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Introduction

The purpose of the present note is to give an elementary proof of the follow-
ing theorems. Any C2A?-function on a compact connected Lie group G can be
expanded by the absolutley and uniformly convergent Fourier series of the matri-

cial components of irreducible representations if 2k > — d i m G (Theorem 1).

The Fourier transform is a topological isomorphism of C°°(G) onto the space
S(D) of rapidly decreasing functions on the set D of the classes of irreducible
representations of G (Theorem 3 and 4).

The related results which the author found in the literature are as follows.
In Sέminaire Sophus Lie [1] exposέ 21, it was proved that any C°°-functions on
G can be expanded by the uniformly convergent Fourier series. Zhelobenko [3]
proved Theorem 3 for the group SU(2). R.A. Mayer [4] proved that the Fourier
series of any (^-function on SU(2) is uniformly convergent but there exists a C1-
function on SU(2) whose Fourier series does not converge absolutely.

1. The Fourier expansion of a smooth function

Throughout this paper we use the following notations. G: a compact con-

nected Lie group, Go: the commutator subgroup of G, T: a maximal toral sub-

group of G, /: the rank of G = dim T> p: the rank of Go, n: the dimension of G =

/ + 2m> g: the Lie algebra of G, gc: the complexiίication of g, t: the Lie algebra

ofTyR: the root system of QC with respect to tΓ, dg: the Haar measure on G norma-

lized as I dg = 1, L\G): the Hubert space of the complex valued square integra-
JG

ble functions on G with respect to dg, Ck(G): the set of all A-times continuously
differentiable complex valued functions on G, | | ^ | | = T r ( ^ ^ * ) 1 / 2 : the Hilbert-
Schmidt norm of a matrix A.

In this paper, a finite dimensional continuous matricial representation of G
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is simply called a representation of G. So a representation of G is a continuous
and hence analytic homomorphism of G into GL(ky C) for some k^l. For any
representation U of G, the differential dU of f7 is defined as

for any X in g. The differential dU of [/ is a representation of the Lie algebra g.
The representation dUof g is uniquely extended to a representation of the univer-
sal enveloping algebra U(g) of g. This representation of U(g) is also denoted by
dU.

For any representation U of G, all the elements in dU(ϊ) can be transformed
simultaneously into the diagonal matrices. That is, there exists a non singular
matrix Q and pure imaginary valued linear forms λ^ Λ* on t such that

(\(H) 0 \

\ 0 \h{H)J

for all H in t. The linear forms λ^ Λ* are called the weights of U.
We fix once for all a positive definite inner product (X, Y) on g which is in-

variant under Ad G. The norm defined by the inner product is denoted by | X \ =
(X, X)1/2. The inner product (X, Y) is extended to a bilinear form on the com-
plexification gc of g. A pure imaginary valued linear form (in particular a weight

of a representation) λ is identified with an element hλ in t which satisfies

\(H) = i(hλ, H)

for all H in t. So we denote as \{H) = i(λ, H). Let Γ = Γ(G) = {H e t expG

H=l} be the kernel of the homomorphisim expG : t -> T. Then Γ is a discrete
subgroup of t of rank /. Let / be the set of all G-integral forms on t:

/ - {λGt : (λ, H)^2nZ ίor all Hξ=Γ}.

Then the set / coincides with the set of all the weights of the representations
of G. We choose once for all a lexicographic order Q in t. Let P be the set of posi-
tive roots with respect to the order Q. Then the number m of elements in P is

equal to (n—l). Let B be the set of simple roots in P, that is, B is the set of

roots in P which can not be the sum of two elements in P. B consists of exactly
p elements (p = rank Go). We denote the elements of B as aiy'-,ap.

Let \19 ,\k be the weights of a representation U. Then the maximal
element X among λ/s in the order O is called the highest weight of U. The
set of all highest weights of the representations of G coincides with the set D of
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all dominant G-integral forms on t :

D = {λG/;(λ, α, ) ^ 0 (ί^i^

Since an irreducible representation of G is uniquely determined, up to equiva-
lence, by its highest weight (cf. Serre [2] Ch. VII Theoreme 1), there exists a bijec-
tion from D onto the set ® of equivalence classes of irreducible representations of
G. ® is identified with D by this bijection. We choose, once for all, an irreducible
unitary representation Uλ with the highest weight λ for each λ in Z). The degree
d(X) of the representation Uλ is given by WeyΓs dimension formula:

(1.0)
*** (δ, a)

where δ = 2' 1 2 #

If G is abelian, the right hand side of (1. 0) should be understood to express 1.

Let J u ' , Xn be a basis of g a n d ^ = (Xiy Xj) and {gij) = (gij)'1. Then

the element Δ defined by

in the universal enveolping algebra U(g) of g is called the Casimir operator of g.
Δ is independent of the choice of the basis -XΊ, , Xn. As an element in U(g),
Δ is regarded as a left invariant linear differential operator on G.

Let u$j(g) be the (/^-element of the unitary matrix Uλ(g). Then the follow-
ing Lemma is well known.

Lemma 1.1. 1) Let dUλ be the differential of the representation Uλ. Then
we have

2) The matricial element u)ι} is an eigenfunction of the Casimir operator Δ regard-

ed as a differential operator on G:

Au$j = (λ, λ + 2 δ X

Proof. 1) Since the Casimir operator Δ belongs to the center of U(g), dllλ

(Δ) is a scalar operator cί by Schur's lemma. The scalar c is determined as
follows. We can choose a Weyl base Ea (a^R), H{(\^Lii^ϊ) of gc satisfying
(EΛ, E_a) = l, (Hiy Hj) = 8tJ and EΛ+E_a, i(EΛ-E_ω), Htζ=Q. Then we have

_ Δ = Σ E_ΛEa+± H;2 = ± (2E_aEω+Ha)+± H,\
<*GR ι=i *εp ί=i
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because [Eay E_Λ] = Ha where HΛ is the element in the space it satisfying
(H> HΛ) = a(H) for every H in tc. Let #Φ 0 be the weight vector corresponding
to the highest weight λ: dU\Ea) x=0 ( « G P ) , dϋ\Ha) x=X{Ha) * = —(λ, a)x.
Then we have

ex = dUλ(A) x = {Σ(λ, α ) - Σ MHi)2} x = {(λ, 2S)+(λ, λ)} Λ

= (λ, λ + 2δ)Λ:.

2) For any element X in g, we have

This equality can be expressed as

So we get

= U\g)dU\A) = (X, X+2S)U\g)

by 1). q.e.d.

By Peter-WeyΓs theorem, the set

, 1 ^ ij £ d(\)}

is an orthonormal base of L\G). Therefore any function / in L\G) can be ex-
panded by a mean convergent Fourier series of 35:

(i i) / =

The precise meaning of (1.1) is given by

(1.2) limll/- Σ 4λ) Σ (/. «f>WI. = °
»> |λ|^» i l

(1.2) is equivalent to the ParsevaPs equality:

Σ

For an arbitrary function/in L2(G), the right hand side of (1.1) does not, in gene-
ral, converge at every point of G. We shall show that if/ is sufficiently smooth,
then the series( 1.1) converges uniformly on G. First we give a convenient ex-
pression of the series (1.1). Let / be a function in L\G) and λ E ΰ . Then the
λ-th Fourier coefficient 3/(λ) of/ is defined by
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3ϊf(X) is a matrix of degree d(λ) and its (/j)-element £F/(λ)ίy is given by

(i 3)

Therefore we have

(i 4) Σ (/. OUg) = Σ

By (1.3) the Parseval equality can be expressed as

(1.5) 11/111 = Σ/(λ)l|27"(λ)||2.

Lemma 1.2. Iff belongs to C\G), then we have

where

(1.6) ω(λ) = (λ, λ+2δ).

Proof. Let φ and ψ be any C^-functions on G. Then for any element X
in g, we have

(Xφ, ψ) = \ \j-Ψ{g exp tX)] ψd) dg = H ( φ(g exp

= - (̂ .r Xψ).
o

Let X19 ",Xn be an orthonormal base of g: (Xiy X/) = 8,-y. Then we have Δ =
n

— Σ X\ and by the above equality we get

(1.7) (Aφ, ψ) = (φ, Aψ)

for any C2-functions φ and ψ. By (1.3), (1,7) and Lemma 1.1, 2), we have

£F(Δ/)(λ),., = (Δ/, «},) = (/, ΔβJ4) = ω(λ)£F/(λ), y.

q. e. d.

Lemma 1.3. Let Do = Z)-{0}. ΓÂ n the series

fW = Σ(λ,λ)-
λez>0

converges if 2s >L
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Proof. Let / be the set of all G-integral form on t and Io = /-{θ}. It is
sufficient to prove the series

Σ (λ,

converges if 2s>l. Let λ^ ^λ/, be a basis of the lattice / and Kx.y} be the inner
product on t defined by <ΣΛ?, λf , Σyf λf > = Σ ^ j>, . Then it is well known that the
series

(1.8) Σ<λ,λ>-*= Σ (n!+ +nf)-
λEί0 »ez/-{0)

converges if and only if 2s>l. On the other hand, there exists a positive definite
symmetric operator A such that (x, y) = (Ax, yy for all x, y in t. Let a and b
be the maximal and minimal eigenvalues of A. Then we have

, λ> ^ (λ, λ) <: α<λ, λ>

for all λ in t. Therefore the series 2 (λ, λ)~s converges if and only if the series
λ6EJ 0

Σ <λ, λ>~5 converges. So we have proved that X] (λ, λ)" s converges if 2s>l.
λ e / 0 λei>0

Theorem 1. Let f be a continuous function on a compact connected Lie group

G and let I = rank G,n= dim G = l-\-2m. Iff satisfies one of the following condi-

tions (1) and (2), then the Fourier series offy

converges to f(g) absolutely and uniformly on G:
7

(1) / is 2k-times continuously differentiable and 2k>—+ m = —,

(2) I Iff/Ml I = O( I λ Γ*) (I λ I -+°o)for some integer h>l+—m.

Proof. (1) Suppose / belongs to C2k(G). Then we have, by Lemma 1.2,

(1.9) ff/(λ) = ω(λ)-*3 (Δ*/)(λ)

On the other hand we have an inequality

(1.10) ω(λ) = (λ, λ+2δ) ^ |λ | 2 .

By (1.9) and (1.10), we have

(1.11) ||£F/(λ)|| ^ | |3-(ΔV)(λ)| | |λ |- 2Mora

Since (A, B) = Tr(^4£*) is an inner product on the space Mn(C) of the matrices
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of order n, we have the Schwarz inequality

(1.12)

Since Uλ(g) is a unitary matrix of order d(\), the Hubert-Schmidt norm of

Uλ (g) is equal to

By (1.12), (1.13) and (1.11), we have

(1.14)

By the Schwarz inequality, the right hand side of (1.14) is

(1.15) £ (Σ^(λ) | |£F(Δ*/)(λ) | | 2 r(Σ rf(λ)2|λ|"4

λ λ

SinceΔ*/eC\G)dL\G\ we have the Parseval equality

(1.16) HΔVIII = ΣΣ
Moreover by WeyΓs dimension formula, we have for any λ G ΰ 0

(1.17) d(\) £ C( |λ | + | δ | ) m ^ i V | λ Γ

where C= Π |α | (δ, a)'1 and iV are positive constants. By (1.16) and (1.17),

the right hand side of (1.15) is

(1.18) ^I|Δ*/||2(JV2Σ |λ | 2— 4*) 1 / 2 .

Since 4-k-2m^>l-\-2m-2m=lbγ condition (1), the series in (1.18) converges (Lem-

ma 1.3). So we have proved that the Fourier series of/converges absolutely and

uniformly on G, if/satisfies the condition (1). The sum s(g) of the Fourier series

of/is a continuous function and equal to f(g) almost everywhere on G by the Par-

seval equality. Since / and s are continuous, the sum s(g) is equal to f(g) every-

where on G.

If a function/satisfies the condition (2), then there exists a positive constant

M such that

(1.19) 113/0011 : g M | λ Γ Λ for all λeDo-

So we have

(1.20) Σ d(X) |Tr
λ
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where L = M( Π |α | (δ , a)~Ύ/2 is a positive constant. Therefore the series on

the right hand side of (1.20) converges if λ-3ra/2>/, i.e., λ>/+3m/2 (Lemma 1.3).

q.e.d.

Corollary to Theorem 1. /// is a C2k-function on G, then we have | |£F/(λ)| |

= *(|λ|-2*) (\\\-*°°),thatis,

Proof. By the inequality (1.11), we have

(1.21) |λ | 2 ^| |£F/(λ) | |^ | |ΞF(

Since Δ*/ belongs to C°(G)cL2(G), we have

(1.22) lmJ|ff(ΔV)(λ)| | = 0

by the Parseval equality (1.16). (1.21) and (1.22) prove the Corollary.

2. Fourier coefficients of a smooth function

Theorem 2. Let G be a compact connected Lie group and D be the set of all

dominant G-integral forms on the Lie algebra t of a maximal toral subgroup T of G.

Let Uλ be an irreducible unitary representation of G with the highest weight λGfl

and d(\) be the degree of Uκ. Then we have the following inequality for every X

in the Lie algebra QofG:

(2.1) \\dU\X)\\2 ^ d(X)\\\2\X\2 for any λ E f l and

\\dU\X)\\2^N\X\m+2\X\2 for any λ e D 0

where N is a positive constant and m is the number of the positive roots.

Proof. First we show that the inequality (2.1) is valid for every X in g if

(2.1) is valid for every X in the Cartan subalgebra t. Since every element X in

g is conjugate to an element H'm ί, that is, there exists an element £ in G such that

(Aάg)X= H, we have

(2.2) \\dU\H)\\ = \\U\g)dU\X)U\g-*)\\ = \\dU\X)\\ and

(2.3) \H\=\X\.

The equalities (2.2) and (2.3) prove that if the inequality (2.1) is valid for any H

in t, then (2.1) is valid for every X in g.
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Now let X be any element in t and W(X) be the set of weights in the repre-

sentation E/\ Then the linear transformation dU\X) is represented by a

diagonal matrix whose diagonal elements are {i(μ, I ) : / ί G W(X)} with respect

to some orthonormal base of the representation space. Therefore we have

(2.4) \\du\x)\\2= Σ \i(μ,X)\*£ Σ I M I Ί ^ I 2 .

On the other hand every weight μ in W(X) has the form

(2.5) μ = χ-γimiai,

where m/s are non negative integers, (cf. Serre [2] Ch. VII Thέoreme 1). If μ e

W{\) is dominant, that is, (μ, a{) ^ 0 (/ ̂  i ^ p), then we have by (2.5)

(2.6) | μ | 2 ^ \μ\2+±mi(μyai) = (\yμ)= |X | 2- ±m,(λ, α,)^ Iλ12.

Since every weight μ, in ίF(λ) is conjugate to a dominant weight in W(X) under

the Weyl group, (cf. Serre [2] Ch. VII-12 Remarque), we have the inequality

(2.7) \μ\^\M fora

by (2.6). The inequalities (2.4) and (2.7) prove the inequality

(2.8) \\dU\X)\\2^d(X)\X\2\X\\

Since the degree d(X) of U is given by WeyΓs dimension formula

d(\) = Π ( λ + δ , α)(δ, a)" 1,

ί/(λ) is estimated by (1.17) as

(2.9) d(X)£ C(\X\ + \8\)m^N\X\tn for any λGU0

where C and N are positive constants and m is the mumber of positive roots. So

we have proved Theorem 2 completely.

L e m m a 2.1. Let G be a connected Lie group and g be the Lie algebra of G.

Moreover let f be a complex valued function on G, and k be a positive integer. Then

the function f belongs to Ck(G) if and only if

Ldt

can be defined for every X in c\ and g in G, and it belongs to Ck~\G).
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Proof. Ji a function / belongs to Ck(G), then φ(g, t) = f(gexp tX) belongs

to C*(GxR). So(Xf)(g) =^{g9 0) exists and belongs to Ck~\G).
dt

Conversely suppose that Xf'is defined and belongs to Ck~\G) for every Z G
g. Then for any real number t, {df/dt)(g exp tX) exists and is equal to (Xf)
(g exp ΐ X). Moreover for any element h in G, {dfldt)(g exp t Xh) exists and is
equal to

(2.10) j-f{g exp t Xh) = j-f{gh exp (t Ad h~*X))
at at

= ((Adh-*X)f)(gaφtXh).

Let Xu X2, ,Xn be a base of g and

φ(t) = φ{t19'"9tH) = exp ί ^ - e x p tnXn.

Then φ is an analytic diίfeomorphism of an open neighbourhood W of 0 in Rn

onto an open neighbourhood V of the identity element e in G. Let

(2.11) (Ad( exp f ^ - e x p U Q " 1 ) ^ = Σ ^yίO^y

Then ai5{f) = a^it^ ,ίM) is an analytic function on J?n. Let ̂  be a fixed element
in G. Then the mappinggφ{ί)\-^t = (tly-~,tn) defines a local coordinates ongVy

the canonical coordinates of the second kind. Let d/dt. be the partial deriva-
live with respect to t{ just introduced. Then by the equalities (2.10) and (2.11),

—(gφ(t)) exists and is equal to
dt

(2.12) y^ψif)) = [Ad(exp ti+1Xi+ι.

,0, ti+19-,tH){Xjf){gφ(t)).

By the assumption, the right hand side of (2.12) regarded as a function of t is a
Ck~^function on W. So / is a C^-fucntion on gV. Since £ is arbitrary, this
proves that/is a C^-function on G.

Lemma 2.2. Le£ G, g,/, & be as in Lemma 2.1. Then f is a Ck-function on
G if and only if XkXk_^-Xxf can be defined and is continuous for any k ele-
ments Xly '",Xfcin g.

Proof. This Lemma is easily proved by the induction with respect to k
using Lemma 2.1.

Theorem 3. For any continuous function f on a compact connected hie group

Gy the following two conditions (1) and (2) are mutually equivalent.
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(1) f is a C°°-function on G.

(2) The Fourier coefficients £ F / ( λ ) is rapidly decreasing: Km \X\h\\£F/(λ)11 = 0
iλi-*°°

for every non negative integer h.

Proof. (1)=#(2). This part of Theorem 3 is proved in Corollary to Theorem

1.

(2)=#>(1). Suppose that £F/(λ) is rapidly decreasing. Then / satisfies the condi-

tion (2) in Theorem 1. So the Fourier series of/ converges uniformly to/. Thus

for every g^G, Z E g and t^R we have

(2.13) f(g exp tX) = Σ/(λ)Tr(£F/(λ)ί/λ(j> exp tX)).

The series obtained from the right hand side of (2.13) by termwise differentiation

with respect to the variable t is

(2.14) Σ d{\)Ύr{ΞFf{\)U\g exp tX)dU\X)).
λεΰ

By Theorem 2 and the rapidly decreasingness of £?/(X), the series (2.14) conver-

ges absolutely and uniformly with respect to t, when t runs through any bounded

set in R. Therefore the series (2.13) can be differentiated termwise and the func-

t ion/^ exp tX) is diίferentiable with respect to t. So

dt 0

is defined and equal to

(2.15) Σ d(X)Ύr(SFf(X)U\g)dU\X)).

Since (2.15) is uniformly convergent on G, the sum Xf is a continuous function

on G. Therefore / i s a C^-function by Lemma 2.1.

By the same argument, X^'-Xjjis defined and continuous for any AeiVand

X^-'^X^Q and it has the following uniformly convergent expansion;

(2.15) {X^Xkf){g) = Σ rf(λ)Tr(£F/(λ)C/λ(^C/λ(X1)...rfC/λ(XA)).

So/ is a O-function for any k<=Nby Lemma 2.2, i.e.,/ is a C°°-function on G.

3. The topology of C°°(G) and S(D)

Let G be a compact connected Lie group as before. The space C°°(G) of all

complex valued C°°-functions on G is topologized by the family of seminorms:

(3.0) {pu(f)=\\Uf\\- U<=\J(Q)}.
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C°°(G) is a complete locally convex topological vector space by this topology. It

is clear that the topology of C°°(G) is coincides with the one which is determined

by the subfamily of seminorms:

(3.1) {pxr'XkU) = \\X^-Xkf\U: k = 0,1,2; ..., X19...χk^a}.

Let S(D) be the space of matrix valued functions F on the lattice D which satisfies

the following two conditions:

(1) F(X) belongs to the space MdCλ)(C) of complex matrices of order d(X) for

each

(2) F(\) is a rapidly decreasing function of λ: i.e., lim |λ | * | |F(λ) | | = 0 for all
lλ|° °

In the following, we use the inner product {X, Y) which satisfies the following

condition:

(3.3) (λ, λ ) ^ l for all λ G f l o = D-{0}.

The vector space S(D) is topologized by the family of seminorms

By the condition (3.3), we get the following inequality for the seminorms on

S(D):

(3.4) qs(F)^qt(F) ifOOrgf

for all F in S(D).

Using these topologies, the result in Theorem 3 can be reformulated more

precisely in the following Theorem 4.

Theorem 4. The Fourier transform EF if^EFf is a topological isomorphism

of C~(G) onto S(D).

Proof. By Theorem 3, the Fourier transform 3* mapps C°°(G) into S(D).

Since any continuous function/on G is uniquely determined by its Fourier coeffi-

cients iF/(X) by (1.5), the mapping £F is injective. The mapping £? is also surjec-

tive. Let F be a function in S(D). Then the series

(3.5) ΈdCκ)Ύr(F(X)U\g))
λez>

converges uniformly on G, because the function F satisfies the condition (2) in

Theorem 1. Let/(#) be the sum of the series (3.5). Then/is a continuous func-

tion on G and the Fourier transform ΞEf of/ coincides with the original function
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F by the orthogonality relations. Since F(\) = £F/(λ) is rapidly decreasing,

the function/ is a C°°-function on G by Theorem 3. Thus we have proved that

the Fourier transform £F is a linear isomorphism of C°°(G) onto S(D).

Now we shall prove that the Fourier transform EF is a homeomorphism.

First we show that ΞF is continuous. Since (Δ*/)(λ) = ω(\)kEFf(\) (Lemma

1.2), we have

(3.6) ω(λ)*||3 /(λ)|| = ||3-(Δ*/)(λ)|| ^ ( \A*f(g)\ | | C / V
JGG

Since | λ | 2 ^ω(λ) and there exists a constant M>0 such that d(\)1/2£M\\\m/2

for all λ e ΰ 0 , we have

(3.7) |λ | 2*

by (3.6). Therefore we have

(3.8) ? r t

for all/in C°° (G) and all &>—m. Since k can be taken arbitrarily large, we

4

have proved by (3,4) and (3,8) that for any s>0 there exists an integer &>0 such

that the inequality

(3.9) ?.(Sfl2£M||ΔVIU.

is valid. On the other hand, since | |2Γ/(0)| |^| |/ | |o o by the definition of £?/, we

have

(3.10) ?o(^/)^ll^/(O)||+Max||3/(λ)||^||/|U+M||ΔVIL
λ€=Z>0

for k>^~m by (3.3) and (3.7). The inequalities (3.8) and (3.10) prove that
4

the Fourier transform £F is a continuous mapping of C°°(G) into S(D).

Next we shall prove that the inverse Fourier transform ζF'1: £?/->/is con-

tinuous. Since | λ | 2 ^ ω(λ) and there exists a constant M > 0 such that d(\) ^

M 2 | λ Γ , the series

converges to a positive real number K if ί>2~1/+4~1(A+3)m by Lemma 1.3.

Let k be a positive integer and JΓU •••,-Y* be Λ elements in g. Then by (2.15)

and Theorem 2, we have the inequality

(3.12) \\Xf..Xj\U ^ Σ
λe2?
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= K\Xι\...\Xk\Maxω(\γ\\\*\\<Ξf{\)\\.
λe=z>

i f*> —/+-L(*+3)m. Since ω(λ) = (λ, λ+2δ) ^ | λ | 2 + 2 | λ | | δ |

and ω(\γ^±sCr | λ |'+'(2181)-".

we have

(3.13) l l ^ - ^ / I U ^ ^ I X . I

Similarly we have the inequality

(3.14)

Σ

^ qo(3?f)+κ Σ ,cr(21 δ i γ-'q.+Aβf).

for s>U+3m

2 ' 4
The inequalities (3.13) and (3.14) prove that the inverse Fourier transform ΞF"1:

is a continuous mapping from S(ί>) into C°°(G). q.e.d.

Corollary to Theorem 4. 7%e topology of C°°(G) defined by the family of
seminorms (3.0) (or (3.1)) coincides with the topology defined by the family of
seminorms

{rJJ)= ||Δ-/|L;m = 0,1,2,-}.

Proof. This Corollary is clear from the inequalities (3.10) and (3.9) and
Theorem 4.
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Added in proof

The Fourier series in Theorem 1 is obtained from the series (1.1) by first taking
rfCλ)

the partial sum 2 However we can prove that the original series (1.1) converges

absolutely and uniformly if/belongs to C2k(G) and 2k> —

This fact can be seen from the following inequalities:

Σ Σ d(\)I(JM,)11uUg)I ̂  Σ Έd(x)\x\-^\(Δ*/, tή,)11u\}{g)I

si ( Σ Σ d{\) I (Δ*/, «W IΨX Σ Σ <λ) I λ | - 4 * | uUg) 12)1/2

^ I|Δ*/IWΣ






