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1. Introduction

This paper gives the details promised in [8] and [9]. Novikov classified
smooth structures modulo one point of the manifolds which are tangentially
homotopy equivalent to a product S?x S? of spheres (see [16]). As is shown
in §2, every smooth structure on S?x S? has a stably trivial tangent bundle.
Therefore, applying the theorem of Novikov, we can classify smooth structures
on S?xS? modulo one point. On the other hand, the author determined in his
paper [8] the inertia group I(S* X §% of S?x 8% In the present paper, we
shall give the complete classification theorem of smooth structures on S?x §¢
for p+g=6and g=p=1, by combining above results. Quite a similar argument
proves the classification theorem of smooth structures on a sphere bundle over
sphere with a cross section. In §6 we shall show some examples and in §8 we shall
answer the problem of I. James on H-spaces (see [12]).

The main results of this paper will be Theorem 5.2 in §5, Theorem 7.1 in
§7 and Theorem 8.1 in §8.

2. Definitions, notations and a preliminary lemma

All manifolds, with or without boundary, will be oriented and smooth (or
PL;) in the differentiable case they may have corners, which we shall deal with
by ignoring them. For oriented and smooth manifolds M, and M,, M,=M, will
mean M, is diffeomorphic to M, by an orientation preserving diffeomorphism.
We shall use the notations and terminologies of [8] and in §4 we shall use the
notations of Novikov [16].

Denote by S(M) the set of smooth structures on M modulo orientation
preserving diffeomorphisms.

Define a subset Sy(S?x S?) of S(S?x.S?) as follows. A smooth structure
(S?x S7), represents an element of S(S?x.8?) if and only if (S?xS9), is
diffeomorphic to S?xS? for some homotopy sphere S%(p=g).
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For M,, Mg=S(M), define M,~DM, if and only if there exists an orient-
ation preserving diffeomorphism f:M,—Mz modulo one point. Denote by
S’'(M) the quotient set S(M)/~ of S(M).

For a,8€0,, define a~g@ if and only if a=B or a=—@. Denote by
0,/~ the quotient set of Q,.

For a, f=0, and for a fixed integer p =2, define a~ if and only if a—f
or ¢+ embeds in the (¢+p-+1)-dimensional euclidean space R?*#** with a
trivial normal bundle. Denote by ©%/~ the quotient set of @,.

Define a subgroup G'(q) of G(¢)=w,+n(S™) (IV: large) as follows. A map
f:8?"N—>S¥ represents an element of G’(q) if and only if f represents the
Pontrjagin-Thom map of some framed imbedding S?x D¥ C S?*N (As is well
known, G’(q)=G(q) if g is of the form 2k-+1 or 4k and G(q)/G'(q) is 0 or Z, if
q is of the form 4k-+2.)

Denote by [N] the homology class represented by an oriented manifold N.

Denote by C(M) the concordance classes of smoothing a PL-manifold M.

In the following we shall use the same symbol for an element of a quotient
group (or a quotient set) as its representative.

Let a smooth structure M, on S?X.S? be given i.e., assume that there
is given a piecewise differentiable homeomorphism

f:8?x8"—M,.

Let x, (resp. y,) denote a point of S? (resp. S?). Let RZ (resp. Rj) denote
a small open neighbourhood of x,(resp,v,) in S? (resp. S) which is
PL-homeomorphic to the euclidean space R? (resp. R?). Since f(R xS?)

((resp. f(S?x RZO)) is an open submanifold in M,, f(RZ x S) (resp. f(S?x R,‘fo))
has an induced smooth structure
{f(Rz, xS}, (resp. {f(S*xRE)} ).

By making use of the Cairns and Hirsch’s smoothing theorem [4] and [6],
there exists a homotopy sphere S? (resp. S?) such that {f(REOX S")}m (resp.

{f(S" X Rzo)}m) is diffeomorphic to
R?x §° (resp. S?x R?) .

Let d, (resp. d,) be this diffeomorphism. Let x, (resp. y,) denote the origin of
R? (resp. R?). 'Then

T'(x, x S (resp. d;'(S? Xyl))

obviously represents a generator [x,x S?] (resp. [S?x y,,]) of
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H,(S?x 8% = H(M,) (resp. H,(S*xS%) = H,(M,))

We may assume that d7'(x, X S9) and d5'(S?xy,) intersect transversally at one
point. It follows that there exists a smooth imbedding

g:8*xD*ID?x S? —> M,—Int D?*?

inducing isomorphisms of homology groups

g%t Hy(S?x D' D?x §7) ——> H o (M,—Int D*+9)

where  denotes a generalized plumbing of two manifolds obtained as
follows. When we regard S?x D? as D4 x D? U D? x D? and D?x S§? as D? x D?

uD?*xD?,

S§?x D*ID?x §°
denotes the oriented differentiable(p+-¢)-manifold formed from the disjoint

sum S?x D?UD?x S? by identifying D2 x D? with D? x D? in such a way that
D2=D?and D?=D%. If q=p=2, clearly we have

7,(8(5?x D*ID? x §)) = =,(M,—Int D?*7) = {1}
and we can deduce that
(M, —Int D*+—Int (S?x D*TD?x §7)) = {1}

by the Van Kampen’s theorem. Hence g(S?x DY D?x S?) is a deformation
retract of M,—Int D?*?. It follows from the Smale’s A-cobordism theorem
that S?x D?Y.D?x S is diffeomorphic to M,— Int D?*7 for p-+¢=6, g=p=2.
Applying the similar argument as above, we can show that $?x DY, D?x S7 is
diffeomorphic to S?x S?—Int D?*?. Thus M, is diffeomorphic to S?x S?
4 .57+9 for some homotopy sphere S?+? for p-+q=6, g=p=2, here # denotes
the connected sum operation. If p+¢=6, ¢=p=2, S? embeds in the (p-+g)-
dimensional euclidean space R?*? with a trivial normal bundle, therefore S? x D?
is diffeomorphic to S?x D? (see for example Hsiang, Levine and Szczarba [7]).

In case p=1and ¢=5. The similar argument proves that S* x D?Y. D* x S?
embeds in M,—Int D'*? inducing isomorphisms

H(S'x D*Y.D'x §9) =~ H(M,—Int D'*7)
of homology groups for some homotopy sphere S?€®,. Therefore

H (M, Int D'**—Int (§'x D" D' x §7), §(S' x D*2.D' x §%))
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is trivial by the excision isomorphism theorem.
Using the Poincaré duality theorem, we have that

Hy(M,—IntD**?—Int (' x D*Y.D* x §%), 8(M,—Int D'+%)) = {0} .

Since the pseudo PL-isotopy group 7#,(PL S?7') of S?7! is trivial, S*x DY
D'x 87 is PL homeomorphic to the standard plumbing S'x D?Y.Dx S? It
follows that

3(S'x DY D'x §9)
is PL-homeomorphic to S?. Obviously we have
7,(0(M,—Int D'*%)) == 7,(8(S' x D*Y.D' x §%)) = {1}
and the natural inclusion induces the isomorphism
7 (S'X D' D' x §9) =~ = (M,—Int D) .
It follows from the Van kampen’s theorem that
(M ,—Int D'**—Int (8" x D" D' x §%)) == {1} .

Hence S'x D?Y.D'x §7 is diffeomorphic to M,—Int D'*? by the Smale’s k-
cobordism theorem and M, is diffeomorphic to S* x S74 §**“ for some homotopy
spheres S7€0, and S't1e0,,,.

Combining these results, we have the following lemma:

Lemma 2.1. If p+q=6 and q=p=1, every smooth structure M, on
S?% 87 is diffeomorphic to S?x S?3 S?*7 for some homotopy spheres S? and S?+9.

As a corollary we have

Corollary 2.2. If p+q=6 and q=p=1, every smooth structure M, on
S?x S? has a stably trivial tangent bundle.

3. The inertia group of S?x S for ¢=p

The inertia group 1(.S?x S7) is essential for classifying smooth structures
on S?x S? The following lemma is proved in Theorem C of Kawakubo [8].

Lemma 3.1. Let K, :7,(SO)xX©,—®,., denote the pairing defined by
Milnor-Munkres-Novikov. Then it holds that

I(S?x §%) = K,(z,(SO,), S7)

for p+4=5.
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4. Diffeomorphism modulo a point
Lemma 4.1. If S?x.S{ is diffeomorphic to S?x S§ modulo a point, then
S?x S9 is actually diffeomorphic to S*x S% for p-+q=5 and g=p=1.

Proof. When ¢=<p+3, every S?x 8¢ is diffeomorphic to the product
S?x S? of the natural spheres S?, S (see Hsiang, Levine and Szczarba [7]).
Therefore we may assume ¢>p-+3. If S?xS{ is diffeomorphic to S?x S¢
modulo a point, then there exists a homotopy sphere §2+¢ such that §#x S74
S§?+7 js diffeomorphic to S?x S§. Let

F18P% ST4SPT —— s S S
be the diffeomorphism, and let
f:Stx S{—Int D**? —— S?x S§—1Int D?+4
be the restriction of f. Let X be the manifold obtained by attaching two mani-
folds W,=D?*'x S§¢ and W,=D?*'x S by the diffeomorphism
f i oW,—Int D**?* —— 0W,—Int D#+7 ,

Obviously the boundary 8X is diffeomorphic to the homotopy sphere S#+7.
Define a diffeomorphism 7, (resp. 7,) of D?*'X9D{ (resp. D?***x8D3) by
writing

ri(x, y) = (x: 71(."))
(resp. 7.(x, ) = (%, 74(»))) .

Here 7] (resp. 75) represents the element of #,(Diff S?~')=T, corresponding to
S? (resp. S§)=O, by the natural isomorphism T';=©, due to Smale. Then it
is clear that the manifold W,=D?*'x S{ (resp. W,=D?*'x §%) can be written as

W, = D**'x D{U D?**"' x D{
(resp. W, = D**'x DU D**' x D3) .
Let y, (resp. y,) denote a point of S{ (resp. S§). According to Haefliger [5] and

the covering isotopy theorem, we can assume that f'(x, y,)=(x, v,) for all
x<S?. Hence there exists a natural imbedding

g . Dp+t 5 Dp+1><S~§ ,

defined by g(x)=(x, ¥,). Clearly D?*'xy, U g(D**") (=D?"'xy,UD?*' xy,) is
the natural sphere. Denote by B, the normal disk bundle of D?*'xy, U
gD M)=D**""xy, UD?"'xy,in X. Let h&n,(SO,) be the characteristic map
of the bundle B;,. Regarding B, as
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D?*'x D3 LhJ D% D1,
we have the following manifod
Y= D"*‘xDZL})JD"“xD‘{UD“‘XD’{
"1
which is imbedded in X. Since Y is none other than
B,.O.D*'x 81,

Y is diffeomorphic to K,(h, S9) (see Kawakubo [8].). We shall show that
Y is diffeomorphic to X. We may assume that Y is contained in Int X.
It is obvious that the imbedding 7 : ¥—X induces isomorphisms of homology

groups
iyt Hy(Y) —> Hy (X)),
and that
(X)) = m(V) = z,(0Y) = {1} .

(When p=1and ¢ =5, this follows from the Van-Kampen’s theorem.) According
to the Van Kampen’s theorem, we shall have

z(X—1Int YV) = {1} .

It follows from the theorem of J.H.C. Whitehead [19] that Y is a deformation
retract of X. Now applying the Smale’s A-cobordism theorem, we see that
X is diffeomorphic to Y; hence

S =90X =0Y = K,(h, S9).

Since Kl(np(SOq), S’"]’) is exactly the inertia group I(S?xS9) (see Lemma
3.1), S?*7 belongs to the inertia group I(S?x S). It follows that

S?x 8= S?x S{# S = §*x S¢,
which completes the proof of Lemma 4.1.

Corollary 4.2. The set S,(S?x S?) is in one-to-one correspondence with
the set S'(S?xS?) by the composition

Sf(S?x 87— S§(S?x S7) — S'(S?x 87
of two natural maps for p+-q=6 and p=q=1.

Proof. Since every element of S'(S?x S?) is represented by S?x S? for
some homotopy sphere S? (see Lemma 2.1.), the composition is surjective. If
two elements S? X S and S? x S{ go into the same element of S’(S? X S?) by the
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composition, i.e.,
S?x S 52+7 = §2x §¢

for some homotopy sphere S?*7, then S?x S{ is actually diffeomorphic to
S?x S% by Lemma 4.1. This shows that the composition is injective. The
following proposition is a geometric interpretation of the set Sy(S?xS?) (i.e.,

of the set S'(S?x.87)).
Proposition 4.3. The set Si(S?xS) (or S'(Stx S ")) is in one-to-one
correspondence with the quotient set 4/~ by
52 §7— (87
for p+q=6 and g=p=2.
The proof will be based on the following two lemmas.

Lemma 4.4. A necessary and sufficient condition for S?x S? and S?x S?
to be diffeomorphic is that S embeds in R****' with a trivial normal bundle for
p+q=6and q=p=2.

Lemma 4.5. Either S?x (S1459) or S*x (S14(—8%)) is diffeomorphic
to S?x S? if and only if S?xS{ is diffeomorphic to S?x S% for p+q=6 and
g=p=2.

First, assuming these two lemmas, we prove Proposition 4.3. Define a map

1:0, —> S(S*x S9)
by
(S = S*x S°.

Obviously the map [ is surjective. It follows from Lemma 4.4 and Lemma 4.5
that / induces a map

I @5/~ — S(S?x S7)

such that the following diagram commutes:

l
0, — > Sy(S?x 59
j\\ //W
0f~

where j denotes the natural projection. The fact that /’ is injective follows also
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from Lemma 4.4 and Lemma 4.5. Hence, assuming two lemmas, we obtain
Proposition 4.3.

Next, we shall prove these lemmas.

Proof of Lemma 4.4. Since it is easy to prove this Lemma, it is left to the

reader.
Proof of Lemma 4.5. Suppose that S#Xx ( SI4:(—S 3)) is diffeomorphic to
S?x .87, i.e., there exists a diffeomorphism

f:82x (S9#(—89)) — Srx 87,

Let R:S?xS?—>S?xS? be an orientation preserving diffeomorphism
inducing isomorphisms of homology groups

Ryt Hy(S?X 8%) > H(S?x S

with

Ry [S?X 3] = —[S”X y1]
and

Ry[x,x S = —[x4x S7].

(Obviously there always exists such a diffeomorphism.) Making use of this
diffeomorphism R (if necessary), we can assume that

Fa[S?Xy0] = [S?xyq] -
According to Haefliger [5] and the covering isotopy theorem, we can assume that

JxXy,) = x X5 forall x=S*.
When we write S?X (S“‘{#(—S'g)) as

S?xD? U S?xD'?

1

where 7} : S77'— S?7" represents S? (=1, 2) (for the definition of 7; by 7/ see
page 169) and S?x S? as

StXxD*US*x D",
id
we may assume that
f(S?xD?) = S?xD?

and that g=f|S?xD? is a bundle map by the uniqueness of tubular neigh-
bourhoods. Using this bundle map g, we have a diffeomorphism
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S=g"Ug":8?XD'US?XD?* —— S?xD?US?xD?.
id id
Making use of this diffeomorphism S (if necessary), we can assume that

f182xD? =id.

Therefore we can define a diffeomorphism

(87 (814 (—59)—S?x Int D) U S*x D! —

2

(S?x 87— S?xInt D?)U S*x D?

by
F187% (S14(—S9))—S?x Int D? = f|S?x (S{4(—S%))—S?x Int D
and
f18*xD? =id.
Clearly

(57 (814 (—S89)—S?xInt D7) US?x D
is diffeomorphic to S?x S{ and
(§?x87—=8?XInt D")US*x D*
is diffeomorphic to S?x S%, i.e., f’ gives a diffeomorphism of S?x.S{ onto
S?x S% .Suppose that S?x (S945%) is diffeomorphic to S?x S? The similar

argument proves that S?xS? is diffeomorphic to S?x(—S%). Since there
always exist orientation reversing diffeomorphisms

& St— 51
and
& :—S§{— 5%,
there exists an orientation preserving diffeomorphism
g:8?x(—S%) — S*x S}

defined by g=g,xg,. Hence S?x S{ is diffeomorphic to S?x S%.
Conversely suppose that a diffeomorphism

f:8?x 81— S?x 8%

be given. If f4[S?Xy,]=[S? X y¢], then the similar argument as above shows
that we can assume
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f(xXp5) = X ¥b for all x=S?.

Moreover we can assume that
f(D?*xD?UYD'?*xD?) = D*xD?UD'"*x D*
and that
f1D?%D* = id
when we regard S?xS{ as (D?xD?UD’?x D7) U S?xD'? and S?xS% as
(D*xD?UD'?*xD?)yS?xD'"?. Therefore we can define a diffeomorphism
fi(S?x S{—S?x I;:t D?) _gl S?x D? —> (S?x S§—S?x Int D")ﬂ_U,‘)SPx D?
by
F'182% §9—8?x Int D* = f|S?x §4—S?x Int D7
and
1875 D = id .
Clearly
(S?x S{—S?x Int D*)U S?x D?

-7

is diffeomorphic to S?xS?. Since f|D?xD?=id, x,xD? U x,xD"
(x,=Int D?) is imbedded in

2 1

(S*x S§—S?xInt D) U S*xD?

-1
with a trivial normal bundle, i.e., S{#(—S%) embeds in S?x.S? with a trivial
normal bundle. Hence S{#:(—S%) embeds in R?*?*' with a trivial normal
bundle. It follows from Lemma 4.4 that S? X ( ~‘{41=(—§§)) is diffeomorphic to
S?x 87,

If there exists a diffeomorphism f : $?x §¢—S?x S¢ such that

F[S?Xy] = —[S?x 0],
then replacing S§ by —S%, we have an orientation preserving diffeomorphism
f:8?2xS{——> S?x(—S9
such that
F+[S?Xyo] = [S?X 4] -

The similar argument proves that S?x (S%#S%) is diffeomorphic to S?x .S7.
This completes the proof of Lemma 4.5 and consequently finishes the proof of
Proposition 4.3,
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The following lemma is a revised form of the classification theorem of
Novikov [16] and is useful to compute the set S'(S?x S?) (for examples Pro-
position 6.2 and Proposition 6.4).

Lemma4.6. S'(S?x89), hence Sy(S?x S7), is in one-to-one correspond-
ence with G'(q)|~ for p+q=6 and q= p =2 where ~ is the restriction to G'(q) of
the Novikov's relation.

Proof. In the following we shall use the notations of Novikov [16].
Since T y(S? X S%)=SN*2i9\/ SN\, SN2/ SN |

7o Tw) = Z+G(p)+G(9)+G(p+9)

and the set 4 (S?X S?) consists of all possible elements of the form 1y, ..+
where 1y,,.,€Z, a&G(p)+G(g)+G(p+q). Novikov has proved the
following:

Lemma 4.7. (Lemma 9.1 of [16])

B(M34 8" = B(M?%)+15B(S™) where 1y : G(n) = 7y (T n(M?)) .

Lemma 4.8. (Lemma 11.4 of [16]) For each homotopy sphere S’<®,
the set

B(S?*x S CA(S?x S?)
contains all elements of the form
IyipiatB(SY)+G(p)  [mod G(p+9)],
where to the element 15, p.+0 corresponds the manifold
MP+? — §Px S?,

and the set B(S) represents a coset mod Im J in the group G(gq).

Lemma 4.9. (Theorem 11.5 of [16]) 1) If ¢=2 mod 4, then each element
of the set A(S?x S?) mod G(p--q) belongs to one of the sets B(S*x S%), S$'€8,
and there exists the following embedding

B(S?x S C1yipia+B(S)+G(p) mod G(p-+g).
For any pair S?€8,, S’€8®, there exists a smooth sphere S{€©, such that
B(S*xS%) = B(S*xSY)  mod G(p+4q).
2) If a manifold M3"? is such that

B(M3*):B(S?%x 8%  modG(p+q)
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for S? €0,, S?€0,, then the manifold M%*? is not combinatorially equivalent
to the manifold M?+?=S?x S?. 3) If B(M4*?)=B(M%*?) mod G(p+q), then
the manifolds M{+? and M4 are diffeomorphic modulo a point.

Let 4’ denote a subset of 4 consisting of those elements which have the form
Iyiprgta where 1y, ,€Z and a=G(p)+G'(9)+G(p+g). Then it follows
from these lemmas that every S?x $?# 5?7 has a representative in A’ and
that every element of A’ mod G(p)+G(p+g) (i.e., every element of 1y, .4
+G’(q)) corresponds to some smooth structure S?x S? modulo a point.
Therefore we have a well-defined surjective map

k:S'(S?x8%) — G'(9))~ .
If two elements S?x S? and S?x S¢ go into the same element, then they are
diffeomorphic modulo a point by 3) of Lemma 4.9, i.e., & is injective. Thus
S'(S?x 8?), (hence So(S? X% S")) is in one-to-one correspondence with G'(g)/~

where ~is the restriction to G'(q) of the Novikov’s relation. 'This makes the
proof of Lemma 4.6. complete.

Proposition 4.10. The set S,(S'x S7) (hence S'(S'x S")) is in one-to-one
correspondence with the set ©,/~ by

S'x 87— 87 for q=5.

Proof. Let g:S'xS{—S"xS? be an orientation preserving diffeomor-
phism. Since % induces isomorphisms of homology groups, g«[S* X ,] is equal
to either [S* X y,] or —[S* X y,] where y, (resp. ¥,) denotes a point of S (resp. S9).

Firstly, suppose that

gx[S 3] = [S" %] -

It is obvious that R'x S{ (resp. R'x S9) is the universal covering space of
S'x SY (resp. S*x S§). Since g is a diffeomorphism, the induced covering
space g!(R'x S%) is also the universal covering space of S'x.S9. It follows
from the uniqueness of the universal covering space that there exists a dif-
feomorphism

Z:RxS1— RxS%¢

such that the following diagram commutes:

RxS -2, RS9
e
S'x SY x S

- S
&
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where p, (resp. p,) denotes the projection of the covering space. Let
g, R'xS{—— R'xS%

be the diffeomorphism defined by

&t ¥) = (&t )+n, 2ult, )

where g, (resp. gy) denotes the projection of g to the left hand (resp. to the right
hand). Since S{is compact, there exists a large integer N such that

En({0IxSHN{0}xSt= 3.
We may assume that
an({0}x S9) 1, ) x S

Denote by W the manifold bounded by {0}xS% and g’N({O}xS"{). It is

easily seen that there exists a deformation retract of R'xS§ to W, hence the
natural inclusion 7 : W—R'x S¢ induces a homotopy equivalence. Obviously

{0} x S¢ ﬁv—»Rlxg ¢ gives a homotopy equivalence and the natural inclusion
{0} x S§—>R'x S§ gives a homotopy equivalence. Combining these, we see
that the inclusion

OyxS7 s w

(resp. {0} xS§—— W)
gives a homotopy equivalence, i.e., the triple

(W, gn({0}xS9), {0}xS9)

is an A-cobordism. Making use of the Smale’s h-cobordism theorem, we have
an orientation preserving diffeomrphism % : S{—S¢.
Secondly, suppose that

g«[S'xy] = —[S'Xy.] .

Then the similar argument proves that there exists an orientation preserving
diffeomorphism 4 : S§——S%. Thus a map G of S,(S'xS?) to ©,/~ is well-
defined. Obviously G is surjective. Suppose that two smooth structures
S'x 8¢ and S*x §¢ go into the same element by G. If S9=S4, then we have
clearly a diffeomorphism f:S'x.S{—S'xS§. If S¢=—S¢ by the diffeomor-
phism A,: S{——S¢, then we have an orientation preserving diffeomorphism
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hoxh,: S'xS!— S'xS4

where %, denotes an orientation reversing diffeomorphism of S* (clearly there
exists such a diffeomorphism). Hence, in any case, we have an orientation
preserving diffeomorphism

f:8'%xS{—> 8% S4.

This shows that G is injective and completes the proof of Proposition 4.10.
Summing up the results in this section, we state these as follows.

Theorem 4.11. We can identify the following four sets S,(S?xS?),
S'(S?x 89,84/~ and G'(q)|~ for p+q=6, q=p=2 and we can identify the
following three sets Sy(S*x S7), S'(S*x S?) and ©,/~ for ¢=5.

5. Smooth structures on S?x S?

In this section we shall show the classification theorem. As is shown in §4,
we can identify the four sets S, (S?xS87), §'(S?xS87), 84/~ and G'(¢q)/~
for p4+¢=6 and g=p=2. Therefore we can state the classification theorem in
four formulas. But we especially take up two formulae. One is a geometric
interpretation (©%/~) and the other is a homotopy theoretic interpretation

(6" @1~).
Theorem 5.1. For p+q=6, and q= p=2, we have
S(S?x 87 = {S?x S148417|S1€0/~, §177€6,,,/K,(7,(SO,), S)} .
For p=1, ¢=5, we have
S(8'x 8% = {S*x 148179181 €O,/~, S}17€0,,,/K,(z,(S0), §9)} .
Theorem 5.2. For p+q=6 and q=p=2, we have
S(S?x 8% = {S?x S14:8117|S{€ G (q)|~, St} 1€0.4/K,(x,(SOy), S)} .
For p=1, ¢=5, we have
(¥) S(S*x 8) = {S'x S¢451;7| §1€0,/~, §117€6, ,/K,(r,(S0), §7)} .
Remark 5.3. 'To compute S(S?x S7), the latter is superior to the former.
Proof. 1Incase p+¢=6and ¢g=p=2: If we prove that
(1) S(SPx 87 = {S?X S14:5437| SPx S1ES(S?x 87 (or E8,(S#% 57))
8719€0,.4/K,(z,(S0,), §9)}
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then two theorems for p+¢=6 and ¢=p=2 follow from Proposition 4.3 and
Lemma 4.6 in §4.
Given a diffeomrphism

f:S?x S5t — St x S§4:54+7 .
we have a diffeomorphism
o Stx S{Str 74 (—S5+) —> SPx SY.

It follows from Lemma 4.1 that S?xS? is diffeomorphic to S?x S§. Conse-
quently $2+7 4k (—S2£+9) belongs to the inertia group I(S?x S§)=1(S?x Sg). On
the other hand I(S?x.S9) is equal to

K,(7,(S0,), §9)

by Lemma 3.1. Hence the natural map H of S(S?x S7) to the right hand of
(¥+) is well-defined. Obviously H is surjective. If two smooth structures
S?x S74S5%+7 and S?x S4S2+¢ go into the same element by H, then there
exists a diffeomorphism modulo one point

fi:8?xS{—1Int D**? —— S?x S§—Int D?*?
i.e., there exists a diffeomorphism
fr:82xSi4S2+7 — S?x S¢

for some homotopy sphere S#*¢. It follows from Lemma 4.1 that there exists
actually an orientation preserving diffeomorphism

fo:8?xS{— S*xSY.

On the other hand, since S4+74(—S%%?) belongs to Kl(n!,(SO), 5‘{), S?x S#
(§ braqe(—S é’“)) is diffeomorphic to S?x.S{ by an orientation preserving
diffeomorphism

fi: 82X ST (St 4(—8584)) —> SPx 1

by Lemma 3.1. Then the composition f,of, gives an orientation preserving
diffeomorphism between S?x S (,S'~f+"4:l=(—§€”)) and S?xS§. It follows
that S?x S{#S5%+7 is diffeomorphic to S?x .S§#S47? by an orientation pre-
serving diffeomorphism. This shows that H is injective and completes the
proof of two theorems for p+¢=6 and ¢g=p=2.

In case p=1 and ¢=5: Given a diffeomorphism

[:S'%8{#ST — S'x S§#85,
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we have a diffeomorphism
£ S X ST (ST (—S1)) —> §*'x 5.

Since Lemma 4.1 holds in case where p=1 and ¢=4 too, we shall obtain an
orientation preserving diffeomorphism
g:9'%x8{— S'x§4.
Hence S9{ is equal to S¢ in Q,/~ by Lemma 4.10. On the other hand
S4+74(—S4+%) belongs to the inertia group I(S*xSY) (———I(SIXS’"Z’)) and
I(S'x.S9) is equal to
(K.7,(S0), S9)

by Lemma 3.1. Thus a map H' of S(S"x S?) to the right hand of (x) is well
defined. Obviously H' is surjective. Suppose that two smooth structures
S*x S{4# 51" and S*x S¢4.S53+? go into the same element by H'. The similar

argument as in Lemma 4.10, proves that there exists an orientation preserving
diffeomorphism

f:8'%x 81— 8'xS83%.
Since S1*74:(—S37) belongs to K, (S'xS9), S* XS?#(S{”#(—S%”)) is
diffeomorphic to S*x .S¢ by Lemma 3.1. Therefore S*x S%4 (S{*“#(—S%”))
is diffeomorphic to S*xS%. Consequently S*xS{4#S1+? is diffeomorphic to

S*x S44#S537 by an orientation preserving diffcomorphism. This shows that
H’ is injective and finishes the proof of Theorems 5.1 and 5.2.

6. Some computations

In this section we shall show some examples.

Proposition 6.1. If (p, q) is any of the following: (2,7), (2, 8), (6, 8),
(2, 14), (3, 13), (3, 15) (6, 10), then

S(S?x 8% = ((G'(§)/~) X ©sq -
Proof. Bredon showed in [2] that if (p, ¢) is any of the set above, then
Kl(nP(SOq), @q) = S?*7 (the natural sphere).

Therefore this is an immediate consequence of Theorem 5.2.

Proposition 6.2. S(S*X S™)—{iS?x §*, S*x SP#S5%, §x 04257, §°
xS"}, ie., S*X.SY admits exactly 4-smooth structures, where S™ denotes a
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generator of the 3—component Z, of ©,,=Z,BZ,, and S* denotes a generator of
0,=7Z,.

This follows from the following computations.
Kervaire and Milnor showed in [11] that every element of the group

G(10) = Z,Z,
is represented by the Pontrjagin-Thom map of some framed imbedding
SX DN C SN

Since non-zero elements of the 3—component Z, of G(10)=~Z,HZ, do not come
from the unstable group 7,,(S) by the suspension homomorphism

E : 7, (S*) — w04 n(SY) (V :large),

S*x 8™ is not diffeomorphic to S°x.S™ modulo one point for a generator
S* of Z,cZ,BZ,=G’'(10). In [8], it is shown that

I($*x 8*) = K,(7,(S0), §*) = @,,.

On the other hand, the 2-component Z, of G(10)=Z,PZ, comes from the
unstable group 7,,(S%)(see H. Toda [18]). Therefore S°x §* is diffeomorphic to
S$°x 8™ modulo a point for the generator S* of the 2-component Z,. By
Lemma 4.1, we can deduce that S*x S* is actually diffeomorphic to S*x .S™.
Therefore Theorem 5.2 gives the requiring result.

Remark 6.3. Let S* denote a generator of the 3—-component Z,CG'(10)
=7,PZ,. Since there exist orientation reversing diffeomorphisms f,: S°—S°®
and f,: §*—2S8", we have an orientation preserving diffeomorphism

f=FfixXf, 1 8°x S — §*x 285",
Proposition 6.4. The order of S(S°x S") is 24.

Proof. Since G'(14)=2,C G(14)=Z,B 7, (see Kervaire and Milnor [11]),
S(S?x S™) is the quotient set of Z,X0,,. In [8], it is proved that

I(S*x 8*) = K,(7,(S0O), §*) = Z,=%0 modulo ©,,(dx)
for the gencrator S$* of ®,,~Z,. Consequently we have

S(S*x 8™) = {S*x S*#S1|SV€0,,} U
18°x §"4:817|§" 4 8", S}'€ 0,,/K,(7,(SO), S}

which proves Proposition 6.4.
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Proposition 6.5. If p--3=q=p, then S(S?xS?) is in one-to-one cor-

respondence with © ., by
S?x S94S§0+4 > S0+

Proof. Hsiang, Levine and Szczarba [7] showed that S? can be embedded
in the (¢+p-1)-dimensional euclidean space R?*?*! with a trivial normal bundle
for g-2<p+1. It follows from Lemma 4.4 that S?xS? is diffeomorphic to
S?x S? by an orientation preserving diffeomorphism. Hence the inertia group
I(S?x S7) is trivial by Corollary 3 in Kawakubo [8]. Consequently Proposition
6.5 follows from Theorem 5.1.

Proposition 6.6. If p=2, 4, 5, 6 (mod 8), then S(S?x S?) is in one-to-one
correspondence with (G (q)/ ~) X O piq-

Proof. Since K,(7,(SO), §7)=K,(0, §%)=8?** for p=2, 4,5, 6 (mod 8),
the inertia group of S?XS7 is trivial for every S?€©,. Therefore this
Proposition is an immediate consequence of Theorem 5.2.

Proposition 6.7. S(S'X S8")=(0,/~)X8,, i.e., the order of S(S'xS") is
30.

Proof. In general, the following diagram

1

7 (SOg) X 0y —
JXo ®
G(PX Gl@)Im] > G+ Tm]

>0,

is commutative up to sign where j denotes the Hopf-Whitehead homomorphism
and o denotes the Kervaire-Milnor homomorphism and C denotes the com-
position of stable homotopy groups. Since w(80,)=0 and »|©, is injective,
K, is trivial. Hence S(S*XS")=(0,/~)x©, by Theorem 5.2. Since the

order of ©,/~ is 2—28—1—1:15, the order of S(S*xS7) is 30.
Proposition 6.8. S(S'x S)={S'x $'#5?|S7€0,} U{S' x S*4# 53| S*+
%, §5€6,/K,(n(S0), S*)}, i.e., the order of S(S'x S) is 12,
Proof. Obviously ®,/~=®©,. It is shown in Bredon [2] that
K,((7(S0), §*)+S* for S*+8°.

Therefore the order of Kl(n](SO), Sg) is 2, and hence the order of
0,/K, (nl(SO), 5‘8) is 4. The order of S(S*x .S®) is consequently 844=12.
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Proposition 6.9. The order of S(S*xS") is 24384.

Proof. Since Kl(m(SO), ‘S'N“)zZZCQs for §*4S™ (see Bredon [2]), the
order of @,S/Kl(n,(SO), S‘“) is 8128. Obviously ©,,/~=0,,. Hence we have
S(S'x 8" = {S'x S*#SF|Sre6, U
{S'x §"4SF|S1+8", SPE6,/K,(7(S0), $*)},
i.e., S'x.S™" admits exactly 24384 smooth structures.

Proposition 6.10. The order of S(S*x S*) is 24.

Proof. Since K,(m,(SO), .§‘5)zZ2C®17 for S*+S" (see Bredon [2]),
the order of @17/K1(711(SO), S"") is 8. Obviously ®,,/~=0,,. Hence we have

S(S'x 8*) = {S'x S*#S5}|S"€0,} U
{SIXSIG:H:S}7|§16:F S, 5}76@17/K1(711S0)’ Sls)} ,
i.e., S'x S admits exactly 24 smooth structures.

7. Smooth structures on a sphere bundle over sphere with
a cross section

Let S : 74-(SO,)—m4_,(SO,.,) be the natural homomorphism induced by
the inclusion.

Denote by M ,(S?) the p-sphere bundle over a homotopy g-sphere S? with
a characteristic map A€ m,_,(SO,,). Define a homomorphism

Kh, 87) : 7 ,(SO;) —> ©,,.4,
by
KT[h, S?)(l) = K (I, S)+K, (1, h)
for hEmy 1(SO,+.), S7€0,and le7,(SO,) (see Kawakubo [8]). Obviously the

fact that the bundle M,(S?) has a cross section is equal to the fact that the
characteristic map % belongs to the image S. Then we have

Theorem 7.1.* For p+¢=6, ¢+2=p=2 and h& S(w,-,(SO,)),

S(M(S7)) = {MAS?) 454 1S1€C (g))~, §119€8,14/K[h, $7)(7,(SO,))} .

For p=1 and ¢=5,

(*) Added in proof. After the preparation of this paper, Professor R. Schultz kindly
sent me a letter which said that similar results were obtained.
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S(M(S) = {S'x S1#8117|S1€0,/~, S}1*€0,.,/K,(m,(S0), 5!} .

Proof. Suppose that p==¢q. Let p : M,(S?)—S? be the projection of this
bundle. Let ¢ denote a cross section in M ,(S?) and Let U denote a small open
tubular neighbourhood of ¢. According to Serre [17], the following sequence

| | ;
e HY(S7) 5 B (M(57) L H 1)

is exact for /< p+g—1. Since the bundle p : M ,(S?)—S? has a cross section ¢,
we have the splitting short exact sequence,

0 —> H(S?) — H,.(M,,(S")) T H,(S%) —0

Cx

i.e., the homology groups of M ,(S?) are as follows,
1=0,p,9p+q

otherwise.

VA
H{M(S") = { |

Let a smooth structure M,(S?), on M,(S?) be giveni.e., assume that there is
given a piecewise differentiable homeomorphism f: M, (S?)—M,(S?),. Since
f(U) is an open submanifold in M,(S?), f(U) has an induced smooth structure
{f(U)}s. Since M,(S?) is a total space of a sphere bundle over sphere with
a cross section ¢ associated with a vector bundle, U has a vector bundle structure.
It follows from Lashof and Rothenberg [13] that there exists a homotopy sphere
S such that {f(U)}, is diffeomorphic to a total space V of an open disk bundle
over S? with the characterisitc map 4’ which is the characteristic map of the
tubular neighbourhood of ¢ in M,(S?). Let

d,: {f(U)} —>V

be this diffeomorphism. Let x, denote a point of §? and let R? denote a
small open neighbourhood of x, in S? which is PL-homeomorphic to the
euclidean space R?. Since f(p‘l(Rgo)) is an open submanifold in M ,(S?),,
f (p‘l(RZO)) has an induced smooth structure { f (p“(Rzo))}m. Obviously p™*(R7 )
is PL-homeomorphic to S?xR?. As is shown in §2, {f(p7(R2))}, is
diffeomorphic to S x R? for some homotopy sphere S#. But Hsiang, Levine and
Szczarba [7] showed that S?x R? is diffeomorphic to S?x R? for ¢-+2=p. Let

d,  {f(p7(RZ))}, —> S?x R

be this diffeomorphistn. Then d7'(S9) (resp. dy 1(S"")) obviously represents a
generator of
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H(M(S)u) = Z  (resp. H,(M,(S%),) = Z)

where S? (resp. S?) denotes the zero cross section of the bundle V (resp.
S?% S8%. We may assume that d7'(S?) and d37'(S?) intersect transversally at
one point. It follows that there exists a smooth imbedding

g:V082x D! —> M,(S%),—Int D#*7

inducing isomorphism of homology groups

2ot Hy(VOSPX DY) ——> Hy(M,(S%),—Int D#+9)

where ¥V denotes the closed disk bundle associated with ¥ and O denotes a
generalized plumbing of two mainfolds obtained as follows. When we regard

V as D?xD? U D?xD*
hr
and

S?xD? as DtxD?U D x D,
id

V' O.S?x D? denotes the oriented differentiable ( p+ ¢)-manifold formed from the
disjoint sum V' US?XxD? by indentifying D? X D% with D2 X D? in such a way
that D?=D% and D?=D?. Applying the similar argument as in §2, we can
show that V. O.8?x D? is diffeomorphic to

M ,(S?)y—Int D?+7 .

Let M ,(S?) denote the total space of S? bundle over a homotopy sphere S?
with a characteristic map ~. Then, applying the similar argument as above,
we have that VO.S?x D? is diffeomorphic to

M,(S?%)—Int D?*7 ,
Thus M ,(S?), is diffeomorphic to
Mh( S~") 4 So+e

for some homotopy spheres S? and S+ for p-+¢=6. When p=q, we can also
obtain the similar result. Consequently we have

Lemma 7.2. If p+q=6 and q2=p=1, every smooth structure M ,(S?),
is diffeomorphic to M, (S?)4S?+? for some homotopy spheres S? and S*+9.

Let B,(S?) denote a D?'* bundle over a homotopy sphere S¢ with a charac-
teristic map h&m,_(SO,.,). Let B, denote a D? bundle over S?*' with a
characteristic map /€7 ,(SO,). Let
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B,0B,SY)
denote a generalized plumbing of two manifolds obtained as follows. When we
regard
B,S% as D?*'xD? U D?*x D2
and

B, as D?"'xD?\U D2"'xD?,
/

B,0B,(S7) denotes the oriented differentiable (p-+¢-+1)-manifold formed from
the disjoint sum B;U B,(S?) by identifying D?*'x D% with D#*'x D in such
a way that D?"'=D?*' and D?=D’. Define the homomorphism

E[h, 89 : 7,(SO,) —> © .,
by

E[h, $71()) = 8(B,TB,(S?)) for l€m,(SO,).

As is shown in [8], it is easily verified that this is a well-defined homomorphism.
Now, we show
Lemma 7.3. E[h, S/1=K[h, 7).

Proof. Let B, be the D?*' bundle over S?with a characteristic map
heng (SO,..). Let B; be the D? bundle over S#*' with a characteristic map
l€7,(SO,). Then, consider the following manifold,

W = (B,VB,)l (B,SD*"'x S9)

where 1 denotes the boundary connected sum and ¥ and QO denote the
plumbings (see Kawakubo [8]). Since

8((B/V B, 1 (BiOD? x §9)) = 3(B,V B,) #0(B,2.D*"* x §7),

the boundary 0W is equal to K[k, S?] (I) by definitions. On the other hand,
we can rewrite ¥ as follows. Let

e &Hy(B,V B,), e’ €H (B, VB,),
e,EH,(B,O.D?**'x 8%, e’ &H (B,O.D**' x§7)

be the natural homology basis. Now, introducing a new basis in H (W) by the
formulas

f1:€1) fl’:el’_ezl)

f2=eI_|_ezy lezezl;
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we obtain
W = (B,VB,)li (B,0.B,(S7))
where B, denotes a trivial bundle S?*'x D?. Hence
OW = (B, B,)#0(B, 0.B,(S*)) = 8(B,UB,(S")) = E[h, §°)(1),

completing the proof of Lemma.
Similarly to Lemma 3.1 we have the following

Lemma 7.4. I(M,(S"))=K[h, $7(r,(SO,)).

Proof. First we shall prove that [ (M WS ")) is contained in
K{[h, S~"](7rp(SO,,)). For an element a1 (M ,,(S")), there exists a diffeomor-
phism

H : M(S?)—Int D*** —— M ,(S?) — Int D?*?

such that H|dD€&ET ., represents .  Using this diffeomorphism, we construct
a manifold

B/S") U B,(S")

which is denoted by X. Clearly 0X=a and similarly to the proof of
Theorem A in Kawakubo [8], we can prove that X can be written as

B,OB,(S7)
for some characteristic map /Ex,(SO,). Hence
a = 0X = 8(B,UB,S%) = E[h, $7)() = K[k, S7)(I)

by Lemma 7.3.
Conversely, for a=K[h, S7(l), we can represent a by

9(B,0.B,(S))

by Lemma 7.3. 'The similar argument employed in the proof of Lemma in [8]
proves that B, B,(S?) is diffeomorphic to a manifold

BAS?) U BA(SY)
for some diffeomorphism
H :0B,(S%)—Int D**? —— 8B,(S?)—Int D?*7

This implies that o belongs to the inertia group I/ (M h(Sq)), completing the
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proof of Lemma 7.4.
We now prove the following Lemma which corresponds to Lemma 4.1.

Lemma 7.5. If M,(SY) is diffeomorphic to M,(S§) modulo a point, then
M,(S9) is actually diffeomorphic to M ,(S$) for p+q=5.

Proof. Let f: M, (S9)#S?**—>M,S9) be a diffcomorphism, and let
f': M,(S9)—Int D**? —— M,(S%)—Int D?*7

be the restriction of f. Let X be the manifold obtained by attaching two
manifolds B,(S9) and B,(S{) by the diffeomorphism

f':0B,(S9)—Int D**? — 5B,(S3)—Int D#+7 .

Obviously the boundary 8.X is diffeomorphic to the homotopy sphere S?+?. The
similar argument as in the proof of Lemma 7.4 shows that X is diffeomorphic to

B,0.B,(S9)
for some characteristic map /€# (SO,), hence
§*+1 = 9X = 8(B,O.B,(S1)) = E[h, S7I()) = K[h, SI(J).
Since
K[h, $9](z,(SO,))
is exactly the inertia group (M WS ‘{)) (see Lemma 7.4),
M(S1) = M(S)4:S7"* = My(S7),

which completes the proof of Lemma 6.5.

Lemma 7.6. The set S(S?XS%) (=8'(S?xS8)=0f~=C'(g)/~)
is in one-to-one correspondence with the set S '(M (S ”)) by

SPx ST — M,(57

for p+q=6 and g+2=p=2.

Proof. Firstly we shall show that the map

A1 S(8Px 87— S'(M,(S%))

defined by
A(S?x S = M(S7)

is well-defined. TLet f:S?xS{—>S?xS% be a diffeomorphism. According
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to Lemma 4.5, S?x (S{4:5%) or $?x (S§4:(—S9)) is diffeomorphic to S*x S°.
Suppose SP><(~‘{=H=(—S§)) is diffeomorphic to S?x.S? Let
[ 82 (S13:(—S89) —> S?x 87

be this diffeomorphism. Making use of the diffeomorphism S in the proof of
Lemma 4.5 (if necessary), we can assume that

f1S8S?XD?=1d.
Hence we have a diffeomorphism f” : S? x S9—-S?x S? such that
f"18?xXD?=1id.
Consequently we have the following orientation preserving diffeomorphism
fo: (S?x S¢—1Int (S*x D)) U S*x D7 — (S?x Sg—Int (S?x D7) U §?xD*
and obviously we have that
(S?x S1—Int (S*x D)) U S*xD* = M,S9
and
(S?x S§—Int (S*x D)) U SPx D7 = M ,(S3) .

Suppose S?x (S{#S59) is diffeomorphic to S?x S?, then we have an orientation
preserving diffeomorphism

fo: My(S9) —> M,(—S9)

by the above argument. Since M,(S?) has a cross section, there always exists an
orientation reversing diffeomorphism of M ,(S?) for all $¢. It follows that we
always have an orientation preserving diffeomorphism

fi: My(—S%) — M,S3).

Hence f,f, gives the desired diffeomorphism.

Secondly we shall show that the map A is surjective. But this follows
obviously from Lemma 7.2.

Thirdly we shall show that the map A4 is injective. Given a diffeomorphism
modulo a point, then there exists actually a diffeomorphism

[ M(89) — My(S9)

by Lemma 7.5. When we write
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MS9) as S?xDI U S?x D}

hry
and
MyS%) as S?xD{ Uy S?xDj

hry

such that * X D{ U * x D§ corresponds to a cross section, we may assume
f(S?x DY) = S?x D .
Suppose f«[S? x 0]=[S?x 0], then we may assume
f18?x0 =1id
and that
f|1D{x Di=id
when we write S?X D{ as D?x D{ U D%x D{ such that * X D{ corresponds to
id

0x Df (0 denotes the original point of D%). Then we can define a diffeomor-
phism
[ (M(S9)—8?xInt DY) U S?xD*—(M,(SH)—S*xInt D) U S*x D’

C-rpr~t FC-rpr~1
by

1M (S9)—S?x1Int Df = f|M,(S)—S?x Int D

and

f18?xXD? =id.
Clearly

(M,(S9)—S?xInt D7) U _S?xD*

(—rl)h'l
is diffeomorphic to S?x S? Since f|D?x D?=id, 0xXD? U xx D% (where 0
72—"1
denotes the original point of D?=D?) is imbedded in

(M,(S9)—S?xInt DY) U _S*xD*
fC

-71)},—1

with a trivial normal bundle, i.e., S§3(—S¢) embeds in S?x S? with a trivial
normal bundle. Hence S%#(—S9) embeds in R?*?*' with a trivial normal
bundle. It follows from Lemma 4.4 that S?Xx ( S44(—S ‘{)) is diffeomorphic to
S?x 8% Consequently we have S?x §¢=.S?xS% by Lemma 4.5.

When fy[S?x0]=-—[S?x0], there exists an orientation preserving
diffeomorphism

[ M(S{) — M,(—S?%)

such that
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FL&[S?x0] = [S?x0].

Making use of the similar argument as above, we can verify that S?x S{ is diffeo-
morphic to S?x S4. This makes the proof of Lemma 7.6 complete.

We can now prove Theorem 7.1.

In case p=1 and ¢=5: This is reducible to the proof of Theorem 5.2, since
74-1(S0,)={0} for ¢=5.

In case p+¢=6 and ¢+2=p=2: Given a diffeomorphism

£+ MUSY #8871 — MSD #5477,
we have a diffeomorphism
[ My(ST) 4 St 74 (— S8+ — M,(S9) .

It follows from Lemma 7.6 that S and S§ represent the same element of
G'(g). On the other hand, M,(S{) is diffeomorphic to M,(S%) by Lemma
7.5. Consequently S4*74:(—S%"%) belongs to the inertia group I(Mh(S‘{))
=1(M,(S9)).  Since I(M,(S9)) is equal to

K[h, §1](z,(SO,))
by Lemma 7.4, the natural map
H : S(M,(S5%))—>{M(S0) 48| S1€GC ()] ~, 847 €0 5.4/ K[h, $](m (SO0))}

is well-defined. Obviously H is surjective. If two smooth structures M ,(S9)4
S4+% and M ,(S§)4S%*? go into the same element by H, then M ,(S9) and
M ,(S%) represent the same element of S ’(M ,,(S”)) by Lemma 7.6. It follows
from Lemma 7.5 that there exists actually an orientation preserving diffeomor-
phism

£t My(S9) —> MS9) .

On the other hand, since S4+74(—S4%) belongs to K[k, S{] (w,(SO,)),
M (S9)#St94(—S%+7) is diffeomorphic to M,(S¢) by an orientation pre-
serving diffeomorphism

fos MUSD ST 4(—SE7) ~ M,(ST)

by Lemma 7.4. Then the composition f,of, gives an orientation preserving
diffeomorphism between M ,(S{)4#S¢+94(—S2*7) and M,(S%). It follows
that M,(S9)4#S¢+7 is diffeomorphic to M,(S%)4#.S£7? by an orientation pres-
erving diffeomorphism. This shows that H is injective and finishes the proof of
Theorem 7.1,
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8. A James problem on H-spaces

Let M, denote a p-sphere bundle over a g-sphere with a characteristic map
hemn, (SO,,) as in §7.
When % belongs to the image of

S: 7(SO,) = 7(SO,)
and also to the kernel of
J: ”G(SO4) - 7’10(84) ’

M, is an example of H-spaces (see [12]). Then I. James posed the following
problem [12, p. 586]:

Is the H-space M, homeomorphic to S*x S’ for heImage S N Kernel J=Z,?
In this section we shall present the answer.
Theorem 8.1. M, is homeomorphic to S°x S” for h& Image SN Kernel J.
Let S°—M ,,i»S7 be the bundle. Then the tangent bundle 7(,) of the
total space M, is stably isomorphic to
() ®p(M,)
where M), stands for the vector bundle associated with the bundle S*—M ,,—p—>S7.
Lemma 8.2. M, is a z-manifold, more over M, is actually a parallelizable
manifold.

Proof. As is well-known, the tangent bundle 7(S") of S is trivial. Since
7y(SOy) (N: large) is trivial, the bundle

s-m,-Ls

is stably trivial. Therefore M, is a z-manifold. It is obvious that the only
obstruction to the triviality of 7(M,) is a well defined cohomology class

O(M,)EH"(M,,; 7,((SO))=7(SO,0)~Z,BZ .

Since the Euler number X(M,) of M, is zero, £,i(M,) belongs to the image of
the homomorphism

Sy: H*(M,; 7(SO,)) —> H*(M,: 7,(SO,,))
R R
72,927, Z,07Z
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induced by the natural map S: z,(SO,) = zy(SO,,), i.e., ,(M,) is a torsion
element.

The fact that M, is a z-manifold implies that 2,(M,) goes into the zero
element by the homomorphism

Syt H*(M,; 7(SOy,)) — Huo(M,; z(SO,,)) .
2 A
Z,0Z z,

Since the Kernel Sy is isomorphic to Z, ©,(M,) is zero. This completes the
proof of Lemma 8.2.

Proof of Theorem 8.1. Since 7(M,) is trivial and M, is homotopy equiva-
lent to S°xS”, M, is classified by the Novikov’s theorem [16]. The similar
argument as in §4 proves that M, is diffeomorphic to S*x S’4S5™ for some
homotopy sphere S. Hence M, is homeomorphic to S°x S’, completing the
proof of Theorem 8.1. We dont’t know whether M, is diffeomorphic to S*x S’
or not.

9. Actions of homotopy spheres which do not bound spin
manifolds

Let M™ be a simply connected, spin manifold. Then we have

Lemma 9.1. The inertia group I(M™) does not contain homotopy spheres not
bounding spin-manifolds.

Proof. Let S” be a homotopy sphere which does not bound a spin-manifold.
Since M”* and S§” are spin-manifolds, M "4 5" has also a spin structure (see
Milnor [14]). It is well known that the number of distinct spin structures on
the tangent bundle (M ™) (resp. (M "#S”)) is equal to the number of elements

in H'(M"; Z,) (resp. H\M"4#8™, Zz)) (see Milnor [14]). Since =,(M") =
m(M"4#85")={1}, we have

H\M"; Z,)=~H'M"4S"; Z,)=={0}

and hence M" (resp. M”4:S") has a unique spin structure. Therefore, if
M"4 8" is diffeomorphic to M™* by an orientation preserving diffeomorphism,
both M"4S5" and M" represent the same element of the spin cobordism group
Q:P'n. This contradicts the fact that S” is not a spin boundary.

Milnor has shown the existence of homotopy spheres in dimensions 9,
10, 17 and 18 not bounding spin-manifolds [15] and Anderson, Brown and
Peterson have extended this to dimensions 1 or 2 mod 8 [1].
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Proposition 9.2. There exists a homotopy sphere in dimension 8k+2 which
does not belong to the inertia group I(CP**™") of the (8k+2)-dimensional complex
projective space CP*** for all k=1.

This Proposition digresses from the line, but it is an interesting application.

Proof. It is well known that z,(CP**+")={1} and the total Stiefel-Whitney
class W(CP**+") is

(1 "I‘ a)4k+2
where a is the non zero class in H*(CP*+'; Z,). Hence the second Stiefel-

Whitney class W,(CP**+') is zero and CP***' is a spin-manifold (see Milnor [15]).
Consequently this Proposition follows from Lemma 9.1.

Proposition 9.3. For all p (=2) and all k (=1), the inertia group
I(S?x S*k+1-2) (resp. I(S?x S+ 2"’)) does not contain the above homotopy sphere
Sektt (resp. Sok+2),

Proof. Obviously S?x S*#+'-# (resp. S?x S**+*~#) is a simply connected,
spin-manifold, hence this Proposition follows from Lemma 9.1. As a corollary

we have

Corollary 9.4. There exists an element gy, = G(8k-+2) for all k=1 which
does not belong to the set of the compositions of Image J, and G(8k+-2—p) for all
p=2.

Proof. Since the homotopy sphere S*** not bounding a spin-manifold
does not belong to the inertia group I(.S?x S*+2~#), §%+2 does not belong to

the group Kl(n'p(SO), S””“‘f’) by Lemma 3.1. As in the proof of Proposition
6.7, the following diagram

K
”p(SO) X ®8k+2—17 - @sk+2

Jp X o c w
G(p) X GBk+2—p)/Im Jopr,-p — G(8k+2)

is commutative up to sign, since J (nskﬂ(SO)): - J(0)=0. According to Kervaire
and Milnor [11], &|®y+, is injective. It follows that the group

C(J,(7,(S0)), w(S*+-2))
does not contain «(S**?) for all S***~#€@,,,, ,. Since the homomorphism
0: Oppryp— Gk 2= p)/Tm ]

is surjective by definition, the set
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C(J,(7,(SO)), G'(8k+2—p)/Im Jyes-,)

does not contain the element w(S**?). If p=2, 4, 5, 6 mod 8, we have
7 ,(SO)=0, and hence we can replace G'(8k+2—p) by G(8k+2—p) trivially.
If p=1, 3, 7 mod 8, G'(8k+2—p) is equal to G(8k+2—p) (see Novikov [16]).
Brown and Peterson [3] showed that the Kervaire invariant is zero in dimensions
8k-+2.
Hence G'(8k+2—p) is also equal to G(8k+2—p) when p=0 mod 8. Conse-
quently g, =w(S*+?) satisfies the condition of Corollary 9.4. 'This makes the
proof complete.

On the contrary, we shall show that Lemma 9.1 is false in general when the
manifolds is not simply connected.

Theorem 9.5. The inertia group I1(S*x S***) contains S**** for all k=1
where S**' and S**** are the homotopy spheres not bounding spin-manifolds
constructed by Milnor [15] and Anderson, Brown and Peterson [1].

Proof. It is obvious that 7ow(S%**')=w(5%*?) where 7 denotes the
generator of J (7:1(SO))_L~:Z2 (see Anderson, Brown and Peterson [1]). Hence this
Theorem follows from Lemma 3.1.

Remark 9.6. »(S5%+2) does not belong to the set of the compositions
of J l,(np(SO)) and G(8k+2—p) for all p=2 by Proposition 9.4, but Theorem
9.5 says that o(S**)=now(S*")c C (7,(SO), G(8k+1)).

10. A concluding remark

Remark 10.1. Propositions 6.2 and 6.4 in the section 6 show that there
exists in general on the set S(S?Xx .S ?) no group structure such that the natural
map

S: C(S*X8%)=T,BT¢PT p1q —> S(S?*x S7)
is a group homomorphism.
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