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Introduction

If a differentiable manifold M is provided with an affine connection whose
torsion and curvature vanish identically, we call M an affine manifold. The study
of affine manifolds has been the subject of a number of recent publications in-
cluding the papers by Auslander, Charlap, Koszul, Kamber and Tondeur, and
Wolf. A general reference for the study of affine manifolds is [3], [4] or [6]. The
subject of this paper is to study homogeneous affine manifolds.

If, for an affine manifold M, aut (M) denotes the Lie algebra of all in-
finitesimal affine transformations, then aut (M) has an associative algebra struc-
ture satisfying 1) X Y— Y>X=[X, Y] and 2) the isotropy subalgebra aut (M)p

= {X<=aut(M)\Xp=0} at ρ<=M is a left ideal of aut (M) (Theorem 1.2).
Our study is essentially based upon these properties of aut (M). A pair (g, α) of
a Lie algebra g and a subalgebra α of g is called an cJί-pair if g has an associative
algebra structure satisfying the above 1) and 2) for the subalgebra α.

Let G be a Lie group with Lie algebra g and A a closed subgroup of G with
Lie subalgebra α of g. Then if (g, α) is an <_j?-pair, then the homogeneous
space G/A has a unique G-invariant flat affine connection V satisfying Vx* Y*
={Y X)* where X* denotes the vector field on GjA induced by the action of
exp tX (Theorem 2.2). We call such a homogeneous affine manifold an <Jl-
space. Then a compact homogeneous affine manifold turns out to be an
c^?-sρace (Theorem 2.4).

To each <Jf-ρair (g, α), we can associate in a canonical way a pair (G, A) of
Lie groups such that the Lie algebras of G and A are g and α respectively, and
A is a closed subgroup of G (§4). Then for such a pair (G, A) of a Lie
group and a closed subgroup, the ^?-space GjA is embedded equivariantly into an
affine space as a domain, which is called an ^-domain (Theorem 4.5).

The F-Stiefel manifold Vr(Fn), consisting of all r linear frames in
F* (F=R, C or/f), is naturally imbedded into the affine space Fnr as a domain,
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and moreover Vr(Fn) turns out to be an ^-domain (Theorem 5.1). By using

a well known theorem, the so called Wedderburn Theorem on associative

algebras, we determine ̂ -domains an cJf-domain is affinely diffeomorphic to a

direct product of an affine space and Stiefel manifolds (Theorem 5.5).

The following theorem shows the importance of Theorem 5.5 in the study

of compact homogeneous affine manifolds: if M is a compact homogeneous

affine manifold which is a quotient space of a domain D in an affine space, then

the domain D is an ^-domain (Theorem 6.1). By applying this theorem, we

consider the case in which M is convex or complete (Theorem 6.3 and 6.4).

I would like to express my deep appreciation to Professor Yozo Matsushima,

whose guidance and encouragement made this work possible.

1. Affine manifolds

In what follows, by differentiable we always mean differentiable of class
C°°. All manifolds and affine connections are assumed differentiable. For
general notations and definitions we refer to [4].

An affine connection is said to be flat if the torsion and curvature tensors
vanish identically. A manifold provided with a flat affine connection is called an
affine manifold. An affine transformation of an affine manifold is called an
automorphism. Ant (M) denotes the Lie group of all automorphisms of an
affine manifold M. M is said to be homogeneous if Aut (M) acts on M transitively.

Let N be a totally geodesic submanifold of an affine manifold M. Then
N is an affine manifold and the inclusion of N into M is an affine mapping. N
is called an affine submanifold of M.

Let V be a finite dimensional vector space over R. In the canonical way,
V is considered as an affine manifold, which is called an affine space. In general,
an n dimensional affine space will be denoted by An. Let U be a vector subspace
of V and XG V. Then the subset x-\- U={x+y^ V\y^ U} is an affine subman-
ifold of the affine space V, which is called the affine subspace through x as-
sociated to U. We can easily see that if Mis a connected affine submanifold of An

then there exists a unique affine subspace S of An such that M is an open subset of S.

A connected open subset in An is called a domain. Let D be a domain
of An and Γ a discrete group acting on D freely and properly discontinuously
as a group of affine automorphisms of D. Then the quotient space Γ\D is
an affine manifold and the projection is affine. When an affine manifold M
is of the form T\D, M is said to be regular. Moreover if D is a convex domain
in An, then M is said to be convex. It is well known that an affine manifold M
is complete (i.e., the flat affine connection is complete) if and only if M is a regular
affine manifold Γ\A*. That is to say, a simply connected complete affine
manifold is affinely diffeomorphic to An.
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In general we have the following:

Proposition 1.1 Let Mbeann dimensional simply connected affine manifold.
Then there exists an affine immersion φ of M into An with the following universal
property if ψ is an affine mapping of M into Am then there exists a unique affine
mapping g of An into Am such that y]r=goφm

Proof. Let V be the vector space of all parallel differential forms of degree
1 on M. Since M is simply connected, dim V=n. Take a point po^M as a
reference point and define a mapping φ of M into the dual space F * of V by

ί p

&0

for p^iM and ωGF. Since M is simply connected, the integral does not
depend on the choice of a path from p0 to p and hence φ(p) is well defined.
Then φ is an affine immersion of M into the affine space F * and satisfies the
universal property. Q. E. D.

Let M be an affine manifold with flat affine connection V. An infini-
tesimal automorphism of M is, by definition, a vector field whose local one para-
meter group of local transformations consists of affine mappings. The set
of all infinitesimal automorphisms of M forms a finite dimensional Lie subalgebra
aut (M) of

Theorem 1.2. Let M be an affine manifold with flat affine connection V.
Then

1) // X and Yeaut {M)y then V^Yeaut (Λf).
2) If we define a multiplication X Y in aut (M) by setting

X-Y=-VYX,

then aut (M) forms an associative algebra over R such that

[X, Y] = X.Y-Y X.

3) Let p<=M and a={X<=2Mt (M)\XP = 0}. Then a is a left ideal of
the associative algebra aut (M).

In order to make the computation easier, we introduce a tensor field Ax

associated to a vector field X as follows: for J G Ϊ ( M ) ,

Ax = Lx—Vx

where Lx denotes the Lie derivative by X. We have the following formulae
on an affine manifold M.
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1°) AxY=-VγXioτX

2°) X<Ξ aut (M) if and only if V(Ax)=0.

3°) AAχY=AxAγ{oτXςΞ*πt(M),

Proof of Theorem 1.2. To prove 1), let X, Yeaut(M). By 2°) it
suffices to show (Vu(AVτY))V=0 for any Uy V<=?ί(M). In fact (Vu(AVχY))

+AYAX(VUV)=-((VUAY)AXV+AY(VUAX)V+AYAXVUV) + AYA
=0 since Ax and Aγ are parallel by 2°). This proves 1). The second asser-
tion of 2) follows from the triviality of the torsion of V. To complete the proof
of 2), it is sufficient to prove that (X Y)-Z=X (Y Z) for X, Y and
Z e a u t (M). In fact, (X- Y)-Z=(-VYX)*Z=VZ{VYX)==-VZ(AXY)==
—AXVZY=—VY.ZX=X-(Y-Z). This proves 2). Let X(=a and YίΞaut
(M). Then Y . X = - V * y . Since Xp=0, (Y-X)p=0, and hence Y-XtΞa.
This proves 3). Q. E. D.

Let g be a Lie algebra over the field R. g is called an Jl-Lie algebra
if g is also an associative algebra over R such that for X and Yeg

X Y-Y X=[X, Y]

where X Y denotes the associative algebra multiplication. If α is a left ideal
of the underlying associative algebra of g, the pair (g, α) is called an Jl-pair of
algebras.

One can show easily that the underlying Lie algebra of an ^?-Lie algebra is
not semi-simple.

2. (cJf)-Lie groups and (^?)-spaces.

Let G be a Lie group. The Lie algebra g of G is, by definition, the Lie
algebra of all left invariant vector fields on G. For aG G, Ra and La denote the
right and left translations of G by a, respectively Ra(g)=ga, La(g)=ag. Let
H be a closed subgroup of G. The action of G on the homogeneous space
GjH is denoted by T; for a e G and gH^GjH, Ta(gH)=(ag)H. This action
induces an anti-Yλz homomorphism of g into H{GjH) as follows: for any Xeg,let
at=exp tX^G. The one parameter group {Tat} of transformations of G\H
defines a vector field X* on GjH. Then the mapping, which assigns X* to each
X, is an anti-Lie homomorphism of g into H{GjH). The image of g by this
mapping will be denoted by g'. A vector field X* in g' is called the induced
vector field of X e g.

A Lie group G is called an Jl-Lie group with algebra g if the Lie algebra g of
G is an c_̂ ?-Lie algebra over R. A pair (G, A) of an <_̂ ?-Lie group G and its
subgroup A is called an Jl-pair of groups with algebras (g, α) if the pair (g, α) of
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Lie algebras of G and A is an oϊ-pair of algebras and if A is a closed subgroup
ofG.

Lemma 2.1. Let G be a connected Jl-Lie group with algebra g. Then for
a&GandX, Yeg,

Ad(a)(X- Y) = (Ad(a)X)-(Ad{a)Y).

That is, Ad(a) is an automorphism of the associative algebra g.

This follows from the following formula; for any X, Y and Z^Q,

[Z,X-Y] = [Z,X]-Y+X [Z, Y].

An affine connection on a homogeneous space GjH is said to be G-ίnvariant
if the transformation Ta of G/H is an affine mapping for any a^G.

Theorem 2.2. Let (G, A) be an Jd-pair of groups with algebras (g, α).
Then there exists a unique G-ίnvariant flat affine connection V on G\A such that

(Y X)* for*, Yeg,

where Y X denotes the multiplication of the associative algebra g.

The invariant flat affine connection on GjA in Theorem 2.2 is called the
canonical flat affine connection. The homogeneous space G\A provided with
the canonical flat affine connection is called an Jl-space.

Proof of Theorem 2.2. We shall construct an affine connection V on G\A
step by step.

1°) LetptΞGjA, u(ΞTp{GjA) and Yeg. VMY*(Ξ TP(G/A) is defined by

where X^Q and X*=u. We show that this is well defined. It suffices to
show that if X e g and X*=0, then (Y-X)*=0 for any Yeg. For geίG and
Z<=g, Tg*(Z*)=(Ad(g)Z)* on GjA. Let 0 denote the class of A in GjA and
p=Ta(0). Suppose l E g and X*=0. Then (i4rf(fl-1)^QJ=O and hence

. Let Yeg. (y .^*=ΓX(i4r f (α- 1 )(y .^) f )==Γ β ((i4rf(fl-1)Y).
)? by Lemma 2.1. Since Ad(a~1)X^a and α is a left ideal of g,

(Ad(a-1)Yy(Ad(a-1)X)^a and hence (Y.X)*=0. Therefore the definition is
consistent.

2°) Let />e G/i4, we TP(G/A) and Z G ϊ(G/i4). V / G TP(G/A) is defined
as follows: obviously there exist Yt •••, Y r e g and smooth functions / n -- ,/ r

defined around jp such that Z= Σ / ' ^f around /). Then let VUZ be defined by
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where the second term of the right hand side has been defined in 1°). We show
that this is well defined. It suffices to show that if ^f'Y*=0 around p, then

Σ («/ i ) y ίΊ.+Σ/'(/ ')V 1 ,yf=0. Take l e g such that X*=u. Then Σ («/')

Ϋΐ,+ Σ f'(P)v»YΪ= Σ (*?/') n + Σ/'(/>)( *>*)*=[**, Σ / ' ή ] * -
?/'(/>)[**, Hk+Σ/'ίPXIVX)?. Since Σ / ' ^ ? = 0 around /», the first

term vanishes. The rest is equal to Σ/'ί/OCXΓ Y;)* s ί n c e [^*> Y*]P=

Σ / ( P ) ( ^ ) ί ( (
the other hand Σ / f ' ^ * = 0 around p9 in particular 0 =

= (Σ/'(/>)y<)? By a method similar to that of 1°), (X (Έf'{p)Yi))*=^
i i

3°) Let X and Ye3e(G/^). VxY^ϋ{GjA) is defined by

where the right hand side has been defined in 2°). The differentiability of VXY
is clear.

4°) Obviously V satisfies the condition to be an affine connection on G/A.

By the definition of V, we get V** Y*=( Y X)* on G\A for X, Yeg. To
show that V is G-invariant, it is sufficient to prove that Ta*(Vx* Y*)=VTa*x*Ta* Y*
for any a^G and Xy F e g . In fact Γα*(Vx*Y*H7>(Y.X)*={Ad{ά)Y-X)*
= ((Ad{a)Yy{Ad{ά)X))*=VTa*x*Ta*Y* since Ta Z*=(Ad(a)Z)* for a^Gy

ZEg. V is flat. In fact, for any X, Y and Z e g , we have Vχ*Y*—VF*X*
= [X*, Y*] and [Vx*, V F*]Z*=V[χ*> F*]Z*. Therefore we have proved the
existence of such a flat affine connection on G/A. The uniqueness is trivial.

Q.E.D.

Suppose M i s a homogeneous space GjH where G acts almost effectively
(i.e., {g(=G\ T^=the identity} is a discrete subgroup of G). Then g is anti-Lie
isomorphic to the Lie subalgebra g' of vector fields on M induced by g. If V
is a G-invariant flat affine connection on M, then clearly g' is a Lie subalgebra of
aut (M). We recall that aut (M) is an ĉ ?-Lie algebra.

Proposition 2.3. Let M be a homogeneous space G/H and V a G-invariant
flat affine connection on M where G acts on M almost effectively. If g' is an
associative subalgebra of aut (M), then (G, H) is an Jl-pair of groups and V is the
canonical flat affine connection on the Jl-space G/H.

Proof. Let g and ΐ) be the Lie algebras of G and H respectively. We



COMPACT HOMOGENEOUS AFFINE MANIFOLDS 463

define a multiplication Y X on g as follows; VX*Y*={Y-X)* for X, Y<=Q.

Since g' is an associative subalgebra of aut (M) and the mapping of g into g' is

bijective, VX*Y*^Q', and hence there exists a unique element Z in g such that

V X * F * = Z * . Thus this multiplication Y X is well defined and g forms an

associative algebra such that [X, Y]=X Y— Y X. Obviously ϊj is a left ideal

of the associative algebra g. Thus (G, H) is an c_̂ ?-pair of groups with algebras

(g, fj). The last assertion follows from the definition of the canonical flat

affine connection on the c_̂ ?-space G/H. Q. E. D.

In the case where M is compact, we have the following as a corollary of

Proposition 2.3.

Theorem 2.4. If M is a compact homogeneous affine manifold, then M is

affinely dίffeomorphίc to an Jl-space with the canonical fiat affine connection.

Let G be an cJ?-Lie group with algebra g. Naturally G=G/(e) is an

^?-space. As an c^?-space, G has the canonical flat affine connection V. In this

case, for J e g , X* is the right invariant vector field on G such that X*=Xe.

Proposition 2.5. Let V be the canonical flat affine connection on an Jί-Lie

group G. Then

1) V**Y*=(F X)* and VXY=X Yfor X,eg.

2) V is two sided invariant by G.

Proof. The first assertion in 1) is the definition of V. Let Xy F e g .

(VχY)β=VXβY=Vx*βY=VYβX*+[X*, Y]e since the torsion vanishes. Ob-

viously the second term vanishes. Then (VxY)e= VF eX*=(V r*X*) e=(X Y)f

=(X-Y)β. Since V is left invariant, for « E G , (VxY)a=La*{VLϊίχLϊiY)β

=La*{VxY)e=La*{X-Y)=(X-Y)a. This proves 1). Take a in G. i?β*(V^*F*)

=/?β ( y . Z ) * = ( y . X ) * = V ^ y * = V Λ β . ^ / ? β . y * for X. y ^ g . This shows that

V is invariant by Ra for aGG. Therefore V is two sided invariant by G.

Q. E. D.

As a consequence of Proposition 2.3 and Proposition 2.5, we have following

characterization of cJ?-Lie groups.

Theorem 2.6. A Lie group G is an Jl-Lίe group if and only if G has a two

sided invariant flat affine connection.

Proof. Suppose G has a two sided invariant flat affine connection V. Let

X, F e g . Since V is left invariant, X* and Y* are in aut (G) and hence Vχ*F*

is in aut (G).Vχ*Y* is a right invariant vector field since V is right invariant.

Therefore g '={X*eaut (G) |Xeg} is an associative subalgebra. By Propo-
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sition 2.3, G is an JL-lλt group. The converse is Proposition 2.5.
Q. E. D.

Let (G, A) be an J?-pair of groups with algebras (g, α). VG and VG/Λ

denote the canonical flat afϊine connections on G and GjA respectively.

Proposition 2.7. The projection of G onto GjA is an affine mapping with

respect to VG and VG/Λ.

Proof. Each Z e g induces a right invariant vector field on G and a vector
field on GjA. As before, they will be denoted by the same letter Z*.
Then p*(Z*)=Z*. LetZ, Yeg. ρ*(V%.Y*)=ρ*(Y-X)*=(Y X)*=V%ΛY*
= VG

+

/i*jp* Y*. Thus p is an affine mapping. Q. E. D.

We state the following proposition without proof. The proof is straight-

forward.

Proposition 2.8. Let (G, A) and (H, B) be Jl-paίrs of groups with algebras
(g, α) and (£), b) respectively. Then

1) If φ is a homomorphism of G into H whose differential is an associative
algebra homomorphism, then φ is an affine mapping. If, moreover, φ(A)aB,
then the mapping of GjA into HjB induced by φ is also affine. In particular, a
Lie subgroup of H whose algebra is an associative subalgebra of t) is an affine
submanίfold of H.

2) Let N be a closed normal subgroup of G which is contained in A. If the
Lie subalgebra n of N is a two sided ideal of g, then (G/N, AjN) is an Jl-pair
of groups with (g/π, a/n), and (GjN)j(AjN) and GjA are affinely dίffeomorphic.

3) (GxH, AxB) is an Jl-pair of groups with algebras (gθlj, α0b), and
furthermore GxHjAxB and GjAxHjB are affinely dίffeomorphίc.

By using the structure of an affine manifold on an cJϊ-Lie group, we shall
prove the following theorem, which gives a sufficient condition for a subgroup
of an ^?-Lie group to be closed.

Theorem 2.9. Let H be a connected Lie subgroup of an Jl-Lie group G whose
Lie algebra ί) is an associative subalgebra of g. If there exists an affine immersion
of G into the n dimensional affine space (n=dim G), then H is a closed subgroup of G.

Proof. Let φ be an affine immersion of G into the n dimensional affine
space A". Since H is a connected affine submanifold of G and φ(G) is an open
subset of Λn, φ{H) is a connected affine submanifold of An. Thus, there exists
an affine subspace S of An such that φ(H) is an open subset of S. Since locally
φ is a diffeomorphism, H is locally closed in G and hence H is a closed subgroup
of G. Q.E.D.
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Since any simply connected affine manifold can be affinely immersed into
the affine space with the same dimension by Proposition 1.1, we have the following
as a corollary to Theorem 2.9.

Corollary. Let G be a simply connected Jl-Lίe group with algebra g.
Then any connected Lie subgroup of G whose Lie algebra is an associative subalgebra
of g is a closed subgroup of G.

3. The structure of ĉ ?-Lie algebras and ^-pairs of algebras

We assume that an associative algebra is always finite dimensional throughout
this section. A general reference of associative algebras is [2] or [5].

Let g be an associative algebra over R. For each positive integer k, g* is
defined by

9* — {Σιxi"'xk: finite sum|.χ:t.eg} .

We have Q=Q1IDQ2Z)"-. g is said to be nίlpotent if g*=(0) for some k.
Any associative algebra has the maximal nilpotent two sided ideal, which will
be called the radical. When the radical is zero, the associative algebra is said
to be semi-simple. If r is the radical of g, then g/r is semisimple. An
associative algebra is said to be simple if it has no non-trivial two sided ideal.
When K is a ring, gl(w K) denotes the set of all nxn matrices with coefficients
in K. If K is a division algebra over R, then gl(w K) is a simple associative
algebra over R. We denote by C and H the fields of complex numbers and
quaternions respectively. Then if K is a divison algebra over Ry then K is R,
C or H. The following is known as the Wedderburn Theorem ([2], [5]).

Theorem 3.1.
1) Any simple associative algebra over R is ίsomorphic to one of gϊ(w; R),

gl(w; C) and gl(#; H) for some integer n.
2) A semi-simple associative algebra is isomorphic to a direct sum of simple

associative algebras.

Let g be an associative algebra over R. Let g be the semi-direct
sum R e-{-Q where R e is a one dimensional vector space with the base (e) and
the multiplication in g is given by

(ae, X)-(βey Y) = {aβe, aY+βX+X Y)

for a, β^R and X, Y^Q. Then g is an associative algebra with the identity
(e> 0) and g is a two sided ideal of g. g is called the trivial extension of g by
adding the identity e.

Let g be a semi-simple associative algebra over R. By Wedderburn's
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theorem, g is isomorphic to a direct sum Σ 9/ where gl =fll(wί; F, ) and

Fi=R, C or H. Let α be a left ideal of g.Then α, = α Πg, is a left ideal of gf ,
and α= Σ α2 . Let αr(n; F) denote the subspace of gϊ(w; F) of all elements
(xl) such that #5=0, ( l ^ ί ^ w , l ^ j ^ r ) ; i.e.,

α r ( « ; F ) = ( θ | * ) } « .

αr(/z; F) is a left ideal of gl(w; F) .

Lemma 3.2. //α w a left ideal of gl(n; F), then there exists g(=GL(n; F)
such that

Ad(g)a = ar(n; F) for some r.

The proof of this lemma is well-known. Since Ad(g) is an automorphism of the
associative algebra by Lemma 2.1, without loss of generality we may always
assume that a=ar(n, F) if α is a left ideal of gϊ(w; F).

An cJ!-pair (g, α) of algebras is said to be effective if α contains no non-
trivial two sided ideal of the associative algebra g. This condition is equivalent
to saying that α contains no non-trivial ideal of the Lie algebra g.

4. Canonical ^?-Lie groups and ^-domains

Let r) be an Jl-lAt algebra over R whose underlying associative algebra,
contains the identity. We denote by ΐ)* the group of all ίnvertίble elements of
fj. Obviously ί)* is an open subset of ί) and a Lie group with respect to the
relative topology. The Lie algebra of f)* can be identified with the underlying
Lie algebra of ή in a natural way since ί)* is an open subset of £). Therefore ί)*
is an o#-Lie group with algebra ί). Moreover, f)* can be considered as a real
algebraic group in a natural way. The Lie group ϊ)* acts affinely on the affine
space ί) on the left side through the multiplication of the underlying associative
algebra of fj. Obviously the inclusion of fj* into § is compatible with the actions
of fj* on ί)* itself and on fj.

Proposiiton 4.1. The inclusion mapping of an Jί-Lie group Ij*, provided
with the canonical fiat affine connection, into the affine space ϊj is an affine mapping.

Proof. Let {Xly •• ,XM} be a base for the vector space ί), and C]k the
structure constant with respect to {X{};

{u\ •• ,u"} denotes the coordinate of the affine space {j defined by
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Let V be the affine connection on the affine space f) and V* the canonical
flat affine connection on the cJ?-Lie group ϊ)*. To prove the proposition, it is
sufficient to show that

for any g^fy* and X, F e l ) where ϊj is considered as the Lie algebra of the Lie
group ϊj*. By the definition,

where g X deontes the multiplication of g and X in ΐ). Thus,

(VχY)g = Σ vu«g.
i j k l

i'j'kΊ

= (X.Y)g={V*xY).

Therefore the inclusion is an affine mapping. Q. E. D.

Let us consider the case where the underlying associative algebra may not
contain the identity. Let g be an ^?-Lie algebra over R. We denote by g
the trivial extension of g by adding the identity e\ g=JR ^+g(§3). Since g
contains the identity 6, the group g* of all invertible elements in g is an algebraic
group. Let G* be the set of all invertible elements of g which are contained
in the subset e+Q={(e, * ) e g | X e g } ; G*=g*fΊ(e+g). Clearly G* is a real
algebraic subgroup of g*. Thus G* has only finitely many (topological) con-
nected components. Obviously we have the identification between the Lie
algebra g and the Lie algebra of G*, corresponding to that between g and the
Lie algebra of g*. Hence G* is an c_̂ ?-Lie group with Lie algebra g.

Since g* acts on the affine space g on the left side affinely and effectively, so
does G*. Moreover G* leaves the affine subspace £+g of g invariant, and
hence G* acts affinely on the affine subspace e+g on the left side affinely and
effectively. On the other hand G* is a Lie subgroup of g* and the algebra of G*
is an associative subalgebra (ideal) g of g. It follows from Proposition 3.1 that
the inclusion of the ĉ ?-Lie group G*, with the canonical flat affine connection,
into the affine subspace e+g of g is an affine mapping.
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The topological identity component of the Lie group G* is called the
canonical <J?-Lie group of the ^-Lie algebra g. One can show easily that the
canonical cJ-Lie group of aut (An) is nothing but the connected component of
the group Aut (An) of all affine transformations on An.

Theorem 4.2. Let G be the canonical Jl-Lie group of an Jl-Lie algebra
g. Then we have an affine diffeomorphism c of the Jl-Lie group G with the canonical
fiat affine connection onto a domain of the affine subspace e+Q o/g and a faithful
affine representation φ of G on the affine subspace e-\-Q of g such that

forg^G.

The affine imbedding ι of G into e+Q is called the canonical affine imbedding
and the faithful affine representation φ of G on e+Q is called the canonical affine
representation.

The following propositions give characterizations of canonical Jl-ϊAe groups.

Proposition 4.3. An Jl-Lie group G with algebra g is the canonical Jl-
Lie group of g if and only if G is affinely diffeomorphic to a domain in an affine
space.

Proof. Suppose G is affinely diffeomorphic to a domain in an affine space.
Let Gλ be the canonical Jl-lΛt group of g and G the simply connected < Ϊ̂-Lie
group with algebra g. G is a universal covering space of G and G1 with pro-
jection p and pλ. Then p and p1 are affine immersions of G into an affine space.
By Proposition 1.1, there exists an affine diffeomorphism φ of G onto Gx such
that φ°p=p1. Since p and px are c^-homomorphisms, φ is also an <J?-homo-
morphism and hence φ is an ^-isomorphism of G onto Gλ. Therefore G is
the canonical ĉ ?-Lie group of g. The converse is Theorem 4.2. Q. E. D.

Proposition 4.4. Let G be a canonical Jl-Lie group with algebra g, and
H a connected Lie subgroup of G with algebra ί) such that ^ is an associative
subalgebra of g. Then H is the canonical Jl-Lie group of t).

Proof. By Proposition 2.8, H is a connected affine submanifold of G.
G is affinely diffeomorphic to a domain in an ^-dimensional affine space An.
Thus, H is a connected affine submanifold of A" and hence H is a domain in an
affine subspace of An. By Proposition 4.3, H is the canonical ĉ ?-Lie group
with fj. Q. E. D.

Corollary. Let H be a connected Lie group with Lie algebra fy acting on
an affine space An affinely and effectively. If the Lie algebra f)' of vector fields
on An induced by ϊj is an associative subalgebra of aut (An), then H is the canonical
Jl-Lie group with t).
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Proof. Let G be the connected component of Aut (An). Then G is the
canonical ĉ ?-Lie group with the algebra g of Aut (An). The action of H on An

defines an embedding of H into G and furthermore the condition that ϊ)' is an
associative subalgebra of aut (An) implies that ϊ) is an associative subalgebra of
g. It follows from Proposition 4.4 that H is the canonical ̂ ?-Lie group with ί).

Q. E. D.

Let (g, α) be an ^>?-pair of algebras and G the canonical <Jί-Lie group of

g; G=(G*)oCG*=(8)*IΊ(H-g). Let A be Gf}(e+a). A is a subgroup of G.
Clearly 4̂ is a closed subgroup of G whose Lie algebra is α under the

identification of g and the Lie algebra of G. Therefore (G, A) is an c ?̂-pair of
groups with algebras (g, α), which is called the canonical Jl-pair of groups with
(g, α). Let £ be the canonical affine imbedding of G into the affine subspace
e-\-q of g, and φ the canonical affine representation of G on e-\-Q in Theorem 4.2
such that c(g1g2)=φ(g1) t(g2) for g^G. We show that the affine representation
φ of G induces an affine representation of G on the affine space [V]+g/α, where
M~t~9/α denotes the affine subspace of g/α through [e] associated to the vector
subspace g/α of g/α. Let g=eJrZ^Gde-\-Q and Z e g . Then

φ(g)(e+X+a) - *+Z+X+Z X+α = (φ(g)(e+X))+a

since α is a left ideal of g. Therefore we have a unique affine automorphism,
denoted by the same letter φ(g), of [^]+g/α such that

— r ζ
<P(g)

H-g —rζ *+9 c g
I <P(g) I I
1 φ(p) I I

+β/α^M+β/αcg/α
is commutative. Clearly 9? is an affine representation of G on the affine subspace

M+g/αof g/α.
Through the above representation φ oί G, G acts on [β] + g/α affinely.

Suppose £ = e + Z e G c e + g and 9>(ί)M=M. Then [^+Z]=[^] and hence
Z^a. Therefore the isotropy subgroup of G at [e] is Gf](e-{-ά), which is,
by definition, A. Thus, we have an injective mapping c of GjA into
[e]-\- g/α such that

c(gA) = φ(g)[e]

Since φ(g)[e]—[φ(g)e]=[ι(g)] for g^G> we have the following commutative
diagram:

g c g

I . I I
/ Λ [ e ] + g / α c g / α .
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Therefore the inclusion of an ^?-sρace GjA into |V) + g/ct is an affine mapping.

Theorem 4.5. Let (G, A) be the canonical Jl-pair of groups with algebra
(g, a). Then we have an affine diffeomorphism ι of the Jl-space GjA onto a
domain in the affine space [̂ ]-f-g/α and an affine representation φ of G on |V] + g/cr
such that for a<=G, gA<= GjA,

Moreover (g, α) is effective if and only if G acts on GjA effectively.

Proof. To complete the theorem, we prove the last assertion. Suppose
(g, α) is effective. Lttg=e+X^G(Ze+Q such that gaA=aA for all aA<=G/A.
Since A=Gθ(e+a) and α is a left ideal of g, aA=Gf](aJ

Γά) for a e G .
Thus, GΠ(ga-\-a)=Gf](a-{-a), and hence ga-\-a=a-\-Q since G is an open
subset of £+g. Thus Xa^a for any a^G. Hence l e a and Jfgcα. Since
α is a left ideal of g and Z e α , X g+g X g is a two sided ideal of g contained in
α. Since (g, α) is effective, X g=(0) and hence R X-\-Q X is a two sided ideal
contained in g. Therefore by the effectiveness of (g, α), X=0 andg=e. This
proves the effectiveness of the action of G on GjA. The converse is trivial.

Q. E. D.

If (G, A) is a canonical Jl-pair of groups with (g, α), then by Theorem
3.5 the ê ?-space GjA is affinely diffeomorphic to a domain in an affine space.
This c ?̂-space GjA is called the Jl-domain of (g, α) and is denoted by Ωcg,co

The following proposition gives a sufficient condition for an c ?̂-sρace to be
an ^-domain.

Proposition 4.6. Let (G, A) be an Jl-pair of groups with algebras (g, α)
such that G is connected. If the Jl-space is affinely diffeomorphic to a domain in
an affine space, then GjA is affinely diffeomorphic to the Jl-domain of (g, α).
Furthermore if G acts on GjA effectively, then (G, A) is the canonical Jl-pair of
(8, α)

Proof. Let (Gly Ax) be the canonical ^?-pair of (g, α), and G the simply
connected ĉ ?-Lie group with algebra g, and A the connected Lie subgroup
of G with algebra α. Then (G, A) is an Jl-pair of groups with algebras (g, α)
since A is a closed subgroup of G by the corollary to Proposition 2.9. Let p
and p1 be the covering projections of G onto G and Gλ respectively. Then p
and/>! induce affine mappings of GjA onto GjA and G1jAly respectively, which
are covering projections. By Proposition 1.1, we have an affine diffeomorphism
φ of GjA onto GJA1 since p and p1 are affine immersions of a simply connected
affine manifold GjA into an affine space. Therefore GjA is affinely diffeomorphic
to the Jl-άomsλn GJA1 of (g, a). Assume G acts on GjA effectively and GjA is
affinely diffeomorphic to a domain D in an affine space An. We identify GjA
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with D. The action of G on GjA is uniquely extended to that of G on An since
G\A is a domain in An. Clearly the action of G on An is effective. Since GjA
is an c^-space, the condition in the corollary to Proposition 4.4 is satisfied and
hence G is the canonical Jl-Lie group with g. By a method similar to that
of the proof for the first assertion, we can show that (G, A) is the canonical Jl-
pair of groups with (g, α). Q. E. D.

The following proposition gives us a sufficient condition for an affinely
homogeneous domain in An to be an ^-domain.

Proposition 4.7. Suppose a connected Lie group G acts on a domain D in
An affinely, transitively and effectively. Let A be an isotropy subgroup of G at a
point in D. If the Lie algebra g' of vector fields on D induced by g is an associative
subalgebra of aut (D), the (g, α) is an Jl-pair of algebras and (G, A) is the
canonical Jl-pair of (g, a) and hence D=G/A is an Jl-domain of (g, α).

Proof. By Proposition 2.3, (g, α) is an ^?-pair of algebras and the last
assertion follows from Proposition 4.6. Q. E. D.

For later use, we state the following proposition. The proof, which is not
shown here, is straightforward.

Proposition 4.8. Let (G, A) be the canonical Jl-pair of groups of (g, α),
and π a two sided ideal of g contained in σ. If (G, N) denotes the canonical
Jl-pair of groups o/(g, n), then N is a normal subgroup of G, and (G/N, AfN) is
the canonical Jl-pair of groups of (g/rt, α/rt), and Ωcg,α) is affinely diffeomorphic to
Ωcg/n,α/n>

5. The determination of ^-domains

In this section /^denotes a division algebra over R. That is, Fis R, C or H.
Let g be an Jl-L,ie algebra over R whose underlying associative algebra is

simple. Then g is isomorphic to gl(w; F) for some n and the canonical Jl-
Lie group of g is the topological component of GL(n\ F). GL+(n; R) denotes
the topological component of GL(n; R). Let α be a left ideal. By Lemma
3.2, without loss of generality we may assume that g=gl(/z; F) and a=ar(n; F).
Let Ar(n\ F) be GL(n: F) Π (ίn+ar(n; F)) where ln denotes the identity matrix.
Then the Lie algebra of Ar{n\ F) is ar(n; F). And moreover (GL+(n; R),
Ar

+(n; Λ)), (GL(n; C), Ar(n; C)) and (GL(n; H), Ar(n\ H)) are the canonical
c^?-ρairs of groups of (g, α) if F=R> C and /if respectively, where Ar

+(n; R)
=Ar(n; R) Π GL+(n; R). Let Vr(Fn) denote the homogeneous space GL(n; F)j
Ar{n\ F), which is called the F-Stiefel manifold. We note that GL+(n; R)/
Ar

+(n; R)=Vr{Rn) (rφ«). Therefore the F-Stiefel manifold Vr{Fn) is the
^-domain of (gt(w; F), ar(n; F)). It follows from Theorem 4.5 that the Jl-
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domain Vr(Fn) is affinely imebdded in an affine space Fr'n as follows: for

Vr(Fn) > Fr r

UJ ψ
a mod Ar(n\ F)-+(a.

We have the following assertion.

Theorem 5.1. If (g, α) is an Jd-pair of algebras and if g is a semi-simple

associative algebra, then the <Jl-domaίn of (g, α) is a direct product of Stίefel

manifolds.

Let g be a semi-simple associative algebra over R, Then g can be decom-
posed as follows:

g = 3i®32 (direct sum)

where §x is a direct sum of gl(l R) and no simple factor of &> is gl(l R). Let α
be a left ideal and <x^ax®a2 the corresponding decomposition of α. Then if
Ωcg,α) is convex, then %2=a2 and Ωcg,α)W affinely diffeomorphic to a direct product

of half lines. And Ω(g,ct) is not complete if g φ α .

Let g be an ^Ϊ-Lie algebra over R whose underlying associative algebra
is nilpotent. g denotes the trivial extension of g by adding e. Using the
notation in §4, we have the following:

Lemam 5.2. e+Q=G* if the assosίative algebra g is nilpotent.

Proof. By the definition of G*,e+gDG*. Let e+X<=e+Q. Since X
is a nilpotent element, ^(—l)kXk is a finite sum, which is in e+Q, (e-\-X)

( Σ (— l)kXk)=e, Thus e+X<=g*. Hence we have * + g c g * Π (e+Q)=G*,

Q. E. D.

The following assertion follows from Lemma 5.2 and Theorem 4.2.

Theorem 5.3. Let (Q, a) be an Jl-pair of algebras such that g is a nilpotent
associative algebra. Then the Jl-domain of (g, α) is affinely diffeomorphic to an
affine space.

Let (g, α) be an cJ?-ρair of algebras and x the radical of the associative
algebra g. Since X is a two sided ideal of the associative algebra g, (g, x) and
(g, α+x) are ^>ϊ-pairs of algebras. Let G denote the canonical <J!-Lie group
of g; G is the identity component of G*=g* Π (£+β) where g is the trivial exten-
sion of g by adding the identity e. We denote by A and R the Lie subgroups
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of G with algebras a and r respectievely such that (G, A) and (G, R) are
the canonical cJί-pairs of (g, α) and (g, t) respectively. That is, A=Gf](e+a)
and i?=G(Ί(e+t). By Lemma 5.2, i ?=^+r . Since R is a normal subgroup
of G,A R is a subgroup of G. By the definition of A and R, A R
=(GΓi(e+a))-(e+x)=Gf)(e+a+x), and hence (G, ̂ 4-i?) is the canonical Jl-
pair of (g, d-\-x). We have the following commutative diagram:

Ωcg,α> = G\A > W+β/α cg/α

J I I
where the vertical mappings are the canonical projections and the horizontal
mappings are defined in § 4. First we are concerned with the fibre of the fibre
bundle. The fibre A R/A is an c^?-sρace, which is an affine submanifold of GjA.
Since G/A is a domain in an affine space, so is A R/A. On the other hand we
have the following commutative diagram:

R > A-R

R/RΠA >A-RjA

where the vertical mappings are the canonical projection and the above horizontal
is the inclusion. Since the inclusion of R into A R is an affine mapping, the
bijective mapping of R/Rf]A onto A RjA is an affine diffeomorphism. It
follows from Theorem 5.3 that A RjA is an affine space. Let us consider
Ωcg,α) and ΩCg,α+r) as domains in affine spaces [e]+β/β and [e]-\-Q/a-\-T respec-
tively. Let p be the projection of [e] + QJa onto [VJ+β/α+r. Then Ωcg,α)
=p~1p(ΩCQ,a)) since each fibre of p is affinely difϊeomorphic to an affine space
A R/A. It follows easily that Ωcg,o) is affinely diffeomorphic to the product
affine manifold Ωcg, a+x^xA R/A. On the other hand r is a two sided ideal of
g and rcα-fr . By Proposition 4.8, Ωcg,α+t) is affinely diffeomorphic to
Ω(g/r,α+r/ϊ). Since g/r is a semi-simple associative algebra, by Theorem 5.1,
Ωcg/r, α+r/r;> is affinely diffeomorphic to a direct product of Stiefel manifolds.
Therefore we have the following:

Theorem 5.5. An Jl-domaίn of an Jl-pair of algebras is affinely diffeo-
morphic to a product of Stiefel manifolds and an affine space.

REMARK. Theorem 4.5 determines the underlying affine manifold of an
c^?-domain completely. That is to say, an ^-domain splits to Stiefel manifolds
and an affine space. However, in general the action of group does not split.
Namely, the description in Theorem 4.5 is not equivariant.



474 K. YAGI

6. Compact regular homogeneous affine manifolds

Theorem 6.1. Let D be a domain in An and Γ a discrete group acting on
D properly discontinuously and freely as an affine transformation group. Suppose
M=T\D is a compact homogeneous affine manifold and let g=aut(M) and
a=-{X<=g\ X0=0} (0 is a fixed point in M). Then

1) D is the Jl-domain Ωcg,α>
2) M is the Jί-space GjAu where (G, A) is the canonical Jl-pair of (g, α)

and A1 is a closed subgroup of G with algebra a and Aλ~DA.

Proof. A linear mapping σ of g into aut (D) is defined as follows: for
X e g , σ{X) is a unique vector field on D whose projection image is X.
Clearly σ is well defined and injective. Then the image σ(g) is an associative
subalgebra of aut (D). Let G be the connected Lie group generated by
{Exp tX\ X<= σ-(g)}. G acts on D affinely, effectively and transitively. Hence
by Proposition 4.7, (G, A) is the canonical < ?̂-pair of (g, α) and D=Ωcg,co where
A is the isotropy subgroup of G at 0. Since, for J E g , cr(X) is Γ-invariant,
the action of G on D induces that of G on M=T\D. Let Aλ be the isotropy
subgroup of G at 0. Then AXZ)A and M=GjA1. Q. E. D.

Let (g, α) be an c^-pair of algebras. Then it is easy to show that the
normalizer of α in the associative algebra g is equal to that of d in the Lie
algebra g, since α is a left ideal of the associative algebra g. We denote it by
rtg(r). Let g be the radical of the associative algebra g. Then g/r is a semi-simple
associative algebra over R, which is a direct sum of gl(n; F) (F=R, C or H).
Then §lΐ=%1®%2 where ^ is a direct sum of gl(l; R) and §2 contains no
gl(l R) as a simple factor.

Lemma 6.2. Suppose (G, A) is the canonical Jl-pair of (g, α) and A1 is a
closed subgroup of G with algebra a such that G\Aλ is compact. Then ttg(α) iDt and

Proof. By definition, G is a topological component of an algebraic group
G*. Letting A*=G*f) (e+a), NG*{A^)^Aλ. Since A* is an algebraic sub-
group of G*, so is NG*(A*)=N. G*jN is compact. Therefore N contains a
maximal solvable irreducible real algebraic subgroup of G* [1], In particular,
πg(α)lDr. By a similar argument on G*/R* and N/R*, we can get ttg^/riD^
where R*=G* Π (e+x). Q. E. D.

We recall that a convex or complete affine manifold is always regular.

Theorem 6.3. Let M be a compact convex homogeneous affine manifold.
Then M is an Jί-space G/Γ where G is the canonical Jl-Lie group of g and is
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the topological component of an irreducible real triangulable algebraic group and Γ

is a discrete subgroup of G.

Proof. Since M is convex, M is regular and hence by Theorem 6.1,

M—GjAλ where (G, A) is the canonical cJf-pair of (g, α) and A1 is a closed sub-

group of G with algebra α and A1Z)A. Moreover (g, α) is effective. Then M

is a quotient space of Ωcg,α) by some discrete group. Then Ωcg,α) is convex

and hence, so is Ω(g,α+r)=Ωcg/r,α+r/r). Let g/t=§!®§2 a s before. By Lemma

6.2, rtg(α)z>r and πg(α)/xz)§1. On the other hand, since Ωcg/r,α+r/t) is convex,

α+r/riD§2 by §5. Obviously πg(α)/ϊDα+r/x and hence Πg(α)/tZ)§1φ§2=g/r

and g=Πg(α). Since (g, α) is effective, α must be trivial. Therefore A1 is a

discrete subgroup of G. Namely Ω(g,α)=G is convex. Thus, G is the canonical

ĉ ?-Lie group of g and the topological component of an irreducible real trian-

gulable algebraic group. Q. E. D.

As a corollary to Theorem 6.3, we can show the following theorem.

T h e o r e m 6.4. Let M be a compact complete homogeneous affine manifold.

Then M is an Jl-space G/Γ where G is the canonical Jt-Lie group of g and g is

a nίlpotent associative algebra and Γ is a discrete subgroup of G.
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