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1. Introduction

The purpose of this paper is to discuss the convergence of sums of in-
dependent random variables with values in a separable real Banach space and
to apply it to some problems on the convergence of the sample paths of stochastic
processes.

For the real random variables, we have a complete classical theory on the
convergence of independent sums due to P. Lévy, A. Khinchin and A. Kolmo-
gorov. It can be extended to finite dimensional random variables without any
change. In case the variables are infinite dimensional, there are several points
which need special consideration. The difficulties come from the fact that
bounded subsets of Banach space are not always conditionally compact.

In Section 2 we will discuss some preliminary facts on Borel sets and prob-
ability measures in Banach space. In Section 3 we will extend P. Lévy’s theorem.
In Section 4 we will supplement P. Lévy’s equivalent conditions with some
other equivalent conditions, in case the random variables are symmetrically
distributed. Here the infinite dimensionality will play an important role. The
last section is devoted to applications.

2. Preliminary facts

Throughout this paper, E stands for a separable real Banach space and the
topology in E is the norm topology, unless stated otherwise. E* stands for
the dual space of E, B for all Borel subsets of E and & for all probability meas-
ures on (E, ).

The basic probability measure space is denoted by (Q, &, P) and the
generic element of Q by w. An E-valued random variable X is a map of Q
into E measurable (#, B). The probability law p x of X is a probability measure
in (E, B) defined by

ux(B)=P(XEB), Bef.

According to Prohorov [5], every p€ & is tight, i.e.
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Ve>0 3K compactCE p(K)>1-—¢€.
A subset S of P is called uniformly tight if
Vex>0 3K compactcE Vue M wK)>1-—€.

& is a complete metric space with respect to the Prohorov metric [5]. HMCP
is conditionally compact, if and only if ¥ is uniformly tight.
Let C denote the algebra of all cylinder sets;

{xEE: (<2’1, x>) <22) x>: *ty <zm x>)EI‘}
n=1,2, -, z;,€E* T'e B(R")

and B[] the o-algebra generated by C.

Proposition 2.1. B[C]=3.
Proof. Let {b,} be a countable dense subset of E and take {z,} C E* such
that
lzll =1,  <zp b =Ib,ll, n=12 .
Such 2, exists by Hahn-Banach’s extension theorem for each n. Now we shall

prove that
{w: [lx|| <7} = N{x: {2, a><r}.

Write B, and B, for the sets on both sides. B,CB, is obvious. To prove
B{C Bs, take an arbitrary point b in Bi. Then we have ||b]|>r. As {b,} is
dense, we can find b, such that
1b—b,l1<3(llbl|—7) .

Then we get

16411 = 1161l —[16—b,|I>3(lIbl|+7)

|2 B>—1b,]| | = | <2y B> =<2y b, > | <II2,l| [16—0,,/1<5(116l|—7)
and so

{2y O>1b,||—3(IIBl| —7)>5(| bl +-7)—2([[bl| —7) = 7.

This shows b= Bj. Thus B,=B, is proved. Since B,€B[C], B,€ B[]
Since B[C] is translation invariant, {x: |[x—al||<<r} also belongs to B[C].
Therefore BC B[C]. Since B[C]C B is obvious, we have B=B[C].

The characteristic functional of p & P is defined by

Clz: p) = SE ¢<=*>u(dx),  wEE*.

It is clear that
C(z: px) = E[e<**>].
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t»—w (Prohorov metric) implies C(z: p,)—C(2: p) for every € E*. C(z: p)
is continuous in the norm topology in E*.

Proposition 2.2.
Clz:p)=Cz:v)=>p=v.
Proof. Setting 222 t;2; and using the one-to-one correspondence be-

tween the probability measures and the characteristic functions in R*, we can
easily see that u=» on C. Since C is an algebra which generates B by
Proposition 2.1, we have p=v on 3.

Proposition 2.3. If we have r>0 such that
Camy=1  for  |lsll<r,
then p is concentrated at 0, i.e. p=3.

Proof. Let @(t)=C(tz: w), t real, 0. Then ¢(f) is a characteristic
function in R' and
r

ty=1  for < .
P(t) ] Tzl

Using the inequality
|2()— ()| <V 2T t—5)]
we can get @(t)=1 for every t. Setting =1 we have
C(z: p) =1= C(z:9) for  2+0.

This is obvious for &=0. Hence p=3 follows by Proposition 2.2.

3. Sums of independent random variables

Let X,(»), n=1, 2, -+ be a sequence of independent E-valued random
variables and set

S, = Eﬂ X, w, = the probability law of S, .
Then we have

Theorem 3.1.° (Extension of P. Lévy’s theorem). The following conditions
are equivalent.
(@) S, converges a.s. (=almost surely),
(b) S, converges in probability,
(c) w, converges (Prohorov metric).

(1) In the course of printing the authors noticed that a more general fact was proved by A.
Tortrat [7].
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Proof. (a)=(b)=(c) is obvious. We can prove (b)=>(a) in the same way as
in the real case, using the inequality that can be verified also as in the real case:

P(max [|X oy X o oo+ Xl >20)
m<p<n
P(IX it 4 X,l1>0)
S 1= max P([ Xyt -+ X,/ =)

mp<n

To prove (c)=>(b), let us denote the probability law of S,—S,=>1n1X;
bY Lpmsy m<n. As p,tends to a probability measure x on E by the assumption
(), {1,} is conditionally compact and so uniformly tight, i.e.

Vex>0 3K compact Vr p,(K)>1-—€.

Let K, denote the set {x—y: x, y=K}. K, is also compact by the continuity of
the map (x, y)—>x—y. As S,, S,€K implies S,—S,,€K,, we have
ki K)=P(S,EK, S,EK)
>1—-P(S,eK°)—P(S,,=K°)
:1_”‘n(Kc)_ll’m(Kc)
>1-2¢.
This shows that {u,,,: m< n} is also conditionally compact. We shall now prove
(b), i.e.
(1) Vex>0 AN Vm<n<N p,,(U)>1-¢€,

where U, denotes the &-neighbourhood of the origin 0 in E. guppose to the
contrary that

As {#1,,,} is conditionally compact, we can assume that p,, x> COnverges to a
probability measure » on (E, ), then

(3) y(U,)< lg_rg Bmenmen (U <1—€.

On the other hand we have

Cz: puaw) = E[e<*Snan>]

= E[ef<*Snry>] E[ef <*Snca>~Smcan>>]
= C(2: ) C(2: Lmenoncnn)
by the independence of X, n=1, 2, :-. Letting N— oo, we have
C(z: p) = C(z: p)C(z: v).
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Since C(0: u)=1, we have >0 such that

Clz: p)+£0  for  |lall<r.
Then
Clz:v)=1 for =l <7,

so that v=8 by Proposition 2.3. This contradicts (3).

Theorem 3.2. The uniform tightness of {u,} implies that we have a sequence
c,€E, n=1, 2, .- such that S,—c, converges a.s.

Proof. Let (Y,, n=1, 2, ---) be a copy of (X,, n=1, 2, ---) independent of
this random sequence. Then X, X,, -, Y|, V,, -+ are independent. Now
set

”n

Tn:ﬁyi) U,,:Zn_‘,(X,—Y‘):S"—-—T

14

= the probability law of U, .

”n

Then X,—Y,, X,—Y,, --- are independent.
By our assumption we have

Ve>0 3K = K(§) compact Vn p (K)>1—¢.

Write K,=K,(€) for the set {x—y: x, yeK}. Then K, is also compact and
we have

v (K)=P(S,—T,eK)
> P(S,€K, T,eK)
>1-P(S,€K°)—P(T,eK")
=1-2p,(K)>1-2¢.
Therefore {v,} is also uniformly tight and so conditionally compact.

Since X, X,, -+ Y,, Y, -+ are independent and X, and Y, have the
same distribution, we have

C(z:v,) = E[ei<*Un>]
= [ E[¢i<*X>] E[e"<"¥5]

— 11 |E(e<%>)|*.

Since 0< | E[ef<*%»>]|*<]1, lim C(z: v,,) exists for every z€ E*.

Now we shall prove that {v,} is convergent. Since it is conditionally
compact, it is enough to prove that two arbitrary convergent subsequences
(i}, (v} of {v,} have the same limit. Since lim C(z: »,) exists, we have, for

n-yoo
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v'=lim v} and v"'=lim v/,

C(z: v') = lim C(z: v}) = lim C(z: v;’) = C(z:v"),

and so »’=»"" by Proposition 2.3.

By Theorem 3.1 the convergence of », implies the a.s. convergence of
U,=S,—T, Since {S,} and {T,} are independent, we can use Fubini’s
theorem to see that for almost every sample sequence (¢, ¢,, ) of (T}, Ty, -++),
S,—c, converges a.s. This completes the proof.

4. Sum of independent random variables with symmetric distri-
butions

Let {X,} be independent E-valued random variables, S, dehote ﬁXi,

n=1,2, .- and pu, the probability law of S,, n=1, 2, --- as before. In this
section we shall impose an additional condition:

(SD) Each X, is symmetrically distributed.

Theorem 4.1. The conditions (a), (b) and (c) in Theorem 3.1 and the
following conditions are all equivalent.
(d) {p,} is uniformly tight.
(e) There exists an E-valued random variable S such that {z, S,>—<z, SO in
probability for every z€ E*.
(f) There exists a probability measure u on E such that

E[e<*S»>] - C(z: p)
for every zE E*.

ReEMARK. In the finite dimensional case, (SD) is not necessary for the
proof of the equivalence of all conditions except (d). But (f) does not always
imply (c) in the infinite dimensional case without (SD). For example, let E
be a Hilbert space and {e,} be an orthonormal base. Now set

X (o) =e,, X, (o) =e,—e,_,, n=1,2, ..
Then S, (w)=e, and
&g, S,>=4<8e,—>0=_ S, S=0.
But S, does not converge to S.

Proof. (a)=(b)=(c)=(d) and (a)=(e)=(f) are both obvious. Therefore
it remains only to prove (f)=>(e)=(d)=(a).
Suppose that (d) holds. By Theorem 3.2 we have {c,} such that S,—c,
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converges a.s. Since each X, is symmetrically distributed and X, X,, -+ are
independent, the random sequence (X,, X,, --) has the same probability law

as (—X,, —X,, ). Since S,—c,= ﬁlX,-—c,, converges a.s., —5

nCn
ﬁ(——X,-)——c,, also converges a.s. and so does S,=[(S,—c,)—(—S,—c,)]/2.
Thus (d)=(a) is proved.

Suppose that (e) holds. Take 3, 2, -+ 2,& E* arbitrarily and fix them.
Then the sequence of random vectors

a-m(a)) = (<zu ‘gm(w)>y R <2’p, Sm(w)>) ) m = 1, 2, wee
converges in probability to the random vector
O—(m) = (<zn S(a))>, "ty <z[>’ S(cu))) .

Since o, and o,,—0o,, (m>n), prove to be independent by the assumption, o,
and o —o, are also independent, i.e.

P(¢,ET, 0—0,ET,) = P(¢,ET)Plo—0,ET,), for T, T, B[R]
Writing this in terms of S, and S—.S,, we have
PS,eC, S—8,eC,) = P(S,eC)P(S—S,C,)

for C,, C,eC. Since C is an algebra which generates B by Proposition 2.1, we
have

P(S,eB,, S—S,€B,)= P(S,€B,)P(S—S,=B,)
for B,, B,€ B, namely S, and S—.S, are independent. Thus we have
P(SEK) = S P(S,+x€ K)P(S—S, € dx)
E
and so we can find x,=x,(K, n) such that
P(S,+x,cK)>P(SEK).
Since S, proves to be symmetrically distributed by our assumption, we have
P(—S,+x,<€K)=P(S,+xK)>P(SeK).
Writing K, for the set {(x—y)/2: x, yE K}, we get

pK) = P(S,eK)>P(S,+xK, —S,+x,EK)
>1—P(S,+x,EK)—P(—S,+x,cK)
>1—2P(SEK?).

By taking a compact set K=K(€) for €>0, we can make the right hand side



42 K. IT6 anp M. Nisio

greater than 1—&. Since K, is compact with K, {u,} proves to be uniformly
tight. This proves (e)=>(d).

We shall now prove (f)=>(e).

Take = E* and fix it for the moment. <z, X,>, n=1, 2, --- are in-

dependent real random variables and

n

<2) Sn> = 2<2’, X:> .

By our assumption, we have
E[et<*S»>] = E[¢<***S¢”] — C(t2: p)

for every real ¢. Since the right hand side is a characteristic function of ¢ for
the probability measure on R' induced from p by the map x—<{z, x>, the
probability law of {z, S,> converges to this measure. Therefore {2, S,> con-
verges a.s. to a real random variable, say Y,, by Lévy’s theorem. Notice that
the exceptional w-set depends on 2. Since a countable sum of null sets also is
a null set, we have a P-null w-set N=N(z}, 27 ---) such that

<z(k)’ Sn> - Yz(”) k= 1: 2: nee

for every wEN".
Now we shall compare two systems of real random variables:

Y,(0), 0wEQ, ¥, P), zeE*
and

{z, x, xE(E, B, u), e E*,

They have the same finite jont distributions. To prove this, take 2%, 2@, ..,
2P E*. Then

E [ei?t ,‘YZU)J _ 1"11{10 E[gi?t Lz S,,>] _ }HE E[gt'(_JS__‘, L S">:|
=CXt2P: p) = Ey [;’(; tjz(i),x>:l
7

= E, [ei Sl x>]

by our assumption (f), where E, is the expectation sign based on the measure 4.
Let R” be a countable product space R'X R'X -+ and B(R~) the o-algebra
generated by all cylindrical Borel sets in R*. B(R~) is also the o-algebra of
all Borel subsets of R with respect to the product topology.
Let 2’, 2”, -+ be any sequence in E*. Then we have

(1) P[(Yy, Y1, )EB] = p[(<2', %, {2, x>-+-)EB]

for BE B(R"); in fact, if B is a cylindrical Borel set, this identity holds because
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of the same joint distributions mentioned above and so it proves to hold for every
Be B(R™) by usual argument.

Now we shall prove the existence of an E-valued random variable S(w) with
Y,=<z, S as. for each z E*, which will complete the proof of (¢). To find
out such S(w), we shall use the facts mentioned above.

Since p is tight, we can find an increasing sequence of compact sets K,, K,,
-« E such that u(K,)—1, so that p(K.)=1 for K.= ”UK,,. K. is clearly a

Borel subset of E. Take z,, 2,, -~ € E* in Proposition 2.1. The map §: E—~R~
denfined by

Ox = (<zp x>) <22, x>°)

is continuous and one-to-one from E onto #E; in fact, if §x=(0, 0, --+), then
€ N {x: {2, xp<r} = {x: ||x|| <r}

for every >0 (see the proof of Proposition 2.1) and so x=0. Therefore 0K,
is compact and the restriction #|K, has a continuous inverse map. Since
0K.= UHK, is a Borel subset of R, the restriction of # to K., has an inverse

which can be extended to a map @: R”— E measurable (B(R~), B). Itis clear
that
(2) X = (p(ax) = @<z, %0, {23, X, "‘) on K. .
Since
({2, %0, {2y x>+ )EOK.)>p(K) =1,
we have
P(Y,, Y., ~)EOK.)=1.
Now we set

S(0) = P(Y2y(@), Vafw), ).

Take an arbitrary 2 E*. Then

( 3 ) ,U,(<2’, x> = <2, ¢(<2‘1, x>: <32’ x>)>)
2/,&(.76’ = ¢(<2’1, x>) <22) x>, "'))
Zﬂ(x = (P(<2'1, .X'>, <zz’ .X') "'>; xEKm)
— W(K.) =1 by (2).
Since ¢ is measurable (B(R),P) and x—<z, x> is continuous; the condition

on (&, &, &, -++): E,=C2, p(§,, &, ) is given by a Borel subset of R~. By (1)
and (3) we have

P( Yz = <Z, q)( sz Yzz) '")>) =1
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and so

P(Y, =<z ) =1,

which completes our proof.

5. Examples.

a. Generalized Wiener expansion of Brownian motion

Let B(t), 0<t<1, be a Brownian motion with B(0)=0. Then we have an
isomorphism between the real Hilbert Space L?[0, 1] and the real Hilbert Space
M(B) spanned by B(t), 0<t<1in L(Q, &, P) by

v - | pdBw) .

The indicator e, of the interval (0, #) corresponds to B(¢). Let {®,}, be an
orthonormal base in L*[0, 1]. Then the {£,}, that correspond to {®,}, form
an orthogonal base in M(B). {£,}, are independent since B(t) is a Gaussian
process. As ¢, has an orthogonal expansion

€t = ; bn(t)¢n ’
where

(1) = [, eutw)p,wiu = | o, wiu,

we have an orthogonal expansion

t
0

(1) B(t) = 31 b,((0) = D Eo) | pau)du.

For each t, this series converges in the mean square and so converges a.s. by
Lévy’s theorem. We shall make use of Theorem 4.1 ((¢)=>(a)) to prove

Theorem 5.1. The right hand side of (1) converges uniformly in t to B(t)
a.s.

Proof. Let us introduce a sequence of stochastic processes
t
X,(t, 0) = £u0) | pulw)du,  n=1,2, -
0

and write the sample paths of X (¢, w), n=1, 2, --- and B(¢, w) as X,(w),
n=1, 2, --- and B(w) respectively. Then these are symmetrically distributed
random variables with values in the Banach space E=CJ0, 1] of continuous
functions on [0, 1]. X, n=1, 2, --- are independent. Set
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Sn(a’) = 2" X,‘(w) , n=12 -

S, () is the sample path of the process S,(z, m):i X(t, ®). Our theorem

claims that S,—B a.s. To prove this it is enough by Theorem to prove that
for every 2 E* i.e. for every signed measure 2(d?) on [0, 1], <z, S,> converges
in probability to {2, B>. It is now enough to observe

E[[<z, S,>—<=, B)[]
— E[ ‘ S z(dt)(S,,(t)—B(t))‘] | 2| —total variation of z

< {/131@BL1 8,00~ B®)1 -0,
because

(BLIS,(0)—B®) 1 < E[1S,()—B®)] = 3 bi(ty

and so

' 27 \'? _
E[]S,@®)—B()!] l = (SO eu(¥) du> <Vt for Vit

-0 as n—> oo,

b. Definition of Brownian motion

Theorem 5.1 suggests that we can define Brownian motion as follows. Let
£, (0), n=1,2, .- be an independent sequence of real random variables with
the distribution N(0, 1), (whose existence is guaranteed by Kolmogorov’s ex-
tension theorem) and an orthonormal base ¢,, n=1, 2, --- in L*[0, 1].

Theorem 5.2.

(2) Ne)| puwdu, 0<t<1

converges uniformly in t a.s. The limit process S(t) is a stochastic process with
independent increaments and continuous paths such that S(t)S(s) is N(0, t—s)-
distributed for t>s, i.e. S(t) is a Brownian motion.

RemARk. N. Wiener [6] defined Brownian motion in this way by taking
@,(u)=+/2 sinnzt, n=1,2,---. He proved the a.s. uniform convergence of
the grouped sums

2
n=0 b

> £uo) | /2 sin keudu,

which was sufficient for his purpose. G. Hunt [4] proved a theorem that ensures
the a.s. uniform convergence of the sum
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2 £ (o) St \/ 2 sin nrudu .

We claim that this holds for a general orthonormal base {p,}, (Delporte. [2],
Walsh [8]).

Proof. The only difficult part of our theorem is the a.s. uniform con-
vergence. We shall use X, (o), S,(¢, ) and S,(o) as before. By Theorem 3.2
it is enough to prove that the probability laws of S,, n=1,2, -+ are uniformly
tight.

Observing

E[1S.(0—S,)17 = BIb0)—b6)1* < | leof)—e(w)]*du = 1=,

i=

we have

B[ S,(0)=Su(5)1'] = 3E[|S,() = Su(s)I'T <3(t—s)’

because S,(t)—S,(s) is Gauss distributed with the mean 0. Using the same
technique of diadic expansions as in the proof of Kolmogorov’s theorem, we can
prove that for £>0, there exists §=5(€) such that

PS,eK)>1—¢&n=1,2,-
where
K = K(8) = K(¢)
= {fEC[0, 1]: f(0)= 0, | f()—f(s)| <5|t—s|"* for |t—s|<3(E)},
It is easy to see that K is an equi-continuous and equibounded family. There-

fore K is conditionally compact in C[0, 1] by Ascoli-Arzela’s theorem. This
completes the proof.

c. Gaussian stationary processes

Let S() be a Gaussian stationary process continuous in the square mean such
that E(S(z))=0. Let us consider the sample path S of S(¢) on a bounded time
interval @<t<b. By taking a measurable separable version we have
S& L?[a, b] as. for every p>1; we shall identify two functions on [a, b] equal to
each other a.e. In fact we have

E[ISIz) = EL ||
= " B1IS@) 1712 = ELS©)1916—0) <oo,

noticing that S(0, ) is Gauss distributed and so
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P[lIS||,<eo] = 1.

Consider the spectral decomposition of S(¢):

S(t, ©) = Sm M D(dN, o)
and set

Xt ©) = S MDA\, w), n=1,2 .

n-15|AI<n

Then X ,(t) has a version whose sample path (on a<¢<b) is continuous a.s. and
so belongs to L?[a, b] a.s. Now set

S.t) = 31 X,(t) = S M D(dN)

Then it is easy to see that
E[1S,(t)—S()|7] = S F(d\)— 0 asn— oo
IA[=n
where F(d\) is the spectral measure of the covariance function of S(¢).

Theorem 5.3.
SbIS,,(t)—S(t)lpdt S0 as (p>1).

Proof. Using the same notation for the sample paths we can see that
X,, n=1, 2,--- are independent random variables with values in L?[a, b].

EiS,—SIk = E[ {15,007
— | B0 S.0)— 50171t = ¢, [ (BL18,0)— S0 1Dt

—cfb—a) | Fan]r—0 asn— e,

PN

where cpzr \/%me“iz/2>|§|Pd§. By Theorem 3.1 ((b)=(a)) for E=L?[a, b],
-\ 21

this implies |[S,— S| ,—~0 a.s.
Theorem 5.4. If the sample path of S(t, ») is continuous a.s., then
max |S,(1)—S()| =0 as.

a<t<bh

REmARK, Sufficient conditions for the a,s. continuity of the sample path
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of S(t) in terms of the correlation function of S(#) were given by G. Hunt [4],
Belayev [1] and X. Fernique [3].

Proof. Using the same idea as above, we can apply Theorem 4.1 ((e)=(a))

for E=CJ0, 1] by observing

(1]

(2]
[3]
(4]
(5]
(6]
[7]

[8]

1

< j"|z|(dt>E[| S.(t, 0)—S(t, w)|]

a

[[2(@) 8.t o) [ s(an stt, o) |
= S: |2 [(dO[E(] S.u(t)—S() )]
= ["1s1@| | Fan]" =0, asn-co.
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