on {3, 4, .-, n}. Then Ng(P)*®=4,*. Since G is doubly transitive on Q, any
stabilizer of two points in G fixes exactly three points. Therefore Ng(Grp): 2
fixes at least three points. Hence Ng(Gye)'®@=4,*. On the other hand since
{a, b><Ng(G,;s,), there is an involution ¢ of G,,,, commuting with a and b.
We may assume

c=(1)23) () G)(67)(®) (9 (10 11) ---.

Now b normalizes some Sylow 2-subgroup P’ of Gy, containing a. Since P’
is conjugate to P, | P’| =8 and Ng4(P')'®>=A,*. If b commutes with only two
elements 1 and a of P’, then by a theorem of H. Zassenhaus [12, Satz 5] P’ has
a cyclic subgroup of order at least 4, which is a contradiction. Therefore there
is an involution a’ of P’ which is different from a and commutes with 5. We
may assume

Ca = (1) (2) - (7) (8 10) (9 11) -+ .

Since <a’, b><Ng(G o)y there is an involution ¢’ of G, 5 51, commuting with a’
and b. Then ¢ and ¢’ fix two points 4,5 and have the same 2-cycle (6 7) in I(P).
Since Ng(Gp))f =A%, P =¢'"T®_  Thus we have

¢"=(1)(23)(4) (5) (67) (8) (10) (9 11) ---.
Then
(e’ ® = (1) (2) (3) (8) (9 11 10),

which is a contradiction since (cc’)'® < A,*. Thus we complete the proof.

‘3. Proof of Theorem 2

By Corollary of [10] |I(P)|=4, 5 or 7 and Ng(P)'®=S,, S, or A, respec-
tively. If P is a semi-regular abelian group, then G=3S,, S,, 4,, 4, or M,; by a
theorem of [8]. Therefore from now on we assume by way of contradiction
that P is not semi-regular.
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We shall treat the following three cases separately:

Case I.  |I(P)| =4 and Ng(P)'® =
Case II.  |I(P)| = 5 and Ng(P)'® = Ss,
Case III.  |I(P)| = 7 and Ng(P)'® = 4

Case 1. |I(P)| = 4 and Ng(P)'® = §,

Let [I(P,,;)| is the smallest number such that ¢, Q—I(P) and
t,=eQ—I(P,). For any four points 7, j, k¢ and [/ of I(P, ,) let P’ be a Sylow
2-subgroup of G; ;,; containing P, ,,. Since P’ is abelian, P'"C N¢(P, ,,). By
minimality of [I(P,,,,)| for any point ¢ of I(P, ,)—I(P’) (P,/y*®y+’ is a semi-
regular group (=1). Thus Ng(P,, )" 1+ satisfies the conditions @), (u) and
(iii) of the following lemma. )

Therefore to complete the proof of this case it is sufficient to prove the
following lemma.

Lemma 1. Let G be a permutation group on Q=1{1, 2, -+, n}. Assume
that a Sylow 2-subgroup P of the stabilizer of any four points in G satisfies the
following three conditions :

(i) |LP)|=4.

(ii) P is a non-identity abelian group.

(iii) For any point t of Q—I(P) P, is a semi-regular group (=1).

Then P is semi-regular.

Proof. For any four points of () there is a 2-group fixing exactly these four
points by (i). Hence by the lemma of [3] G is 4-fold transitive on Q. Assume by
way of contradiction that P is not semi-regular. Then there is a point # of
Q— I(P) such that P, is a non-identity semi-regular group by (iii). By Corollary
Ng(P) [ Pr=S,, Ay or M,,. Since P is abelian, Ng(P,)’#»=% M,,. Furthermore
since |I(P,)—I(P)|=2 or 4, t belongs to a P-orbit of length 2 or 4, and a
non-identity element of P fixes 4, 6 or 8 points of Q. Since there is no 4-fold
transitive group of degree less than 35 except known one [2. p. 80], the degree
of G is not less than 35.

From now on we assume that P is a Sylow 2-subgroup of G, ,,,.

(1) Suppose that P has exactly one orbit of length 2. We may assume that
this orbit is {5, 6}. Let

a=(1)(2)(6) (78) -
be an involution of P;. Since P is abelian, there is an element (1) (2) (3) (4) (5 6)
-+ in Cg(P;). Since (1)(2)(3)(4) (5 6)€ Cu(P)! ¥9 LNG(P,) F=.S,, Ng(Ps)! Fs
=Cg(P;)'"». Hence Ng(P;)=Cg(P;)- No(Ps)rpy- By the same argument as
in the proof of (6.2) in Section 2, every 2-elements of Ng(Ps) belong to Cg(P;).
Since a Ng(G, ,,5), a normalizes a Sylow 2-subgroup P’ of G,,,,. By the
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4-fold transitivity of G P’ has exactly one orbit {i,, i,} of length 2. Then a
fixes {7, i,} as a set. Hence a commutes with an involution b of P’;. Since

b=(1)(2)(7) @®) () (&) -

First suppose that a fixes {7, 7,} pointwise. Then we may assume that
{i,, 1,3)={3, 4}. Thus we have

a=(1)(2)(6) (78,

b=1)2) @) # (6)(7)((®) .
Let P’ be a Sylow 2-subgroup of G, ,,, containing <a, b>. Since P’’ is abelian,
{5, 6 } and {7, 8} are P'’-orbits of length 2, which is a contradiction.

Next suppose that a has a 2-cycle (7, 7,). We may assume that (7, 7,)=(9 10).
Then

a=(1)(2) - (6) (7 8) (9 10) -,

b= (1) (2) (34) (56)(7) (8) (9 (10) ---.
Since <a, b) <Ng(G,,,5), <a, by normalizes a Sylow 2-subgroup P’’’ of G, , .
By the same argument above a and b have the same 2-cycle on a P’’’-orbit of
length 2. We may assume that this P"”’-orbit is {11, 12}. Then <a, 5> <Cg(P"",)
and I(P”,,)={3,4, 7,8, 11, 12}. Since P"”, is semi-regular on Q—I(P’",)
and I(<a, B)N{Q—I(P"",)}={1, 2}, |P"”,,|=2. Hence |P|=|P"”|=4. By
Theorem 1 of [7] P is elementary abelian. Let ¢ be an involution of P’ .
Then we have

a=(1)(2) - (6) (78) (9 10) (11 12) -,
b=(1)(2) (34) (56)(7)(8) (9) (10) (11 12) ---,
c=(12)3)4) (56) (7) (8) (9 10) (11) (12) --- .
Since <b, ¢> <Ng(G, 134), <b, > normalizes a Sylow 2-subgroup QO of G, ,,, con-
taining @. Then Q is semi-regular on {7, 8, :-+, n}, and Q-orbits in {7, 8, -+, n}
are of length 4. Since I(<b, ))N {7, 8, ---,n} = {7, 8}, <b, ¢> fixes a Q-orbit
containing 7 and 8, say {7, 8, j,, j.}. Then there is an involution
a’'=(1)(2)3) (4) (56) (75) 8j.) -
of Q. If b has a 2-cycle (j, 7,), then

ba' = (1) (2) 3 4) (5) (6) (71 8 72) - .

Thus ba’ is of order 4 and contained in G,,;, Since a Sylow 2-subgroup of
G, .5, is elementary abelian, we have a contradiction. If & fixes {7, 8, j,, .}
pointwise, then {7, 8, j,, j.}={7, 8, 9, 10}. Then we have

ca’ = (12)(3) (4) (5) (6) (74, 812) -

which is also a contradiction.
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Therefore it is impossible that P has only one orbit of length 2.

(2) Suppose that P has at least two orbits of length 2. Then P is an elementary
abelian group of order 4 and any involution of P fixes four or six points in Q.
Let r be a number of P-orbits of length 2, and s a number of involutions of P
fixing six points. Since for any P-orbit of length 2 there is exactly one involution
of P such that it fixes this P-orbit pointwise, s=r. Since r=2 and s<3, r=s=2
or 3. We may assume that P-orbits of length 2 are {5, 6}, {7, 8}, --. Then there

are two involutions

a=(1)(2) - (6)(78) -,

b=1@B)HGO @O -
such that <{a, b> = P.

Assume that 7=s=2. Since Ng(P;)!F2=S,, there is a 2-element

x=(1)(2)(3456) -
in Ng(Ps) such that {x, P> is a 2-group. Then x#*&Ng(P). Since »* fixes the
P-orbit {5, 6}, & fixes also the P-orbit {7, 8}. Thus <x*, P) has exactly three
orbits {3, 4}, {5, 6}, {7, 8} of length 2. Since x& Ng(<{«? P)) and x takes {3, 4}
into {5, 6}, x fixes {7, 8} as a set. By taking xa instead of x if necessary, we may
assume that

x=(1)(2)(3546)(7)(8) .
Then <{x, b) is a non-abelian 2-group, which is a contradiction.

Thus r=s=3. Then P has one more orbit of length 2, say {9 10}.
Hence

a=(1)(2) - (6) (7 8) (9 10) -,

b= (1)(2)(3)# (6)(7)(8) (O 10)--.
Since P <Ng(Gs 1 5), there is an involution ¢ of G; 4,4 such that ce Co(P). By
assumption |[I(c)|=6. Hence |I(c)NI(P)|=2 or 0.

First assume that |I(c)NI(P)|=2. Then we may assume that

c=1)(2) 34 (5)(6)(7)(8) .
Since cIP= (1) (2) (3 4) € Co(P)' P LNG(P)®=S,, Co(P)P>=Ng(P)I®. By
the same argument as in the proof of (6.2) in Section 2, every 2-elements of
N¢(P) belong to C(P). Hence there is a 2-element

y=(1324)--

in Cg(P) such that {y, ¢, P> is a 2-group. Since y& Cg(P), y fixes the three
P-orbits {5, 6}, {7, 8}, {9, 10} as a set. Therefore y, ya, yb or yab fixes {5, 6, 7, 8}
pointwise, and so one of these elements and ¢ generate a non-abelian 2-group
of G; ¢, 4 which is a contradiction.
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Next assume that |I(c) N I(P)|=0. Then we may assume that
¢=(12)(34) () (6)(7)(8) (9 (10) ---.

Since P <Ng(G; 4,,), P normalizes a Sylow 2-subgroup P’ of G, containing c.
Then {9, 10} is a P’-orbit. Furthermore P fixes a P’-orbit containing {1, 2}.
If {1, 2} is a P’-orbit then acCg(P’). Since a’F”=(5) (6) (7 8), from the
same reason as above we have a contradiction. Therefore the length of the P’-
orbit containing {1, 2} is 4. Since every P-orbits in {11, 12, -++, n} are of length
4, the P’-orbit containing {1, 2} is {1, 2, 3,4}. Then also a= C¢(P’). Hence sim-
ilarly we have a contradiction.

Thus the minimal P-orbit is of length 4 and any involution of P fixes four
or eight points.

(3) Suppose that the minimal P-orbit on Q-I(P) is of length 4 and P has
exactly one orbit of length 4. We may assume that there is an involution

a = (1) (2) - (8) (9 10) (11 12) ---

in P such that a fixes exactly eight points. Since a Ng(G, ;4 ,,), @ normalizes
a Sylow 2-subgroup P’ of G, ,,,. By assumption P’ has exactly one orbit of
length 4. Hence a fixes this P’-orbit, and hence a commutes with an invlution
b of P’ which fixes exactly eight points. Since b 4, and a’® & A4,, we may
assume that

b= (1) (2) 3) ) (5 6) (7 8) (9) (10) (11) (12) --- .

Since a Sylow 2-subgroup P” of G, ,,, containing <{a, b> has not an orbit of
length 2, P has two orbits {5, 6, 7, 8} and {9, 10, 11, 12} of length 4, which is
a contradiction. Thus P has at least two orbits of length 4.

(4) Suppose that a minimal P-orbit on Q-I(P) is of length 4 and P has at
least two orbits of length 4. Then we may assume that P-orbits of length 4 are
{5, 6,7, 8, {9, 10, 11, 12}, ---. Since |P: P;|=4 and| P,|=2 or 4, |P|=8 or
16. If P has an element of order 4, then this element has a 4-cycle on {5, 6, 7, 8}
or {9, 10, 11, 12}. But this is a contracidtion since Ng(P5)!#s=Ng(P,)F9=A4,.
Thus P is elementary abelian.

First assume that |P|=16. Then we may assume that there are three in-
volutions

a=(1)(2) - (8) (9 10) (11 12) -,
b= (1)(2) -~ (8) (9 11) (10 12) -,
¢ = (1) (2) 3) (4) (5 6) (7 8) (9) (10) (11) (12) -
in P. Since /Po=(1) (2) (3) (4) (5 6) (7 8)& Co(P,Y P2 LN(P,)'Po=A4,, Cq

(Ps)!#9=Ng(P;)'* =4, Hence there is an involution

d=(1)(2)(34)(5)(6) (7 8) -
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in Cg(P;) such that d is conjugate to c. Then we have
cd=(1)(2) 34 (6)(7)(®8) .

Since |I(cd)| =4, cd is of order 2r where 7 is odd. Hence x=(cd)" is an involu-
tion commuting with g, b and ¢. Since x'°€ 4,,

O=1)(2) 34 () () (k]
where {i, j, k, I} ={9, 10, 11, 12}. On the other hand <{a, b> is regular on
{9, 10, 11, 12}. Therefore x& Cy(<a, b)), which is a contradiction.

Next assume that |P|=8. Then there is involutions

a=(1)(2) - (8) (9 10) (11 12) -,
b= (1) (2) (3) (4) (5 6) (7 8) (9) (10) (11) (12) -~

in P. From the same argument as above there is an involution

x=(1)(2)34(56)(7) () -

commuting with @ and b. Since x’® < 4,, we may assume that

x=(1)(2) 34 (56) (V) (8) (9) (10) (11 12) -- .

If |I(ab)| = 8, then we have

a=(1)(2)--(8)(910) (11 12) (13 14) (15 16) ---,

b= (1)(2) (3) () (5 6) (7 8) (9) (10) (11) (12) (13 14) (15 16) -+,
x=(1)(2) (34)(56)(7)(8) (9) (10) (11 12) (13) (14) (15 16) ---.

Since |P|=38, there is an invluiton
c=1)(2)B)4)(57)(68)(911) (10 12) (13 15) (14 16) ---
In P. Then we have

cx=(1)2)34)(5768) (91210 11) (13 16 14 15) ---,

a(ex) = (1) (2) (3) (4) (5 6) (7 8) (9) (10) -+ (15) -~ .

Thus a(cx)? is of even order and |I(a(cx)?)| =12, which is a contradiction.

Next if |I(ab)|=4, then {a, b) is semi-regular on {13, 14, ---, #}. On the
other hand x fixes six points of {1, 2, -+, 12}. Hence « fixes exactly two points
of {13, 14, .-+, n}, contrary to the result that x& C5(<a, b>). The lemma is proved.

Case II. |I(P)|=>5 and Ng(P)I®=S,.

Let ¢ be a point of Q-I(P) such that ¢ belongs to the minimal P-orbit. Since
[I(P)| =S5, by Corollary [I(P,)|=7,9 or 13. If |I(P,)|=13, then Ng(P,)Fr=
S;X M,,, which is a contradiction since P is abelian. Therefore |I(P,)|=7
or 9 and ¢ belongs to a P-orbit of length 2 or 4. From now on we assume that
I(P)={1, 2, -+, 5}.
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(1) First we shall ahow that if | I(P,)| =9, then ¢ belongs to a P-orbit of length
4. Assume by way of contradiction that # is a point of a P-orbit of length 2. Set
I(P)={1, 2, ---,9} and H=Ng(P,)’¥». Since |P:P,|=2, a Sylow 2-subgroup
of the stabilizer of any four points in H is of order 2 and H =A4,.

If H; is transitive on {1, 2, ---, 9}— {i} for any point i of I(P,), then H is
doubly transitive. Since H has an invloution consisting of two 2-cycles, H=A4,.
This is a contradiction. Therefore we may assume that H, is intransitive on
{2, 3, -, 9}

First assume that H, has an orbit of length 1 in {2, 3, -+, 9}. Then we may
assume that this orbitis {2}. Set A ={3, 4, ---, 9}. For any three points i,, 7,
and 7, of A there is an involution

x = (1) (2) (1) (&) (55) (5 3s) (%6 i,).

Thus x fixes exactly these three points 7,, 7, and 7, From Lemma 6 of [3] H, ,
is 3-fold transitive on A. By §166 in [1], H, ,=4,. Hence a Sylow 2-subgroup
of H,,,, is of order 4, which is a contradiction.

Next assume that H, has an orbit of length 2. Then we may assume that
{2, 3} is the H,-orbit. Set A= {4, 5, ---,9}. For any two pointsz, and 7, of A there
is an involution

x = (1) (2) (3) (&) (1) (ia 2,) (s 7o)

Then from the same reason as above, H, ,, is doubly transitive on A. On the

other hand there is an involution (1) (2 3) (7,) (j2) (Js) (ju) (Js Js)- Thus H*=S,.
Hence there is an involution

y = (1) () Q) () (&) (s &) (, 2).

Then <x, y> is a 2-group of H,,,; and of order 4, which is a contradiction.
For the remaining cases by the same argument as above we have also a con-
tradiction. Thus we complete the proof.
(2) Next we shall show that if # is a point of a P-orbit of length 2, then
|I(P,)| =7 and Cg(P,)*?°=S,- Let t be a point of a P-orbit {6, 7}. Then by
(1) I(P)={1, 2, -+, 7}. For any four points 7,7, i, and 7, of I(P;) there is a
Sylow 2-subgroup P’ of G, ;,;,;, containing P,. Set C=Cg(P;)'¥?. Since
P’ is abelian, P’ <Cg(P,). Thus C has an involution (z,) (2,) () (Z,) (%) (% Z,).
By the same argument as in (1) we have that C is one of the following groups:
(1) If C is transitive on I(P,), then by Theorem 8.3 and Theorem 13.3 of
[11] C=S..

(ii) If C has two orbits of length 1 and 6, then C=S, X S,. We may assume
that the C-orbits are {1} and {2, 3, -+, 7}.

(iii) If C has two orbits of length 2 and 5, then C=S,xS,. We may
assume that the C-orbits are {1, 2} and {3, 4, --+, 7}.
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(iv) If C has two orbits of length 3 and 4, then C=.S,X S,. We may as-
sume that C-orbits are {1, 2, 3} and {4, 5, 6, 7}.
Since Ng(P)!®=S;,, there is a 2-element

x=(14(2)3) O
in Ng(P).

First suppose that {6, 7}*={6, 7}. Since P has an element y=(1) (2) -*+(5)
(67):++,x or xy is of the form (14)(2)(3) (5) (6) (7)---. Therefore we may

assume that

x=(14)(2)(3) () () (7).

Since <x, P> <G, ;3567 ¥ Ce(Ps). On the other hand C=Cg(P,)'¥¢ is one of
the groups listed above. Hence the points 1 and 4 are contained in the same
C-oribt. Thus C=S,.

Next suppose that {6, 7}*=+ {6, 7}. Set {8,9}={6,7}*. Since s’ P, {8, 9}"=
{6, 7}**={6, 7}. Hence x= Ny(P,,). Set H=Ng(P,,) and A=I(P,,). Since
Co(Pys §)> C(Ps), H><x, C5(P)>. On the other hand C is one of the groups
listed above. Therefore x and all elements of C fixing the set I(P)={1, 2, ..., 5}
generate S; on I(P). Thus Ny(H;p,)'®=S,. New P* isan elementary abelian
group of order 4 and a Sylow 2-subgroup of (H*);p;. Hence Nya (P*)/®=Nga
(Hp)'®=S,. Since the automorphism group of P* is a subgroup of S,
and Nya(P*)'®|Cua(P*)'® is a homomorphic image of a subgroup of this
automorphism group, Cya (P*)®=A4,. Since {6, 7} is the P*-orbit, there is an
element

y=(14)(23)(5)(6)(7) -

such that y*e Cya(P*). Thus Ng(Grep,) ¥ =<y, Ce(Py)Y Fo=S,. Since P,
is a Sylow 2-subgroup of G;py, Ng(Ps)'? ©=Ng(Grepyp) ¥°=3S,. Furthermore
Ng(Pg)'®92.C and C has a transposition. Therefore C=S,.

(3) Suppose that P has exactly one orbit of length 2. Let {¢,, #,} be the
P-orbit of length 2, and let #, be a point of the minimal P, -orbit on Q-I(P,).
Since P is abelian, I(P,, ,,)-I(P) consists of one P-orbit of length 2 and several
P-orbits of length at least 4. Thus [I(P,, ,,)|-5=2 (mod 4).

Set H=Ng(P,, 4,) and A=I(P, ,). For any four points 7,, 7,, 7, and 7, of
A let P’ be a Sylow 2-subgroup of G;, ;, ;, ;, containing P, ,,. Then P'D>P, ,
and P’* is a Sylow 2-subgroup of (H*),, ;,,:,. Since |A|—5=2 (mod 4), P’
has exactly one orbit {u,, '} of length 2. By (2) I(P’,)=*A. Since ¢, is the
point of the minimal P, -orbit, for any point v of A~ (P, ) P, ,=F’,,. Thus
|P4|=|P*| and (P*),,,=1. Since Cg(F",,) < Co(P’ )= Ce(P,, ,,) <H and
Co(P' Y *'0=5, by (2), Cat(P) ¥ =S5,.

Thus H* satisfies the conditions (i), (ii) and (iii) of the following lemma.
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Hence if we prove the following lemma, then the number of P-orbits of length
2 is greater than 1.

Lemma 2. Let G be a permutation group on Q={1, 2, ---,n}. Then it is
impossible that a Sylow 2-subgroup P of the stabilizer of any four points in G sat-
isfies the following three conditions :

(i) [I(P)|=5 and |P| is constant.

(it) P is an abelian group.

(iii) P has exactly one orbit of length 2. Let t be a point of the orbit of

length 2, then Cy(P,)!®°=S, and P, is a non-identity semi-regular
group.

Proof. Assume by way of contradiction that G is a counter-example to
Lemma 2. Let P be a Sylow 2-subgroup of G,,,, and I(P) = {1, 2, 3, 4, 5}.
Since P has an orbit of length 2 and some orbits of length at least 4, |Q|=
5+2-+4=11. Let {6, 7} be a P-orbit of length 2. By the same argument as in
the proof of (1) of Lemma 1, || =13 and for an involution

a=(1)(2) - (7)(89) (10 11) (12 13) -
of P, there is two commuting involutions

b= (1)(2) (3) (#5)(67)(8) (9 (10) (11) (1213) -,

¢=(1)(23)#) (5)(67)(8) (9) (10 11) (12) (13) ---
in Cg(a). Moreover P is a cyclic group or an elementary abelian group of order
4.

(a) Suppose that P is an elementary abelian group. Then by the same argu-
ment as in the proof (1) of Lemma 1, there is an element (1) (2) (3) (6) (7) (4 5)
(87197, in Gy 56,0t (1) (4)(5) (6)(7) (23) (84,9 j,) in G, 54, Since
Cy(P;)'®°=S,, a Sylow 2-subgroup of G,,,s, and a Sylow 2-subgroup of

G, , s, are conjugate to P. But P is an elementary abelian group, which is a
contradiction.

(b) Therefore for any four points 7, j, k and / a Sylow 2-subgroup of G; ; 4,
is cyclic. Since Cg(P,)'P9=S,, there is a 2-element

x=1)2)(3)(4657) -

in Cg(Ps) such that {x, P> is a 2-group and x*< Ng(P). Assume that {x, P>
has an orbit {7, 7,, 7, 7,} of length 4, which is different from {4, 5, 6, 7}. Since P
is cyclic, we may assume that

d=(1)(2) () (67) (Girisi) -

is the generator of P. If x has a 4-cycle on {i,, i,, %, 7}, then x or x™* is of the
the form (7, 4, 7, 7,) on {i, 7,, 7, 7,}. Hence
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x=(1)(2) (3) (45) (67) (t.7,) (45 ,) -~ .
Thus ¥’ Cg(P). If x has not a 4-cycle on {z,, ,, 7, 7,}, then

x* = (1) (2) (3) (45) (6 7) (&) (%) (%) (3,) -~ -

Thus also 4’ Cg(P). On the other hand since Cg(Pg)!F9=13S,, Ng(Grepy)' ¥’=
Ng(PY®=S,. Then (x*)/®=(1)(2)(3)(45)c Cs(P)'® LN(P)®=S.
Hence Ng(P)Y!®=Cy(P)'®. By the same argument as in the proof of (6.2) in
Section 2, every 2-elements of N;(P) belong to Cg(P). Since <b, ¢) <Ng(G, ,
14 5), there is a Sylow 2-subgroup P’ of G, ,,, ; such that ac P’ and <b, ¢) <Ng
(P’). Since P’ is conjugate to P, <b, c> <Cg(P’). Since I(<b,c>)N{8,9, -+, n}
={8,9} and P’ is semi-regular on {8, 9, -, n}, P is of order 2, which is a
contradiction.

Therefore {x, P> has exactly one orbit of length 4, namely {4, 5, 6, 7}. Let
O be a 2-group of G,,, containing {x, P> as a normal subgroup. Then Q
fixes {4, 5, 6, 7}. Hence Q=<x, P>. Thus<{x, P> is a Sylow 2-sbubgroup of
G, ,;. For any point 7 of {4,5, :--, n} let P’ be a Sylow 2-subgroup of G, ,; ;.
Then similarly a Sylow 2-subgroup Q’ of G, ,, containing P’ has exactly one
orbit of length 4, which contains 7. By the conjugacy of Sylow 2-subgroups of
G, ., there is an element of G, ,, which takes {4, 5, 6, 7} into the Q’-orbit con-
taining 7. Thus G, ,, is transitive on {4, 5, -+, n}. On the other nand Cg(P,)'%#
=S,. Hence G is 4-fold transitive on Q. By Theorem 1 of [7] this is a con-
tradiction. Thus lemma is proved.

(4) Suppose that P has at least two orbits of length 2. Let {6, 7}, {8, 9}--:
be P-orbits of length 2. Then I(P;)={1,2, ---, 7}. Since |P:P,,|=4, PI%# is
an elementary abelian group of order 4. For any four points 7, j, k and / of I(P, ;)
let P’ be a Sylow 2-subgroup of G; ;,,; containing P;,. Then |I(P7%#)|=5
and P7% ¢ is a Sylow 2-subgroup of (Ng(Ps )’ ®s#); ; 4, of order 4. Set A=1I
(Ps s)y H=Ng(Ps )’ s and P*=Q. Since Cu(Ps)<Cgx(Ps o) =Ng(Pss)y Crr(Qs)
IQY—S,,

From now on we deal with H. Then the proof is similar to the proof (2) of
Lemma 1. Let 7 be a number of Q-orbits of length 2 and s a number of involutions
of Q. Then r=s5s=2 or 3.

If r=s=2, then by the same argument as in the proof (2) of Lemma 1 we have
a contradiction.

Therefore r=s=3. Hence we may assume that Q has exactly three orbits
{6, 7}, {8, 9} and {10, 11} of length 2. Then Q has the following two involutions

a=(1)(2)+(7) (89) (10 11) -,
b=(1)(2) (5 (67) (8) (9) (10 11) --.

Since |Q|=4 and Qis semi-regular on {12, 13, -+, n}, |A|-5=2 (mod 4). There-
fore a Sylow 2-subgroup of the stabilizer of any four points in H has exactly
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one or three orbits of length 2. Since Q < Ny(Hy,4,), O normalizes a Sylow
2-subgroup Q' of Hy,4,. Then Q fixes at least one Q’-orbit of length 2. Thus
O centralizes an involution ¢ of Q' fixing exactly seven points. Since I(c)D
{6, 7, 8,9}, [I(c)NI(Q)|=3 or 1.

In the case |I(c)N I(Q)|=3 using the same argument as in the proof (2) of
Lemma 1, we have a contradiction.

Hence |I(c)NI(Q)|=1. Then we may assume that

¢ =(1)(23)(435)(6) (7)(8) () (10) (11) - .
Since <b, c> <Ny(H, ) and <b, ¢) <Cy(a), <b, ¢> normalizes a Sylow 2-sub-
group Q" of H,,containing a. Then I(Q")={1,4, 5, 6, 7}. Since Cy(Q,)" %
=8;, H,;,, is conjugate to H,,,,, and so Q" is conjugate to Q. Thus Q"
has exactly three orbits of length 2. If {8, 9} is a Q”-orbit, then be Cy(Q”).
Since |I(b) N I(Q"')| =3, as is shown above, we have a contradiction. Hence the
Q’-orbit containing {8, 9} is of length 4 say {8, 9, 7,, 3,}. If {8, 9,1, 7,}=1{8, 9, 10,
11}, then ¢ belongs to C(Q”). Since |I(c) N I(Q")| =3, we have also a contra-
diction. Thus {z,,7,}c {12, 13, ---, n}. Since <a, b> is semi-regular on {12, 13,
-+, n} and a has a 2-cycle (4, 3,), b has not a 2-cycle (4, ,). Thus {i,, 3,}° =4 {i,, i,}.
On the other hand b N4(Q"). Hence {8, 9, 7,, 1,}>=1{8, 9, 1,2, i,’} is a Q”-orbit,
which is a contradiction. Thus the minimal P-orbit is of length 4.

(5) We shall ahow that if ¢ belongs to a P-orbit of length 4, then |I(P,)|=9
and Cg(P,)'®P=A4, or S,x A, By the argument above the minimal P-orbit
on Q-I(P) is of length 4 and P is abelian. Hence by Corollary |I(P,)| =9 and
Ng(P)f®<A4, LetI(P,)={l, 2, -+,9}. Then there are elements

a=(1)@2)0(5)(67)@89) -,

a,= (1) (2) - (5) (6 8) (7 9) -~
in P. Since <a,, a,>) <Ng(G,4,) N Ce(P,), there is a Sylow 2-subgroup P’ of
G145, such that <a, a,> <<Ng(P’) and P’ >P,. Since P’'<Cgs(P,), we may
assume that there are elements

b, = (1) (23)(45)(6) (7) (8) (9) -,

b, = (1) (24) 3 5) (6) (7) (8) (9) -~

in P’. Since <a, b,> < Ng(G,;), similarly we may assume that there are
elements

¢, =(1)(2) (3) (45) (6) (7) (89) -+,
6=(1)(2)(3)(48)(6) (7)(59) -
inCo(Pe)N G, 46, Then Co(Pg)><ay, ay by, by, ¢, ¢,>. Hence Cg(Py), is transitive

on {2,3,.,9}. Therefore Cg(P,)'¥s is transitive or has two orbits {1} and {2,
3, =+, 9} on I(P;). If Cy(P,)' ¥ is transitive, then Cg(P,)!P# is doubly transitive.
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Since Cg(P,)'Ps has an involution consisting of two 2-cycles, Cg(Py)!Fo= A,.
Next suppose that Cg(P,)’Fs is intransitive. Then for any four points of
{2,3, -+, 9} (Cs(P,)'®¢), has an involution fixing exactly these four points.
Hence from Lemma 6 of [3] (Cg(P)'®#), is 4-fold transitive on {2, 3, -++, 9}.
Thus Cg(P,)Fe=.S, X 4,.

(6) By (4) the minimal P-orbit on Q— I(P) is of length 4. Let |I(P,, ,,)| be
the smallest number such that t,eQ—I(P) and t,eQ—I(P,)). Then |I(P, ,)|
=9. Let Rbe a Sylow 2-subgroup of Gy, ;. Set H=Ng(R)'® and A=I(R).
Then if a Sylow 2-subgroup of the stabilizer of any four points in H is semi-
regular on A, then by Theorem 1 |A|=09, which is a contradiction. Hence
there are four points j, 7,k and / of A such that a Sylow 2-subgroup Q of H; ; ;,
is not semi-regular on A—I(Q). By the minimality of |A|, there is a point £ of
A—1I(Q) such that Q, is a non-identity semi-regular group. By (3) and (4),
|1(Q;)| =9 and ¢ belongs to a Q-orbit of length 4. By (5) Cyx(Q,)’@»= A4, or
S, X 4,. Therefore by the same argument as in the proof of Lemma 1 we have
a contradiction. Thus Case II is proved.

Case III. |I(P)|=7 and Ng(P)'®=A4,.

Let |I(P,,,,)| be the smallest number such that £, Q-I(P) and ,eQ—1
(P,). Since Pis abelian, I(P,, ,) consists of some P-orbits. By Theorem 1
[I(P,)|=23. Hence |I(P, ,,)|=23.

Let R be a Sylow 2-subgroup of Gyp,, 1. Set H=Ng(R)'*® and A=I(R).
Let Q be a Sylo w 2-subgroup of the stabilizer of any four points in H. Then
O satisfies the following conditions:

(i) 1KQ)=7

(ii) Q isabelian and | Q] is constant for any four points 7,7, k and /.

(i) For any point t of A—I(Q) Q, is a semi-regular group=1. If Q,=*1,

then Ny(Q,)!9P=M,,.
If a Sylow 2-subgroup of the stabilizer of any four points in H is semi-regular,
then by Theorem 1 |A|=23, which is a contradiction. Hence we may assume
that a Sylow 2-subgroup QO of H, ,,, is not semi-regular. Therefore there is a
point ¢ of the minimal Q-orbit such that Ny(Q,)!@P=M,, and |I(Q,)|=23.

Let Q' be a Sylow 2-subgroup of H, , , ;, where i€ A— {1, 2, 3}. Then by (iii)
the minimal Q’-orbit is of length at least 16. Since Ny(Q,)’®’=DM,,, a Sylow
2-subgroup of H, ,, containing O has exactly one orbit of length 4 and the point
4 belongs to this orbit. By the conjugacy of Sylow 2-subgroups of H, , , a Sylow
2-subgroup of H, ;, containing O’ has exactly one orbit of length 4 which con-
tains ¢. Thus H, ,, has an element carrying 4 into 7, and so H, ,, is transitive on
A-{1,2,3}. On the other hand N;(Q,)!®°=M,,. Hence H is 4-fold transitive
on A. Therefore to prove Case III it is sufficient to prove the following lemma.

Lemma 3. Let G be a 4-fold transitive group on Q={1,2, ---, n}, and P a
Sylow 2-subgroup of G, , ;,. Assume that P satisfies the following conditions :
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(i) P=1land |I(P)|=T7.
(ii) For any point ¢ of A-I(P) P, is a semi-regular group=1. Then G=M,,.

Proof. If P is semi-regular, then by the theorem of [8] G=M,,. Therefore
from now on suppose by way of contradiction that P is not semi-regular. Let I(P)
={1, 2, -+, 7}. The proof will be given in various steps:

(1) For a point t of Q-I(P)if P, &1, then P, is an elementary abelian group.
Proof. The proof is similar to the proof (1) of Case III in Section 2.
(2) For any point t of Q-I(P) |I(P;)| =23.

Proof. This is a direct consequence of Corollary.
(3) For apoint t of Q-I(P) if P,=1, then | I(P,)| =23 and Ng(P;)' Pr=M,,.

Proof. 'This follows from Theorem 1.

(4) For a point t of Q-I(P) if P,=1, then |P;|=2 or 4 and every 2-elements
of N¢(Py) belong to C(P,).

Proof. Since M,,=N, c(Py)f®Y = Ng(P)/Ng(P, t)I(Pp%CG(P ) Ne(Pi)icppl
Ne(Po)rpp and M, is a simple group, Ng(P;)=Cg(P;)-No(Py)repp 0r Co(Pr)=
Ne(P)repp. Let I(P)={1,2,..-, 23}. Then we may assume that P, has an
involution

a=(1)(2) - (23) (24 25) - .

Since aENg(G, ; 5 »5), there is an involution b of G, ,,, ,; commuting with a.
Since 'Y M,,, |1(b')|=7. Hence |I(b)|=23 and we may assume that

b= (1)(2) -+ (7) (8 9) (10 11) -+ (22 23) (24) (25) -+ (29) -+ .

Thus [Q] =29. Since b&Ng(a), b normalizes a Sylow 2-subgroup Q of Gy
containing a. Then Q is a semi-regular elementary abelian group on {24, 25, ---,
n}. Since beNg(Q) and |I(b) N (Q-1(Q))| =16, by Lemma of H. Nagao [4]
|Q] =2**=2° Onthe other hand the automorphism group A(Q) of an elementary
abelian group of order 2" is of order (2"-1)(2"-2) --- (2"-2"7).

Suppose that Ng(0)re,=Cs(Q). Since Ng(Q)/Ce(Q) is a subgroup of
A(Q), Ne(Q)/Ng(Q)rco> being isomorphic to Ng(Q) “@=M,, is a homomorphic
image of a subgroup of 4(Q). But if <8, then the order of 4(Q) is not divisible
by 23, which is a contradiction. Thus Ng(Q)xe & Co(Q). Hence Ng(Q)=
Cs(0)-Ng(Q)rey- Therefore by the same argument as in the proof (6.2) of
Case III in Section 2 every 2-elements of N;(Q) belong to Cg(Q).

Since <a,b> <Ng(Gj g 5 1), there is an involution ¢ of Gy, ,, ,; commuting
with @ and b. Since I(b"®)=I(c’®) and ' and ¢/ are the commuting
involutions of M,,. |I(6*®)N I(c’)|=3. On the other hand since c/® & M,,
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[1(b)NI(c)|=7. Hence |I(B%1)N I(O~ 1) |=4.

Now since <&, ¢> <Ng(Cry), <b,c)> normalizes a Sylow 2-subgroup Q' of
G- Then since O is conjugate to Q in Gy, <b,c> <Cg(Q’). Since Q' is
semi-regular on Q—1I(a) and |I(<d, c>)N(Q-I(a))|=4, |10|=10'| =4.

(5) Let x be an involution. If |I(x)| =4, then |I(x)|=23.

Proof. If |I(x)| =4, then |I(x)|=7or23. Supposeby way of contradiction
that [I(x)|=7. Then P has an involution a fixing 7 points and an involution b
fixing 23 points. We may assume that 1(8)={1, 2, ---, 23} and

a=(1)(2) --- (7) (8 9) (10 11) -+ (22 23) ---.

Since Ng(P)yP=4,, G, ,,, has an element (1) (2) (3) (4)(567) ---. Let Abea
G, , ; ,~orbit containing {5, 6, 7}. Since P is a Sylow 2-subgroup of G, ,,,, A is
of odd length. Then by the conjugacy of Sylow 2-subgroups of G, ,,, A is only
one G, ,, -orbit of odd length in {5, 6, -+, n}.

Now suppose that there is a pointz of A—{5, 6, 7} such that P;==1. Then Ng
(P;)¥®PP=M,,. On the other hand ¢ belongs to A, which is of odd length.
Hence a Sylow 2-subgroup P’ of G, ,,, ; containing P; is also a Sylow 2-subgroup
of G,,,, Since Np(P;)®? and Np/(P;)!F? are non-identity 2-subgroups of
(Na(P:)T D), 444 I(Np(P:)FP)=I(Np(P;)’¥?). But i€ {l,2,,7}, which
is a contradiction. Thus P,=1.

If a and b have a 2-cycle (7, 7,) in common, then we have

ab = (1)(2) -+ (7) (8 9) (10 11) --+ (22 23) (3,) (z,) - .
Since P; =P;,=+1, both 7, and 7, are not points of A.

Next if a 2-cycle (7, 7,) of a is not a 2-cycle of b, then we may assuem that

a=(1)(2) - (7) (8 9) (10 11) -+ (22 23) (i, &;) (55 2,) -+ »

b= (1) (2) ~ (23) (i) (i)
Since <a, b> <Ng(Gj, ;,,:,), there is an involution ¢ of G; ;,;,;, commuting
with @ and b. Since /® & M,, |I(c)NI(b)|=7. Hence |I(c)|=23. Since a’*>
and 5/ are the commuting elements of M,, and I(b)DI(a), I(a’®)=1(b'")=
{1,2,---,7}. Hence a Sylow 2-subgroup of G, , ,, containing @ and c¢ fixes {5, 6, 7}
pointwise. Hence ¢,, 7,, 7, and 7, do not belong to A. Thus A={5, 6, 7}.

Now in the proof of Case II of Theorem 2 in [5] we used only the following
conditions: In a 4-fold transitive group G an involution a fixes exactly seven

points and a G, , , ,-orbit of odd length is {5, 6, 7}. Therefore similarly G=M,,,
which is a contradiction. Thus we complete the proof of (5).

(6) If P is not semi-regular, then we have a contradiction.

Proof. For a point ¢ of Q-I(P) suppose that P,4=1. We may assume that
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I(P)={1,2, -+, 23} and P, has an involution
a=(1)(2) -+ (23) (24 25) --- .

Since a=Ng(G, ; 4 5), there is an involution b of G, ,,, , commuting with a.
We may assume that

b= (1)(2) - (7)(89) (10 11) -+ (22 23) (24) (25) --- .
Since b Ng(Gy,»), b normalizes a Sylow 2-subgroup Q of Gy,. Then by (3)
and (4) b= C¢(Q) and Cy(Q) @ =M,,.

Let x be an arbitrary 2-element of Cg(Q) such that /% is an involution.
Since all involutions in M,, are conjugate, there is an involution y of Cg(Q) such
that y is conjugate to b and ¥’ @=9’®, Then xyc Q. Hence xy=a'Q, and

so x=a’y. Since & is an involution commuting with y, x is also an involution.
Now there is a 2-element

z = (1)(2) (3) (45) (67) (8109 11) (1214 13 15) (16 18 17 19) (202221 23) -.-

in Cz(Q). By the argument above 2% is an involution. Hence |(2%)| =23 by (5).
By the same reason z is an involution since 2/“® is an involution, which is a con-
tradiction. Thus we complete the proof.
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