# LOCAL COHOMOLOGY AND CONNECTEDNESS OF ANALYTIC SUBVARIETIES 

Yum-Tong SIU

(Received April 10, 1968)
(Revised August 17, 1968)

Suppose $X$ is an analytic subvariety in some open neighborhood $G$ of the origin 0 in $\boldsymbol{C}^{n}$ with $\operatorname{codim}_{G ; 0}(X)=r$, where $\operatorname{codim}_{G ; 0}(X)$ denotes the codimension at 0 of $X$ as a subvariety of $G$. Let ${ }_{n} \mathfrak{O}$ be the structure sheaf of $\boldsymbol{C}^{n}$. Let $H_{X ; 0}^{p}\left({ }_{n} \bigcirc\right)$, or simply $H_{X ; 0}^{p}$, denote the direct limit of $\left\{H^{p-1}\left(U-X,{ }_{n} \bigcirc\right) \mid U\right.$ is an open neighborhood of 0 in $G\}$ for $p \geqq 1$. ( $H_{X ; 0}^{p}$ agrees with the stalk at 0 of the sheaf defined by the $p$-th local cohomology groups at $X$ with coefficients in ${ }_{n} \mathfrak{O}, ~[1]$, p. 79). We say that $X$ is locally a complete intersection at 0 if $X$ can be defined locally at 0 by $r$ holomorphic functions. If $X$ is locally a complete intersection, obviously we have

$$
\begin{equation*}
H_{X ; 0}^{p}=0 \quad \text { for } \quad p>r . \tag{1}
\end{equation*}
$$

The question naturally arises: to what extent does (1) characterize a local complete intersection? Not much is known about the characterization of local complete intersections. In [3] Hartshorne introduces a concept of connectedness which in our case is equivalent to the following: $X$ is locally connected in codimension $k$ at 0 if the germ of $X$ at 0 cannot be decomposed as the union of two subvarietygerms which are both different from the germ of $X$ at 0 and whose intersection is a subvariety-germ $Y$ with $\operatorname{codim}_{X ; 0}(Y)>k$. He shows that, if $X$ is locally a complete intersection, then $X$ is locally connected in codimension 1 at 0 (and also locally connected in codimension 1 at 0 in some properly defined formal sense). In this note we prove that (1) is a stronger necessary condition for local complete intersections than the connectedness condition. The following is our main theorem:

Theorem 1. Suppose $q \geqq 0$. If $H_{X ; 0}^{p}=0$ for $p>q+r$, then $X$ is locally connected in codimension $q+1$ at 0 .

For the proof of Theorem 1 we need the following:
Lemma 1. Suppose $Y$ is a 1-dimensional subvariety in some open neighborhood $H$ of 0 in $C^{n}$. Suppose 0 is the only singular point of $Y$ and $Y$ is locally irreducible at 0 . Then $H_{Y ; 0}^{n}=0$.

Proof. Suppose $D$ is an arbitrary open neighborhood of 0 in $H$. By changing linearly the coordinates system of $\boldsymbol{C}^{n}$, we can find $U=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} \mid\right.$ $\left.\left|z_{i}\right|<\delta_{i}, 1 \leqq i \leqq n\right\} \subset D$ for some $\delta_{i}>0,1 \leqq i \leqq n$, such that the projection $\pi$ : $\boldsymbol{C}^{n}$ $\rightarrow \boldsymbol{C}$ defined by $\pi\left(z_{1}, \cdots, z_{n}\right)=z_{1}$ makes $Y \cap U$ an irreducible analytic cover of $s$ sheets over $U_{1}=\left\{z_{1} \in \boldsymbol{C}| | z_{1} \mid<\delta_{1}\right\}$ with $\{0\}$ as the critical set in $U_{1}$ (III, $B$. 3, [2]) and $\pi^{-1}(0) \cap Y \cap U=\{0\}$. Let $\widetilde{U}_{1}=\left\{t \in \boldsymbol{C}| | t \mid<^{s} \sqrt{\delta_{1}}\right\}$. We are going to define holomorphic functions $g_{k}$ on $\widetilde{U}_{1}, 2 \leqq k \leqq n$, such that

$$
\begin{equation*}
Y \cap U=\left\{\left(t^{s}, g_{2}(t), \cdots, g_{n}(t)\right) \mid t \in \widetilde{U}_{1}\right\} \tag{2}
\end{equation*}
$$

Fix $z^{*}=\left(z_{1}{ }^{*}, \cdots, z_{n}{ }^{*}\right) \in Y \cap U$ with $z_{1}{ }^{*} \neq 0$ and fix $t^{*}$ with $\left(t^{*}\right)^{s}=z_{1}{ }^{*}$. Take $t \in \widetilde{U}_{1}-\{0\}$. Let $\gamma$ be a continuous map from $[0,1]$ to $\widetilde{U}_{1}-\{0\}$ such that $\gamma(0)=t^{*}$ and $\gamma(1)=t$. Let $\hat{\gamma}$ be the continuous map from [0, 1] to $U_{1}-\{0\}$ defined by $\hat{\gamma}(c)=(\gamma(c))^{s}$ for $c \in[0,1]$. Then $\hat{\gamma}(0)=z_{1}^{*}$. Since $Y \cap U-\{0\}$ is a topological covering over $U_{1}-\{0\}$, there is a continuous map $\tilde{\gamma}:[0,1] \rightarrow Y \cap U-\{0\}$ such that $\pi \tilde{\gamma}=\hat{\gamma}$ and $\tilde{\gamma}(0)=z^{*}$. Let $\tilde{\gamma}(1)=\left(z_{1}, \cdots, z_{n}\right)$. Define $g_{k}(t)=z_{k}, 2 \leqq k \leqq n$. Set $g_{k}(0)=0,2 \leqq k \leqq n$. It is readily verified that $g_{k}, 2 \leqq k \leqq n$, are well-defined and holomorphic. (2) is satisfied, because $Y \cap U$ is irreducible. Define $F$ : $\boldsymbol{C}^{\boldsymbol{n}}$ $\rightarrow \boldsymbol{C}^{n}$ by $F\left(w_{1}, \cdots, w_{n}\right)=\left(\left(w_{1}\right)^{s}, w_{2}, \cdots, w_{n}\right)$. Let $\tilde{Y}=F^{-1}(Y \cap U)$ and let $\tilde{U}=$ $F^{-1}(U)$. Let $e_{1}, \cdots, e_{s}$ be all the distinct $s$-th roots of unity. Let $Y_{p}=\left\{\left(w_{1}, \cdots\right.\right.$, $\left.\left.w_{n}\right) \in \boldsymbol{C}^{n} \mid w_{1} \in \widehat{U}_{1}, w_{k}=g_{k}\left(e_{p} w_{1}\right), 2 \leqq k \leqq n\right\}, 1 \leqq p \leqq s . \quad F\left(w_{1}, \cdots, w_{n}\right) \in Y \cap U$ if and only if for some $t \in \widetilde{U}_{1}\left(w_{1}\right)^{s}=t^{s}$ and $w_{k}=g_{k}(t), 2 \leqq k \leqq n$. Hence $\cup_{p=1}^{s} Y_{p}=\tilde{Y}$. Since $Y_{p}$ is defined by $n-1$ holomorphic functions, $H^{q}\left(\widetilde{U}-Y_{p},{ }_{n} \mathfrak{V}\right)=0$ for $q \geqq n-1$ and $1 \leqq p \leqq s$. The following portion of the Mayor-Vietoris sequence is exact: $H^{q}\left(\widetilde{U}-Y_{p^{+1}},{ }_{n} \mathfrak{V}\right) \oplus H^{q}\left(\widetilde{U}-\cup_{i=1}^{n} Y_{i},{ }_{n} \mathfrak{V}\right) \rightarrow H^{q}\left(\widetilde{U}-\cup_{i=1}^{p+1} Y_{i},{ }_{n} \mathfrak{V}\right) \rightarrow$ $H^{q+1}\left(\widetilde{U}-\left(Y_{p+1} \cap\left(\cup_{i=1}^{p} Y_{i}\right)\right),{ }_{n} \bigcirc\right), q \geqq 0,1 \leqq p<s$. Since $H^{q+1}\left(\widetilde{U}-\left(Y_{p+1} \cap\right.\right.$ $\left.\left.\left(\cup_{i=1}^{p} Y_{i}\right)\right),{ }_{n} \mathfrak{D}\right)=0$ for $q \geqq n-1$ (see Problème 1, [4] or Th., [5]), by induction on $p$ we conclude that $H^{q}\left(\widetilde{U}-\cup \cup_{i=1}^{n} Y_{i}, n^{5} \bigcirc\right)=0$ for $1 \leqq p \leqq s$ and $q \geqq n-1$. In particular, $H^{n-1}\left(\widetilde{U}-\widetilde{Y},{ }_{n} \mathfrak{V}\right)=0$. Let $\mathfrak{F}$ be the zeroth direct image of ${ }_{n} \mathfrak{O}$ under F. Then, since $H^{n-1}\left(\widetilde{U}-\widetilde{Y},{ }_{n} \bigcirc\right)=0$,

$$
\begin{equation*}
H^{n-1}(U-Y, \mathfrak{F})=0 \tag{3}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\mathfrak{F} \approx{ }_{n} \mathfrak{D}^{s} \tag{4}
\end{equation*}
$$

Consider the subvariety $Z=\left\{\left(z_{0}, z_{1}, \cdots, z_{n}\right) \mid z_{1}=\left(z_{0}\right)^{s}\right\}$ in $C^{n+1}$. Let $z^{\mathfrak{O}}$ be the structure sheaf of $Z$. Let $\theta: \boldsymbol{C}^{n_{+1}} \rightarrow \boldsymbol{C}^{n}$ be defined by $\theta\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(z_{1}, \cdots, z_{n}\right)$. Let $T: \boldsymbol{C}^{n} \rightarrow Z$ be defined by $T\left(w_{1}, \cdots, w_{n}\right)=\left(w_{1},\left(w_{1}\right)^{s}, w_{2}, \cdots, w_{n}\right) . \quad T$ is biholomorphic and $\theta T=F$. Let (SS be the zeroth direct image of $z \mathfrak{O}$ under $\theta$. To prove (4), we need only prove that $\mathbb{B} \approx_{n} \mathfrak{V}^{s}$. Suppose $Q$ is a bounded nonempty Stein open subset in $\boldsymbol{C}^{n}$ and $f \in \Gamma\left(\theta^{-1}(Q) \cap Z, z^{\mathfrak{O}}\right)$. Then $f=\tilde{f} \mid \theta^{-1}(Q) \cap Z$ for some $\tilde{f} \in \Gamma\left(\theta^{-1}(Q),{ }_{n+1} \mathfrak{V}\right)$. By methods analogous to the usual proof of the

Weierstrass division theorem, we obtain $\tilde{f=}=u\left(\left(z_{0}\right)^{s}-z_{1}\right)+\sum_{i=0}^{s=1}\left(v_{i} \circ \theta\right)\left(z_{0}\right)^{i}$, where $u$ is a holomorphic function on $\theta^{-1}(Q)$ and $v_{i}, 0 \leqq i \leqq s-1$, are holomorphic functions on $Q$. It is easily seen that $v_{i}, 0 \leqq i \leqq s-1$, are uniquely determined by $f$. $f \mapsto\left(v_{0}, \cdots, v_{s-1}\right)$ defines a map $h_{Q}$ from $\Gamma\left(\theta^{-1}(Q) \cap Z, z^{\mathfrak{S}}\right)$ to $\Gamma\left(Q,{ }_{n} \mathfrak{Q}^{s}\right)$. $\quad\left\{h_{Q} \mid Q\right.$ is a bounded Stein open subset of $\left.\boldsymbol{C}^{\boldsymbol{n}}\right\}$ induces a sheaf-isomorphism from (5) to ${ }_{n} \mathfrak{V}^{s}$. (4) is proved. (3) and (4) imply that $H^{n-1}\left(U-Y,{ }_{n} \mathfrak{V}\right)=0$. Hence $H_{Y ; 0}^{n}=0$.

q.e.d.

Proof of Theorem 1.
Suppose $X$ is not locally connected in codimension $q+1$ at 0 . We are going to prove that $H_{X ; 0}^{p} \neq 0$ for some $p>q+r$. For some open neighborhood $U$ of 0 in $G$ we have $X \cap U=X_{1} \cup X_{2}$ and $X_{1} \cap X_{2}=Z$, where (i) for $i=1,2 X_{i}$ is a subvariety of $X \cap U$ whose germ at 0 is different from the germ of $X$ at 0 and (ii) $\operatorname{codim}_{X ; 0}(Z)>q+1$. We can assume w.l.o.g. that no branch-germ $X_{1}$ at 0 contains a branch-germ of $X_{2}$ at 0 and vice versa. We have $n>q+r+1$.
(a) First we prove the case where $Z=\{0\}$. By shrinking $U$, we can find for $i=1,2$ a 1 -dimensional subvariety $Y_{i}$ in $X_{i}$ such that 0 is the only singular point of $Y_{i}$ and $Y_{i}$ is locally irreducible at 0 . For any open neighborhood $W$ of 0 in $U$ we have the following portion of the Mayor-Vietoris sequence:
$H^{n-2}\left(W-X,{ }_{n} \mathfrak{O}\right) \rightarrow H^{n-1}\left(W-\{0\},{ }_{n} \mathfrak{V}\right) \xrightarrow{\alpha_{W}} H^{n-1}\left(W-X_{1}, n_{n} \mathfrak{O}\right) \oplus H^{n-1}\left(W-X_{2},{ }_{n} \mathfrak{O}\right)$, where $\alpha_{W}=\alpha_{W}^{(1)} \oplus\left(-\alpha_{W}^{(2)}\right)$ and $\alpha_{W}^{(i)}: H^{n-1}\left(W-\{0\},{ }_{n} \mathfrak{V}\right) \rightarrow H^{n-1}\left(W-X_{i}, n_{n} \mathfrak{D}\right), i=1$, 2, are the restriction maps. Moreover, we have the following commutative diagram:

$$
H^{n-1}\left(W-\{0\},{ }_{n} \mathfrak{\Im}\right) \xrightarrow{\alpha_{W}} H^{n-1}\left(W-X_{1},{ }_{n} \mathfrak{D}\right) \oplus H^{n-1}\left(W-X_{2},{ }_{n} \mathfrak{O}\right)
$$

$H^{n-1}\left(W-Y_{1},{ }_{n} \mathfrak{S}\right) \oplus{ }_{W}^{\beta_{W} \downarrow} H^{n-1}\left(W-Y_{2}, n_{n} \mathfrak{V}\right) \xrightarrow{\gamma_{W}} H^{n-1}\left(W-X_{1},{ }_{n} \mathfrak{V}\right) \oplus H^{n-1}\left(W-X_{2},{ }_{n} \mathfrak{D}\right)$,
where $\beta_{W}=\beta_{W}^{(1)} \oplus\left(-\beta_{W}^{(2)}\right), \gamma_{W}=\gamma_{W}^{(1)} \oplus \gamma_{W}^{(2)}$, and $\beta_{W}^{(i)}: H^{n-1}\left(W-\{0\}, n_{n} \mathfrak{D}\right) \rightarrow H^{n_{-1}}$ $\left(W-Y_{i},{ }_{n} \mathfrak{O}\right)$ and $\gamma_{W}^{(i)}: H^{n-1}\left(W-Y_{i}, n^{\mathfrak{D}}\right) \rightarrow H^{n-1}\left(W-X_{i},{ }_{n} \mathcal{O}\right), i=1,2$, are the restriction maps. Passing to direct limits, we have the following commutative exact diagram:

$$
\begin{align*}
& H_{X ; 0}^{n-1} \rightarrow H_{\{0 ; j 0}^{n}  \tag{5}\\
& \downarrow \downarrow H_{X_{1} ; 0}^{n} \oplus H_{X_{2} ; 0}^{n} \\
& H_{Y_{1} ; 0}^{n} \oplus H_{Y_{2} ; 0}^{n} \rightarrow H_{X_{1} ; 0}^{n} \oplus H_{X_{2} ; 0}^{n}
\end{align*}
$$

The cocycle in $Z^{n-1}\left(\mathfrak{X},{ }_{n} \mathfrak{V}\right)$, where $\mathfrak{A}=\left\{A_{i}\right\}_{i=1}^{n}$ and $A_{i}=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \boldsymbol{C}^{n} \mid z_{i} \neq 0\right\}$, defined by $\left(z_{1} \cdots z_{n}\right)^{-1} \in \Gamma\left(\cap_{i=1}^{n} A_{i},{ }_{n} \mathfrak{O}\right)$ is not mapped to 0 under any restriction map $H^{n-1}\left(\boldsymbol{C}^{n}-\{0\},{ }_{n} \mathfrak{V}\right) \rightarrow H^{n-1}\left(D-\{0\},{ }_{n} \mathfrak{V}\right)$ for any polydisc neighborhood $D$ of 0 in $\boldsymbol{C}^{n}$. Hence $H_{\{0 ; 0}^{n} \neq 0$. Since $H_{Y_{i} ; 0}^{n}=0$ for $i=1,2$ by Lemma 1, the exact
diagram in (5) implies that $H_{X ; 0}^{n-1} \neq 0$. Since $n-1>q+r, H_{X ; 0}^{p} \neq 0$ for some $p>q+r$.
(b) In the general case, suppose $H_{X ; 0}^{p}=0$ for $p>q+r$. We are going to derive a contradiction. In view of (a) we can assume that the germ of $Z$ at 0 has positive dimension. Let $h=\operatorname{codim}_{U ; 0}(Z)$. Then $r+q+2 \leqq h<n$. After a linear transformation of the coordinates system of $\boldsymbol{C}^{\boldsymbol{n}}$ and after a shrinking of $U$, we can assume that $Z \cap \boldsymbol{C}^{h}=\{0\}$, where $\boldsymbol{C}^{h}$ is regarded as a linear subspace of $\boldsymbol{C}^{\boldsymbol{n}}$ through the embedding sending $\left(z_{1}, \cdots, z_{h}\right) \in \boldsymbol{C}^{h}$ to $\left(z_{1}, \cdots, z_{h}, 0, \cdots, 0\right) \in \boldsymbol{C}^{n}$. Suppose $W$ is an arbitrary open neighborhood of 0 in $U$. Consider the exact sequences $0 \rightarrow{ }_{n} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i} n \xrightarrow{\Im} \xrightarrow{f_{k}} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i} \mathfrak{O} \rightarrow{ }_{n} \mathfrak{S} / \sum_{i=k}^{n} z_{i} \mathfrak{O} \rightarrow 0, h+1 \leqq$ $k \leqq n$, where $f_{k}$ is defined by multiplication by $z_{k}$ and $\sum_{i=n+1}^{n} z_{i n} \mathfrak{O}=0$. These give us exact sequences $H^{p}\left(W-X,{ }_{n} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i} n_{n} \mathfrak{O}\right) \rightarrow H^{p}\left(W-X,{ }_{n} \mathfrak{O} / \sum_{i=k}^{n} z_{i n} \mathfrak{O}\right)$ $\rightarrow H^{p+1}\left(W-X,{ }_{n} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i} \mathfrak{O}\right), p \geqq 0, h+1 \leqq k \leqq n$. Passing to direct limits, we have the following exact sequences:

$$
\begin{align*}
& \operatorname{dir} \lim _{{ }_{W}} H^{p}\left(W-X,{ }_{n} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i n} \mathfrak{O}\right) \\
& \text { dir. } \lim \cdot{ }_{W} H^{p}\left(W-X,{ }_{n} \Im / \sum_{i=k}^{n} z_{i n} \mathfrak{O}\right)  \tag{6}\\
& \text { dir. } \lim ._{W} H^{p+1}\left(W-X,{ }_{n} \mathfrak{O} / \sum_{i=k+1}^{n} z_{i n} \mathfrak{O}\right), \\
& p \geqq 0, \quad h+1 \leqq k \leqq n .
\end{align*}
$$

Since dir. lim. ${ }_{W} H^{p}\left(W-X,{ }_{n} \bigcirc / \sum_{i=n+1}^{n} z_{i}{ }_{n} \mathfrak{O}\right)=H_{X ; 0}^{p+1}=0$ for $p \geqq q+r$, by (6) and by backward induction on $k$ we conclude that dir. $\lim .{ }_{W} H^{p}\left(W-X,{ }_{n} \bigcirc / \sum_{i=k}^{n} z_{i n} \mathfrak{S}\right)$ $=0$ for $p \geqq q+r$ and $h+1 \leqq k \leqq n+1$. Since for $p \geqq 0 \quad H_{X \cap C h ;}^{p+1}\left({ }_{h} \mathcal{D}\right) \approx$ dir. lim. ${ }_{W} H^{p}\left(W-X,{ }_{n} \bigcirc 1 / \sum_{i=h+1}^{n} z_{i n} \mathfrak{O}\right)$, we have

$$
\begin{equation*}
H_{X \cap c}^{p+1} ;\left({ }_{h} \bigcirc\right)=0 \quad \text { for } \quad p \geqq q+r . \tag{7}
\end{equation*}
$$

Since no branch-germ of $X_{1}$ at 0 contains a branch-germ of $X_{2}$ at 0 and vice versa, $\operatorname{codim}_{U ; 0}\left(X_{i}\right)<\operatorname{codim}_{U: 0}(Z)=h$ for $i=1,2$. Hence the germ of $X_{i} \cap \boldsymbol{C}^{h}$ at 0 is positive dimensional for $i=1,2$. We are in the situation of Part (a). $H_{X \cap C}^{h-1} ;\left({ }_{h} \mathfrak{O}\right) \neq 0$. Since $h \geqq q+r+2$, this contradicts (7).
q.e.d.

Remark. The converse of Theorem 1 is not true as is shown in the following example: In $\boldsymbol{C}^{6}$ let $X_{1}=\left(\left\{z_{1}=z_{2}=0\right\} \cup\left\{z_{2}=z_{3}=0\right\} \cup\left\{z_{3}=z_{4}=0\right\}\right) \cap\left\{z_{5}=0\right\}$ and $X_{2}=\left(\left\{z_{2}=z_{1}=0\right\} \cup\left\{z_{1}=z_{4}=0\right\} \cup\left\{z_{4}=z_{3}=0\right\}\right) \cap\left\{z_{6}=0\right\}$. Let $X=X_{1} \cup X_{2}$. For $i=1,2, X_{i}$ is of codimension 3 and can be defined by 3 global holomorphic functions, because $X_{1}=\left\{z_{1} z_{3}+z_{2} z_{4}=0, z_{2} z_{3}=0, z_{5}=0\right\}$ and $X_{2}=\left\{z_{1} z_{3}+z_{2} z_{4}=0\right.$, $\left.z_{1} z_{4}=0, z_{6}=0\right\}$. Hence $H_{X_{i} ; 0}^{p}=0$ for $p>3$ and $i=1,2 . \quad X_{1} \cap X_{2}=\left(\left\{z_{1}=z_{2}=0\right\}\right.$ $\left.\cup\left\{z_{3}=z_{4}=0\right\}\right) \cap\left\{z_{5}=z_{6}=0\right\}$ is of codimension 4 and is not locally connected in codimension 1 at 0 , because $X_{1} \cap X_{2}=Y_{1} \cup Y_{2}$ and $Y_{1} \cap Y_{2}=\{0\}$, where $Y_{1}=\left\{z_{1}\right.$ $\left.=z_{2}=z_{5}=z_{6}=0\right\}$ and $Y_{2}=\left\{z_{3}=z_{4}=z_{5}=z_{6}=0\right\}$. Hence $H_{X_{1} \cap X_{2} ; 0}^{n} \neq 0$ for some $p>4$. By taking direct limits of Mayor-Vietoris sequences, we obtain exact
sequences $H_{X ; 0}^{p} \rightarrow H_{X_{1} \cap X_{2} ; 0}^{p+1} \rightarrow H_{X_{1} ; 0}^{p+1} \oplus H_{X_{2} ; 0}^{p+1}, p>0$. Hence $H_{X ; 0}^{p} \neq 0$ for some $p>3$. On the other hand, the 6 branch-germs of $X$ are given by $Z_{1}=\left\{z_{1}=z_{2}=\right.$ $\left.z_{5}=0\right\}, Z_{2}=\left\{z_{2}=z_{3}=z_{5}=0\right\}, Z_{3}=\left\{z_{3}=z_{4}=z_{5}=0\right\}, Z_{4}=\left\{z_{1}=z_{2}=z_{6}=0\right\}, Z_{5}=\left\{z_{1}=\right.$ $\left.z_{4}=z_{6}=0\right\}$, and $Z_{6}=\left\{z_{3}=z_{4}=z_{6}=0\right\}$. It can be easily verified that we cannot divide these 6 branch-germs into two groups so that the intersection of the union of one group with the union of another group is of dimension $<2$. $X$ serves also as an example of a non local complete intersection which is locally connected in codimension 1 .

## University of Notre Dame

## References

[1] H. Cartan: Faisceaux analytiques cohérents, C.I.M.E. (Varenna), 1963, Inst. Math. d. Unvi., Roma, 1-88.
[2] R.C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
[3] R. Hartshorne: Complete intersections and connectedness, Amer. J. Math. 84 (1962), 496-508.
[4] B. Malgrange: Faisceaux sur des variétés analytiques-réelles, Bull. Soc. Math. France 87 (1957), 231-237.
[5] Y.-T. Siu: Analytic sheaf cohomology groups of dimension $n$ of $n$-dimensional noncompact complex manifolds, to appear in Pacific J. Math.

