LOCAL COHOMOLOGY AND CONNECTEDNESS OF ANALYTIC SUBVARIETIES

Yum-Tong SIU

(Received April 10, 1968) (Revised August 17, 1968)

Suppose X is an analytic subvariety in some open neighborhood G of the origin 0 in \mathbb{C}^n with $\operatorname{codim}_{G;0}(X) = r$, where $\operatorname{codim}_{G;0}(X)$ denotes the codimension at 0 of X as a subvariety of G. Let ${}_n\mathfrak{D}$ be the structure sheaf of \mathbb{C}^n . Let $H^p_{X;0}({}_n\mathfrak{D})$, or simply $H^p_{X;0}$, denote the direct limit of $\{H^{p-1}(U-X, {}_n\mathfrak{D})|\ U$ is an open neighborhood of 0 in $G\}$ for $p \ge 1$. $(H^p_{X;0}$ agrees with the stalk at 0 of the sheaf defined by the p-th local cohomology groups at X with coefficients in ${}_n\mathfrak{D}$, [1],

(1)
$$H_{X;0}^{p} = 0$$
 for $p > r$.

The question naturally arises: to what extent does (1) characterize a local complete intersection? Not much is known about the characterization of local complete intersections. In [3] Hartshorne introduces a concept of connectedness which in our case is equivalent to the following: X is locally connected in codimension k at 0 if the germ of X at 0 cannot be decomposed as the union of two subvariety-germs which are both different from the germ of X at 0 and whose intersection is a subvariety-germ Y with $\operatorname{codim}_{X;0}(Y) > k$. He shows that, if X is locally a complete intersection, then X is locally connected in codimension 1 at 0 (and also locally connected in codimension 1 at 0 in some properly defined formal sense). In this note we prove that (1) is a stronger necessary condition for local complete intersections than the connectedness condition. The following is our main theorem:

Theorem 1. Suppose $q \ge 0$. If $H_{X;0}^p = 0$ for p > q + r, then X is locally connected in codimension q + 1 at 0.

For the proof of Theorem 1 we need the following:

Lemma 1. Suppose Y is a 1-dimensional subvariety in some open neighborhood H of 0 in \mathbb{C}^n . Suppose 0 is the only singular point of Y and Y is locally irreducible at 0. Then $H_{Y;0}^n = 0$.

274 Y.-T. Siu

Proof. Suppose D is an arbitrary open neighborhood of 0 in H. By changing linearly the coordinates system of \mathbb{C}^n , we can find $U=\{(z_1,\dots,z_n)\in\mathbb{C}^n\mid |z_i|<\delta_i,\ 1\leq i\leq n\}\subset D$ for some $\delta_i>0,\ 1\leq i\leq n$, such that the projection $\pi\colon\mathbb{C}^n\to\mathbb{C}$ defined by $\pi(z_1,\dots,z_n)=z_1$ makes $Y\cap U$ an irreducible analytic cover of s sheets over $U_1=\{z_1\in\mathbb{C}\mid |z_1|<\delta_1\}$ with $\{0\}$ as the critical set in U_1 (III, B. 3, [2]) and $\pi^{-1}(0)\cap Y\cap U=\{0\}$. Let $\widetilde{U}_1=\{t\in\mathbb{C}\mid |t|<^s\sqrt{\delta_1}\}$. We are going to define holomorphic functions g_k on \widetilde{U}_1 , $2\leq k\leq n$, such that

(2)
$$Y \cap U = \{(t^s, g_2(t), \dots, g_n(t)) | t \in \widetilde{U}_1\}.$$

Fix $z^* = (z_1^*, \dots, z_n^*) \in Y \cap U$ with $z_1^* \neq 0$ and fix t^* with $(t^*)^s = z_1^*$. Take $t \in U_1 - \{0\}$. Let γ be a continuous map from [0, 1] to $\widetilde{U}_1 - \{0\}$ such that $\gamma(0) = t^*$ and $\gamma(1)=t$. Let $\hat{\gamma}$ be the continuous map from [0, 1] to $U_1-\{0\}$ defined by $\hat{\gamma}(c) = (\gamma(c))^s$ for $c \in [0, 1]$. Then $\hat{\gamma}(0) = z_1^*$. Since $Y \cap U = \{0\}$ is a topological covering over $U_1 - \{0\}$, there is a continuous map $\tilde{\gamma}: [0, 1] \to Y \cap U - \{0\}$ such that $\pi \tilde{\gamma} = \hat{\gamma}$ and $\tilde{\gamma}(0) = z^*$. Let $\tilde{\gamma}(1) = (z_1, \dots, z_n)$. Define $g_k(t) = z_k, 2 \le k \le n$. Set $g_k(0) = 0$, $2 \le k \le n$. It is readily verified that g_k , $2 \le k \le n$, are well-defined and holomorphic. (2) is satisfied, because $Y \cap U$ is irreducible. Define $F: \mathbb{C}^n$ $\rightarrow C^n$ by $F(w_1, \dots, w_n) = ((w_1)^s, w_2, \dots, w_n)$. Let $\widetilde{Y} = F^{-1}(Y \cap U)$ and let $U = (w_1)^s$ $F^{-1}(U)$. Let e_1, \dots, e_s be all the distinct s-th roots of unity. Let $Y_n = \{(w_1, \dots, e_s) \mid x \in V\}$ $(w_n) \in \mathbb{C}^n | w_1 \in \widetilde{U}_1, w_k = g_k(e_p, w_1), 2 \leq k \leq n$, $1 \leq p \leq s$. $F(w_1, \dots, w_n) \in Y \cap U$ if and only if for some $t \in \tilde{U}_1(w_1)^s = t^s$ and $w_k = g_k(t), 2 \le k \le n$. Hence $\bigcup_{p=1}^s Y_p = \tilde{Y}$. Since Y_n is defined by n-1 holomorphic functions, $H^q(\tilde{U}-Y_n, {}^n\mathfrak{D})=0$ for $q \ge n-1$ and $1 \le p \le s$. The following portion of the Mayor-Vietoris sequence is exact: $H^q(\tilde{U}-Y_{p+1}, {}_{n}\mathfrak{O}) \oplus H^q(\tilde{U}-\bigcup_{i=1}^{p}Y_i, {}_{n}\mathfrak{O}) \rightarrow H^q(\tilde{U}-\bigcup_{i=1}^{p+1}Y_i, {}_{n}\mathfrak{O}) \rightarrow$ $H^{q+1}(\widetilde{U}-(Y_{p+1}\cap(\bigcup_{i=1}^{n}Y_{i})), {}_{n}\mathfrak{D}), q \geq 0, 1 \leq p < s.$ Since $H^{q+1}(\widetilde{U}-(Y_{p+1}\cap \bigcup_{i=1}^{n}Y_{i}))$ $(\bigcup_{i=1}^n Y_i)$, $n\mathfrak{D} = 0$ for $q \ge n-1$ (see Problème 1, [4] or Th., [5]), by induction on p we conclude that $H^q(\tilde{U}-\bigcup_{i=1}^p Y_i, {}_n\mathfrak{D})=0$ for $1\leq p\leq s$ and $q\geq n-1$. In particular, $H^{n-1}(\tilde{U}-\tilde{Y}, {}_{n}\mathfrak{D})=0$. Let \mathfrak{F} be the zeroth direct image of ${}_{n}\mathfrak{D}$ under F. Then, since $H^{n-1}(\tilde{U}-\tilde{Y}, {}_{n}\mathfrak{O})=0$,

(3)
$$H^{n-1}(U-Y, \mathfrak{F}) = 0.$$

We claim that

$$\mathfrak{F} \approx {}_{n}\mathfrak{D}^{s}.$$

Consider the subvariety $Z = \{(z_0, z_1, \dots, z_n) | z_1 = (z_0)^s\}$ in \mathbb{C}^{n+1} . Let $z \mathbb{D}$ be the structure sheaf of Z. Let $\theta \colon \mathbb{C}^{n+1} \to \mathbb{C}^n$ be defined by $\theta(z_0, z_1, \dots, z_n) = (z_1, \dots, z_n)$. Let $T \colon \mathbb{C}^n \to Z$ be defined by $T(w_1, \dots, w_n) = (w_1, (w_1)^s, w_2, \dots, w_n)$. T is biholomorphic and $\theta T = F$. Let \mathfrak{B} be the zeroth direct image of $z \mathbb{D}$ under θ . To prove (4), we need only prove that $\mathfrak{B} \approx_n \mathbb{D}^s$. Suppose Q is a bounded nonempty Stein open subset in \mathbb{C}^n and $f \in \Gamma(\theta^{-1}(Q) \cap Z, z \mathbb{D})$. Then $f = \tilde{f} \mid \theta^{-1}(Q) \cap Z$ for some $\tilde{f} \in \Gamma(\theta^{-1}(Q), x_{n+1}, \mathbb{D})$. By methods analogous to the usual proof of the

Weierstrass division theorem, we obtain $\tilde{f}=u((z_0)^s-z_1)+\sum_{i=0}^{s-1}(v_i\circ\theta)(z_0)^i$, where u is a holomorphic function on $\theta^{-1}(Q)$ and v_i , $0\leq i\leq s-1$, are holomorphic functions on Q. It is easily seen that v_i , $0\leq i\leq s-1$, are uniquely determined by f. $f\mapsto (v_0,\cdots,v_{s-1})$ defines a map h_Q from $\Gamma(\theta^{-1}(Q)\cap Z,_Z\mathbb{O})$ to $\Gamma(Q,_n\mathbb{O}^s)$. $\{h_Q\mid Q \text{ is a bounded Stein open subset of } \mathbf{C}^n\}$ induces a sheaf-isomorphism from \mathfrak{G} to ${}_n\mathbb{O}^s$. (4) is proved. (3) and (4) imply that $H^{n-1}(U-Y,_n\mathbb{O})=0$. Hence $H^n_{Y;0}=0$.

Proof of Theorem 1.

Suppose X is not locally connected in codimension q+1 at 0. We are going to prove that $H_{X;0}^p \neq 0$ for some p > q+r. For some open neighborhood U of 0 in G we have $X \cap U = X_1 \cup X_2$ and $X_1 \cap X_2 = Z$, where (i) for i=1, 2 X_i is a subvariety of $X \cap U$ whose germ at 0 is different from the germ of X at 0 and (ii) $\operatorname{codim}_{X;0}(Z) > q+1$. We can assume w.l.o.g. that no branch-germ X_1 at 0 contains a branch-germ of X_2 at 0 and vice versa. We have n > q+r+1.

(a) First we prove the case where $Z=\{0\}$. By shrinking U, we can find for i=1, 2 a 1-dimensional subvariety Y_i in X_i such that 0 is the only singular point of Y_i and Y_i is locally irreducible at 0. For any open neighborhood W of 0 in U we have the following portion of the Mayor-Vietoris sequence:

$$H^{n-2}(W-X, {}_{n}\mathfrak{D}) \rightarrow H^{n-1}(W-\{0\}, {}_{n}\mathfrak{D}) \xrightarrow{\alpha_{W}} H^{n-1}(W-X_{1}, {}_{n}\mathfrak{D}) \oplus H^{n-1}(W-X_{2}, {}_{n}\mathfrak{D}),$$

where $\alpha_W = \alpha_W^{(1)} \oplus (-\alpha_W^{(2)})$ and $\alpha_W^{(i)} : H^{n-1}(W - \{0\}, {}_{n}\mathfrak{D}) \to H^{n-1}(W - X_i, {}_{n}\mathfrak{D}), i = 1,$ 2, are the restriction maps. Moreover, we have the following commutative diagram:

$$\begin{array}{c} H^{n-1}(W-\{0\},\,{}_{n}\mathbb{O}) \xrightarrow{\alpha_{W}} H^{n-1}(W-X_{1},\,{}_{n}\mathbb{O}) \oplus H^{n-1}(W-X_{2},\,{}_{n}\mathbb{O}) \\ \beta_{W} \downarrow & || \\ H^{n-1}(W-Y_{1},\,{}_{n}\mathbb{O}) \oplus H^{n-1}(W-Y_{2},\,{}_{n}\mathbb{O}) \xrightarrow{\gamma_{W}} H^{n-1}(W-X_{1},\,{}_{n}\mathbb{O}) \oplus H^{n-1}(W-X_{2},\,{}_{n}\mathbb{O}), \end{array}$$

where $\beta_W = \beta_W^{(1)} \oplus (-\beta_W^{(2)})$, $\gamma_W = \gamma_W^{(1)} \oplus \gamma_W^{(2)}$, and $\beta_W^{(i)} : H^{n-1}(W - \{0\}, {}_{n}\mathbb{O}) \to H^{n-1}(W - Y_i, {}_{n}\mathbb{O})$ and $\gamma_W^{(i)} : H^{n-1}(W - Y_i, {}_{n}\mathbb{O}) \to H^{n-1}(W - X_i, {}_{n}\mathbb{O})$, i = 1, 2, are the restriction maps. Passing to direct limits, we have the following commutative exact diagram:

(5)
$$H_{X;0}^{n-1} \to H_{(0);0}^n \longrightarrow H_{X_1;0}^n \oplus H_{X_2;0}^n \\ \downarrow \qquad \qquad || \\ H_{Y_1;0}^n \oplus H_{Y_2;0}^n \to H_{X_1;0}^n \oplus H_{X_2;0}^n$$

The cocycle in $Z^{n-1}(\mathfrak{A}, {}_{n}\mathfrak{D})$, where $\mathfrak{A}=\{A_{i}\}_{i=1}^{n}$ and $A_{i}=\{(z_{1}, \cdots, z_{n})\in \mathbb{C}^{n}|z_{i}\pm 0\}$, defined by $(z_{1}\cdots z_{n})^{-1}\in\Gamma(\bigcap_{i=1}^{n}A_{i}, {}_{n}\mathfrak{D})$ is not mapped to 0 under any restriction map $H^{n-1}(\mathbb{C}^{n}-\{0\}, {}_{n}\mathfrak{D})\rightarrow H^{n-1}(\mathbb{D}-\{0\}, {}_{n}\mathfrak{D})$ for any polydisc neighborhood \mathbb{D} of 0 in \mathbb{C}^{n} . Hence $H^{n}_{[0];0}\pm 0$. Since $H^{n}_{Y_{i;0}}=0$ for i=1,2 by Lemma 1, the exact

276 Y.-T. Siu

diagram in (5) implies that $H_{X;0}^{n-1} \neq 0$. Since n-1 > q+r, $H_{X;0}^{p} \neq 0$ for some p > q+r.

(b) In the general case, suppose $H_{X;0}^p = 0$ for p > q + r. We are going to derive a contradiction. In view of (a) we can assume that the germ of Z at 0 has positive dimension. Let $h = \operatorname{codim}_{U;0}(Z)$. Then $r + q + 2 \le h < n$. After a linear transformation of the coordinates system of C^n and after a shrinking of U, we can assume that $Z \cap C^h = \{0\}$, where C^h is regarded as a linear subspace of C^n through the embedding sending $(z_1, \dots, z_h) \in C^h$ to $(z_1, \dots, z_h, 0, \dots, 0) \in C^n$. Suppose W is an arbitrary open neighborhood of 0 in U. Consider the exact

sequences $0 \to_n \mathbb{O}/\sum_{i=k+1}^n z_{i}$ $n \mathbb{O} \xrightarrow{f_k} n \mathbb{O}/\sum_{i=k+1}^n z_{i}$ $n \mathbb{O} \to_n \mathbb{O}/\sum_{i=k}^n z_{i}$ $n \mathbb{O} \to 0$, $h+1 \le k \le n$, where f_k is defined by multiplication by z_k and $\sum_{i=n+1}^n z_{i}$ $n \mathbb{O} \to 0$. These give us exact sequences $H^p(W-X, n \mathbb{O}/\sum_{i=k+1}^n z_{i} n \mathbb{O}) \to H^p(W-X, n \mathbb{O}/\sum_{i=k}^n z_{i} n \mathbb{O}) \to H^{p+1}(W-X, n \mathbb{O}/\sum_{i=k+1}^n z_{i} n \mathbb{O})$, $p \ge 0$, $h+1 \le k \le n$. Passing to direct limits, we have the following exact sequences:

(6)
$$\begin{aligned} \operatorname{dir. lim.}_{W} H^{p}(W-X, \,_{n}\mathbb{O}/\sum_{i=k+1}^{n} z_{i} \,_{n}\mathbb{O}) \\ \operatorname{dir. lim.}_{W} H^{p}(W-X, \,_{n}\mathbb{O}/\sum_{i=k}^{n} z_{i} \,_{n}\mathbb{O}) \\ \operatorname{dir. lim.}_{W} H^{p+1}(W-X, \,_{n}\mathbb{O}/\sum_{i=k+1}^{n} z_{i} \,_{n}\mathbb{O}) \,, \\ p \geq 0, \ h+1 \leq k \leq n \,. \end{aligned}$$

Since dir. $\lim_{W} H^{p}(W-X, {}_{n}\mathfrak{D}/\sum_{i=n+1}^{n} z_{i} {}_{n}\mathfrak{D}) = H_{X;0}^{p+1} = 0$ for $p \geq q+r$, by (6) and by backward induction on k we conclude that dir. $\lim_{W} H^{p}(W-X, {}_{n}\mathfrak{D}/\sum_{i=k}^{n} z_{i} {}_{n}\mathfrak{D}) = 0$ for $p \geq q+r$ and $h+1 \leq k \leq n+1$. Since for $p \geq 0$ $H_{X \cap Ch;0}^{p+1}({}_{n}\mathfrak{D}) \approx 0$ dir. $\lim_{W} H^{p}(W-X, {}_{n}\mathfrak{D}/\sum_{i=h+1}^{n} z_{i} {}_{n}\mathfrak{D})$, we have

$$(7) H_{X \cap Ch;0}^{p+1}({}_{h}\mathfrak{D}) = 0 \text{for } p \geq q+r.$$

Since no branch-germ of X_1 at 0 contains a branch-germ of X_2 at 0 and vice versa, $\operatorname{codim}_{U;0}(X_i) < \operatorname{codim}_{U;0}(Z) = h$ for i = 1, 2. Hence the germ of $X_i \cap C^h$ at 0 is positive dimensional for i = 1, 2. We are in the situation of Part (a). $H_{X \cap C^h;0}^{h-1}({}_h \mathfrak{D}) \neq 0$. Since $h \geq q + r + 2$, this contradicts (7). q.e.d.

REMARK. The converse of Theorem 1 is not true as is shown in the following example: In C^6 let $X_1 = (\{z_1 = z_2 = 0\} \cup \{z_2 = z_3 = 0\} \cup \{z_3 = z_4 = 0\}) \cap \{z_5 = 0\}$ and $X_2 = (\{z_2 = z_1 = 0\} \cup \{z_1 = z_4 = 0\} \cup \{z_4 = z_3 = 0\}) \cap \{z_6 = 0\}$. Let $X = X_1 \cup X_2$. For $i = 1, 2, X_i$ is of codimension 3 and can be defined by 3 global holomorphic functions, because $X_1 = \{z_1 z_3 + z_2 z_4 = 0, z_2 z_3 = 0, z_5 = 0\}$ and $X_2 = \{z_1 z_3 + z_2 z_4 = 0, z_1 z_4 = 0, z_6 = 0\}$. Hence $H^x_{X_i;0} = 0$ for p > 3 and i = 1, 2. $X_1 \cap X_2 = (\{z_1 = z_2 = 0\} \cup \{z_3 = z_4 = 0\}) \cap \{z_5 = z_6 = 0\}$ is of codimension 4 and is not locally connected in codimension 1 at 0, because $X_1 \cap X_2 = Y_1 \cup Y_2$ and $Y_1 \cap Y_2 = \{0\}$, where $Y_1 = \{z_1 = z_2 = z_5 = z_6 = 0\}$ and $Y_2 = \{z_3 = z_4 = z_5 = z_6 = 0\}$. Hence $H^x_{X_1 \cap X_2;0} \neq 0$ for some p > 4. By taking direct limits of Mayor-Vietoris sequences, we obtain exact

sequences $H_{X;0}^p \to H_{X_1\cap X_2;0}^{p+1} \to H_{X_1;0}^{p+1} \oplus H_{X_2;0}^{p+1}$, p>0. Hence $H_{X;0}^p = 0$ for some p>3. On the other hand, the 6 branch-germs of X are given by $Z_1 = \{z_1 = z_2 = z_5 = 0\}$, $Z_2 = \{z_2 = z_3 = z_5 = 0\}$, $Z_3 = \{z_3 = z_4 = z_5 = 0\}$, $Z_4 = \{z_1 = z_2 = z_6 = 0\}$, $Z_5 = \{z_1 = z_4 = z_6 = 0\}$, and $Z_6 = \{z_3 = z_4 = z_6 = 0\}$. It can be easily verified that we cannot divide these 6 branch-germs into two groups so that the intersection of the union of one group with the union of another group is of dimension <2. X serves also as an example of a non local complete intersection which is locally connected in codimension 1.

University of Notre Day	LINIVEBRITY	OF	NOTRE	DAM
-------------------------	-------------	----	-------	-----

References

- [1] H. Cartan: Faisceaux analytiques cohérents, C.I.M.E. (Varenna), 1963, Inst. Math. d. Unvi., Roma, 1-88.
- [2] R.C. Gunning and H. Rossi: Analytic Functions of Several Complex Variables, Prentice-Hall, Englewood Cliffs, N. J., 1965.
- [3] R. Hartshorne: Complete intersections and connectedness, Amer. J. Math. 84 (1962), 496-508.
- [4] B. Malgrange: Faisceaux sur des variétés analytiques-réelles, Bull. Soc. Math. France 87 (1957), 231-237.
- [5] Y.-T. Siu: Analytic sheaf cohomology groups of dimension n of n-dimensional non-compact complex manifolds, to appear in Pacific J. Math.