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Suppose X is an analytic subvariety in some open neighborhood G of the
origin 0 in C” with codimg,(X)=r, where codimg,,(X) denotes the codimension
at 0 of X as a subvariety of G. Let ,O be the structure sheaf of C”. Let
H%.(,9), or simply Hg,, denote the direct limit of {H?"(U—X, ,O)| U is an
open neighborhood of 0 in G} for p>1. (H}, agrees with the stalk at 0 of the
sheaf defined by the p-th local cohomology groups at X with coefficients in
«9, [1], p- 79). We say that X is locally a complete intersection at 0 if X can be
defined locally at 0 by 7 holomorphic functions. If X is locally a complete
intersection, obviously we have

(1) H3z,=0 for p>r.

The question naturally arises: to what extent does (1) characterize a local complete
intersection? Not much is known about the characterization of local complete
intersections. In [3] Hartshorne introduces a concept of connectedness which
in our case is equivalent to the following: X is locally connected in codimension k
at 0 if the germ of X at 0 cannot be decomposed as the union of two subvariety-
germs which are both different from the germ of X at 0 and whose intersection
is a subvariety-germ Y with codimy.,(Y)>k. He shows that, if X is locally a
complete intersection, then X is locally connected in codimension 1 at 0 (and also
locally connected in codimension 1 at 0 in some properly defined formal sense).
In this note we prove that (1) is a stronger necessary condition for local complete
intersections than the connectedness condition. The following is our main theo-
rem:

Theorem 1. Suppose ¢=0. If H%,,=0 for p>q+r, then X is locally con-
nected in codimension g+ 1 at 0.
For the proof of Theorem 1 we need the following:

Lemma 1. Suppose Y is a 1-dimensional subvariety in some open neighbor-
hood H of 0 in C”. Suppose O is the only singular point of Y and Y is locally
trreducible at 0. Then Hy.,=0.
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Proof. Suppose D is an arbitrary open neighborhood of 0 in H. By
changing linearly the coordinates system of C”, we can find U={(z,, :**, 2,) €C"|
|2;1<8;, 1<i<m}CD for some §,>0, 1<i<n, such that the projection z: C”*
—C defined by #(z,, ***, 2,)=2, makes Y N U an irreducible analytic cover of s
sheets over U,={2,EC| | 2,| <8,} with {0} as the critical set in U, (I1I, B. 3, [2])
and z7(0)N Y N U={0}. Let U={teC| |t|<*\/§,}. We are going to define
holomorphic functions g, on ,, 2<k=mn, such that

(2) YNU = {(t, gt), -, g.(2))| t T} .

Fix 2*=(2*, -+, 2,*)e Y N U with 2*=+0 and fix #* with (t*)°=z* Take
te U,—{0}. Lety be a continuous map from [0, 1] to T,— {0} such that y(0)=1*
and y(1)=t. Let ¥ be the continuous map from [0, 1] to U,—{0} defined by
9(c)=(v(c))* for c€[0, 1]. Then $(0)=z,*. Since ¥ N U—{0} is a topological
covering over U,—{0}, there is a continuous map : [0, 1]—Y N U—{0} such
that zy=9 and %(0)=z*. Let §(1)=(z, -+, 2,). Define g(t)=z2;, 2=k=n.
Set g,(0)=0, 2<k=<n. It is readily verified that g,, 2<k=<n, are well-defined
and holomorphic. (2) is satisfied, because Y N U is irreducible. Define F: C”
—C" by F(w, -, w,)=((w,), @, -+, w,). Let Y=F(YNU) and let U=
F~(U). Lete, -, e, be all the distinct s-th roots of unity. Let ¥ ,={(w, ---,
w,)eC" | w,eU,, wy=gyle, w), 2<k=n}, 1<p=<s. F(w, -, w,)e¥YNU if
and only if for some t€ U, (w,)’=¢ and w,=g,(t), 2<k=<n. Hence U;_,Y,=7Y.
Since Y, is defined by n—1 holomorphic functions, H*(U—Y,, ,0)=0 for
g=n—1and 1=<p=s. The following portion of the Mayor-Vietoris sequence
is exact: H(U—Y,.,, O)®HY(U—U1.,Y;, ,O0)— HY(U—U3tY;, ,O)—
H"(T—(Y ,,N(U?, YY), 4O), ¢=0, 1=p<s. Since H*'(T—(Y,nN
(U2, Y)), »0)=0 for g=n—1 (see Probléme 1, [4] or Th., [5]), by induction
on p we conclude that H"(U— U, Y, »0)=0 for 1<p<s and ¢g=n—1. In
particular, H*(U— ¥, ,0)=0. Let & be the zeroth direct image of ,O under
F. Then, since H*(U—Y, ,0)=0,

(3) H"\U-Y,%)=0.
We claim that
(4) F~ 0.

Consider the subvariety Z={(2,, 2, ***, )| 2,=(2,)°} in C™**. Let O be the
structure sheaf of Z. Let §: C""'—C" be defined by 6(z,, 2,, :**, 2s)=(2y, ***» Zn)-
Let T: C"—Z be defined by T(w,, -+, w,)=(w,, (w,)°, @,, -**, w,). T is biholo-
morphic and 6T=F. Let & be the zeroth direct image of ;O under §. To
prove (4), we need only prove that &~ ,0°. Suppose O is a bounded non-
empty Stein open subset in C* and f€T(07(Q) N Z, zO). Then f=F|0"(Q)NZ
for some fFET(07(Q), ,.,O). By methods analogous to the usual proof of the
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Weierstrass division theorem, we obtain f=u((2,)"—2,)+ 2 1=3(v:°0)(2,)?, where u
is a holomorphic function on §7}(Q) and v;, 0<¢<s—1, are holomorphic func-
tions on Q. It is easily seen that v;, 0=<7{<s—1, are uniquely determined by f.
J—(%4, -+, v,-,) defines a map Ao from I'(@~Y(Q)N Z, zO) to T'(Q, ,O°). {helO
is a bounded Stein open subset of C”} induces a sheaf-isomorphism from &
to ,0° (4) is proved. (3) and (4) imply that H"(U—Y, ,0)=0. Hence
H3.,=0. q.e.d.

Proof of Theorem 1.

Suppose X is not locally connected in codimension ¢g+1 at 0. We are
going to prove that H%,,+0 for some p>g+7r. Forsome open neighborhood U
of 0 in G we have XN U=X,UX, and X, N X,=Z, where (i) fori=1,2 X;is
a subvariety of X N U whose germ at 0 is different from the germ of X at 0 and
(ii) codimy,(Z)>g+1. We can assume w.l.o.g. that no branch-germ X, at 0
contains a branch-germ of X, at 0 and vice versa. We have n>¢+7r+1.

(a) First we prove the case where Z={0}. By shrinking U, we can find for
i=1,2 a l-dimensional subvariety Y; in X, such that 0 is the only singular
point of Y, and Y; is locally irreducible at 0. For any open neighborhood W
of 0 in U we have the following portion of the Mayor-Vietoris sequence:

H* ¥(W—X, ,O)—~H"(W—{0}, ,,:‘D)—a—W>H”‘1( W—X,, O)PH" (W—X,, sO),

where ap=aWB(—a$}) and a$p: H(W—{0}, ,O)—>H" ' (W—X,, ,O), i=1,
2, are the restriction maps. Moreover, we have the following commutative
diagram:

H*(W—{0}, JO)—2% H*(W—X,, ,O)QH" (W—X,, ,O)
H" (W—-Y,, O)OH" (W—-Y,, ,O0)—H"(W—-X,, ,O)PH" (W—X,, ,O),

where By=B%&(—BW), yw=7WD7W, and B%: H*(W—{0}, ,O)—>H""
(W—Y,;, Q) and op: H"(W-Y,, O)—H" ' (W—-X;, ,O), i=1,2, are the
restriction maps. Passing to direct limits, we have the following commutative
exact diagram:

-1
H)"(;O - H(%):O H;(I;O @ H.;'fg;o

(3) ! I
H?’I;O @ H;Z;O - H;r,;o @ H}}Z;o

The cocycle in Z" (Y, ,O), where A={4,}7_, and 4;={(z,, -, 2,) EC"| 2; %0},
defined by (2, -+ 2,)'€T(N 7,4, »O) is not mapped to 0 under any restriction
map H"(C"—{0}, ,O)—H"'(D—{0}, ,9) for any polydisc neighborhood D of
0in C”. Hence H{y,,0. Since Hy ,=0 for 7=1,2 by Lemma 1, the exact



276 Y.-T. S

diagram in (5) implies that H%5+0. Since n—1>q+r, Hf,+0 for some
p>gqtr.

(b) In the general case, suppose H%,,=0 for p>g+r. We are going to derive
a contradiction. In view of (a) we can assume that the germ of Z at 0 has posi-
tive dimension. Let h=codimy,(Z). Then r4g¢+2=<h<m. After a linear
transformation of the coordinates system of C” and after a shrinking of U, we
can assume that Z N C*={0}, where C* is regarded as a linear subspace of C”
through the embedding sending (2, :*-, 2,)EC* to (2, -+, 2, 0, -+, 0)=C™.
Suppose W is an arbitrary open neighborhood of 0 in U. Consider the exact

sequences 0— /> .., 2; O j—r’i WO DN 112 O = O D2 SO =0, 1S

k=mn, where f is defined by multiplication by 2, and >¥7_,,2; ,0=0. These
give us exact sequences H?*(W—X, , OV _ 11, 2:x0)—>H?*(W—X, O3> %_12; 2O)
—>HY(W—X, O 1112 s9), p=0, h-+1=<k=<mn. Passing to direct limits,
we have the following exact sequences:

dir. lim. ,,, HA(W—X, O[3V _411%i nO)
(6) dir. lim. ,, HA(W—X, O[> 42: ,O)

dir. lim. , H*W(W—X, O3> 4112 49) s

p=0, h+1Zk<n.

Since dir. lim. , HX(W—X, O[>t si1 2 »O)=H%}¢ =0 for p=q+r, by (6) and
by backward induction on & we conclude that dir. lim. ,, H*(W— X, /> _,2; ,9)
=0 for p=g+r and A+1<k=<n-+1. Since for p=0 H¥\cso(,O)~

dir. lim. ,, H*(W—X, O[> % _,+18: s9), we have

( 7 ) ?f\lCh;O(hQ) =0 for pgq—l-r .

Since no branch-germ of X, at 0 contains a branch-germ of X, at 0 and vice
versa, codimy,(X;)<<codimy.,(Z)=h for i=1,2. Hence the germ of X;NC"* at
0 is positive dimensional for =1, 2. We are in the situation of Part (a).

H% 3 cno(,O)=*0. Since h=g+7-+2, this contradicts (7). q.e.d.

ReMARk. The converse of Theorem 1 is not true as is shown in the follow-
ing example: In C° let X,=({z,=2,=0} U {z,=2,=0} U {z,=2,=0}) N {2,=0}
and X,=({z,=2,=0} U {2,=2,=0} U {3,=2,=0}) N {3,=0}. Let X=X,UX,.
For i=1, 2, X; is of codimension 3 and can be defined by 3 global holomorphic
functions, because X,={z,2,+2,2,=0, 2,2,=0, 2,=0} and X,={2,2,}2,2,=0,
2,2,=0, 2,=0}. Hence H%, =0 for p>3 and i=1,2. X,NX,=({z,=2,=0}
U {2,=2,=0}) N {z;=2,=0} is of codimension 4 and is not locally connected in
codimension 1 at 0, because X,NX,=Y,UY,and Y,N Y,={0}, where Y,={z,
=2,=2,=2,=0} and Y,—={z,=z2,=2,—=2,—=0}. Hence H% nx,o+0 for some
p>4. By taking direct limits of Mayor-Vietoris sequences, we obtain exact
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sequences H%o— H%\ 1 x,.0—> H% WD H%o, p>0. Hence H%,+0 for some
p>3. On the other hand, the 6 branch-germs of X are given by Z,={z,==2,=
zSZO}’ Zz= {22=2‘3=2’5=0}, Zy= {23=z4=25=0}, Z4={zl=’22=26=0}) Zsz{zlz
2,=2=0}, and Z,={2,—=2,=2,=0}. It can be easily verified that we cannot
divide these 6 branch-germs into two groups so that the intersection of the union
of one group with the union of another group is of dimension<<2. X serves also
as an example of a non local complete intersection which is locally connected in
codimension 1.
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