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1. Introduction

The purpose of this paper is to discuss the convergence of sums of in-
dependent random variables with values in a separable real Banach space and
to apply it to some problems on the convergence of the sample paths of stochastic
processes.

For the real random variables, we have a complete classical theory on the
convergence of independent sums due to P. Levy, A. Khinchin and A. Kolmo-
gorov. It can be extended to finite dimensional random variables without any
change. In case the variables are infinite dimensional, there are several points
which need special consideration. The difficulties come from the fact that
bounded subsets of Banach space are not always conditionally compact.

In Section 2 we will discuss some preliminary facts on Borel sets and prob-
ability measures in Banach space. In Section 3 we will extend P. Levy's theorem.
In Section 4 we will supplement P. Levy's equivalent conditions with some
other equivalent conditions, in case the random variables are symmetrically
distributed. Here the infinite dimensionality will play an important role. The
last section is devoted to applications.

2. Preliminary facts

Throughout this paper, E stands for a separable real Banach space and the
topology in E is the norm topology, unless stated otherwise. £* stands for
the dual space of E, Jg for all Borel subsets of E and £P for all probability meas-
ures on (E, &).

The basic probability measure space is denoted by (Ω, £F, P) and the
generic element of Ω by ω. An E-valued random variable X is a map of Ω
into E measurable (£F, i2). The probability law μx of X is a probability measure
in (E, S) defined by

According to Prohorov [5], every μ^£* is tight, i.e.
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V£>0 3K compacted μ(K)>l-6.

A subset ι5H of S is called uniformly tight if

V£>0 3i£ compacted V/^GJί

ίP is a complete metric space with respect to the Prohorov metric [5],
is conditionally compact, if and only if JM is uniformly tight.

Let C denote the algebra of all cylinder sets

n= 1, 2, .-,

the σ-algebra generated by C*.

Proposition 2.1. £B[C]=B.

Proof. Let {iΛ} be a countable dense subset of E and take {sJcZ?* such
that

II*JI = 1, < ^ , ^ > = I 1 * J I , n = l , 2 , . . .

Such #Λ exists by Hahn-Banach's extension theorem for each n. Now we shall
prove that

{x: \\x\\<r}= Γ\{x:<znJx><r}.

Write B1 and B2 for the sets on both sides. B1dB2 is obvious. To prove
B1CZB2, take an arbitrary point b in J5J. Then we have ||ft||>r. As {δn} is
dense, we can find bn such that

Then we get

l|ftJl^llft||-ll*-AJI>i(ll

and so

This shows b<EΞBc

2. Thus B1=B2 is proved. Since B2€Ξ$[C],
Since -£8[C] is translation invariant, {x: \\x—a\\<r} also belongs to 1B[C].
Therefore &<Z&[C]. Since $[C]dB is obvious, we have &=

The characteristic functional of μ^£P is defined by

C(z:μ) = J έ*<*'x>μ{dx),

It is clear that
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μn-*μ (Prohorov metric) implies C(z: μn)->C(z: μ) for every z^E*. C(z: μ)
is continuous in the norm topology in £*.

Proposition 2.2.

C(z: μ) = C(z: v) => μ = v .

Proof. Setting # = Σ tjZj and using the one-to-one correspondence be-

tween the probability measures and the characteristic functions in i?Λ, we can
easily see that μ = v on C. Since C is an algebra which generates iδ by
Proposition 2.1, we have μ=v on J3.

Proposition 2.3. 7/we Aαΐ e r > 0

C(z:μ)=l for \\z\\<r,

then μ is concentrated at 0, i.e. μ=S.

Proof. Let φ(t)=C(tz: μ)> t real, #4=0. Then φ{t) is a characteristic
function in R1 and

* ) ! for

Using the inequality

\<P(t)-<P{ή\ <V21 \-φ(t-s)I

we can get <£>(*)= 1 for every £. Setting ί = l we have

C(z: μ)=l = C(z: δ) for

This is obvious for #=0. Hence μ=δ follows by Proposition 2.2.

3. Sums of independent random variables

Let Xn(ω)y w = l , 2, ••• be a sequence of independent E-valued random
variables and set

n

Sn = Σ -XΊ > /̂w = t n e probability law of Sn .
1

Then we have

Theorem 3.1. c υ [Extension of P. Levy's theorem). The following conditions
are equivalent,
(a) Sn converges a.s. (=almost surely),
(b) »SΛ converges in probability y

(c) μM converges (Prohorov metric).

(1) In the course of printing the authors noticed that a more general fact was proved by A.
Tortrat [7].
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Proof. (a)=#-(b)=φ(c) is obvious. We can prove (b)=φ(a) in the same way as

in the real case, using the inequality that can be verified also as in the real case:

P(πmxJ\Xm+1+Xm+2+-+Xk\\>2c)

, P(\\Xm+1+-+XJ\>c)
I- maχP(\\Xk+1+-+XΠ\\>c)

n<k<n

To prove (c)==>(b), let us denote the probability law of Sn—Sm='

by μmn, m<in. As μn tends to a probability measure μ on E by the assumption

(c), {μn} is conditionally compact and so uniformly tight, i.e.

V£>0 3K compact V/z μn(K)>\-8 .

Let Kx denote the set {x— y: x, y^K}. Kλ is also compact by the continuity of

the map (x} y)—>x—y. As Sn> Sm^K implies Sn—Sm^Kiy we have

This shows that {μmn: tn<n} is also conditionally compact. We shall now prove

(b), i.e.

(1) Vε>0 3N Vm<n<N μ

where Ue denotes the f-neighbourhood of the origin 0 in E. Jμppose to the

contrary that

(2) 3ε>0 VN 3n(N)>m(N)>N

As {/iwj is conditionally compact, we can assume that μmc^ncN^ converges to a

probability measure v on (E, J$), then

(3) v{U2)< lim

On the other hand we have

by the independence of Xn, n=l, 2, •••. Lett ing TV-^oo, W e have

C(z: μ) = C(z: μ)C{z: v).
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Since C(0: μ)=l, we have r > 0 such that

C(z: //,)φθ for | l * | | < r .

Then

C{z:v)=\ for | | * | | < r ,

so that z^=δ by Proposition 2.3. This contradicts (3).

Theorem 3.2. The uniform tightness of {μn} implies that we have a sequence
cn^E, n—ly 2, "- such that Sn—cn converges a.s.

Proof. Let (Yw, n=\, 2, •••) be a copy of (Xn, n=l, 2, •••) independent of

this random sequence. T h e n Xly X2} •••, Yiy Y2y ••• are independent . N o w

set

τn = Σ Yi > un =

z;w = the probability law of Un .

Then Xi— Yly X2— Y2y ••• are independent.
By our assumption we have

V£>0 3A:=Λ:(ε) compact V/z μH(K)>l-6.

Write ϋΓ1=iC1(£) for the set {#— y: Λ?, J^^i^}. Then Kλ is also compact and

we have

>P(SnΪΞK,Tn€LK)

> l-P(Sn££Kc)-P(Tn(ΞKc)

= l-2μn(K°)>\-2ε.

Therefore {vn} is also uniformly tight and so conditionally compact.
Since Xl9 X2, ••• Y19 Y2 ••• are independent and Xn and Yn have the

same distribution, we have

= fl E[ei<z xJ>]E[e-i<s'γJ>]
j = l

= fl\E(e«z x

i>)\\
j = l

Since 0 < \E[ei<ZlX">] | 2 < 1 , lim C(s: i J exists for every z(ΞE*.
n-yoo

Now we shall prove that {vn} is convergent. Since it is conditionally

compact, it is enough to prove that two arbitrary convergent subsequences

[vQh {v'n} °f {vn}
 n a v e t n e same limit. Since lim C(z: vn) exists, we have, for
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z/=lim v'n and z/ '=lim v"',

C(*: i/) = lim C(*: i/£) - Urn C(z: v'n') = C(*: i/"),
« «

and so v'=v" by Proposition 2.3.

By Theorem 3.1 the convergence of vn implies the a.s. convergence of

Un = Sn—Tn. Since {SM} and {Tn} are independent, we can use Fubini's

theorem to see that for almost every sample sequence (c19 c2y •••) of (Tly T2, •••),

Sn—cn converges a.s. This completes the proof.

4. Sum of independent random variables with symmetric distri-
butions

Let {Xn} be independent E-valued random variables, Sn denote
1

w = l , 2 , ••• and μn the probability law of Sn, w = l , 2 , ••• as before. In this

section we shall impose an additional condition:

(SD) Each Xn is symmetrically distributed.

Theorem 4.1. The conditions (a), (b) and (c) in Theorem 3.1 and the

following conditions are all equivalent.

(d) {μn} is uniformly tight.

(e) There exists an E-valued random variable S such that <#, Sny^ζz, Sy in

probability for every zEΞE*.

(f) There exists a probability measure μ on E such that

>sn>]^C(z: μ)

for every z€ΞE*.

REMARK. In the finite dimensional case, (SD) is not necessary for the

proof of the equivalence of all conditions except (d). But (f) does not always

imply (c) in the infinite dimensional case without (SD). For example, let E

be a Hubert space and {en} be an orthonormal base. Now set

Xx{ω) ΞΞ ex, Xn{ω) = en-en_1, n = 1, 2, •••.

T h e n Sn(ω) = en and

<*, sn> = <*, eny - o - <*, sy, s = o.

But Sn does not converge to S.

Proof. (a)<=»(b)<=φ(c)=>(d) and (a)=>(e)=#(f) are both obvious. Therefore

it remains only to prove (f)=^(e)=>(d)=#>(a).

Suppose that (d) holds. By Theorem 3.2 we have {cn} such that Sn—cn
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converges a.s. Since each Xn is symmetrically distributed and X19 X2, ••• are

independent, the r a n d o m sequence (Xly X2, •••) has the same probability law
n

as (—Xiy —X2, •••). Since Sn—£W=Σ^, — cn converges a.s., — S n — c n =
n

^Σι(—Xi)—cn also converges a.s. and so does Sn=[(Sn—cn)—(—Sn—cn)]l2.

Thus (d)=φ(a) is proved.
Suppose that (e) holds. Take z19 z2, ••• zp^E* arbitrarily and fix them.

Then the sequence of random vectors

σm(ω) = (<*„ Sm(ω)\ - , <zp, Sm(ω)» , iff = 1, 2, - .

converges in probability to the random vector

Since σn and σm—σn, (m>n), prove to be independent by the assumption, σn

and σ—σn are also independent, i.e.

, for Γ1(

Writing this in terms of SM and S—Sn, we have

for Cx, C2^C. Since C is an algebra which generates JS by Proposition 2.1, we
have

, S-Sn<aB2) =

for Sj, i? 2 ei3, namely 5M and S—Sn are independent. Thus we have

and so we can find xo=xo(K, ή) such that

P(Sn+x0<=K)>P(S<=K).

Since SM proves to be symmetrically distributed by our assumption, we have

P(-Sn+x0^K) = P(Sn+x0(ΞK)>P(S<=K).

Writing Kλ for the set {(x—y)β: x, y^K), we get

μn{K,) = P(SneK,)>P(Sn

>l-2P(S(=Kc).

By taking a compact set K=K(£) for £>0, we can make the right hand side
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greater than 1—6. Since Kx is compact with Ky {μn} proves to be uniformly

tight. This proves (e)==>(d).

We shall now prove (f)=φ(e).

Take z^E* and fix it for the moment. <#, Xw>, w = l , 2, ••• are in-

dependent real random variables and

By our assumption, we have

E[eit<z>sn>] = E[ei<tz>sn>] -> C(tz: μ)

for every real t. Since the right hand side is a characteristic function of t for

the probability measure on R1 induced from μ by the map #—><(#, Λ£>, the

probability law of <#, SΛ> converges to this measure. Therefore <#, 5n> con-

verges a.s. to a real random variable, say YZJ by Levy's theorem. Notice that

the exceptional ω-set depends on z. Since a countable sum of null sets also is

a null set, we have a P-null ω-set N=N(z1, z2, •••) such that

for every

Now we shall compare two systems of real random variables:

y , (ω), ω€=(Ω,

and

They have the same finite jont distributions. To prove this, take za\ zc2\ •••,

*. Then

Σ
e J Γ ^Γ ί S ^ A S ^ i Γ ί < Σ ^

= lim £ |_̂  J J = hm E\_e J

by our assumption (f), where Eμ is the expectation sign based on the measure μ.

Let i?°° be a countable product space i?1 X i?1 X ••• and J2(i?°°) the σ-algebra

generated by all cylindrical Borel sets in i?°°. J$(R°°) is also the σ-algebra of

all Borel subsets of R°° with respect to the product topology.

Let z\ z", .--be any sequence in £*. Then we have

for B^^(R°°); in fact, if JB is a cylindrical Borel set, this identity holds because
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of the same joint distributions mentioned above and so it proves to hold for every
B^JB(R°°) by usual argument.

Now we shall prove the existence of an E-valued random variable S(ω) with
Yz=ζz, Sy a.s. for each z<^E*y which will complete the proof of (e). To find
out such S(ω), we shall use the facts mentioned above.

Since μ is tight, we can find an increasing sequence of compact sets K19 K2,
• c ί 1 such that μ(Kn)->l, so that μ(iCo)=l for K^ΞΞ [jKn. K^ is clearly a

n

Borel subset of E. Take z19 z2y ••• eJS1* in Proposition 2.1. The map θ: E-*R°°
denfined by

θx = « * „ Λ?>, <*2, *>•••)

is continuous and one-to-one from E onto 02?; in fact, if θx=(0, 0, •••), then

xEΞ Π{x: O n , x><r} = {x: \\x\\<r}
n

for every r > 0 (see the proof of Proposition 2.1) and so x=0. Therefore ΘKn

is compact and the restriction θ\Kn has a continuous inverse map. Since
ΘKOΌ= UθKn is a Borel subset of -R°°, the restriction of θ to KM has an inverse

which can be extended to a map ψ\

that

2) x = φ(θx) —

Since

measurable (J3(i?°°), i3). It is clear

on

we have

Now we set

P((YZ1,

S(ω) = φ(Yzl(ω), YZ2(ω),

Take an arbitrary z^E*. Then

( 3 ) μ(O, x> =

Since φ is measurable
on (g0, £„ ?2, •••): ? 0 = < « ,
and (3) we have

1 by (2).

) and ΛJ-^<X Λ:> is continuous; the condition

, ?2, •••)> i s g i v e n b y a Borel subset of R°°. By (1)
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and so

which completes our proof.

5. Examples.

a. Generalized Wiener expansion of Brownian motion

Let B(t), 0<t<l, be a Brownian motion with B(0) = 0. Then we have an
isomorphism between the real Hubert Space L2[0, 1] and the real Hubert Space
M(B) spanned by B(t), 0<t<ί in L2(Ω, £f, P) by

The indicator £oί of the interval (0, t) corresponds to B(t). Let {φn}n be an
orthonormal base in L2[0, 1]. Then the {ξn}n that correspond to {<pn}n form
an orthogonal base in M(B). {ξn}n are independent since B(t) is a Gaussian
process. As eot has an orthogonal expansion

*of = Σ
n

where

6«(0 = \ eot(u)φn(u)du = \ 9>w(w)^ ,
Jo Jo

we have an orthogonal expansion

( 1 ) B(t) = Σ *„(*)?»• = Σ ξ
« »

For each /, this series converges in the mean square and so converges a.s. by
Levy's theorem. We shall make use of Theorem 4.1 ((e)=^(a)) to prove

Theorem 5.1. The right hand side of (1) converges uniformly in t to B(t)
a.s.

Proof. Let us introduce a sequence of stochastic processes

XJt, ω) - ξjω) Γ φn{u)du , » = 1, 2, -
Jo

and write the sample paths of Xn(t, ω), Λ = 1 , 2, ••• and £(£, ω) as Xn(ω),
w = l , 2, ••• and 2?(ω) respectively. Then these are symmetrically distributed
random variables with values in the Banach space E = C[0, 1] of continuous
functions on [0, 1]. XH, u = l , 2, ••• are independent. Set
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Sn(ω) is the sample path of the process Sn(t, ω) = Σ ^.-(ί, ω). Our theorem
1

claims that Sn^B a.s. To prove this it is enough by Theorem to prove that

for every z^E* i.e. for every signed measure z(dt) on [0, 1], (z9 Sny converges

in probability to <#, 2?>. It is now enough to observe

= E\ Γ z(dt)(Sn(t)-B(ή) 1 | * | = total variation of z ,

because

(E[\Sn(t)-B(t)\]γ < E[\Su(t)-B{t)\*\ = Σ W
I = " -1-1

and so

I -> 0 as n - > ^ .

b. Definition of Brownian motion

Theorem 5.1 suggests that we can define Brownian motion as follows. Let

ξn(ω), /z=l ,2 , ••• be an independent sequence of real random variables with

the distribution iV(0, 1), (whose existence is guaranteed by Kolmogorov's ex-

tension theorem) and an orthonormal base <pn, n=ly 2, ••• in Lz[0y 1].

Theorem 5.2.

(2) Σ f
n

converges uniformly in t a.s. The limit process S(t) is a stochastic process with

independent ίncreaments and continuous paths such that S(t)S(s) is iV(0, t—s)~

distributed for t>s, i.e. S(t) is a Brownian motion.

REMARK. N. Wiener [6] defined Brownian motion in this way by taking

φn(ιή=:χ/ 2 sinnπty TZ—1,2, •••. He proved the a.s. uniform convergence of

the grouped sums

oo 2 W - 1 Ct _ _

Σ Σ ξk{ω) \ V 2 sin kπudu ,

which was sufficient for his purpose. G. Hunt [4] proved a theorem that ensures

the a.s. uniform convergence of the sum
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co rt

Σ ξn(ω) \ V 2 sin nπudu .
n = l Jo

We claim that this holds for a general orthonormal base {φrt}, (Delporte. [2],
Walsh [8]).

Proof. The only difficult part of our theorem is the a.s. uniform con-
vergence. We shall use Xn(ω), Sn(t, ω) and Sn(ω) as before. By Theorem 3.2
it is enough to prove that the probability laws of Sn, τz=l,2, ••• are uniformly
tight.

Observing

E[\Sn(t)-SΠ(s)\*] = £\bi(t)-bi(s)\>< [\eot(u)-eos(u)\2du= \t-s\ ,

ί = l J o

we have

E[\Sn(t)~Sn(s)\*] = 3E[\Sn(t)-Sn(s)\J<3(t-sY

because Sn(t)—Sn(s) is Gauss distributed with the mean 0. Using the same
technique of diadic expansions as in the proof of Kolmogorov's theorem, we can
prove that for £>0, there exists δ=δ(£) such that

P(SnεΞK)>l-S, n = 1, 2,

where

K = K(S) = K(S)

= {/<ΞC[0, 1]: /(0)= 0, I f(ή~f(s)\<5\t-s\* for | t-s\ <δ(6)} ,

It is easy to see that K is an equi-continuous and equibounded family. There-
fore K is conditionally compact in C[0, 1] by Ascoli-Arzela's theorem. This
completes the proof.

c. Gaussian stationary processes

Let S(t) be a Gaussian stationary process continuous in the square mean such
that E(S(t))=0. Let us consider the sample path S of S(t) on a bounded time
interval a<t<b. By taking a measurable separable version we have
S^Lp[a, b] a.s. for every p> 1 we shall identify two functions on [a, b] equal to
each other a.e. In fact we have

noticing that 5(0, ω) is Gauss distributed and so
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P[| |S| | ,<oo] = l .

Consider the spectral decomposition of S(t):

S(t, ω) = Γ eiXtΦ{d\, ω)
J — oo

and set

XH(t, ω ) = j e'
λ'Φ(rfλ, ω), « = 1, 2 , - .

Then Xn(t) has a version whose sample path (on a<t<b) is continuous a.s. and
so belongs to Lp[a, b] a.s. Now set

Then it is easy to see that

E[\Sn(t)-S(t)\2]=
l

where F(dX) is the spectral measure of the covariance function of S(t).

Theorem 5.3.

\b\\b\Sn(t)-S(t)\*dt->0 a.s.
J a

Proof. Using the same notation for the sample paths wτe can see that
Xny n=ί9 2, are independent random variables with values in Lp[a> b].

E[\\Sn-S\\;] =

= \bE[\SH(t)-S{t)\*]dt = cX(E[\Sn(t)-S(t)\ψ'>dt

= cp(b-a)\ j ^(Jλ)]^2 ^ 0 as n -> oo ,

where c , = Γ - 4 = β " c p / 2 ) | f |*rff. By Theorem 3.1 ((b)=#(a)) for E=Lp[a, b],
J - oo V 2zr

this implies \\Sn—S\\p->0 a.s.

Theorem 5.4. If the sample path of S(t, ω) is continuous a.s., then

max \Sn(t)-S(t)\^0 a.s.
<*<t<b

REMARK, Sufficient conditions for the a,s? continuity of the sample path
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of S(t) in terms of the correlation function of S(t) were given by G. Hunt [4],

Belayev [1] and X. Fernique [3].

Proof. Using the same idea as above, we can apply Theorem 4.1 ((e)=φ(a))

for E=C[Oy 1] by observing

Πf* Cb \Ί
JCJ\ \ Zyuΐ)on\ty ω)— I ZyCtΐ)*J(*, co)\ I

<\"\z\(dt)E[\Sn(t,ω)-S(t,ω)\]
Ja

\z\{dt)[E{\Sn{t)-S{f)\*)r

J as
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